Search This Blog

Sunday, May 30, 2021

Eradication of infectious diseases

A child suffering from smallpox. In 1980, the World Health Organization announced the global eradication of smallpox. It is the only human disease to be eradicated worldwide.
 
Video recording of a set of presentations given in 2010 about humanity's efforts towards malaria eradication

Eradication is the reduction of an infectious disease's prevalence in the global host population to zero. It is sometimes confused with elimination, which describes either the reduction of an infectious disease's prevalence in a regional population to zero or the reduction of the global prevalence to a negligible amount. Further confusion arises from the use of the term eradication to refer to the total removal of a given pathogen from an individual (also known as clearance of an infection), particularly in the context of HIV and certain other viruses where such cures are sought.

The selection of infectious diseases for eradication is based on rigorous criteria, as both biological and technical features determine whether a pathogenic organism is (at least potentially) eradicable. The targeted organism must not have a non-human reservoir (or, in the case of animal diseases, the infection reservoir must be an easily identifiable species, as in the case of rinderpest), and/or amplify in the environment. This implies that sufficient information on the life cycle and transmission dynamics is available at the time an eradication initiative is programmed. An efficient and practical intervention (such as a vaccine or antibiotic) must be available to interrupt transmission of the infective agent. Studies of measles in the pre-vaccination era led to the concept of the critical community size, the size of the population below which a pathogen ceases to circulate. The use of vaccination programs before the introduction of an eradication campaign can reduce the susceptible population. The disease to be eradicated should be clearly identifiable, and an accurate diagnostic tool should exist. Economic considerations, as well as societal and political support and commitment, are other crucial factors that determine eradication feasibility.

Two infectious diseases have successfully been eradicated: smallpox and rinderpest. There are also four ongoing programs, targeting poliomyelitis, yaws, dracunculiasis, and malaria. Five more infectious diseases have been identified as of April 2008 as potentially eradicable with current technology by the Carter Center International Task Force for Disease Eradication—measles, mumps, rubella, lymphatic filariasis and cysticercosis.

Eradicated diseases

So far, two diseases have been successfully eradicated—one specifically affecting humans (smallpox), and one affecting a wide range of ruminants (rinderpest).

Smallpox

Boy with smallpox (1969). The last natural smallpox case was of Ali Maow Maalin, in Merca, Somalia, on 26 October 1977.

Smallpox was the first disease, and so far the only infectious disease of humans, to be eradicated by deliberate intervention. It became the first disease for which there was an effective vaccine in 1798 when Edward Jenner showed the protective effect of inoculation (vaccination) of humans with material from cowpox lesions.

Smallpox (variola) occurred in two clinical varieties: variola major, with a mortality rate of up to 40 percent, and variola minor, also known as alastrim, with a mortality rate of less than one percent. The last naturally occurring case of Variola major was diagnosed in October 1975 in Bangladesh. The last naturally occurring case of smallpox (Variola minor) was diagnosed on 26 October 1977, on Ali Maow Maalin, in the Merca District, of Somalia. The source of this case was a known outbreak in the nearby district of Kurtuware. All 211 contacts were traced, revaccinated, and kept under surveillance.

After two years' detailed analysis of national records, the global eradication of smallpox was certified by an international commission of smallpox clinicians and medical scientists on 9 December 1979, and endorsed by the General Assembly of the World Health Organization on 8 May 1980. However, there is an ongoing debate regarding the continued storage of the smallpox virus by labs in the US and Russia, as any accidental or deliberate release could create a new epidemic in people born since the late 1980s due to the cessation of vaccinations against the smallpox virus.

Rinderpest

During the twentieth century, there were a series of campaigns to eradicate rinderpest, a viral disease which infected cattle and other ruminants and belonged to the same family as measles, primarily through the use of a live attenuated vaccine. The final, successful campaign was led by the Food and Agriculture Organization of the United Nations. On 14 October 2010, with no diagnoses for nine years, the Food and Agriculture Organization announced that the disease had been completely eradicated, making this the first (and so far the only) disease of livestock to have been eradicated by human undertakings.

