Search This Blog

Tuesday, March 24, 2020

Fly (order Diptera)

From Wikipedia, the free encyclopedia

Fly
Temporal range: 245 –0 Ma
O
S
D
C
P
T
J
K
N
Middle Triassic – Recent
Bessenbandzweefvlieg Vrouwtje (2).JPG
Syrphus ribesii, showing characteristic dipteran features: large eyes, small antennae, sucking mouthparts, single pair of flying wings, hindwings reduced to clublike halteres
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Superorder: Panorpida
(unranked): Antliophora
Order: Diptera
Linnaeus, 1758

True flies are insects of the order Diptera, the name being derived from the Greek δι- di- "two", and πτερόν pteron "wings". Insects of this order use only a single pair of wings to fly, the hindwings having evolved into advanced mechanosensory organs known as halteres, which act as high-speed sensors of rotational movement and allow dipterans to perform advanced aerobatics. Diptera is a large order containing an estimated 1,000,000 species including horse-flies, crane flies, hoverflies and others, although only about 125,000 species have been described.

Flies have a mobile head, with a pair of large compound eyes, and mouthparts designed for piercing and sucking (mosquitoes, black flies and robber flies), or for lapping and sucking in the other groups. Their wing arrangement gives them great maneuverability in flight, and claws and pads on their feet enable them to cling to smooth surfaces. Flies undergo complete metamorphosis; the eggs are laid on the larval food-source and the larvae, which lack true limbs, develop in a protected environment, often inside their food source. The pupa is a tough capsule from which the adult emerges when ready to do so; flies mostly have short lives as adults.

Diptera is one of the major insect orders and of considerable ecological and human importance. Flies are important pollinators, second only to the bees and their Hymenopteran relatives. Flies may have been among the evolutionarily earliest pollinators responsible for early plant pollination. Fruit flies are used as model organisms in research, but less benignly, mosquitoes are vectors for malaria, dengue, West Nile fever, yellow fever, encephalitis, and other infectious diseases; and houseflies, commensal with humans all over the world, spread food-borne illnesses. Flies can be annoyances especially in some parts of the world where they can occur in large numbers, buzzing and settling on the skin or eyes to bite or seek fluids. Larger flies such as tsetse flies and screwworms cause significant economic harm to cattle. Blowfly larvae, known as gentles, and other dipteran larvae, known more generally as maggots, are used as fishing bait and as food for carnivorous animals. They are also used in medicine in debridement to clean wounds.

Taxonomy and phylogeny

Relationships to other insects

Dipterans are endopterygotes, insects that undergo radical metamorphosis. They belong to the Mecopterida, alongside the Mecoptera, Siphonaptera, Lepidoptera and Trichoptera. The possession of a single pair of wings distinguishes most true flies from other insects with "fly" in their names. However, some true flies such as Hippoboscidae (louse flies) have become secondarily wingless.

Fossil nematoceran in Dominican amber. Sandfly, Lutzomyia adiketis (Psychodidae), Early Miocene, c. 20 million years ago

Relationships between fly subgroups and families

Fossil brachyceran in Baltic amber. Lower Eocene, c. 50 million years ago
 
The first true dipterans known are from the Middle Triassic (around 240 million years ago), and they became widespread during the Middle and Late Triassic. Modern flowering plants did not appear until the Cretaceous (around 140 million years ago), so the original dipterans must have had a different source of nutrition other than nectar. Based on the attraction of many modern fly groups to shiny droplets, it has been suggested that they may have fed on honeydew produced by sap-sucking bugs which were abundant at the time, and dipteran mouthparts are well-adapted to softening and lapping up the crusted residues. The basal clades in the Diptera include the Deuterophlebiidae and the enigmatic Nymphomyiidae. Three episodes of evolutionary radiation are thought to have occurred based on the fossil record. Many new species of lower Diptera developed in the Triassic, about 220 million years ago. Many lower Brachycera appeared in the Jurassic, some 180 million years ago. A third radiation took place among the Schizophora at the start of the Paleogene, 66 million years ago.

The phylogenetic position of Diptera has been controversial. The monophyly of holometabolous insects has long been accepted, with the main orders being established as Lepidoptera, Coleoptera, Hymenoptera and Diptera, and it is the relationships between these groups which has caused difficulties. Diptera is widely thought to be a member of Mecopterida, along with Lepidoptera (butterflies and moths), Trichoptera (caddisflies), Siphonaptera (fleas), Mecoptera (scorpionflies) and possibly Strepsiptera (twisted-wing flies). Diptera has been grouped with Siphonaptera and Mecoptera in the Antliophora, but this has not been confirmed by molecular studies.

Diptera were traditionally broken down into two suborders, Nematocera and Brachycera, distinguished by the differences in antennae. The Nematocera are identified by their elongated bodies and many-segmented, often feathery antennae as represented by mosquitoes and crane flies. The Brachycera have rounder bodies and much shorter antennae. Subsequent studies have identified the Nematocera as being non-monophyletic with modern phylogenies placing the Brachycera within grades of groups formerly placed in the Nematocera. The construction of a phylogenetic tree has been the subject of ongoing research. The following cladogram is based on the FLYTREE project.

Diversity

Gauromydas heros is the largest fly in the world.

Flies are often abundant and are found in almost all terrestrial habitats in the world apart from Antarctica. They include many familiar insects such as house flies, blow flies, mosquitoes, gnats, black flies, midges and fruit flies. More than 150,000 have been formally described and the actual species diversity is much greater, with the flies from many parts of the world yet to be studied intensively. The suborder Nematocera include generally small, slender insects with long antennae such as mosquitoes, gnats, midges and crane-flies, while the Brachycera includes broader, more robust flies with short antennae. Many nematoceran larvae are aquatic. There are estimated to be a total of about 19,000 species of Diptera in Europe, 22,000 in the Nearctic region, 20,000 in the Afrotropical region, 23,000 in the Oriental region and 19,000 in the Australasian region. While most species have restricted distributions, a few like the housefly (Musca domestica) are cosmopolitan. Gauromydas heros (Asiloidea), with a length of up to 7 cm (2.8 in), is generally considered to be the largest fly in the world, while the smallest is Euryplatea nanaknihali, which at 0.4 mm (0.016 in) is smaller than a grain of salt.

Brachycera are ecologically very diverse, with many being predatory at the larval stage and some being parasitic. Animals parasitised include molluscs, woodlice, millipedes, insects, mammals, and amphibians. Flies are the second largest group of pollinators after the Hymenoptera (bees, wasps and relatives). In wet and colder environments flies are significantly more important as pollinators. Compared to bees, they need less food as they do not need to provision their young. Many flowers that bear low nectar and those that have evolved trap pollination depend on flies. It is thought that some of the earliest pollinators of plants may have been flies.

The greatest diversity of gall forming insects are found among the flies, principally in the family Cecidomyiidae (gall midges). Many flies (most importantly in the family Agromyzidae) lay their eggs in the mesophyll tissue of leaves with larvae feeding between the surfaces forming blisters and mines. Some families are mycophagous or fungus feeding. These include the cave dwelling Mycetophilidae (fungus gnats) whose larvae are the only diptera with bioluminescence. The Sciaridae are also fungus feeders. Some plants are pollinated by fungus feeding flies that visit fungus infected male flowers.

The larvae of Megaselia scalaris (Phoridae) are almost omnivorous and consume such substances as paint and shoe polish. The Exorista mella (Walker) fly are considered generalists and parasitoids of a variety of hosts. The larvae of the shore flies (Ephydridae) and some Chironomidae survive in extreme environments including glaciers (Diamesa sp., Chironomidae), hot springs, geysers, saline pools, sulphur pools, septic tanks and even crude oil (Helaeomyia petrolei). Adult hoverflies (Syrphidae) are well known for their mimicry and the larvae adopt diverse lifestyles including being inquiline scavengers inside the nests of social insects. Some brachycerans are agricultural pests, some bite animals and humans and suck their blood, and some transmit diseases.

Anatomy and morphology

Flies are adapted for aerial movement and typically have short and streamlined bodies. The first tagma of the fly, the head, bears the eyes, the antennae, and the mouthparts (the labrum, labium, mandible, and maxilla make up the mouthparts). The second tagma, the thorax, bears the wings and contains the flight muscles on the second segment, which is greatly enlarged; the first and third segments have been reduced to collar-like structures, and the third segment bears the halteres, which help to balance the insect during flight. The third tagma is the abdomen consisting of 11 segments, some of which may be fused, and with the 3 hindmost segments modified for reproduction. Some Dipterans are mimics and can only be distinguished from their models by very careful inspection. An example of this is Spilomyia longicornis, which is a fly but mimics a vespid wasp.

