Search This Blog

Wednesday, April 28, 2021

Dendritic cell

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Dendritic_cell

Dendritic cell
Dendritic cells.jpg
Dendritic cells in skin
 
Dendritic cell revealed.jpg
Artistic rendering of the surface of a human dendritic cell illustrating sheet-like processes that fold back onto the membrane surface. When exposed to HIV, some researchers believe that these sheets entrap viruses in the vicinity and focus them to contact zones with T cells targeted for infection. These studies were carried out using ion abrasion scanning electron microscopy, a new technology the NIH has been developing and applying for 3D cellular imaging. Source: Sriram Subramaniam, National Cancer Institute (NCI) and Donny Bliss, National Library of Medicine (NLM).
Details
SystemImmune system
Identifiers
Latincellula dendritiformis
MeSHD003713
THH1.00.01.0.00038
FMA83036
Anatomical terminology

Dendritic cells (DCs) are antigen-presenting cells (also known as accessory cells) of the mammalian immune system. Their main function is to process antigen material and present it on the cell surface to the T cells of the immune system. They act as messengers between the innate and the adaptive immune systems.

Dendritic cells are present in those tissues that are in contact with the external environment, such as the skin (where there is a specialized dendritic cell type called the Langerhans cell) and the inner lining of the nose, lungs, stomach and intestines. They can also be found in an immature state in the blood. Once activated, they migrate to the lymph nodes where they interact with T cells and B cells to initiate and shape the adaptive immune response. At certain development stages they grow branched projections, the dendrites that give the cell its name (δένδρον or déndron being Greek for 'tree'). While similar in appearance, these are structures distinct from the dendrites of neurons. Immature dendritic cells are also called veiled cells, as they possess large cytoplasmic 'veils' rather than dendrites.

History

Dendritic cells were first described by Paul Langerhans (hence Langerhans cells) in the late nineteenth century. The term dendritic cells was coined in 1973 by Ralph M. Steinman and Zanvil A. Cohn. For discovering the central role of dendritic cells in the adaptive immune response, Steinman was awarded the Albert Lasker Award for Basic Medical Research in 2007 and the Nobel Prize in Physiology or Medicine in 2011.

Types

The morphology of dendritic cells results in a very large surface-to-volume ratio. That is, the dendritic cell has a very large surface area compared to the overall cell volume.

In vivo – primate

The most common division of dendritic cells is "myeloid" vs. "plasmacytoid dendritic cell" (lymphoid):

Name Description Secretion Toll-like receptors
Conventional dendritic cell (previously called Myeloid dendritic cell) (cDC or mDC) Most similar to monocytes. mDC are made up of at least two subsets:
(1) the more common mDC-1, which is a major stimulator of T cells
(2) the extremely rare mDC-2, which may have a function in fighting wound infection
Interleukin 12 (IL-12), Interleukin 6 (IL-6), TNF, chemokines TLR 2, TLR 4
Plasmacytoid dendritic cell (pDC) Look like plasma cells, but have certain characteristics similar to myeloid dendritic cells. Can produce high amounts of interferon-α and were previously called interferon-producing cells. TLR 7, TLR 9

The markers BDCA-2, BDCA-3, and BDCA-4 can be used to discriminate among the types.

Lymphoid and myeloid DCs evolve from lymphoid and myeloid precursors, respectively, and thus are of hematopoietic origin. By contrast, follicular dendritic cells (FDC) are probably of mesenchymal rather than hematopoietic origin and do not express MHC class II, but are so named because they are located in lymphoid follicles and have long "dendritic" processes.

In blood

The blood DCs are typically identified and enumerated in flow cytometry. Three types of DCs have been defined in human blood: the CD1c+ myeloid DCs, the CD141+ myeloid DCs and the CD303+ plasmacytoid DCs. This represents the nomenclature proposed by the nomenclature committee of the International Union of Immunological Societies. Dendritic cells that circulate in blood do not have all the typical features of their counterparts in tissue, i.e. they are less mature and have no dendrites. Still, they can perform complex functions including chemokine-production (in CD1c+ myeloid DCs), cross-presentation (in CD141+ myeloid DCs), and IFNalpha production (in CD303+ plasmacytoid DCs).

In vitro

In some respects, dendritic cells cultured in vitro do not show the same behaviour or capability as dendritic cells isolated ex vivo. Nonetheless, they are often used for research as they are still much more readily available than genuine DCs.

Life cycle

Formation of immature cells and their maturation

Dendritic cells are derived from hematopoietic bone marrow progenitor cells. These progenitor cells initially transform into immature dendritic cells. These cells are characterized by high endocytic activity and low T-cell activation potential. Immature dendritic cells constantly sample the surrounding environment for pathogens such as viruses and bacteria. This is done through pattern recognition receptors (PRRs) such as the toll-like receptors (TLRs). TLRs recognize specific chemical signatures found on subsets of pathogens. Immature dendritic cells may also phagocytose small quantities of membrane from live own cells, in a process called nibbling. Once they have come into contact with a presentable antigen, they become activated into mature dendritic cells and begin to migrate to a lymph node. Immature dendritic cells phagocytose pathogens and degrade their proteins into small pieces and upon maturation present those fragments at their cell surface using MHC molecules. Simultaneously, they upregulate cell-surface receptors that act as co-receptors in T-cell activation such as CD80 (B7.1), CD86 (B7.2), and CD40 greatly enhancing their ability to activate T-cells. They also upregulate CCR7, a chemotactic receptor that induces the dendritic cell to travel through the blood stream to the spleen or through the lymphatic system to a lymph node. Here they act as antigen-presenting cells: they activate helper T-cells and killer T-cells as well as B-cells by presenting them with antigens derived from the pathogen, alongside non-antigen specific costimulatory signals. Dendritic cells can also induce T-cell tolerance (unresponsiveness). Certain C-type lectin receptors (CLRs) on the surface of dendritic cells, some functioning as PRRs, help instruct dendritic cells as to when it is appropriate to induce immune tolerance rather than lymphocyte activation.

Every helper T-cell is specific to one particular antigen. Only professional antigen-presenting cells (macrophages, B lymphocytes, and dendritic cells) are able to activate a resting helper T-cell when the matching antigen is presented. However, in non-lymphoid organs, macrophages and B cells can only activate memory T cells whereas dendritic cells can activate both memory and naive T cells, and are the most potent of all the antigen-presenting cells. In the lymph node and secondary lymphoid organs, all three cell types can activate naive T cells. Whereas mature dendritic cells are able to activate antigen-specific naive CD8+ T cells, the formation of CD8+ memory T cells requires the interaction of dendritic cells with CD4+ helper T cells. This help from CD4+ T cells additionally activates the matured dendritic cells and licenses them to efficiently induce CD8+ memory T cells, which are also able to be expanded a second time. For this activation of dendritic cells, concurrent interaction of all three cell types, namely CD4+ T helper cells, CD8+ T cells and dendritic cells, seems to be required.