Global eradication underway

Poliomyelitis (polio)

International wild poliovirus cases by year
Year Estimated Recorded
1975 49,293
1980 400,000 52,552
1985 38,637
1988 350,000 35,251
1990 23,484
1993 100,000 10,487
1995 7,035
2000 2,971
2005 1,998
2010 1,352
2011 650
2012 222
2013 385
2014 359
2015 74
2016 37
2017 22
2018 33
2019 176

A dramatic reduction of the incidence of poliomyelitis in industrialized countries followed the development of a vaccine in the 1950s. In 1960, Czechoslovakia became the first country certified to have eliminated polio.

In 1988, the World Health Organization (WHO), Rotary International, the United Nations Children's Fund (UNICEF), and the United States Centers for Disease Control and Prevention (CDC) passed the Global Polio Eradication Initiative. Its goal was to eradicate polio by the year 2000. The updated strategic plan for 2004–2008 expects to achieve global eradication by interrupting poliovirus transmission, using the strategies of routine immunization, supplementary immunization campaigns, and surveillance of possible outbreaks. The WHO estimates that global savings from eradication, due to forgone treatment and disability costs, could exceed one billion U.S. dollars per year.

The following world regions have been declared polio-free:

The lowest annual wild polio prevalence seen so far was in 2017, with only 22 reported cases, although there were more total reported cases (including circulated vaccine-derived cases) than in 2016, mainly due to reporting of circulated vaccine-derived cases in Syria, where it likely had already been circulating, but gone unreported, presumably due to the civil war. Only two or three countries remain in which poliovirus transmission may never have been interrupted: Pakistan, Afghanistan, and perhaps Nigeria. (There have been no cases caused by wild strains of poliovirus in Nigeria since August 2016, though cVDPV2 was detected in environmental samples in 2017.) Nigeria was removed from the WHO list of polio-endemic countries in September 2015 but added back in 2016, and India was removed in 2014 after no new cases were reported for one year.

On 20 September 2015, the World Health Organization announced that wild poliovirus type 2 had been eradicated worldwide, as it has not been seen since 1999. On 24 October 2019, the World Health Organization announced that wild poliovirus type 3 had also been eradicated worldwide. This leaves only wild poliovirus type 1 and circulating vaccine-derived polio circulating in a few isolated pockets, with all wild polio cases after August 2016 in Afghanistan and Pakistan.

Dracunculiasis

International Guinea worm cases by year
Year Reported cases Countries
1989 892,055 16
1995 129,852 19
2000 75,223 16
2005 10,674 12
2010 1,797 6
2011 1,060 4
2012 542 4
2013 148 5
2014 126 4
2015 22 4
2016 25 3
2017 30 2
2018 28 3
2019 54 4
2020 24 4

Dracunculiasis, also called Guinea worm disease, is a painful and disabling parasitic disease caused by the nematode Dracunculus medinensis. It is spread through consumption of drinking water infested with copepods hosting Dracunculus larvae. The Carter Center has led the effort to eradicate the disease, along with the CDC, the WHO, UNICEF, and the Bill and Melinda Gates Foundation.

Unlike diseases such as smallpox and polio, there is no vaccine or drug therapy for guinea worm. Eradication efforts have been based on making drinking water supplies safer (e.g. by provision of borehole wells, or through treating the water with larvicide), on containment of infection and on education for safe drinking water practices. These strategies have produced many successes: two decades of eradication efforts have reduced Guinea worm's global incidence to 22 cases in 2015, after which cases rose to 25 cases in 2016, and 30 cases in 2017, but this is still down from an estimated 3.5 million in 1986. Success has been slower than was hoped—the original goal for eradication was 1995. The WHO has certified 180 countries free of the disease, and only three countries—South Sudan, Ethiopia, and Chad—reported cases of guinea worm in 2016, and only two—Ethiopia and Chad—in 2017. As of 2010, the WHO predicted it would be "a few years yet" before eradication is achieved, on the basis that it took 6–12 years for the countries that have so far eliminated guinea worm transmission to do so after reporting a similar number of cases to that reported by Sudan in 2009. The number of cases in 2019 (54) was less than 2% of the number in 2009, so real progress has been made towards this prediction. Nonetheless, the last 1% may be the hardest, and cases have increased from 2015 (22) to 2019 (54). The worm is able to infect dogs, domestic cats and baboons as well as humans, complicating eradication efforts.