Head of a horse-fly showing large compound eyes and stout piercing mouthparts

Flies have a mobile head with a pair of large compound eyes on the sides of the head, and in most species, three small ocelli on the top. The compound eyes may be close together or widely separated, and in some instances are divided into a dorsal region and a ventral region, perhaps to assist in swarming behaviour. The antennae are well-developed but variable, being thread-like, feathery or comb-like in the different families. The mouthparts are adapted for piercing and sucking, as in the black flies, mosquitoes and robber flies, and for lapping and sucking as in many other groups. Female horse-flies use knife-like mandibles and maxillae to make a cross-shaped incision in the host's skin and then lap up the blood that flows. The gut includes large diverticulae, allowing the insect to store small quantities of liquid after a meal.

For visual course control, flies' optic flow field is analyzed by a set of motion-sensitive neurons. A subset of these neurons is thought to be involved in using the optic flow to estimate the parameters of self-motion, such as yaw, roll, and sideward translation. Other neurons are thought to be involved in analyzing the content of the visual scene itself, such as separating figures from the ground using motion parallax. The H1 neuron is responsible for detecting horizontal motion across the entire visual field of the fly, allowing the fly to generate and guide stabilizing motor corrections midflight with respect to yaw. The ocelli are concerned in the detection of changes in light intensity, enabling the fly to react swiftly to the approach of an object.

Like other insects, flies have chemoreceptors that detect smell and taste, and mechanoreceptors that respond to touch. The third segments of the antennae and the maxillary palps bear the main olfactory receptors, while the gustatory receptors are in the labium, pharynx, feet, wing margins and female genitalia, enabling flies to taste their food by walking on it. The taste receptors in females at the tip of the abdomen receive information on the suitability of a site for ovipositing. Flies that feed on blood have special sensory structures that can detect infrared emissions, and use them to home in on their hosts, and many blood-sucking flies can detect the raised concentration of carbon dioxide that occurs near large animals. Some tachinid flies (Ormiinae) which are parasitoids of bush crickets, have sound receptors to help them locate their singing hosts.

A cranefly, showing the hind wings reduced to drumstick-shaped halteres

Diptera have one pair of fore wings on the mesothorax and a pair of halteres, or reduced hind wings, on the metathorax. A further adaptation for flight is the reduction in number of the neural ganglia, and concentration of nerve tissue in the thorax, a feature that is most extreme in the highly derived Muscomorpha infraorder. Some species of flies are exceptional in that they are secondarily flightless. The only other order of insects bearing a single pair of true, functional wings, in addition to any form of halteres, are the Strepsiptera. In contrast to the flies, the Strepsiptera bear their halteres on the mesothorax and their flight wings on the metathorax. Each of the fly's six legs has a typical insect structure of coxa, trochanter, femur, tibia and tarsus, with the tarsus in most instances being subdivided into five tarsomeres. At the tip of the limb is a pair of claws, and between these are cushion-like structures known as pulvilli which provide adhesion.

The abdomen shows considerable variability among members of the order. It consists of eleven segments in primitive groups and ten segments in more derived groups, the tenth and eleventh segments having fused. The last two or three segments are adapted for reproduction. Each segment is made up of a dorsal and a ventral sclerite, connected by an elastic membrane. In some females, the sclerites are rolled into a flexible, telescopic ovipositor.

Flight

Tabanid fly in flight

Flies are capable of great manoeuvrability during flight due to the presence of the halteres. These act as gyroscopic organs and are rapidly oscillated in time with the wings; they act as a balance and guidance system by providing rapid feedback to the wing-steering muscles, and flies deprived of their halteres are unable to fly. The wings and halteres move in synchrony but the amplitude of each wing beat is independent, allowing the fly to turn sideways. The wings of the fly are attached to two kinds of muscles, those used to power it and another set used for fine control.

Flies tend to fly in a straight line then make a rapid change in direction before continuing on a different straight path. The directional changes are called saccades and typically involve an angle of 90°, being achieved in 50 milliseconds. They are initiated by visual stimuli as the fly observes an object, nerves then activate steering muscles in the thorax that cause a small change in wing stroke which generate sufficient torque to turn. Detecting this within four or five wingbeats, the halteres trigger a counter-turn and the fly heads off in a new direction.

Flies have rapid reflexes that aid their escape from predators but their sustained flight speeds are low. Dolichopodid flies in the genus Condylostylus respond in less than 5 milliseconds to camera flashes by taking flight. In the past, the deer bot fly, Cephenemyia, was claimed to be one of the fastest insects on the basis of an estimate made visually by Charles Townsend in 1927. This claim, of speeds of 600 to 800 miles per hour, was regularly repeated until it was shown to be physically impossible as well as incorrect by Irving Langmuir. Langmuir suggested an estimated speed of 25 miles per hour.

Although most flies live and fly close to the ground, a few are known to fly at heights and a few like Oscinella (Chloropidae) are known to be dispersed by winds at altitudes of up to 2000 ft and over long distances. Some hover flies like Metasyrphus corollae have been known to undertake long flights in response to aphid population spurts.

Males of fly species such as Cuterebra, many hover flies, bee flies (Bombyliidae) and fruit flies (Tephritidae) maintain territories within which they engage in aerial pursuit to drive away intruding males and other species. While these territories may be held by individual males, some species, such as A. freeborni, form leks with many males aggregating in displays. Some flies maintain an airspace and still others form dense swarms that maintain a stationary location with respect to landmarks. Many flies mate in flight while swarming.

Life cycle and development


Diptera go through a complete metamorphosis with four distinct life stages – egg, larva, pupa and adult.

Larva

In many flies, the larval stage is long and adults may have a short life. Most dipteran larvae develop in protected environments; many are aquatic and others are found in moist places such as carrion, fruit, vegetable matter, fungi and, in the case of parasitic species, inside their hosts. They tend to have thin cuticles and become desiccated if exposed to the air. Apart from the Brachycera, most dipteran larvae have sclerotinised head capsules, which may be reduced to remnant mouth hooks; the Brachycera, however, have soft, gelatinized head capsules from which the sclerites are reduced or missing. Many of these larvae retract their heads into their thorax.

Life cycle of stable fly Stomoxys calcitrans, showing eggs, 3 larval instars, pupa, and adult

Some other anatomical distinction exists between the larvae of the Nematocera and the Brachycera. Especially in the Brachycera, little demarcation is seen between the thorax and abdomen, though the demarcation may be visible in many Nematocera, such as mosquitoes; in the Brachycera, the head of the larva is not clearly distinguishable from the rest of the body, and few, if any, sclerites are present. Informally, such brachyceran larvae are called maggots, but the term is not technical and often applied indifferently to fly larvae or insect larvae in general. The eyes and antennae of brachyceran larvae are reduced or absent, and the abdomen also lacks appendages such as cerci. This lack of features is an adaptation to food such as carrion, decaying detritus, or host tissues surrounding endoparasites. Nematoceran larvae generally have well-developed eyes and antennae, while those of Brachyceran larvae are reduced or modified.

Dipteran larvae have no jointed, "true legs", but some dipteran larvae, such as species of Simuliidae, Tabanidae and Vermileonidae, have prolegs adapted to hold onto a substrate in flowing water, host tissues or prey. The majority of dipterans are oviparous and lay batches of eggs, but some species are ovoviviparous, where the larvae starting development inside the eggs before they hatch or viviparous, the larvae hatching and maturing in the body of the mother before being externally deposited. These are found especially in groups that have larvae dependent on food sources that are short-lived or are accessible for brief periods. This is widespread in some families such as the Sarcophagidae. In Hylemya strigosa (Anthomyiidae) the larva moults to the second instar before hatching, and in Termitoxenia (Phoridae) females have incubation pouches, and a full developed third instar larva is deposited by the adult and it almost immediately pupates with no freely feeding larval stage. The tsetse fly (as well as other Glossinidae, Hippoboscidae, Nycteribidae and Streblidae) exhibits adenotrophic viviparity; a single fertilised egg is retained in the oviduct and the developing larva feeds on glandular secretions. When fully grown, the female finds a spot with soft soil and the larva works its way out of the oviduct, buries itself and pupates. Some flies like Lundstroemia parthenogenetica (Chironomidae) reproduce by thelytokous parthenogenesis, and some gall midges have larvae that can produce eggs (paedogenesis).

Pupa

The pupae take various forms. In some groups, particularly the Nematocera, the pupa is intermediate between the larval and adult form; these pupae are described as "obtect", having the future appendages visible as structures that adhere to the pupal body. The outer surface of the pupa may be leathery and bear spines, respiratory features or locomotory paddles. In other groups, described as "coarctate", the appendages are not visible. In these, the outer surface is a puparium, formed from the last larval skin, and the actual pupa is concealed within. When the adult insect is ready to emerge from this tough, desiccation-resistant capsule, it inflates a balloon-like structure on its head, and forces its way out.