As mentioned above, mDC probably arise from monocytes, white blood cells which circulate in the body and, depending on the right signal, can turn into either dendritic cells or macrophages. The monocytes in turn are formed from stem cells in the bone marrow. Monocyte-derived dendritic cells can be generated in vitro from peripheral blood mononuclear cell (PBMCs). Plating of PBMCs in a tissue culture flask permits adherence of monocytes. Treatment of these monocytes with interleukin 4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF) leads to differentiation to immature dendritic cells (iDCs) in about a week. Subsequent treatment with tumor necrosis factor (TNF) further differentiates the iDCs into mature dendritic cells. Monocytes can be induced to differentiate into dendritic cells by a self-peptide Ep1.B derived from apolipoprotein E. These are primarily tolerogenic plasmacytoid dendritic cells.

Life span

In mice, it has been estimated that dendritic cells are replenished from the blood at a rate of 4000 cells per hour, and undergo a limited number of divisions during their residence in the spleen over 10 to 14 days.

Research challenges

The exact genesis and development of the different types and subsets of dendritic cells and their interrelationship is only marginally understood at the moment, as dendritic cells are so rare and difficult to isolate that only in recent years they have become subject of focused research. Distinct surface antigens that characterize dendritic cells have only become known from 2000 on; before that, researchers had to work with a 'cocktail' of several antigens which, used in combination, result in isolation of cells with characteristics unique to DCs.

Cytokines

The dendritic cells are constantly in communication with other cells in the body. This communication can take the form of direct cell–cell contact based on the interaction of cell-surface proteins. An example of this includes the interaction of the membrane proteins of the B7 family of the dendritic cell with CD28 present on the lymphocyte. However, the cell–cell interaction can also take place at a distance via cytokines.

For example, stimulating dendritic cells in vivo with microbial extracts causes the dendritic cells to rapidly begin producing IL-12. IL-12 is a signal that helps send naive CD4 T cells towards a Th1 phenotype. The ultimate consequence is priming and activation of the immune system for attack against the antigens which the dendritic cell presents on its surface. However, there are differences in the cytokines produced depending on the type of dendritic cell. The plasmacytoid DC has the ability to produce huge amounts of type-1 IFNs, which recruit more activated macrophages to allow phagocytosis.

Disease

Blastic plasmacytoid dendritic cell neoplasm

Blastic plasmacytoid dendritic cell neoplasm is a rare type of myeloid cancer in which malignant pDCs infiltrate the skin, bone marrow, central nervous system, and other tissues. Typically, the disease presents with skin lesions (e.g. nodules, tumors, papules, bruise-like patches, and/or ulcers) that most often occur on the head, face, and upper torso. This presentation may be accompanied by cPC infiltrations into other tissues to result in swollen lymph nodes, enlarged liver, enlarged spleen, symptoms of central nervous system dysfunction, and similar abnormalities in breasts, eyes, kidneys, lungs, gastrointestinal tract, bone, sinuses, ears, and/or testes. The disease may also present as a pDC leukemia, i.e. increased levels of malignant pDC in blood (i.e. >2% of nucleated cells) and bone marrow and evidence (i.e. cytopenias) of bone marrow failure. Blastic plasmacytoid dendritic cell neoplasm has a high rate of recurrence following initial treatments with various chemotherapy regimens. In consequence, the disease has a poor overall prognosis and newer chemotherapeutic and novel non-chemotherapeutic drug regimens to improve the situation are under study.

Viral infection

HIV, which causes AIDS, can bind to dendritic cells via various receptors expressed on the cell. The best studied example is DC-SIGN (usually on MDC subset 1, but also on other subsets under certain conditions; since not all dendritic cell subsets express DC-SIGN, its exact role in sexual HIV-1 transmission is not clear). When the dendritic cell takes up HIV and then travels to the lymph node, the virus can be transferred to helper CD4+ T-cells, contributing to the developing infection. This infection of dendritic cells by HIV explains one mechanism by which the virus could persist after prolonged HAART.

Many other viruses, such as the SARS virus, seem to use DC-SIGN to 'hitchhike' to its target cells. However, most work with virus binding to DC-SIGN expressing cells has been conducted using in vitro derived cells such as moDCs. The physiological role of DC-SIGN in vivo is more difficult to ascertain.

Cancer

Dendritic cells are usually not abundant at tumor sites, but increased densities of populations of dendritic cells have been associated with better clinical outcome, suggesting that these cells can participate in controlling cancer progression. Lung cancers have been found to include four different subsets of dendritic cells: three classical dendritic cell subsets and one plasmacytoid dendritic cell subset. At least some of these dendritic cell subsets can activate CD4+ helper T cells and CD8+ cytotoxic T cells, which are immune cells that can also suppress tumor growth. In experimental models, dendritic cells have also been shown to contribute to the success of cancer immunotherapies, for example with the immune checkpoint blocker anti-PD-1.

Autoimmunity

Altered function of dendritic cells is also known to play a major or even key role in allergy and autoimmune diseases like lupus erythematosus and inflammatory bowel diseases (Crohn's disease and ulcerative colitis).

Other animals

The above applies to humans. In other organisms, the function of dendritic cells can differ slightly. However, the principal function of dendritic cells as known to date is always to act as an immune sentinel. They survey the body and collect information relevant to the immune system, they are then able to instruct and direct the adaptive arms to respond to challenges.

In addition, an immediate precursor to myeloid and lymphoid dendritic cells of the spleen has been identified. This precursor, termed pre-DC, lacks MHC class II surface expression, and is distinct from monocytes, which primarily give rise to DCs in non-lymphoid tissues.

Dendritic cells have also been found in turtles.

Autoimmune disease

From Wikipedia, the free encyclopedia

Autoimmune diseases
Lupusfoto.jpg
Young woman with the typical "butterfly rash" found in systemic lupus erythematosus
SpecialtyRheumatology, immunology, gastroenterology, neurology, dermatology
SymptomsDepends on the condition. Commonly low grade fever, feeling tired
Usual onsetAdulthood
TypesList of autoimmune diseases (alopecia areata, celiac disease, diabetes mellitus type 1, Graves' disease, inflammatory bowel disease, multiple sclerosis, psoriasis, rheumatoid arthritis, systemic lupus erythematosus, others)
MedicationNonsteroidal anti-inflammatory drugs, immunosuppressants, intravenous immunoglobulin
Frequency24 million / 7% (USA)

An autoimmune disease is a condition arising from an abnormal immune response to a functioning body part. There are at least 80 types of autoimmune diseases. Nearly any body part can be involved. Common symptoms include low grade fever and feeling tired. Often symptoms come and go.

The cause is unknown. Some autoimmune diseases such as lupus run in families, and certain cases may be triggered by infections or other environmental factors. Some common diseases that are generally considered autoimmune include celiac disease, diabetes mellitus type 1, Graves' disease, inflammatory bowel disease, multiple sclerosis, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus. The diagnosis can be difficult to determine.