Yaws

Yaws is a rarely fatal but highly disfiguring disease caused by the spiral-shaped bacterium (spirochete) Treponema pallidum pertenue, a close relative of the syphilis bacterium Treponema pallidum pallidum, spread through skin to skin contact with infectious lesions. The global prevalence of this disease and the other endemic treponematoses, bejel and pinta, was reduced by the Global Control of Treponematoses (TCP) programme between 1952 and 1964 from about 50 million cases to about 2.5 million (a 95% reduction). However, following the cessation of this program these diseases remained at a low prevalence in parts of Asia, Africa and the Americas with sporadic outbreaks. According to a 2012 official WHO roadmap, the elimination should be achievable by 2020. Yaws is currently targeted by the South-East Asian Regional Office of the WHO for elimination from the remaining endemic countries in this region (India, Indonesia and East Timor) by 2010, and so far, this appears to have met with some success, since no cases have been seen in India since 2004. The discovery that oral antibiotic azithromycin can be used instead of the previous standard, injected penicillin, was tested on Lihir Island from 2013 to 2014; a single oral dose of the macrolide antibiotic reduced disease prevalence from 2.4% to 0.3% at 12 months. The campaign was in an early stage in 2013, still gathering data on disease incidence and planning initial large-scale treatment campaigns in Cameroon, Ghana, Indonesia, Papua New Guinea, the Solomon Islands, and Vanuatu.

Malaria

1962 Pakistani postage stamp promoting malaria eradication program

Malaria has been eliminated from most of Europe, North America, Australia, North Africa and the Caribbean, and parts of South America, Asia and Southern Africa. The WHO defines elimination as having no domestic transmission for the past three years. They also define an "elimination stage" when a country is on the verge of eliminating malaria, as being less than one case per 1000 people at risk per year. As of 2019, 38 countries are certified as having eliminated malaria. As of 2018, 21 countries were seeking to eliminate malaria by 2020. The pre-elimination stage entails fewer than 5 cases per 1000 people at risk per year.

In 1955 the WHO launched the Global Malaria Eradication Program (GMEP). Support waned, and the program was suspended in 1969. Since 2000, support for eradication has increased, although some people in the global health community remain sceptical. According to the WHO's World Malaria Report 2015, the global mortality rate for malaria fell by 60% between 2000 and 2015. The WHO aims to achieve a further 90% reduction between 2015 and 2030. Bill Gates believes that global eradication is possible by 2040.

A major challenge to malaria elimination is the persistence of malaria in border regions, making international cooperation crucial.

Regional elimination established or underway

Some diseases have already been eliminated from large regions of the world, and/or are currently being targeted for regional elimination. This is sometimes described as "eradication", although technically the term only applies when this is achieved on a global scale. Even after regional elimination is successful, interventions often need to continue to prevent a disease becoming re-established. Three of the diseases here listed (lymphatic filariasis, measles, and rubella) are among the diseases believed to be potentially eradicable by the International Task Force for Disease Eradication, and if successful, regional elimination programs may yet prove a stepping stone to later global eradication programs. This section does not cover elimination where it is used to mean control programs sufficiently tight to reduce the burden of an infectious disease or other health problem to a level where they may be deemed to have little impact on public health, such as the leprosy, neonatal tetanus, or obstetric fistula campaigns.

Hookworm

In North American countries, such as the United States, elimination of hookworm had been attained due to scientific advances. Despite the United States declaring that it had eliminated hookworm decades ago, a 2017 study showed it was present in Lowndes County, Alabama.

The Rockefeller Foundation's hookworm campaign in the 1920s was supposed to focus on the eradication of hookworm infections for those living in Mexico and other rural areas. However, the campaign was politically influenced, causing it to be less successful, and regions such as Mexico still deal with these infections from parasitic worms. This use of health campaigns by political leaders for political and economic advantages has been termed the science-politics paradox.

Lymphatic filariasis

Lymphatic filariasis is an infection of the lymph system by mosquito-borne microfilarial worms which can cause elephantiasis. Studies have demonstrated that transmission of the infection can be broken when a single dose of combined oral medicines is consistently maintained annually for approximately seven years. The strategy for eliminating transmission of lymphatic filariasis is mass distribution of medicines that kill the microfilariae and stop transmission of the parasite by mosquitoes in endemic communities. In sub-Saharan Africa, albendazole is being used with ivermectin to treat the disease, whereas elsewhere in the world albendazole is used with diethylcarbamazine. Using a combination of treatments better reduces the number of microfilariae in blood. Avoiding mosquito bites, such as by using insecticide-treated mosquito bed nets, also reduces the transmission of lymphatic filariasis. In the Americas, 95% of the burden of lymphatic filariasis is on the island of Hispaniola (comprising Haiti and the Dominican Republic). An elimination effort to address this is currently under way alongside the malaria effort described above; both countries intend to eliminate the disease by 2020.