Adult

The adult stage is usually short, its function only to mate and lay eggs. The genitalia of male flies are rotated to a varying degree from the position found in other insects. In some flies, this is a temporary rotation during mating, but in others, it is a permanent torsion of the organs that occurs during the pupal stage. This torsion may lead to the anus being below the genitals, or, in the case of 360° torsion, to the sperm duct being wrapped around the gut and the external organs being in their usual position. When flies mate, the male initially flies on top of the female, facing in the same direction, but then turns around to face in the opposite direction. This forces the male to lie on his back for his genitalia to remain engaged with those of the female, or the torsion of the male genitals allows the male to mate while remaining upright. This leads to flies having more reproduction abilities than most insects, and much quicker. Flies occur in large populations due to their ability to mate effectively and quickly during the mating season.

Ecology

As ubiquitous insects, dipterans play an important role at various trophic levels both as consumers and as prey. In some groups the larvae complete their development without feeding, and in others the adults do not feed. The larvae can be herbivores, scavengers, decomposers, predators or parasites, with the consumption of decaying organic matter being one of the most prevalent feeding behaviours. The fruit or detritus is consumed along with the associated micro-organisms, a sieve-like filter in the pharynx being used to concentrate the particles, while flesh-eating larvae have mouth-hooks to help shred their food. The larvae of some groups feed on or in the living tissues of plants and fungi, and some of these are serious pests of agricultural crops. Some aquatic larvae consume the films of algae that form underwater on rocks and plants. Many of the parasitoid larvae grow inside and eventually kill other arthropods, while parasitic larvae may attack vertebrate hosts.

Whereas many dipteran larvae are aquatic or live in enclosed terrestrial locations, the majority of adults live above ground and are capable of flight. Predominantly they feed on nectar or plant or animal exudates, such as honeydew, for which their lapping mouthparts are adapted. The flies that feed on vertebrate blood have sharp stylets that pierce the skin, the insects inserting anticoagulant saliva and absorbing the blood that flows; in this process, certain diseases can be transmitted. The bot flies (Oestridae) have evolved to parasitize mammals. Many species complete their life cycle inside the bodies of their hosts. In many dipteran groups, swarming is a feature of adult life, with clouds of insects gathering in certain locations; these insects are mostly males, and the swarm may serve the purpose of making their location more visible to females.

Anti-predator adaptations

The large bee-fly, Bombylius major, is a Batesian mimic of bees.

Flies are eaten by other animals at all stages of their development. The eggs and larvae are parasitised by other insects and are eaten by many creatures, some of which specialise in feeding on flies but most of which consume them as part of a mixed diet. Birds, bats, frogs, lizards, dragonflies and spiders are among the predators of flies. Many flies have evolved mimetic resemblances that aid their protection. Batesian mimicry is widespread with many hoverflies resembling bees and wasps, ants and some species of tephritid fruit fly resembling spiders. Some species of hoverfly are myrmecophilous, their young live and grow within the nests of ants. They are protected from the ants by imitating chemical odours given by ant colony members. Bombyliid bee flies such as Bombylius major are short-bodied, round, furry, and distinctly bee-like as they visit flowers for nectar, and are likely also Batesian mimics of bees.

In contrast, Drosophila subobscura, a species of fly in the genus Drosophila, lacks a category of hemocytes that are present in other studied species of Drosophila, leading to an inability to defend against parasitic attacks, a form of innate immunodeficiency.

In culture

Symbolism

Petrus Christus's 1446 painting Portrait of a Carthusian has a fly painted on a trompe l'oeil frame.

Flies play a variety of symbolic roles in different cultures. These include both positive and negative roles in religion. In the traditional Navajo religion, Big Fly is an important spirit being. In Christian demonology, Beelzebub is a demonic fly, the "Lord of the Flies", and a god of the Philistines.

Flies have appeared in literature since ancient Sumer. In a Sumerian poem, a fly helps the goddess Inanna when her husband Dumuzid is being chased by galla demons. In the Mesopotamian versions of the flood myth, the dead corpses floating on the waters are compared to flies. Later, the gods are said to swarm "like flies" around the hero Utnapishtim's offering. Flies appear on Old Babylonian seals as symbols of Nergal, the god of death. Fly-shaped lapis lazuli beads were often worn in ancient Mesopotamia, along with other kinds of fly-jewellery.

In Prometheus Bound, which is attributed to the Athenian tragic playwright Aeschylus, a gadfly sent by Zeus's wife Hera pursues and torments his mistress Io, who has been transformed into a cow and is watched constantly by the hundred eyes of the herdsman Argus: "Io: Ah! Hah! Again the prick, the stab of gadfly-sting! O earth, earth, hide, the hollow shape—Argus—that evil thing—the hundred-eyed." William Shakespeare, inspired by Aeschylus, has Tom o'Bedlam in King Lear, "Whom the foul fiend hath led through fire and through flame, through ford and whirlpool, o'er bog and quagmire", driven mad by the constant pursuit. In Antony and Cleopatra, Shakespeare similarly likens Cleopatra's hasty departure from the Actium battlefield to that of a cow chased by a gadfly. More recently, in 1962 the biologist Vincent Dethier wrote To Know a Fly, introducing the general reader to the behaviour and physiology of the fly.

Flies appear in popular culture in concepts such as fly-on-the-wall documentary-making in film and television production. The metaphoric name suggests that events are seen candidly, as a fly might see them. Flies have inspired the design of miniature flying robots. Steven Spielberg's 1993 film Jurassic Park relied on the idea that DNA could be preserved in the stomach contents of a blood-sucking fly fossilised in amber, though the mechanism has been discounted by scientists.

Economic importance

An Anopheles stephensi mosquito drinking human blood. The species carries malaria.

Dipterans are an important group of insects and have a considerable impact on the environment. Some leaf-miner flies (Agromyzidae), fruit flies (Tephritidae and Drosophilidae) and gall midges (Cecidomyiidae) are pests of agricultural crops; others such as tsetse flies, screwworm and botflies (Oestridae) attack livestock, causing wounds, spreading disease, and creating significant economic harm. See article: Parasitic flies of domestic animals. A few can even cause myiasis in humans. Still others such as mosquitoes (Culicidae), blackflies (Simuliidae) and drain flies (Psychodidae) impact human health, acting as vectors of major tropical diseases. Among these, Anopheles mosquitoes transmit malaria, filariasis, and arboviruses; Aedes aegypti mosquitoes carry dengue fever and the Zika virus; blackflies carry river blindness; sand flies carry leishmaniasis. Other dipterans are a nuisance to humans, especially when present in large numbers; these include houseflies, which contaminate food and spread food-borne illnesses; the biting midges and sandflies (Ceratopogonidae) and the houseflies and stable flies (Muscidae). In tropical regions, eye flies (Chloropidae) which visit the eye in search of fluids can be a nuisance in some seasons.

Many dipterans serve roles that are useful to humans. Houseflies, blowflies and fungus gnats (Mycetophilidae) are scavengers and aid in decomposition. Robber flies (Asilidae), tachinids (Tachinidae) and dagger flies and balloon flies (Empididae) are predators and parasitoids of other insects, helping to control a variety of pests. Many dipterans such as bee flies (Bombyliidae) and hoverflies (Syrphidae) are pollinators of crop plants.

Uses

Diptera in research: Drosophila melanogaster fruit fly larvae being bred in tubes in a genetics laboratory

Drosophila melanogaster, a fruit fly, has long been used as a model organism in research because of the ease with which it can be bred and reared in the laboratory, its small genome, and the fact that many of its genes have counterparts in higher eukaryotes. A large number of genetic studies have been undertaken based on this species; these have had a profound impact on the study of gene expression, gene regulatory mechanisms and mutation. Other studies have investigated physiology, microbial pathogenesis and development among other research topics. The studies on dipteran relationships by Willi Hennig helped in the development of cladistics, techniques that he applied to morphological characters but now adapted for use with molecular sequences in phylogenetics.

Blowflies feeding on the fresh corpse of a porcupine, Hystrix africaeaustralis

Maggots found on corpses are useful to forensic entomologists. Maggot species can be identified by their anatomical features and by matching their DNA. Maggots of different species of flies visit corpses and carcases at fairly well-defined times after the death of the victim, and so do their predators, such as beetles in the family Histeridae. Thus, the presence or absence of particular species provides evidence for the time since death, and sometimes other details such as the place of death, when species are confined to particular habitats such as woodland.

Maggots used as animal feed at London Zoo

Some species of maggots such as blowfly larvae (gentles) and bluebottle larvae (casters) are bred commercially; they are sold as bait in angling, and as food for carnivorous animals (kept as pets, in zoos, or for research) such as some mammals, fishes, reptiles, and birds. It has been suggested that fly larvae could be used at a large scale as food for farmed chickens, pigs, and fish. However, consumers are opposed to the inclusion of insects in their food, and the use of insects in animal feed remains illegal in areas such as the European Union.