Treatment depends on the type and severity of the condition. Nonsteroidal anti-inflammatory drugs (NSAIDs) and immunosuppressants are often used. Intravenous immunoglobulin may also occasionally be used. While treatment usually improves symptoms, they do not typically cure the disease.

About 24 million (7%) people in the United States are affected by an autoimmune disease. Women are more commonly affected than men. Often they start during adulthood. The first autoimmune diseases were described in the early 1900s.

Signs and symptoms

Rheumatoid arthritis

Autoimmune diseases present similar symptoms across the more than eighty different types. The appearance and severity of these signs and symptoms depends on the location and type of autoimmune response that occurs. An individual may also have more than one autoimmune disease simultaneously, and display symptoms of multiple diseases. Signs and symptoms presented, and the disease itself, can be influenced by various other factors such as age, hormones, and environmental factors. In general, the common symptoms are:

  • Fatigue
  • Low grade fever
  • General feeling of unwell (malaise)
  • Muscle aches and joint pain
  • Rash on different areas of the skin

The appearance of these signs and symptoms can fluctuate, and when they reappear, it is known as a flare-up. Such signs and symptoms may aid in diagnosis by supporting the results from biologic markers of autoimmune diseases.

There are several areas that are commonly impacted by autoimmune diseases. These areas include: blood vessels, underlying connective tissues, joints and muscles, red blood cells, skin, and endocrine glands (such as thyroid or pancreas glands).

These diseases tend to have characteristic pathological effects that characterize them as an autoimmune disease. Such features include damage to or destruction of tissues where there is an abnormal immune response, altered organ growth, and altered organ function depending on the location of the disease. Some diseases are organ specific and are restricted to affecting certain tissues, while others are systemic diseases that impact many tissues throughout the body. Signs and symptoms may vary depending on which of these categories an individual’s disease falls under.

Cancer

Research suggests an overall correlation between autoimmune diseases and cancer, in that having an autoimmune disease increases the risk or likelihood of developing certain cancers. Autoimmune diseases cause inflammation through a variety of mechanisms, however, the way in which inflammation is created does not greatly influence cancer risk. Rather, the cancer risk is largely dependent on the fact that all autoimmune diseases increase chronic inflammation which has been linked to cancer. Below are some autoimmune diseases most commonly linked to cancer including celiac disease, inflammatory bowel disease (Crohn's disease and ulcerative colitis), multiple sclerosis, rheumatoid arthritis, and systemic lupus erythematosus.

Examples

Coeliac Disease

Coeliac disease presents the strongest associations to gastrointestinal and lymphoproliferative cancers. In coeliac disease, the autoimmune reaction is caused by the body’s loss of immune tolerance to ingested gluten, found primarily in wheat, barley, and rye. This explains the increased risk of gastrointestinal cancers, as the gastrointestinal tract includes the esophagus, stomach, small intestine, large intestine, rectum, and anus, all areas that the ingested gluten would traverse in digestion. The incidence of gastrointestinal cancer can be partially reduced or eliminated if a patient removes gluten from their diet. Additionally, celiac disease is correlated with lymphoproliferative cancers.

Inflammatory Bowel Disease

Inflammatory bowel disease is associated with cancers of the gastrointestinal tract and some lymphoproliferative cancers. Inflammatory bowel disease (IBD) can be further categorized as Crohn's disease or ulcerative colitis. In both cases, individuals with IBD lose immune tolerance for normal bacteria present in the gut microbiome. In this case, the immune system attacks the bacteria and induces chronic inflammation, which has been linked to increased cancer risk.

Multiple Sclerosis

Multiple sclerosis is associated with decreased risk of cancer overall but an increased risk of central nervous system cancer, primarily in the brain. Multiple sclerosis is a neurodegenerative disease in which T-cells – a specific type of immune cells – attack the important myelin sheath in brain neurons. This reduces the nervous system function, creating inflammation and subsequent cancer of the brain.

Rheumatoid Arthritis

Rheumatoid arthritis presents mild, yet significant associations with focal cancers all throughout the body as well as lymphoproliferative cancers. In rheumatoid arthritis, cells that make up the body’s joints and cartilages become invasive and induce local inflammation. Additionally, the chronic inflammation and over-activation of the immune system creates an environment that favors further malignant transformation of other cells. This can explain the associations to cancer of the lungs and skin as well as the increased risk of other hematologic cancers none of which are directly affected by the inflammation of joints.

Systemic Lupus Erythematosus

Systemic lupus erythematosus is associated with focal cancers throughout the body and lymphoproliferative cancers. Systemic lupus erythematosus affects multiple organ systems and is characterized by a widespread loss of immune tolerance. The chronic inflammation throughout the entire body promotes the malignant transformation of other cells which contributes to the increased risk of systemic and lymphoproliferative cancers. Conversely, systemic lupus erythematosus is correlated with a decrease in some cancers. This is best explained by increased immunosurveillance in these areas, however, the mechanism for why these areas experience lower incidence is poorly understood.

Aplastic anemia

In aplastic anemia the body fails to produce blood cells in sufficient numbers. Blood cells are produced in the bone marrow by stem cells that reside there. Aplastic anaemia causes a deficiency of all blood cell types: red blood cells, white blood cells, and platelets.

Causes

The cause is unknown. Some autoimmune diseases such as lupus run in families, and certain cases may be triggered by infections or other environmental factors. There are more than 100 autoimmune diseases. Some common diseases that are generally considered autoimmune include celiac disease, diabetes mellitus type 1, Graves' disease, inflammatory bowel disease, multiple sclerosis, psoriasis, rheumatoid arthritis, and systemic lupus erythematosus.

Genetics

Autoimmune diseases are conditions in which the human immune system attacks healthy human tissues within the body. The exact genes responsible for causing each autoimmune disease have not been found. However, several experimental methods such as the genome-wide association scans have been used to identify certain genetic risk variants that may or may not be responsible. Research focusing on both genome scanning and family trait inheritance analysis has enabled scientists to further understand the etiology of autoimmune diseases such as Type 1 diabetes and Rheumatoid arthritis.

  • Type 1 diabetes is a condition in which pancreatic β-cells are targeted and destroyed by the immune system. The condition is a result of neo-natal mutations to the insulin gene (INS) which is responsible for mediating the production of the insulin in the pancreas. The INS gene is located on the short arm of chromosome 11p15.5 in between the genes for tyrosine hydroxylase and insulin-like growth factor II. In addition to chromosome 11, a genetic determinant of type 1 diabetes is a locus called the major histocompatibility complex (MHC) located on chromosome 6p21.
  • Rheumatoid arthritis: Although there is no complete genetic mapping for this condition, several genes are thought to play a role in causing RA. The genes that influence the human immune system contain a TNF receptor associated factor 1(TRAF1). This TRAF1 is located on chromosome 9q33-34. In addition, B1 genes in the human genome contain an increased concentration of HLA-DRB1 alleles that are most commonly seen in RA patients. RA can vary in severity as a consequence of polymorphisms within the genome.