As of October 2008, the efforts of the Global Programme to Eliminate LF are estimated to have already prevented 6.6 million new filariasis cases from developing in children, and to have stopped the progression of the disease in another 9.5 million people who have already contracted it. Overall, of 83 endemic countries, mass treatment has been rolled out in 48, and elimination of transmission reportedly achieved in 21.

Measles

Five out of six WHO regions have goals to eliminate measles, and at the 63rd World Health Assembly in May 2010, delegates agreed to move towards eventual eradication, although no specific global target date has yet been agreed. The Americas set a goal in 1994 to eliminate measles and rubella transmission by 2000, and successfully achieved regional measles elimination in 2002, although there have been occasional small outbreaks from imported cases since then. Europe had set a goal to eliminate measles transmission by 2010, but were hindered by the MMR vaccine controversy and by low uptake in certain groups, and despite achieving low levels by 2008, European countries have since experienced a small resurgence in cases. They have set a new target of 2015. The Eastern Mediterranean also had goals to eliminate measles by 2010 (later revised to 2015), the Western Pacific aims to eliminate the disease by 2012, and in 2009 the regional committee for Africa agreed a goal of measles elimination by 2020. As of May 2010, only the South-East Asian region has yet to set a target date for elimination of measles transmission.

In 2005, a global target was agreed for a 90% reduction in measles deaths by 2010 from the 757,000 deaths in 2000; estimates for 2008 show a 78% decline so far to 164,000 deaths. However, some have been pushing to attempt global eradication. This was updated at the 2010 World Health Assembly to a targeted 95% reduction in mortality by 2015, alongside specific vaccination and structural targets, and in a meeting in November 2010, the Strategic Advisory Group of Experts on Immunization "concluded that measles can and should be eradicated". A study of the costs of eradicating measles compared to the costs of maintaining indefinite control was commissioned in 2009 by the WHO and the Bill and Melinda Gates Foundation. In 2013, measles deaths globally were down to 145,700.

As of mid-2013, measles elimination in many areas is stalling. "This year, measles and rubella outbreaks are occurring in many areas of the world where people have no immunity to these viruses. The reasons people are unvaccinated range from lack of access to vaccines in areas of insecurity, to poor performing health systems, to vaccine refusals. We need to address each of these challenges if we’re going to meet global measles and rubella elimination goals," said Dr. Myrna Charles of the American Red Cross, as reported in a post in the Measles and Rubella Initiative's blog. A look at the WHO's epidemiological graph of measles over time from 2008-2013 show that, with little more of two years to go to 2015, measles cases in 2013 are moving in the wrong direction, with more cases this year than at the same point in 2012 or 2011.

During 2014 there were 23 outbreaks of measles in the United States and over 600 individual cases, which is the highest seen in decades. In 2015 the US has had one major outbreak of measles originating from an amusement park in California of a variant of the virus circulating in the Philippines in 2014. From this there have been 113 individual measles cases and one death (out of the total of 189 cases in the US in 2015).

The WHO region of the Americas declared on 27 September 2016 it had eliminated measles. The last confirmed endemic case of measles in the Americas was in Brazil in July 2015. May 2017 saw a return of measles to the US after an outbreak in Minnesota among unvaccinated children. Another outbreak occurred in the state of New York between 2018 and 2019, causing over 200 confirmed measles cases in mostly ultra-Orthodox Jewish communities. Subsequent outbreaks occurred in New Jersey and Washington state with over 30 cases reported in the Pacific Northwest.