Casu marzu is a traditional Sardinian sheep milk cheese that contains larvae of the cheese fly, Piophila casei.
 
Fly larvae can be used as a biomedical tool for wound care and treatment. Maggot debridement therapy (MDT) is the use of blow fly larvae to remove the dead tissue from wounds, most commonly being amputations. Historically, this has been used for centuries, both intentional and unintentional, on battlefields and in early hospital settings. Removing the dead tissue promotes cell growth and healthy wound healing. The larvae also have biochemical properties such as antibacterial activity found in their secretions as they feed. These medicinal maggots are a safe and effective treatment for chronic wounds.

The Sardinian cheese casu marzu is exposed to flies known as cheese skippers such as Piophila casei, members of the family Piophilidae. The digestive activities of the fly larvae soften the cheese and modify the aroma as part of the process of maturation. At one time European Union authorities banned sale of the cheese and it was becoming hard to find, but the ban has been lifted on the grounds that the cheese is a traditional local product made by traditional methods.

Mosquito

From Wikipedia, the free encyclopedia

Mosquito
Temporal range: 99–0 Ma
O
S
D
C
P
T
J
K
N
Cretaceous – Recent
Mosquito 2007-2.jpg
Female Culiseta longiareolata
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Superfamily: Culicoidea
Family: Culicidae
Meigen, 1818 
Subfamilies
Diversity
41 genera

Mosquitoes (alternate spelling mosquitos) comprise a group of about 3,500 species of small insects that are flies (order Diptera). Within Diptera they constitute the family Culicidae (from the Latin culex meaning "gnat"). The word "mosquito" (formed by mosca and diminutive -ito) is Spanish for "little fly". Mosquitoes have a slender segmented body, one pair of wings, one pair of halteres, three pairs of long hair-like legs, and elongated mouthparts.

The mosquito life cycle consists of egg, larva, pupa, and adult stages. Eggs are laid on the water surface; they hatch into motile larvae that feed on aquatic algae and organic material. The adult females of most species have tube-like mouthparts (called a proboscis) that can pierce the skin of a host and feed on blood, which contains protein and iron needed to produce eggs. Thousands of mosquito species feed on the blood of various hosts ⁠— vertebrates, including mammals, birds, reptiles, amphibians, and some fish; along with some invertebrates, primarily other arthropods. This loss of blood is seldom of any importance to the host.

The mosquito's saliva is transferred to the host during the bite, and can cause an itchy rash. In addition, many species can ingest pathogens while biting, and transmit them to future hosts. In this way, mosquitoes are important vectors of diseases such as malaria, yellow fever, Chikungunya, West Nile, dengue fever, filariasis, Zika and other arboviruses. By transmitting diseases, mosquitoes cause the deaths of more people than any other animal taxon: over 700,000 each year and as many as half of the people who have ever lived.

Fossil record and evolution

The oldest known mosquito with an anatomy similar to modern species was found in 79-million-year-old Canadian amber from the Cretaceous. An older sister species with more primitive features was found in Burmese amber that is 90 to 100 million years old. Two mosquito fossils have been found that show very little morphological change in modern mosquitoes against their counterpart from 46 million years ago. These fossils are also the oldest ever found to have blood preserved within their abdomens. Despite no fossils being found earlier than the Cretaceous, recent studies suggest that the earliest divergence of mosquitoes between the lineages leading to Anophelinae and Culicinae occurred 226 million years ago.

The mosquito Anopheles gambiae is currently undergoing speciation into the M(opti) and S(avanah) molecular forms. Consequently, some pesticides that work on the M form no longer work on the S form. Over 3,500 species of the Culicidae have already been described. They are generally divided into two subfamilies which in turn comprise some 43 genera. These figures are subject to continual change, as more species are discovered, and as DNA studies compel rearrangement of the taxonomy of the family. The two main subfamilies are the Anophelinae and Culicinae, with their genera as shown in the subsection below. The distinction is of great practical importance because the two subfamilies tend to differ in their significance as vectors of different classes of diseases. Roughly speaking, arboviral diseases such as yellow fever and dengue fever tend to be transmitted by Culicine species, not necessarily in the genus Culex. Some transmit various species of avian malaria, but it is not clear that they ever transmit any form of human malaria. Some species do however transmit various forms of filariasis, much as many Simuliidae do.

Taxonomy

Family

Mosquitoes are members of a family of nematocerid flies: the Culicidae (from the Latin culex, genitive culicis, meaning "midge" or "gnat"). Superficially, mosquitoes resemble crane flies (family Tipulidae) and chironomid flies (family Chironomidae).

Subfamilies

Genera

Mosquitoes have been classified in 112 genera.

Species

Over 3,500 species of mosquitoes have thus far been described in the scientific literature.

Morphology

As true flies, mosquitoes have one pair of wings, with distinct scales on the surface. Their wings are long and narrow, same with their long, thin legs. They have slender and dainty bodies of length typically from 3 mm to 6 mm, with a color of dark grey to black, some species have specific patterns. When at rest, they tend to hold their first pair of legs outward. They look similar to midge flies (Chironomidae), another ancient family of flies. Tokunagayusurika akamusi, for example, is a midge fly that look very much alike mosquitoes in that they also have slender and dainty bodies of similar colors, though larger in size. They also have only one pair of wings, but without scales on the surface. Another distinct feature to tell the two families of flies apart is the way they hold their first pair of legs - mosquitoes hold them outward, while midges hold them forward.

Life cycle

Image of pitcher plant mosquito Wyeomyia smithii, showing segmentation and partial anatomy of circulatory system

Overview

Like all flies, mosquitoes go through four stages in their life cycles: egg, larva, pupa, and adult or imago. The first three stages—egg, larva, and pupa—are largely aquatic. Each of the stages typically lasts 5 to 14 days, depending on the species and the ambient temperature, but there are important exceptions. Mosquitoes living in regions where some seasons are freezing or waterless spend part of the year in diapause; they delay their development, typically for months, and carry on with life only when there is enough water or warmth for their needs. For instance, Wyeomyia larvae typically get frozen into solid lumps of ice during winter and only complete their development in spring. The eggs of some species of Aedes remain unharmed in diapause if they dry out, and hatch later when they are covered by water.

Eggs hatch to become larvae, which grow until they are able to change into pupae. The adult mosquito emerges from the mature pupa as it floats at the water surface. Bloodsucking mosquitoes, depending on species, sex, and weather conditions, have potential adult lifespans ranging from as short as a week to as long as several months. Some species can overwinter as adults in diapause.

Breeding

In most species, adult females lay their eggs in stagnant water: some lay near the water's edge while others attach their eggs to aquatic plants. Each species selects the situation of the water into which it lays its eggs and does so according to its own ecological adaptations. Some breed in lakes, some in temporary puddles. Some breed in marshes, some in salt-marshes. Among those that breed in salt water, some are equally at home in fresh and salt water up to about one-third the concentration of seawater, whereas others must acclimatize themselves to the salinity. Such differences are important because certain ecological preferences keep mosquitoes away from most humans, whereas other preferences bring them right into houses at night.

Some species of mosquitoes prefer to breed in phytotelmata (natural reservoirs on plants), such as rainwater accumulated in holes in tree trunks, or in the leaf-axils of bromeliads. Some specialize in the liquid in pitchers of particular species of pitcher plants, their larvae feeding on decaying insects that had drowned there or on the associated bacteria; the genus Wyeomyia provides such examples — the harmless Wyeomyia smithii breeds only in the pitchers of Sarracenia purpurea.

However, some of the species of mosquitoes that are adapted to breeding in phytotelmata are dangerous disease vectors. In nature, they might occupy anything from a hollow tree trunk to a cupped leaf. Such species typically take readily to breeding in artificial water containers. Such casual puddles are important breeding places for some of the most serious disease vectors, such as species of Aedes that transmit dengue and yellow fever. Some with such breeding habits are disproportionately important vectors because they are well-placed to pick up pathogens from humans and pass them on. In contrast, no matter how voracious, mosquitoes that breed and feed mainly in remote wetlands and salt marshes may well remain uninfected, and if they do happen to become infected with a relevant pathogen, might seldom encounter humans to infect, in turn.

Eggs and oviposition

Electron micrograph of a mosquito egg

Mosquito habits of oviposition, the ways in which they lay their eggs, vary considerably between species, and the morphologies of the eggs vary accordingly. The simplest procedure is that followed by many species of Anopheles; like many other gracile species of aquatic insects, females just fly over the water, bobbing up and down to the water surface and dropping eggs more or less singly. The bobbing behavior occurs among some other aquatic insects as well, for example mayflies and dragonflies; it is sometimes called "dapping". The eggs of Anopheles species are roughly cigar-shaped and have floats down their sides. Females of many common species can lay 100–200 eggs during the course of the adult phase of their life cycles. Even with high egg and intergenerational mortality, over a period of several weeks, a single successful breeding pair can create a population of thousands. 