Environmental factors

A range of environmental factors have been recognized as either having a direct role in development, or being a catalyst to many autoimmune diseases. Current studies "indicate" up to seventy percent of autoimmune disease are perhaps due to environmental factors, including: chemicals, infection, diet, and gut dysbiosis. A single set of steps has been identified to be the most likely theory for autoimmune disease onset still there is of yet no definitive proof.

  1. Environmental triggers
  2. Reduced oral tolerance
  3. Gut dysbiosis
  4. Enhanced gut permeability
  5. Increased immune reactivity
  6. Autoimmunity

Chemicals can be found within the direct environment or in the form of drugs, including: hydrazines, hair dyes, trichloroethylene, tartrazines, hazardous wastes, and industrial emissions.

UV radiation is found to be a possible cause of development of the autoimmune disease dermatomyositis, exposure to pesticides plays a role in rheumatoid arthritis development, and vitamin D has been found to be a key in preventing immune dysfunctions in older populations. Infectious agents are considered T cell activators, a step needed for activation of autoimmune diseases. These mechanisms are relatively unknown, but are one of the current alternative theories to explain autoimmune diseases triggered by infection such as Guillain-Barre syndrome and rheumatic fever.

Pathophysiology

The human immune system typically produces both T cells and B cells that are capable of being reactive with self-protein, but these self-reactive cells are usually either killed prior to becoming active within the immune system, placed into a state of anergy (silently removed from their role within the immune system due to over-activation), or removed from their role within the immune system by regulatory cells. When any one of these mechanisms fail, it is possible to have a reservoir of self-reactive cells that become functional within the immune system. The mechanisms of preventing self-reactive T cells from being created take place through negative selection process within the thymus as the T cell is developing into a mature immune cell.

Some infections, such as Campylobacter jejuni, have antigens that are similar (but not identical) to our own self-molecules. In this case, a normal immune response to C. jejuni can result in the production of antibodies that also react to a lesser degree with gangliosides of myelin sheath surrounding peripheral nerves' axons (i.e., Guillain–Barré). A major understanding of the underlying pathophysiology of autoimmune diseases has been the application of genome-wide association scans that have identified a degree of genetic sharing among the autoimmune diseases.

Autoimmunity, on the other hand, is the presence of self-reactive immune response (e.g., auto-antibodies, self-reactive T cells), with or without damage or pathology resulting from it. This may be restricted to certain organs (e.g. in autoimmune thyroiditis) or involve a particular tissue in different places (e.g. Goodpasture's disease which may affect the basement membrane in both the lung and the kidney).

There are so many different theories as to how an autoimmune disease state arises. Some common ones are listed below.

Diagnosis

For a disease to be regarded as an autoimmune disease it needs to answer to Witebsky's postulates (first formulated by Ernest Witebsky and colleagues in 1957 and modified in 1994):

  • Direct evidence from transfer of disease-causing antibody or disease-causing T lymphocyte white blood cells
  • Indirect evidence based on reproduction of the autoimmune disease in experimental animals
  • Circumstantial evidence from clinical clues

Symptoms of early autoimmune disease are often the exact same as common illnesses, including: fatigue, fever, malaise, joint pain, and rash. Due to the fact symptoms vary for affected location, disease causing agents, and individuals, it is difficult for proper diagnosis. Typically, diagnosis begins with looking into a patient’s family's history for genetic predisposition. This is combined with various tests, as no single test can identify an autoimmune disease.

Antinuclear antibody

A test used to identify abnormal proteins, known as antinuclear antibodies, produced when the body attacks its own tissues. It may test positive in several disorders. This test is most useful for diagnosing systemic lupus erythematosus, having a 95% positive test rate.

Complete blood count

A test taking measurements on maturity levels, count, and size of blood cells. Targeted cells include: red blood cells, white blood cells, hemoglobin, hematocrit, and platelets. Based on increased or decreased numbers in these counts, underlying medical conditions may be present; typically, autoimmune disease is represented by low white blood cell count (Leukopenia). For proper diagnosis, further testing is needed.

Complement

A test used to measure levels of a protein group of the immune system called complement within blood. If complement is found in low levels, this may be an indication of disease.

C reactive protein

C reactive protein, a protein made in the liver generally increases with inflammation, and may be high in autoimmune disease.

Erythrocyte sedimentation rate

This test measures the rate at which a patient’s blood cells descend in a test tube. More rapid descents may indicate inflammation, a common symptom of autoimmune disease.

If these tests are indicative antibody abnormalities and inflammation, further tests will be conducted to identify the autoimmune disease present.

Treatment

Treatment depends on the type and severity of the condition. The majority of the autoimmune diseases are chronic and there is no definitive cure, but symptoms can be alleviated and controlled with treatment. Overall, the aim of the various treatment methods is to lessen the presented symptoms for relief and manipulate the body’s autoimmune response, while still preserving the ability of the patient to combat diseases that they may encounter. Traditional treatment options may include immunosuppressant drugs to weaken the overall immune response, such as:

  • Non-steroidal anti-inflammatory drugs (NSAIDs) to reduce inflammation
  • Glucocorticoids to reduce inflammation
  • Disease-modifying anti-rheumatic drugs (DMARDs) to decrease the damaging tissue and organ effects of the inflammatory autoimmune response

Other standard treatment methods include:

  • Vitamin or hormone supplements for what the body is lacking due to the disease (insulin, vitamin B12, thyroid hormone, etc.)
  • Blood transfusions if the disease is blood related
  • Physical therapy if the disease impacts bones, joints, or muscles

Because these drugs aim to reduce the immune response against the body’s own tissues, there are side effects of these traditional treatment methods, such as being more vulnerable to infections that can potentially be life threatening. There are new advancements in medicine for the treatment of autoimmune diseases that are currently being researched, developed, and used today, especially when traditional treatment options fail. These methods aim to either block the activation of pathogenic cells in the body, or alter the pathway that suppresses these cells naturally. The goal for these advancements is to have treatment options available that are less toxic to the patient, and have more specific targets. Such options include:

  • Monoclonal antibodies that can be used to block pro-inflammatory cytokines
  • Antigen-specific immunotherapy which allows immune cells to specifically target the abnormal cells that cause autoimmune disease
  • Co-stimulatory blockade that works to block the pathway that leads to the autoimmune response
  • Regulatory T cell therapy that utilizes this special type of T cell to suppress the autoimmune response

Epidemiology

The first estimate of US prevalence for autoimmune diseases as a group was published in 1997 by Jacobson, et al. They reported US prevalence to be around 9 million, applying prevalence estimates for 24 diseases to a US population of 279 million. Jacobson's work was updated by Hayter & Cook in 2012. This study used Witebsky's postulates, as revised by Rose & Bona, to extend the list to 81 diseases and estimated overall cumulative US prevalence for the 81 autoimmune diseases at 5.0%, with 3.0% for males and 7.1% for females. The estimated community prevalence, which takes into account the observation that many people have more than one autoimmune disease, was 4.5% overall, with 2.7% for males and 6.4% for females. National Health and Nutrition Examination Surveys conducted in the US from the 1980s to present day, have shown an increase of antinuclear antibodies, a common biomarker for autoimmune diseases. This shows that there has been an increase in the prevalence of autoimmune diseases in recent years pointing to a stronger influence of environment factors as a risk factor for autoimmune diseases.