Rubella

Four out of six WHO regions have goals to eliminate rubella, with the WHO recommending using existing measles programmes for vaccination with combined vaccines such as the MMR vaccine. The number of reported cases dropped from 670 thousand in the year 2000 to below 15 thousand in 2018, and the global coverage of rubella vaccination was estimated at 69% in 2018 by the WHO. The WHO region of the Americas declared on 29 April 2015 it had eliminated rubella and congenital rubella syndrome. The last confirmed endemic case of rubella in the Americas was in Argentina in February 2009. Australia achieved eradication in 2018. The WHO European region missed its elimination target of 2010 due to undervaccination in Central and Western Europe; it has set a new goal of 2015. The disease remains problematic in other regions; the WHO regions of Africa and South-East Asia have the highest rates of congenital rubella syndrome and a 2013 outbreak of rubella in Japan resulted in 15,000 cases.

Onchocerciasis

Onchocerciasis (river blindness) is the world's second leading cause of infectious blindness. It is caused by the nematode Onchocerca volvulus, which is transmitted to people via the bite of a black fly. Elimination of this disease is under way in the region of the Americas, where this disease was endemic to Brazil, Colombia, Ecuador, Guatemala, Mexico and Venezuela. The principal tool being used is mass ivermectin treatment. If successful, the only remaining endemic locations would be in Africa and Yemen. In Africa, it is estimated that greater than 102 million people in 19 countries are at high risk of onchocerciasis infection, and in 2008, 56.7 million people in 15 of these countries received community-directed treatment with ivermectin. Since adopting such treatment measures in 1997, the African Programme for Onchocerciasis Control reports a reduction in the prevalence of onchocerciasis in the countries under its mandate from a pre-intervention level of 46.5% in 1995 to 28.5% in 2008. Some African countries, such as Uganda, are also attempting elimination and successful elimination was reported in 2009 from two endemic foci in Mali and Senegal.

On 29 July 2013, the Pan American Health Organization (PAHO) announced that after 16 years of efforts, Colombia had become the first country in the world to eliminate the parasitic disease onchocerciasis. It has also been eliminated in Ecuador (2014), Mexico (2015), and Guatemala (2016).

Bovine spongiform encephalopathy (BSE) and new variant Creutzfeldt–Jakob disease (vCJD)

Following an epidemic of variant Creutzfeldt–Jakob disease (vCJD) in the UK in the 1990s, there have been campaigns to eliminate bovine spongiform encephalopathy (BSE) in cattle across the European Union and beyond which have achieved large reductions in the number of cattle with this disease. Cases of vCJD have also fallen since then, from an annual peak of 29 cases in 2000 to five in 2008 and none in 2012. Two cases were reported in both 2013 and 2014: two in France; one in the United Kingdom and one in the United States.

Following the ongoing eradication effort, only seven cases of BSE were reported worldwide in 2013: three in the United Kingdom, two in France, one in Ireland and one in Poland. This is the lowest number of cases since at least 1988. In 2015 there were at least six reported cases (three of the atypical H-type.

Syphilis

In 2015, Cuba became the first country in the world to eliminate mother-to-child syphilis. In 2017 the WHO declared that Antigua and Barbuda, Saint Kitts and Nevis and four British Overseas TerritoriesAnguilla, Bermuda, Cayman Islands, and Montserrat—have been certified that they have ended transmission of mother-to-child syphilis and HIV. Nevertheless eradication of syphilis by all transmission methods remains unresolved and many questions about the eradication effort remain to be answered.

African trypanosomiasis

Early planning by the WHO for the eradication of African trypanosomiasis, also known as sleeping sickness, is underway as the rate of reported cases continues to decline and passive treatment is continued. The WHO aims to completely eliminate transmission of the Trypanosoma brucei gambiense parasite by 2030, though it acknowledges that this goal "leaves no room for complacency." However expert opinion is that eradication - no infections worldwide - is impossible due to continuing zoonosis and inherent ineffectiveness of vaccines, and the goal is instead elimination - no infections in an area - with even that being ambitious.

Rabies

Rabies-free countries and territories as of 2018

Because the rabies virus is almost always caught from animals, rabies eradication has focused on reducing the population of wild and stray animals, controls and compulsory quarantine on animals entering the country, and vaccination of pets and wild animals. Many island nations, including Iceland, Ireland, Japan, Malta, and the United Kingdom, managed to eliminate rabies during the twentieth century, and more recently much of continental Europe has been declared rabies-free.

Chagas disease

Chagas disease is caused by Trypanosoma cruzi and is endemic to South America. Eradication is hampered by the large chronically infected population in the endemic area in humans, and animals, and emigration of infected humans to non-endemic areas. Production of effective vaccines is inherently difficult.