An egg raft of a Culex species, partly broken, showing individual egg shapes
 
Some other species, for example members of the genus Mansonia, lay their eggs in arrays, attached usually to the under-surfaces of waterlily pads. Their close relatives, the genus Coquillettidia, lay their eggs similarly, but not attached to plants. Instead, the eggs form layers called "rafts" that float on the water. This is a common mode of oviposition, and most species of Culex are known for the habit, which also occurs in some other genera, such as Culiseta and Uranotaenia. Anopheles eggs may on occasion cluster together on the water, too, but the clusters do not generally look much like compactly glued rafts of eggs. 

In species that lay their eggs in rafts, rafts do not form adventitiously; the female Culex settles carefully on still water with its hind legs crossed, and as it lays the eggs one by one, it twitches to arrange them into a head-down array that sticks together to form the raft.

Aedes females generally drop their eggs singly, much as Anopheles do, but not as a rule into water. Instead, they lay their eggs on damp mud or other surfaces near the water's edge. Such an oviposition site commonly is the wall of a cavity such as a hollow stump or a container such as a bucket or a discarded vehicle tire. The eggs generally do not hatch until they are flooded, and they may have to withstand considerable desiccation before that happens. They are not resistant to desiccation straight after oviposition, but must develop to a suitable degree first. Once they have achieved that, however, they can enter diapause for several months if they dry out. Clutches of eggs of the majority of mosquito species hatch as soon as possible, and all the eggs in the clutch hatch at much the same time. In contrast, a batch of Aedes eggs in diapause tends to hatch irregularly over an extended period of time. This makes it much more difficult to control such species than those mosquitoes whose larvae can be killed all together as they hatch. Some Anopheles species do also behave in such a manner, though not to the same degree of sophistication.

Larva

Anatomy of a Culex larva

The mosquito larva has a well-developed head with mouth brushes used for feeding, a large thorax with no legs, and a segmented abdomen.

Larvae breathe through spiracles located on their eighth abdominal segments, or through a siphon, so must come to the surface frequently. The larvae spend most of their time feeding on algae, bacteria, and other microbes in the surface microlayer.

Mosquito larvae have been investigated as prey of other Dipteran flies. Species such as Bezzia nobilis within the family Ceratopogonidae have been observed in experiments to prey upon mosquito larvae.

They dive below the surface when disturbed. Larvae swim either through propulsion with their mouth brushes, or by jerky movements of their entire bodies, giving them the common name of "wigglers" or "wrigglers". 

Larvae develop through four stages, or instars, after which they metamorphose into pupae. At the end of each instar, the larvae molt, shedding their skins to allow for further growth.

Pupa

As seen in its lateral aspect, the mosquito pupa is comma-shaped. The head and thorax are merged into a cephalothorax, with the abdomen curving around underneath. The pupa can swim actively by flipping its abdomen, and it is commonly called a "tumbler" because of its swimming action. As with the larva, the pupa of most species must come to the surface frequently to breathe, which they do through a pair of respiratory trumpets on their cephalothoraxes. However, pupae do not feed during this stage; typically they pass their time hanging from the surface of the water by their respiratory trumpets. If alarmed, say by a passing shadow, they nimbly swim downwards by flipping their abdomens in much the same way as the larvae do. If undisturbed, they soon float up again.

After a few days or longer, depending on the temperature and other circumstances, the dorsal surface of its cephalothorax splits, and the adult mosquito emerges. The pupa is less active than the larva because it does not feed, whereas the larva feeds constantly.

Adult

Anatomy of an adult mosquito

The period of development from egg to adult varies among species and is strongly influenced by ambient temperature. Some species of mosquitoes can develop from egg to adult in as few as five days, but a more typical period of development in tropical conditions would be some 40 days or more for most species. The variation of the body size in adult mosquitoes depends on the density of the larval population and food supply within the breeding water. 

Adult mosquitoes usually mate within a few days after emerging from the pupal stage. In most species, the males form large swarms, usually around dusk, and the females fly into the swarms to mate. 

Males typically live for about 5–7 days, feeding on nectar and other sources of sugar. After obtaining a full blood meal, the female will rest for a few days while the blood is digested and eggs are developed. This process depends on the temperature, but usually takes two to three days in tropical conditions. Once the eggs are fully developed, the female lays them and resumes host-seeking.

The cycle repeats itself until the female dies. While females can live longer than a month in captivity, most do not live longer than one to two weeks in nature. Their lifespans depend on temperature, humidity, and their ability to successfully obtain a blood meal while avoiding host defenses and predators. 

The length of the adult is typically between 3 mm and 6 mm. The smallest known mosquitoes are around 2 mm (0.1 in), and the largest around 19 mm (0.7 in). Mosquitoes typically weigh around 5 mg. All mosquitoes have slender bodies with three segments: a head, a thorax and an abdomen. 

The head is specialized for receiving sensory information and for feeding. It has eyes and a pair of long, many-segmented antennae. The antennae are important for detecting host odors, as well as odors of breeding sites where females lay eggs. In all mosquito species, the antennae of the males in comparison to the females are noticeably bushier and contain auditory receptors to detect the characteristic whine of the females.

Adult yellow fever mosquito Aedes aegypti, typical of subfamily Culicinae. Note bushy antennae and longer palps of male on left vs. females at right.

The compound eyes are distinctly separated from one another. Their larvae only possess a pit-eye ocellus. The compound eyes of adults develop in a separate region of the head. New ommatidia are added in semicircular rows at the rear of the eye. During the first phase of growth, this leads to individual ommatidia being square, but later in development they become hexagonal. The hexagonal pattern will only become visible when the carapace of the stage with square eyes is molted.

The head also has an elongated, forward-projecting, stinger-like proboscis used for feeding, and two sensory palps. The maxillary palps of the males are longer than their proboscises, whereas the females’ maxillary palps are much shorter. In typical bloodsucking species, the female has an elongated proboscis.

The thorax is specialized for locomotion. Three pairs of legs and a pair of wings are attached to the thorax. The insect wing is an outgrowth of the exoskeleton. The Anopheles mosquito can fly for up to four hours continuously at 1 to 2 km/h (0.6–1 mph), traveling up to 12 km (7.5 mi) in a night. Males beat their wings between 450 and 600 times per second.

The abdomen is specialized for food digestion and egg development; the abdomen of a mosquito can hold three times its own weight in blood. This segment expands considerably when a female takes a blood meal. The blood is digested over time, serving as a source of protein for the production of eggs, which gradually fill the abdomen.

Feeding by adults

Aedes aegypti, a common vector of dengue fever and yellow fever

Typically, both male and female mosquitoes feed on nectar, aphid honeydew, and plant juices, but in many species the mouthparts of the females are adapted for piercing the skin of animal hosts and sucking their blood as ectoparasites. In many species, the female needs to obtain nutrients from a blood meal before it can produce eggs, whereas in many other species, obtaining nutrients from a blood meal only makes it so that the mosquito can lay more eggs. A mosquito has a variety of ways of finding nectar or its prey, including chemical, visual, and heat sensors. Both plant materials and blood are useful sources of energy in the form of sugars, and blood also supplies more concentrated nutrients, such as lipids, but the most important function of blood meals is to obtain proteins as materials for egg production.

Among humans, the feeding preferences of mosquitoes typically include: those with type O blood, heavy breathers, an abundance of skin bacteria, high body heat, and pregnant women. Individuals' attractiveness to mosquitoes also has a heritable, genetically-controlled component.

When a female reproduces without such parasitic meals, it is said to practice autogenous reproduction, as in Toxorhynchites; otherwise, the reproduction may be termed anautogenous, as occurs in mosquito species that serve as disease vectors, particularly Anopheles and some of the most important disease vectors in the genus Aedes. In contrast, some mosquitoes, for example, many Culex, are partially anautogenous: they do not need a blood meal for their first cycle of egg production, which they produce autogenously; however, subsequent clutches of eggs are produced anautogenously, at which point their disease vectoring activity becomes operative.

Here an Anopheles stephensi female is engorged with blood and beginning to pass unwanted liquid fractions of the blood to make room in its gut for more of the solid nutrients.
 