Research

In both autoimmune and inflammatory diseases, the condition arises through aberrant reactions of the human adaptive or innate immune systems. In autoimmunity, the patient's immune system is activated against the body's own proteins. In chronic inflammatory diseases, neutrophils and other leukocytes are constitutively recruited by cytokines and chemokines, resulting in tissue damage.

Mitigation of inflammation by activation of anti-inflammatory genes and the suppression of inflammatory genes in immune cells is a promising therapeutic approach. There is a body of evidence that once the production of autoantibodies has been initialized, autoantibodies have the capacity to maintain their own production.

Stem cell transplantation is being studied and has shown promising results in certain cases.

Altered glycan theory

According to this theory, the effector function of the immune response is mediated by the glycans (polysaccharides) displayed by the cells and humoral components of the immune system. Individuals with autoimmunity have alterations in their glycosylation profile such that a proinflammatory immune response is favored. It is further hypothesized that individual autoimmune diseases will have unique glycan signatures.

Hygiene hypothesis

According to the hygiene hypothesis, high levels of cleanliness expose children to fewer antigens than in the past, causing their immune systems to become overactive and more likely to misidentify own tissues as foreign, resulting in autoimmune or allergic conditions such as asthma.

Vitamin D Influence on Immune Response

Vitamin D is known as an immune regulator that assists in the adaptive and innate immune response. A deficiency in Vitamin D, from hereditary or environmental influence, can lead to a more inefficient and weaker immune response and seen as a contributing factor to the development of autoimmune diseases. With Vitamin D present, vitamin D response elements (VDRE) are encoded and expressed via pattern recognition receptors (PRR) responses and the genes associated with those responses. The specific DNA target sequence expressed is known as 1,25-(OH)2D3. The expression of 1,25-(OH)2D3 can be induced by Macrophages, Dendritic cells, T-cells, and B-cells. In the presence of 1,25-(OH)2D3, the immune system's production of inflammatory cytokines are suppressed and more tolerogenic regulatory T-cells are expressed. This is due to Vitamin D's influence on cell maturation, specifically T-cells, and their phenotype expression. Lack of 1,25-(OH)2D3 expression can lead to less tolerant regulatory T-cells, larger presentation of antigens to less tolerant T-cells, and increased inflammatory response.

 

Poliovirus

 

Population history of indigenous peoples of the Americas

Contemporary illustration of the 1868 Washita Massacre by the 7th Cavalry against Black Kettle's band of Cheyennes, during the American Indian Wars. Violence and conflict with colonists were also important causes of the decline of certain indigenous American populations since the 16th century.

Population figures for the indigenous people of the Americas prior to colonization have proven difficult to establish. Scholars rely on archaeological data and written records from European settlers. By the end of the 20th century most scholars gravitated toward an estimate of around 50 million—with some historians arguing for an estimate of 100 million or more.

In an effort to circumvent the hold the Ottoman Empire held on the overland trade routes to East Asia and the hold that the Aeterni regis granted to Portugal on maritime routes via the African coast and the Indian Ocean, the monarchs of the nascent Spanish Empire decided to fund Columbus' voyage in 1492, which eventually led to the establishment of settler-colonial states and the migration of millions of Europeans to the Americas. The population of African and European peoples in the Americas grew steadily starting in 1492, while at the same time the indigenous population began to plummet. Eurasian diseases such as influenza, pneumonic plagues, and smallpox devastated the Native Americans, who did not have immunity to them. Conflict and outright warfare with Western European newcomers and other American tribes further reduced populations and disrupted traditional societies. The extent and causes of decline have been characterized as genocide.

Population overview

Natives of North America.
 
Natives of the South of America.
 
Columbus landing on Hispaniola, Dec. 6, 1492; greeted by Arawak Indians. Theodore de Bry

Given the fragmentary nature of the evidence, even semi-accurate pre-Columbian population figures are thought impossible to obtain. Scholars have varied widely on the estimated size of the indigenous populations prior to colonization and on the effects of European contact. Estimates are made by extrapolations from small bits of data. In 1976, geographer William Denevan used the existing estimates to derive a "consensus count" of about 54 million people. Nonetheless, more recent estimates still range widely. In 1992, Denevan suggested that the total population was approximately 53.9 million and the populations by region were, approximately, 3.8 million for the United State and Canada , 17.2 million for Mexico, 5.6 million for Central America, 3 million for the Caribbean, 15.7 million for the Andes and 8.6 million for lowland South America.

Using an estimate of approximately 37 million people in Mexico, Central and South America in 1492 (including 6 million in the Aztec Empire, 5–10 million in the Mayan States, 11 million in what is now Brazil, and 12 million in the Inca Empire), the lowest estimates give a death toll due from disease of 80% by the end of the 17th century (nine million people in 1650). Latin America would match its 15th-century population early in the 19th century; it numbered 17 million in 1800, 30 million in 1850, 61 million in 1900, 105 million in 1930, 218 million in 1960, 361 million in 1980, and 563 million in 2005. In the last three decades of the 16th century, the population of present-day Mexico dropped to about one million people. The Maya population is today estimated at six million, which is about the same as at the end of the 15th century, according to some estimates. In what is now Brazil, the indigenous population declined from a pre-Columbian high of an estimated four million to some 300,000.

While it is difficult to determine exactly how many Natives lived in North America before Columbus, estimates range from 7 million people to a high of 18 million.

The aboriginal population of Canada during the late 15th century is estimated to have been between 500,000 and two million. Repeated outbreaks of Old World infectious diseases such as influenza, measles and smallpox (to which they had no natural immunity) were the main cause of depopulation. This combined with other factors such as dispossession from European/Canadian settlements and numerous violent conflicts resulted in a forty- to eighty-percent aboriginal population decrease after contact. For example, during the late 1630s, smallpox killed over half of the Wyandot (Huron), who controlled most of the early North American fur trade in what became Canada. They were reduced to fewer than 10,000 people.

The population debate has often had ideological underpinnings. Low estimates were sometimes reflective of European notions of cultural and racial superiority. Historian Francis Jennings argued, "Scholarly wisdom long held that Indians were so inferior in mind and works that they could not possibly have created or sustained large populations."

In 1998, Africanist Historian David Henige argued many population estimates are the result of arbitrary formulas selectively applied to numbers from unreliable historical sources. He believes this is a weakness of several contributors to the field, and insists there is not sufficient evidence to produce population numbers that have any real meaning.

The indigenous population of the Americas in 1492 was not necessarily at a high point and may actually have been in decline in some areas. Indigenous populations in most areas of the Americas reached a low point by the early 20th century. In most cases, populations have since begun to climb.