Female mosquitoes hunt their blood host by detecting organic substances such as carbon dioxide (CO2) and 1-octen-3-ol (mushroom alcohol, found in exhaled breath) produced from the host, and through visual recognition. Mosquitoes prefer some people over others. The preferred victim's sweat smells more attractive than others' because of the proportions of the carbon dioxide, octenol, and other compounds that make up body odor. The most powerful semiochemical that triggers the keen sense of smell of Culex quinquefasciatus is nonanal. Another compound identified in human blood that attracts mosquitoes is sulcatone or 6-methyl-5-hepten-2-one, especially for Aedes aegypti mosquitoes with the odor receptor gene Or4. A large part of the mosquito's sense of smell, or olfactory system, is devoted to sniffing out blood sources. Of 72 types of odor receptors on its antennae, at least 27 are tuned to detect chemicals found in perspiration. In Aedes, the search for a host takes place in two phases. First, the mosquito exhibits a nonspecific searching behavior until the perception of a host's stimulants, then it follows a targeted approach.

Most mosquito species are crepuscular (dawn or dusk) feeders. During the heat of the day, most mosquitoes rest in a cool place and wait for the evenings, although they may still bite if disturbed. Some species, such as the Asian tiger mosquito, are known to fly and feed during daytime.

Prior to and during blood feeding, blood-sucking mosquitoes inject saliva into the bodies of their source(s) of blood. This saliva serves as an anticoagulant; without it the female mosquito's proboscis might become clogged with blood clots. The saliva also is the main route by which mosquito physiology offers passenger pathogens access to the hosts' bloodstream. The salivary glands are a major target to most pathogens, whence they find their way into the host via the saliva.

A mosquito bite often leaves an itchy weal, a raised bump, on the victim's skin, which is caused by histamines trying to fight off the protein left by the attacking insect.

Mosquitoes of the genus Toxorhynchites never drink blood. This genus includes the largest extant mosquitoes, the larvae of which prey on the larvae of other mosquitoes. These mosquito eaters have been used in the past as mosquito control agents, with varying success.

Hosts of blood-feeding mosquito species

Video of Anopheline mosquito locating and feeding on a caterpillar
 
Mosquitoes feeding on a reptile

Many, if not all, blood-sucking species of mosquitoes are fairly selective feeders that specialise in particular host species, though they often relax their selectivity when they experience severe competition for food, defensive activity on the part of the hosts, or starvation. Some species feed selectively on monkeys, while others prefer particular kinds of birds, but they become less selective as conditions become more difficult. For example, Culiseta melanura sucks the blood of passerine birds for preference, and such birds are typically the main reservoir of the Eastern equine encephalitis virus in North America. Early in the season while mosquito numbers are low, they concentrate on passerine hosts, but as mosquito numbers rise and the birds are forced to defend themselves more vigorously, the mosquitoes become less selective of hosts. Soon the mosquitoes begin attacking mammals more readily, thereby becoming the major vector of the virus, and causing epidemics of the disease, most conspicuously in humans and horses.

Even more dramatically, in most of its range in North America, the main vector for the Western equine encephalitis virus is Culex tarsalis, because it is known to feed variously on mammals, birds, reptiles, and amphibians. Even fish may be attacked by some mosquito species if they expose themselves above water level, as mudskippers do.

Some species of blood-sucking flies, such as many of the Ceratopogonidae, will attack large, live insects and suck their haemolymph and others, such as the so-called "jackal flies" (Milichiidae), will attack the recently dead prey of say, crab spiders (Thomisidae). In 1969 it was reported that some species of anautogenous mosquitoes would feed on the haemolymph of caterpillars. Other observations include mosquitoes feeding on cicadas and mantids. In 2014, it was shown that malaria-transmitting mosquitoes actively seek out some species of caterpillars and feed on their haemolymph, and do so to the caterpillar's apparent physical detriment.

Mouthparts

Mosquito mouthparts are very specialized, particularly those of the females, which in most species are adapted to piercing skin and then sucking blood. Apart from bloodsucking, the females generally also drink assorted fluids rich in dissolved sugar, such as nectar and honeydew, to obtain the energy they need. For this, their blood-sucking mouthparts are perfectly adequate. In contrast, male mosquitoes are not bloodsuckers; they only drink sugary fluids. Accordingly, their mouthparts do not require the same degree of specialization as those of females.

Externally, the most obvious feeding structure of the mosquito is the proboscis. More specifically, the visible part of the proboscis is the labium, which forms the sheath enclosing the rest of the mouthparts. When the mosquito first lands on a potential host, its mouthparts are enclosed entirely in this sheath, and it will touch the tip of the labium to the skin in various places. Sometimes, it will begin to bite almost straight away, while other times, it will prod around, apparently looking for a suitable place. Occasionally, it will wander for a considerable time, and eventually fly away without biting. Presumably, this probing is a search for a place with easily accessible blood vessels, but the exact mechanism is not known. It is known that there are two taste receptors at the tip of the labium which may well play a role.

The female mosquito does not insert its labium into the skin; it bends back into a bow when the mosquito begins to bite. The tip of the labium remains in contact with the skin of the victim, acting as a guide for the other mouthparts. In total, there are six mouthparts besides the labium: two mandibles, two maxillae, the hypopharynx, and the labrum

The mandibles and the maxillae are used for piercing the skin. The mandibles are pointed, while the maxillae end in flat, toothed "blades". To force these into the skin, the mosquito moves its head backwards and forwards. On one movement, the maxillae are moved as far forward as possible. On the opposite movement, the mandibles are pushed deeper into the skin by levering against the maxillae. The maxillae do not slip back because the toothed blades grip the skin.

The hypopharynx and the labrum are both hollow. Saliva with anticoagulant is pumped down the hypopharynx to prevent clotting, and blood is drawn up the labrum.

To understand the mosquito mouthparts, it is helpful to draw a comparison with an insect that chews food, such as a dragonfly. A dragonfly has two mandibles, which are used for chewing, and two maxillae, which are used to hold the food in place as it is chewed. The labium forms the floor of the dragonfly's mouth, the labrum forms the top, while the hypopharynx is inside the mouth and is used in swallowing. Conceptually, then, the mosquito's proboscis is an adaptation of the mouthparts that occur in other insects. The labium still lies beneath the other mouthparts, but also enfolds them, and it has been extended into a proboscis. The maxillae still "grip" the "food" while the mandibles "bite" it. The top of the mouth, the labrum, has developed into a channeled blade the length of the proboscis, with a cross-section like an inverted "U". Finally, the hypopharynx has extended into a tube that can deliver saliva at the end of the proboscis. Its upper surface is somewhat flattened so, when the lower part of the hypopharynx is pressed against it, the labrum forms a closed tube for conveying blood from the victim.

Saliva

For the mosquito to obtain a blood meal, it must circumvent the vertebrate's physiological responses. The mosquito, as with all blood-feeding arthropods, has mechanisms to effectively block the hemostasis system with their saliva, which contains a mixture of secreted proteins. Mosquito saliva acts to reduce vascular constriction, blood clotting, platelet aggregation, angiogenesis and immunity, and creates inflammation. Universally, hematophagous arthropod saliva contains at least one anti-clotting, one anti-platelet, and one vasodilatory substance. Mosquito saliva also contains enzymes that aid in sugar feeding, and antimicrobial agents to control bacterial growth in the sugar meal. The composition of mosquito saliva is relatively simple, as it usually contains fewer than 20 dominant proteins. As of the early 2000s, scientists still were unable to ascribe functions to more than half of the molecules found in arthropod saliva. One promising application of components of mosquito saliva is the development of anti-clotting drugs, such as clotting inhibitors and capillary dilators, that could be useful for cardiovascular disease.

It is now well recognized that feeding ticks, sandflies, and, more recently, mosquitoes, have an ability to modulate the immune response of the animals (hosts) on which they feed. The presence of this activity in vector saliva is a reflection of the inherent overlapping and interconnected nature of the host hemostatic and inflammatory/immunological responses and the intrinsic need to prevent these host defenses from disrupting successful feeding. The mechanism for mosquito saliva-induced alteration of the host immune response is unclear, but the data have become increasingly convincing that such an effect occurs. Early work described a factor in saliva that directly suppresses TNF-α release, but not antigen-induced histamine secretion, from activated mast cells. Experiments by Cross et al. (1994) demonstrated that the inclusion of Ae. aegypti mosquito saliva into naïve cultures led to a suppression of interleukin (IL)-2 and IFN-γ production, while the cytokines IL-4 and IL-5 are unaffected. Cellular proliferation in response to IL-2 is clearly reduced by prior treatment of cells with mosquito salivary gland extract. Correspondingly, activated splenocytes isolated from mice fed upon by either Ae. aegypti or Cx. pipiens mosquitoes produce markedly higher levels of IL-4 and IL-10 concurrent with suppressed IFN-γ production. Unexpectedly, this shift in cytokine expression is observed in splenocytes up to 10 days after mosquito exposure, suggesting natural feeding of mosquitoes can have a profound, enduring, and systemic effect on the immune response.

T cell populations are decidedly susceptible to the suppressive effect of mosquito saliva, showing increased mortality and decreased division rates. Parallel work by Wasserman et al. (2004) demonstrated that T and B cell proliferation was inhibited in a dose dependent manner with concentrations as low as 1/7 of the saliva in a single mosquito. Depinay et al. (2005) observed a suppression of antibody-specific T cell responses mediated by mosquito saliva and dependent on mast cells and IL-10 expression.

A 2006 study suggests mosquito saliva can also decrease expression of interferon−α/β during early mosquito-borne virus infection. The contribution of type I interferons (IFN) in recovery from infection with viruses has been demonstrated in vivo by the therapeutic and prophylactic effects of administration of IFN inducers or IFN itself, and different research suggests mosquito saliva exacerbates West Nile virus infection, as well as other mosquito-transmitted viruses.

Studies in humanized mice bearing a reconstituted human immune system have suggested potential impact of mosquito saliva in humans. Work published in 2018 from the Baylor College of Medicine using such humanized mice came to several conclusions, among them being that mosquito saliva led to an increase in natural killer T cells in peripheral blood; to an overall decrease in ex vivo cytokine production by peripheral blood mononuclear cells (PBMCs); changes to proportions of subsets of PBMCs; changes in the prevalence of T cell subtypes across organs; and changes to circulating levels of cytokines.

Egg development and blood digestion

Most species of mosquito require a blood meal to begin the process of egg development. Females with poor larval nutrition may need to ingest sugar or a preliminary blood meal bring ovarian follicles to their resting stage. Once the follicles have reached the resting stage, digestion of a sufficiently large blood meal triggers a hormonal cascade that leads to egg development. Upon completion of feeding, the mosquito withdraws her proboscis, and as the gut fills up, the stomach lining secretes a peritrophic membrane that surrounds the blood. This membrane keeps the blood separate from anything else in the stomach. However, like certain other insects that survive on dilute, purely liquid diets, notably many of the Hemiptera, many adult mosquitoes must excrete unwanted aqueous fractions even as they feed. (See the photograph of a feeding Anopheles stephensi: Note that the excreted droplet patently is not whole blood, being far more dilute). As long as they are not disturbed, this permits mosquitoes to continue feeding until they have accumulated a full meal of nutrient solids. As a result, a mosquito replete with blood can continue to absorb sugar, even as the blood meal is slowly digested over a period of several days. Once blood is in the stomach, the midgut of the female synthesizes proteolytic enzymes that hydrolyze the blood proteins into free amino acids. These are used as building blocks for the synthesis of vitellogenin, which are the precursors for egg yolk protein.

In the mosquito Anopheles stephensi, trypsin activity is restricted entirely to the posterior midgut lumen. No trypsin activity occurs before the blood meal, but activity increases continuously up to 30 hours after feeding, and subsequently returns to baseline levels by 60 hours. Aminopeptidase is active in the anterior and posterior midgut regions before and after feeding. In the whole midgut, activity rises from a baseline of approximately three enzyme units (EU) per midgut to a maximum of 12 EU at 30 hours after the blood meal, subsequently falling to baseline levels by 60 hours. A similar cycle of activity occurs in the posterior midgut and posterior midgut lumen, whereas aminopeptidase in the posterior midgut epithelium decreases in activity during digestion. Aminopeptidase in the anterior midgut is maintained at a constant, low level, showing no significant variation with time after feeding. Alpha-glucosidase is active in anterior and posterior midguts before and at all times after feeding. In whole midgut homogenates, alpha-glucosidase activity increases slowly up to 18 hours after the blood meal, then rises rapidly to a maximum at 30 hours after the blood meal, whereas the subsequent decline in activity is less predictable. All posterior midgut activity is restricted to the posterior midgut lumen. Depending on the time after feeding, greater than 25% of the total midgut activity of alpha-glucosidase is located in the anterior midgut. After blood meal ingestion, proteases are active only in the posterior midgut. Trypsin is the major primary hydrolytic protease and is secreted into the posterior midgut lumen without activation in the posterior midgut epithelium. Aminopeptidase activity is also luminal in the posterior midgut, but cellular aminopeptidases are required for peptide processing in both anterior and posterior midguts. Alpha-glucosidase activity is elevated in the posterior midgut after feeding in response to the blood meal, whereas activity in the anterior midgut is consistent with a nectar-processing role for this midgut region.

Ecology

Female Ochlerotatus notoscriptus feeding on a human arm, Tasmania, Australia

Distribution

Mosquitoes are cosmopolitan (world-wide): they are in every land region except Antarctica and a few islands with polar or subpolar climates. Iceland is such an island, being essentially free of mosquitoes.

The absence of mosquitoes from Iceland and similar regions is probably because of quirks of their climate, which differs in some respects from mainland regions. At the start of the uninterrupted continental winter of Greenland and the northern regions of Eurasia and America, the pupa enters diapause under the ice that covers sufficiently deep water. The imago emerges only after the ice breaks in late spring. In Iceland however, the weather is less predictable. In mid-winter it frequently warms up suddenly, causing the ice to break, but then to freeze again after a few days. By that time the mosquitoes will have emerged from their pupae, but the new freeze sets in before they can complete their life cycle. Any anautogenous adult mosquito would need a host to supply a blood meal before it could lay viable eggs; it would need time to mate, mature the eggs and oviposit in suitable wetlands. These requirements would not be realistic in Iceland and in fact the absence of mosquitoes from such subpolar islands is in line with the islands' low biodiversity; Iceland has fewer than 1,500 described species of insects, many of them probably accidentally introduced by human agency. In Iceland most ectoparasitic insects live in sheltered conditions or actually on mammals; examples include lice, fleas and bedbugs, in whose living conditions freezing is no concern, and most of which were introduced inadvertently by humans.

Some other aquatic Diptera, such as Simuliidae, do survive in Iceland, but their habits and adaptations differ from those of mosquitoes; Simuliidae for example, though they, like mosquitoes, are bloodsuckers, generally inhabit stones under running water that does not readily freeze and which is totally unsuited to mosquitoes; mosquitoes are generally not adapted to running water.

Eggs of species of mosquitoes from the temperate zones are more tolerant of cold than the eggs of species indigenous to warmer regions. Many even tolerate subzero temperatures. In addition, adults of some species can survive the winter by taking shelter in suitable microhabitats such as buildings or hollow trees.

Pollination

Several flowers are pollinated by mosquitoes, including some members of the Asteraceae, Roseaceae and Orchidaceae.

Activity

In warm and humid tropical regions, some mosquito species are active for the entire year, but in temperate and cold regions they hibernate or enter diapause. Arctic or subarctic mosquitoes, like some other arctic midges in families such as Simuliidae and Ceratopogonidae may be active for only a few weeks annually as melt-water pools form on the permafrost. During that time, though, they emerge in huge numbers in some regions and may take up to 300 ml of blood per day from each animal in a caribou herd.

Means of dispersal

Worldwide introduction of various mosquito species over large distances into regions where they are not indigenous has occurred through human agencies, primarily on sea routes, in which the eggs, larvae, and pupae inhabiting water-filled used tires and cut flowers are transported. However, apart from sea transport, mosquitoes have been effectively carried by personal vehicles, delivery trucks, trains, and aircraft. Man-made areas such as storm water retention basins, or storm drains also provide sprawling sanctuaries. Sufficient quarantine measures have proven difficult to implement. In addition, outdoor pool areas make a perfect place for them to grow.

Climate and global distribution

Seasonality

In order for a mosquito to transmit a disease to the host there must be favorable conditions, referred to as transmission seasonality. Seasonal factors that impact the prevalence of mosquitos and mosquito-borne diseases are primarily humidity, temperature, and precipitation. A positive correlation between malaria outbreaks and these climatic variables has been demonstrated in China; and El Niño has been shown to impact the location and number of outbreaks of mosquito-borne diseases observed in East Africa, Latin America, Southeast Asia and India. Climate change impacts each of these seasonal factors and in turn impacts the dispersal of mosquitos.

Past and future patterns

Climatology and the study of mosquito-borne disease have been developed only over the past 100 years; however historical records of weather patterns and distinct symptoms associated with mosquito-borne diseases can be utilized to trace the prevalence of these diseases in relation to the climate over longer time periods. Further, statistical models are being created to predict the impact of climate change on vector-borne diseases using these past records, and these models can be utilized in the field of public health in order to create interventions to reduce the impact of these predicted outcomes.

Two types of models are used to predict mosquito-borne disease spread in relation to climate: correlative models and mechanistic models. Correlative models focus primarily on vector distribution, and generally function in 3 steps. First, data is collected regarding geographical location of a target mosquito species. Next, a multivariate regression model establishes the conditions under which the target species can survive. Finally, the model determines the likelihood of the mosquito species to become established in a new location based on similar living conditions. The model can further predict future distributions based on environmental emissions data. Mechanistic models tend to be broader and include the pathogens and hosts in the analysis. These models have been used to recreate past outbreaks as well as predict the potential risk of a vector-borne disease based on an areas forecasted climate.