Over 60 million Brazilians possess at least one Native South American ancestor, according to a mitochondrial DNA study.

Pre-Columbian Americas

Statue of Cuauhtemoc in el Zócalo, Mexico City.
 
Ataw Wallpa portrait.

Genetic diversity and population structure in the American land mass using DNA micro-satellite markers (genotype) sampled from North, Central, and South America have been analyzed against similar data available from other indigenous populations worldwide. The Amerindian populations show a lower genetic diversity than populations from other continental regions. Observed is both a decreasing genetic diversity as geographic distance from the Bering Strait occurs and a decreasing genetic similarity to Siberian populations from Alaska (genetic entry point). Also observed is evidence of a higher level of diversity and lower level of population structure in western South America compared to eastern South America. A relative lack of differentiation between Mesoamerican and Andean populations is a scenario that implies coastal routes were easier than inland routes for migrating peoples (Paleo-Indians) to traverse. The overall pattern that is emerging suggests that the Americas were recently colonized by a small number of individuals (effective size of about 70–250), and then they grew by a factor of 10 over 800–1,000 years. The data also show that there have been genetic exchanges between Asia, the Arctic and Greenland since the initial peopling of the Americas. A new study in early 2018 suggests that the effective population size of the original founding population of Native Americans was about 250 people.

Depopulation from disease

Sixteenth-century Aztec drawings of victims of smallpox (above) and measles (below)
 
Graph demonstrating the population collapse in Central Mexico brought on by successive epidemics in the early colonial period.

According to Noble David Cook, a community of scholars has recently, albeit slowly, "been quietly accumulating piece by piece data on early epidemics in the Americas and their relation to the subjugation of native peoples." They now believe that widespread epidemic disease, to which the natives had no prior exposure or resistance, was the primary cause of the massive population decline of the Native Americans. Earlier explanations for the population decline of the American natives include the European immigrants' accounts of the brutal practices of the Spanish conquistadores, as recorded by the Spaniards themselves. This was applied through the encomienda, which was a system ostensibly set up to protect people from warring tribes as well as to teach them the Spanish language and the Catholic religion, but in practice was tantamount to serfdom and slavery. The most notable account was that of the Dominican friar Bartolomé de las Casas, whose writings vividly depict Spanish atrocities committed in particular against the Taínos. It took five years for the Taíno rebellion to be quelled by both the Real Audiencia—through diplomatic sabotage, and through the Indian auxiliaries fighting with the Spanish. After Emperor Charles V personally eradicated the notion of the encomienda system as a use for slave labour, there were not enough Spanish to have caused such a large population decline. The second European explanation was a perceived divine approval, in which God removed the natives as part of His "divine plan" to make way for a new Christian civilization. Many Native Americans viewed their troubles in terms of religious or supernatural causes within their own belief systems.

Soon after Europeans and enslaved Africans arrived in the New World, bringing with them the infectious diseases of Europe and Africa, observers noted immense numbers of indigenous Americans began to die from these diseases. One reason this death toll was overlooked is that once introduced, the diseases raced ahead of European immigration in many areas. The disease killed a sizable portion of the populations before European written records were made. After the epidemics had already killed massive numbers of natives, many newer European immigrants assumed that there had always been relatively few indigenous peoples. The scope of the epidemics over the years was tremendous, killing millions of people—possibly in excess of 90% of the population in the hardest-hit areas—and creating one of "the greatest human catastrophe in history, far exceeding even the disaster of the Black Death of medieval Europe", which had killed up to one-third of the people in Europe and Asia between 1347 and 1351.

One of the most devastating diseases was smallpox, but other deadly diseases included typhus, measles, influenza, bubonic plague, cholera, malaria, tuberculosis, mumps, yellow fever and pertussis, which were chronic in Eurasia.

This transfer of disease between the Old and New Worlds was later studied as part of what has been labeled the "Columbian Exchange".

The epidemics had very different effects in different regions of the Americas. The most vulnerable groups were those with a relatively small population and few built-up immunities. Many island-based groups were annihilated. The Caribs and Arawaks of the Caribbean nearly ceased to exist, as did the Beothuks of Newfoundland. While disease raged swiftly through the densely populated empires of Mesoamerica, the more scattered populations of North America saw a slower spread.

The European colonization of the Americas resulted in the deaths of so many people it contributed to climatic change and temporary global cooling, according to scientists from University College London. A century after the arrival of Christopher Columbus, some 90% of indigenous Americans had perished from "wave after wave of disease", along with mass slavery and war, in what researchers have described as the "great dying". According to one of the researchers, UCL Geography Professor Mark Maslin, the large death toll also boosted the economies of Europe: "the depopulation of the Americas may have inadvertently allowed the Europeans to dominate the world. It also allowed for the Industrial Revolution and for Europeans to continue that domination."

Historian Andrés Reséndez of University of California, Davis asserts that evidence suggests "slavery has emerged as a major killer" of the indigenous populations of the Caribbean between 1492 and 1550 rather than diseases such as smallpox, influenza and malaria. He posits that unlike the populations of Europe who rebounded following the Black Death, no such rebound occurred for the indigenous populations of the Americas. He concludes that, even though the Spanish were aware of deadly diseases such as smallpox, there is no mention of them in the New World until 1519, meaning perhaps they didn't spread as fast as initially believed, and that unlike Europeans, the indigenous populations were subjected to brutal forced labor in gold and silver mines on a massive scale. Anthropologist Jason Hickel estimates that a third of Arawak workers died every six months from lethal forced labor in these mines.

Similarly, historian Jeffrey Ostler at The University of Oregon has argued that population collapses in the Americas throughout colonization were not mainly due to lack of Native immunity to European disease. Instead, he claims that "When severe epidemics did hit, it was often less because Native bodies lacked immunity than because European colonialism disrupted Native communities and damaged their resources, making them more vulnerable to pathogens." In specific regards to Spanish colonization of northern Florida and southeastern Georgia, Native peoples there "were subject to forced labor and, because of poor living conditions and malnutrition, succumbed to wave after wave of unidentifiable diseases." Further, in relation to British colonization in the Northeast, Algonquian speaking tribes in Virginia and Maryland "suffered from a variety of diseases, including malaria, typhus, and possibly smallpox." These diseases were not solely a case of Native susceptibility, however, because "as colonists took their resources, Native communities were subject to malnutrition, starvation, and social stress, all making people more vulnerable to pathogens. Repeated epidemics created additional trauma and population loss, which in turn disrupted the provision of healthcare." Such conditions would continue, alongside rampant disease in Native communities, throughout colonization, the formation of the United States, and multiple forced removals, as Ostler explains that many scholars "have yet to come to grips with how U.S. expansion created conditions that made Native communities acutely vulnerable to pathogens and how severely disease impacted them. ... Historians continue to ignore the catastrophic impact of disease and its relationship to U.S. policy and action even when it is right before their eyes."