Mosquito-borne diseases are currently most prevalent in East Africa, Latin America, Southeast Asia, and India; however, emergence of vector-borne diseases in Europe have recently been observed. A weighted risk analysis demonstrated associations to climate for 49% of infectious diseases in Europe including all transmission routes. One statistical model predicts by 2030, the climate of southern Great Britain will be climatically-suitable for malaria transmission Plasmodium vivax malaria for 2 months of the year. By 2080 it is predicted that the same will be true for southern Scotland.

Vectors of disease

Anopheles albimanus mosquito feeding on a human arm – this mosquito is a vector of malaria, and mosquito control is a very effective way of reducing the incidence of malaria.

Mosquitoes can act as vectors for many disease-causing viruses and parasites. Infected mosquitoes carry these organisms from person to person without exhibiting symptoms themselves. Mosquito-borne diseases include:
  • Viral diseases, such as yellow fever, dengue fever, and chikungunya, transmitted mostly by Aedes aegypti. Dengue fever is the most common cause of fever in travelers returning from the Caribbean, Central America, South America, and South Central Asia. This disease is spread through the bites of infected mosquitoes and cannot be spread person to person. Severe dengue can be fatal, but with good treatment, fewer than 1% of patients die from dengue. Work published in 2012 from Baylor College of Medicine suggested that for some diseases, such as dengue fever, which can be transmitted via mosquitoes and by other means, the severity of the mosquito-transmitted disease could be greater.
  • The parasitic diseases collectively called malaria, caused by various species of Plasmodium, carried by female mosquitoes of the genus Anopheles
  • Lymphatic filariasis (the main cause of elephantiasis) which can be spread by a wide variety of mosquito species
  • West Nile virus is a concern in the United States, but there are no reliable statistics on worldwide cases.
  • Equine encephalitis viruses, such as Eastern equine encephalitis virus, Western equine encephalitis virus, and Venezuelan equine encephalitis virus, can be spread by mosquito vectors such as Aedes taeniorhynchus.
  • Tularemia, a bacterial disease caused by Francisella tularensis, is variously transmitted, including by biting flies. Culex and Culiseta are vectors of tularemia, as well as arbovirus infections such as West Nile virus.
  • Zika, recently notorious, though rarely deadly. It causes fever, joint pain, rashes and conjunctivitis. The most serious consequence appears when the infected person is a pregnant woman, since during pregnancy this virus can originate a birth defect called microcephaly.
  • St. Louis Encephalitis, a mosquito-borne disease that is characterized by fever and headaches upon initial onset of infection, arises from mosquitos who feed on birds who are infected with the illness, and can result in death if fatal. The most common vector of this disease is Culex pipiens, also known as the common house mosquito.
Potential transmission of HIV was originally a public health concern, but practical considerations and detailed studies of epidemiological patterns suggest that any transmission of the HIV virus by mosquitoes is at worst extremely unlikely.

Various species of mosquitoes are estimated to transmit various types of disease to more than 700 million people annually in Africa, South America, Central America, Mexico, Russia, and much of Asia, with millions of resultant deaths. At least two million people annually die of these diseases, and the morbidity rates are many times higher still.

Methods used to prevent the spread of disease, or to protect individuals in areas where disease is endemic, include:
Since most such diseases are carried by "elderly" female mosquitoes, some scientists have suggested focusing on these to avoid the evolution of resistance.

Control

Mosquitofish Gambusia affinis, a natural mosquito predator

Many measures have been tried for mosquito control, including the elimination of breeding places, exclusion via window screens and mosquito nets, biological control with parasites such as fungi and nematodes, or predators such as fish, copepods, dragonfly nymphs and adults, and some species of lizard and gecko. Another approach is to introduce large numbers of sterile males. Genetic methods including cytoplasmic incompatibility, chromosomal translocations, sex distortion and gene replacement have been explored. They are cheaper and not subject to vector resistance.

According to an article in Nature discussing the idea of totally eradicating mosquitoes, "Ultimately, there seem to be few things that mosquitoes do that other organisms can’t do just as well — except perhaps for one. They are lethally efficient at sucking blood from one individual and mainlining it into another, providing an ideal route for the spread of pathogenic microbes." The control of disease-carrying mosquitoes may in the future be possible using gene drives.

Repellents

Insect repellents are applied on skin and give short-term protection against mosquito bites. The chemical DEET repels some mosquitoes and other insects. Some CDC-recommended repellents are picaridin, eucalyptus oil (PMD) and ethyl butylacetylaminopropionate (IR3535). Others are indalone, dimethyl phthalate, dimethyl carbate, and ethyl hexanediol. 

There are also electronic insect repellent devices which produce ultrasounds that were developed to keep away insects (and mosquitoes). However, no scientific research based on the EPA's as well as the many universities' studies has ever provided evidence that these devices prevent a human from being bitten by a mosquito.

Bites

Video of a mosquito biting on leg

Mosquito bites lead to a variety of mild, serious, and, rarely, life-threatening allergic reactions. These include ordinary wheal and flare reactions and mosquito bite allergies (MBA). The MBA, also termed hypersensitivity to mosquito bites (HMB), are excessive reactions to mosquito bites that are not caused by any toxin or pathogen in the saliva injected by a mosquito at the time it takes its blood-meal. Rather, they are allergic hypersensitivity reactions caused by the non-toxic allergenic proteins contained in the mosquito's saliva. Studies have shown or suggest that numerous species of mosquitoes can trigger ordinary reactions as well as MBA. These include Aedes aegypti, Aedes vexans, Aedes albopictus, Anopheles sinensis, Culex pipiens, Aedes communis, Anopheles stephensi, Culex quinquefasciatus, Ochlerotatus triseriatus, and Culex tritaeniorhynchus. Furthermore, there is considerable cross-reactivity between the salivary proteins of mosquitoes in the same family and, to a lesser extent, different families. It is therefore assumed that these allergic responses may be caused by virtually any mosquito species (or other biting insect).

The mosquito bite allergies are informally classified as 1) the Skeeter syndrome, i.e. severe local skin reactions sometimes associated with low-grade fever; 2) systemic reactions that range from high-grade fever, lymphadenopathy, abdominal pain, and/or diarrhea to, very rarely, life-threatening symptoms of anaphylaxis; and 3) severe and often systemic reactions occurring in individuals that have an Epstein-Barr virus-associated lymphoproliferative disease, Epstein-Barr virus-negative lymphoid malignancy, or another predisposing condition such as Eosinophilic cellulitis or chronic lymphocytic leukemia.

Mechanism

Visible, irritating bites are due to an immune response from the binding of IgG and IgE antibodies to antigens in the mosquito's saliva. Some of the sensitizing antigens are common to all mosquito species, whereas others are specific to certain species. There are both immediate hypersensitivity reactions (types I and III) and delayed hypersensitivity reactions (type IV) to mosquito bites. Both reactions result in itching, redness and swelling. Immediate reactions develop within a few minutes of the bite and last for a few hours. Delayed reactions take around a day to develop, and last for up to a week.

Treatment

Several anti-itch medications are commercially available, including those taken orally, such as diphenhydramine, or topically applied antihistamines and, for more severe cases, corticosteroids, such as hydrocortisone and triamcinolone. A common topical remedy in camping gear is aqueous ammonia

Both topical heat and cool may be useful to treat mosquito bites.

In human culture

Greek mythology

Ancient Greek beast fables including "The Elephant and the Mosquito" and "The Bull and the Mosquito", with the general moral that the large beast does not even notice the small one, derive ultimately from Mesopotamia.

Origin myths

A still from Winsor McCay's pioneering 1912 animated film How a Mosquito Operates

The peoples of Siberia have origin myths surrounding the mosquito - one Ostiak myth tells of a man eating giant, Punegusse, who is killed by a hero but will not stay dead, the hero eventually burns the giant, but the ashes of the fire become mosquitos that continue to plague mankind.

Other myths from the Yakuts, Goldes (Nanai people), and Samoyed have the insect arising from the ashes or fragments of some giant creature or demon. Similar tales are found in North American Indian myth, with the mosquito arising from the ashes of a man-eater - suggesting a common origin. The Tatars of the Altai had a similar myth, thought to be of Indian origin, involving the fragments of the dead giant Andalma-Muus, becoming mosquitos and other insects.

Modern era

Winsor McCay's 1912 film How a Mosquito Operates was one of the earliest works of animation, far ahead of its time in technical quality. It depicts a giant mosquito tormenting a sleeping man.

The de Havilland Mosquito was a high-speed aircraft manufactured between 1940 and 1950, and used in many roles.

Copper

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Copper   Copper,  29 Cu Copper Appear...