Historian David Stannard says that by "focusing almost entirely on disease ... contemporary authors increasingly have created the impression that the eradication of those tens of millions of people was inadvertent—a sad, but both inevitable and "unintended consequence" of human migration and progress," and asserts that their destruction "was neither inadvertent nor inevitable," but the result of microbial pestilence and purposeful genocide working in tandem.

Virulence and mortality

Photograph from 1892 of a pile of American bison skulls in Detroit (MI) waiting to be ground for fertilizer or charcoal.

Viral and bacterial diseases that kill victims before the illnesses spread to others tend to flare up and then die out. A more resilient disease would establish an equilibrium; if its victims lived beyond infection, the disease would spread further. A similar evolutionary pressure acts upon victim populations, as those lacking genetic resistance to common diseases die and do not leave descendants, whereas those who are resistant procreate and pass resistant genes to their offspring. For example, in the first fifty years of the sixteenth century, an unusually strong strain of syphilis killed a high proportion of infected Europeans within a few months; over time, however, the disease has become much less virulent.

"Rath & Wright's buffalo hide yard in 1878, showing 40,000 buffalo hides, Dodge City, Kansas."

Thus both infectious diseases and populations tend to evolve towards an equilibrium in which the common diseases are non-symptomatic, mild or manageably chronic. When a population that has been relatively isolated is exposed to new diseases, it has no resistance to the new diseases (the population is "immunologically naive"). These people die at a much higher rate, resulting in what is known as a "virgin soil" epidemic. Before the European arrival, the Americas had been isolated from the Eurasian-African landmass. The peoples of the Old World had had thousands of years for their populations to accommodate to their common diseases.

The fact that all members of an immunologically naive population are exposed to a new disease simultaneously increases the fatalities. In populations where the disease is endemic, generations of individuals acquired immunity; most adults had exposure to the disease at a young age. Because they were resistant to reinfection, they are able to care for individuals who caught the disease for the first time, including the next generation of children. With proper care, many of these "childhood diseases" are often survivable. In a naive population, all age groups are affected at once, leaving few or no healthy caregivers to nurse the sick. With no resistant individuals healthy enough to tend to the ill, a disease may have higher fatalities.

The natives of the Americas were faced with several new diseases at once creating a situation where some who successfully resisted one disease might die from another. Multiple simultaneous infections (e.g., smallpox and typhus at the same time) or in close succession (e.g., smallpox in an individual who was still weak from a recent bout of typhus) are more deadly than just the sum of the individual diseases. In this scenario, death rates can also be elevated by combinations of new and familiar diseases: smallpox in combination with American strains of yaws, for example.

Other contributing factors:

  • Native American medical treatments such as sweat baths and cold water immersion (practiced in some areas) weakened some patients and probably increased mortality rates.
  • Europeans brought many diseases with them because they had many more domesticated animals than the Native Americans. Domestication usually means close and frequent contact between animals and people, which allows diseases of domestic animals to migrate into the human population when the necessary mutations occur.
  • The Eurasian landmass extends many thousands of miles along an east–west axis. Climate zones also extend for thousands of miles, which facilitated the spread of agriculture, domestication of animals, and the diseases associated with domestication. The Americas extend mainly north and south, which, according to the environmental determinist theory popularized by Jared Diamond in Guns, Germs, and Steel, meant that it was much harder for cultivated plant species, domesticated animals, and diseases to migrate.

Biological warfare

Tupac Amaru II in the National Museum of Archeology, Anthropology and History of Peru.

When Old World diseases were first carried to the Americas at the end of the fifteenth century, they spread throughout the southern and northern hemispheres, leaving the indigenous populations in near ruins. No evidence has been discovered that the earliest Spanish colonists and missionaries deliberately attempted to infect the American natives, and some effort was actually made to limit the devastating effects of disease before it killed off what remained of their forced slave labor under their encomienda system. The cattle introduced by the Spanish contaminated various water reserves which Native Americans dug in the fields to accumulate rainwater. In response, the Franciscans and Dominicans created public fountains and aqueducts to guarantee access to drinking water. But when the Franciscans lost their privileges in 1572, many of these fountains were no longer guarded and so deliberate well poisoning may have happened. Although no proof of such poisoning has been found, some historians believe the decrease of the population correlates with the end of religious orders' control of the water.

In the centuries that followed, accusations and discussions of biological warfare were common. Well-documented accounts of incidents involving both threats and acts of deliberate infection are very rare, but may have occurred more frequently than scholars have previously acknowledged. Many of the instances likely went unreported, and it is possible that documents relating to such acts were deliberately destroyed, or sanitized. By the middle of the 18th century, colonists had the knowledge and technology to attempt biological warfare with the smallpox virus. They well understood the concept of quarantine, and that contact with the sick could infect the healthy with smallpox, and those who survived the illness would not be infected again. Whether the threats were carried out, or how effective individual attempts were, is uncertain.

One such threat was delivered by fur trader James McDougall, who is quoted as saying to a gathering of local chiefs, "You know the smallpox. Listen: I am the smallpox chief. In this bottle I have it confined. All I have to do is to pull the cork, send it forth among you, and you are dead men. But this is for my enemies and not my friends." Likewise, another fur trader threatened Pawnee Indians that if they didn't agree to certain conditions, "he would let the smallpox out of a bottle and destroy them." The Reverend Isaac McCoy was quoted in his History of Baptist Indian Missions as saying that the white men had deliberately spread smallpox among the Indians of the southwest, including the Pawnee tribe, and the havoc it made was reported to General Clark and the Secretary of War. Artist and writer George Catlin observed that Native Americans were also suspicious of vaccination, "They see white men urging the operation so earnestly they decide that it must be some new mode or trick of the pale face by which they hope to gain some new advantage over them." So great was the distrust of the settlers that the Mandan chief Four Bears denounced the white man, whom he had previously treated as brothers, for deliberately bringing the disease to his people.

During the Seven Years' War, British militia took blankets from their smallpox hospital and gave them as gifts to two neutral Lenape Indian dignitaries during a peace settlement negotiation, according to the entry in the Captain's ledger, "To convey the Smallpox to the Indians". In the following weeks, the high commander of the British forces in North America conspired with his Colonel to "Extirpate this Execreble Race" of Native Americans, writing, "Could it not be contrived to send the small pox among the disaffected tribes of Indians? We must on this occasion use every stratagem in our power to reduce them." His Colonel agreed to try. Most scholars have asserted that the 1837 Great Plains smallpox epidemic was "started among the tribes of the upper Missouri River by failure to quarantine steamboats on the river", and Captain Pratt of the St. Peter "was guilty of contributing to the deaths of thousands of innocent people. The law calls his offense criminal negligence. Yet in light of all the deaths, the almost complete annihilation of the Mandans, and the terrible suffering the region endured, the label criminal negligence is benign, hardly befitting an action that had such horrendous consequences." However, some sources attribute the 1836–40 epidemic to the deliberate communication of smallpox to Native Americans, with historian Ann F. Ramenofsky writing, "Variola Major can be transmitted through contaminated articles such as clothing or blankets. In the nineteenth century, the U. S. Army sent contaminated blankets to Native Americans, especially Plains groups, to control the Indian problem." Well into the 20th century, deliberate infection attacks continued as Brazilian settlers and miners transported infections intentionally to the native groups whose lands they coveted."

Vaccination

After Edward Jenner's 1796 demonstration that the smallpox vaccination worked, the technique became better known and smallpox became less deadly in the United States and elsewhere. Many colonists and natives were vaccinated, although, in some cases, officials tried to vaccinate natives only to discover that the disease was too widespread to stop. At other times, trade demands led to broken quarantines. In other cases, natives refused vaccination because of suspicion of whites. The first international healthcare expedition in history was the Balmis expedition which had the aim of vaccinating indigenous peoples against smallpox all along the Spanish Empire in 1803. In 1831, government officials vaccinated the Yankton Sioux at Sioux Agency. The Santee Sioux refused vaccination and many died.

Depopulation from European Conquest

War and violence

An 1899 chromolithograph of U.S. cavalry pursuing American Indians, artist unknown.
 
Storming of the Teocalli by Cortez and His Troops by Emanuel Leutze
 
An 1899 chromolithograph from the Werner Company of Akron, Ohio entitled Custer Massacre at Big Horn, Montana – June 25, 1876.

While epidemic disease was a leading factor of the population decline of the American indigenous peoples after 1492, there were other contributing factors, all of them related to European contact and colonization. One of these factors was warfare. According to demographer Russell Thornton, although many lives were lost in wars over the centuries, and war sometimes contributed to the near extinction of certain tribes, warfare and death by other violent means was a comparatively minor cause of overall native population decline.

From the U.S. Bureau of the Census in 1894: "The Indian wars under the government of the United States have been more than 40 in number [Over the previous 100 years]. They have cost the lives of about 19,000 white men, women and children, including those killed in individual combats, and the lives of about 30,000 Indians. The actual number of killed and wounded Indians must be very much higher than the given... Fifty percent additional would be a safe estimate..."

There is some disagreement among scholars about how widespread warfare was in pre-Columbian America, but there is general agreement that war became deadlier after the arrival of the Europeans and their firearms. The South or Central American infrastructure allowed for thousands of European conquistadors and tens of thousands of their Indian auxiliaries to attack the dominant indigenous civilization. Empires such as the Incas depended on a highly centralized administration for the distribution of resources. Disruption caused by the war and the colonization hampered the traditional economy, and possibly led to shortages of food and materials. Across the western hemisphere, war with various Native American civilizations constituted alliances based out of both necessity or economic prosperity and, resulted in mass-scale intertribal warfare. European colonization in the North American continent also contributed to a number of wars between Native Americans, who fought over which of them should have first access to new technology and weaponry—like in the Beaver Wars.

Exploitation

Genova, Castello d'Albertis, Museum of World Cultures.

Some Spaniards objected to the encomienda system, notably Bartolomé de las Casas, who insisted that the Indians were humans with souls and rights. Due to many revolts and military encounters, Emperor Charles V helped relieve the strain on both the Indian laborers and the Spanish vanguards probing the Caribana for military and diplomatic purposes. Later on New Laws were promulgated in Spain in 1542 to protect isolated natives, but the abuses in the Americas were never entirely or permanently abolished. The Spanish also employed the pre-Columbian draft system called the mita, and treated their subjects as something between slaves and serfs. Serfs stayed to work the land; slaves were exported to the mines, where large numbers of them died. In other areas the Spaniards replaced the ruling Aztecs and Incas and divided the conquered lands among themselves ruling as the new feudal lords with often, but unsuccessful lobbying to the viceroys of the Spanish crown to pay Tlaxcalan war demnities. The infamous Bandeirantes from São Paulo, adventurers mostly of mixed Portuguese and native ancestry, penetrated steadily westward in their search for Indian slaves. Serfdom existed as such in parts of Latin America well into the 19th century, past independence. Historian Andrés Reséndez argues that even though the Spanish were aware of the spread of smallpox, they made no mention of it until 1519, a quarter century after Columbus arrived in Hispaniola. Instead he contends that enslavement in gold and silver mines was the primary reason why the Native American population of Hispaniola dropped so significantly. and that even though disease was a factor, the native population would have rebounded the same way Europeans did following the Black Death if it were not for the constant enslavement they were subject to. He further contends that enslavement of Native Americans was in fact the primary cause of their depopulation in Spanish territories; that the majority of Indians enslaved were women and children compared to the enslavement of Africans which mostly targeted adult males and in turn they were sold at a 50% to 60% higher price, and that 2,462,000 to 4,985,000 Amerindians where enslaved between Columbus's arrival and 1900.

Massacres

Mass grave of Lakota dead after the 1890 Wounded Knee Massacre.

Friar Bartolomé de las Casas and other dissenting Spaniards from the colonial period described the manner in which the natives were treated by colonials. This has helped to create an image of the Spanish conquistadores as cruel in the extreme.

Great revenues were drawn from Hispaniola so the advent of losing manpower didn't benefit the Spanish crown. At best, the reinforcement of vanguards sent by the Council of the Indies to explore the Caribana country and gather information on alliances or hostilities was the main goal of the local viceroys and their adelantados. Although mass killings and atrocities were not a significant factor in native depopulation, no mainstream scholar dismisses the sometimes humiliating circumstances now believed to be precipitated by civil disorder as well as Spanish cruelty.

Conquest of Mexico
  • The Pequot War in early New England.
  • In mid-19th century Argentina, post-independence leaders Juan Manuel de Rosas and Julio Argentino Roca engaged in what they presented as a "Conquest of the Desert" against the natives of the Argentinian interior, leaving over 1,300 indigenous dead.
  • While some California tribes were settled on reservations, others were hunted down and massacred by 19th century American settlers. It is estimated that at least 9,400 to 16,000 California Indians were killed by non-Indians, mostly occurring in more than 370 massacres (defined as the "intentional killing of five or more disarmed combatants or largely unarmed noncombatants, including women, children, and prisoners, whether in the context of a battle or otherwise").

Displacement and disruption

Geronimo (Goyaałé), a Chiricahua Apache, kneeling with rifle.

The populations of many Native American peoples were reduced by the common practice of intermarrying with Europeans. Although many Indian cultures that once thrived are extinct today, their descendants exist today in some of the bloodlines of the current inhabitants of the Americas.

Later apologies from government officials

On 8 September 2000, the head of the United States Bureau of Indian Affairs (BIA) formally apologized for the agency's participation in the "ethnic cleansing" of Western tribes. In a speech before representatives of Native American peoples in June, 2019, California governor Gavin Newsom apologized for the "California Genocide." Newsom said, "That’s what it was, a genocide. No other way to describe it. And that’s the way it needs to be described in the history books."

Spouse

From Wikipedia, the free encyclopedia ...