Eradicable diseases in animals

As far as animal diseases are concerned, now that rinderpest has been stamped out, many experts believe peste des petits ruminants (PPR) is the next disease amenable to global eradication. Also known as goat plague or ovine rinderpest, PPR is a highly contagious viral disease of goats and sheep characterized by fever, painful sores in the mouth, tongue and feet, diarrhea, pneumonia and death, especially in young animals. It is caused by a virus of the genus Morbillivirus that is related to rinderpest, measles and canine distemper.

Eradication difficulties

Public upheaval by means of war, famine, political means, and infrastructure destruction can disrupt or eliminate eradication efforts altogether.

Animal

From Wikipedia, the free encyclopedia
 
Animals
Temporal range: Cryogenian – present, 665–0 Ma
EchinodermCnidariaBivalveTardigradeCrustaceanArachnidSpongeInsectMammalBryozoaAcanthocephalaFlatwormCephalopodAnnelidTunicateFishBirdPhoronidaAnimal diversity.png
About this image
Scientific classification e
Domain: Eukaryota
(unranked): Unikonta
(unranked): Obazoa
(unranked): Opisthokonta
(unranked): Holozoa
(unranked): Filozoa
Kingdom: Animalia
Linnaeus
Major divisions

see text

Synonyms
  • Metazoa
  • Choanoblastaea

Animals (also called Metazoa) are multicellular eukaryotic organisms that form the biological kingdom Animalia. With few exceptions, animals consume organic material, breathe oxygen, are able to move, can reproduce sexually, and grow from a hollow sphere of cells, the blastula, during embryonic development. Over 1.5 million living animal species have been described—of which around 1 million are insects—but it has been estimated there are over 7 million animal species in total. Animals range in length from 8.5 micrometres (0.00033 in) to 33.6 metres (110 ft). They have complex interactions with each other and their environments, forming intricate food webs. The scientific study of animals is known as zoology.

Most living animal species are in Bilateria, a clade whose members have a bilaterally symmetric body plan. The Bilateria include the protostomes—in which many groups of invertebrates are found, such as nematodes, arthropods, and molluscs—and the deuterostomes, containing both the echinoderms as well as the chordates, the latter containing the vertebrates. Life forms interpreted as early animals were present in the Ediacaran biota of the late Precambrian. Many modern animal phyla became clearly established in the fossil record as marine species during the Cambrian explosion, which began around 542 million years ago. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago.

Historically, Aristotle divided animals into those with blood and those without. Carl Linnaeus created the first hierarchical biological classification for animals in 1758 with his Systema Naturae, which Jean-Baptiste Lamarck expanded into 14 phyla by 1809. In 1874, Ernst Haeckel divided the animal kingdom into the multicellular Metazoa (now synonymous for Animalia) and the Protozoa, single-celled organisms no longer considered animals. In modern times, the biological classification of animals relies on advanced techniques, such as molecular phylogenetics, which are effective at demonstrating the evolutionary relationships between taxa.

Humans make use of many other animal species, such as for food (including meat, milk, and eggs), for materials (such as leather and wool), as pets, and as working animals including for transport. Dogs have been used in hunting, as have birds of prey, while many terrestrial and aquatic animals were hunted for sports. Nonhuman animals have appeared in art from the earliest times and are featured in mythology and religion.

Etymology

The word "animal" comes from the Latin animalis, meaning having breath, having soul or living being. The biological definition includes all members of the kingdom Animalia. In colloquial usage, the term animal is often used to refer only to nonhuman animals.

Characteristics

Animals are unique in having the ball of cells of the early embryo (1) develop into a hollow ball or blastula (2).

Animals have several characteristics that set them apart from other living things. Animals are eukaryotic and multicellular. Unlike plants and algae, which produce their own nutrients animals are heterotrophic, feeding on organic material and digesting it internally. With very few exceptions, animals respire aerobically. All animals are motile (able to spontaneously move their bodies) during at least part of their life cycle, but some animals, such as sponges, corals, mussels, and barnacles, later become sessile. The blastula is a stage in embryonic development that is unique to most animals, allowing cells to be differentiated into specialised tissues and organs.

Structure

All animals are composed of cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins. During development, the animal extracellular matrix forms a relatively flexible framework upon which cells can move about and be reorganised, making the formation of complex structures possible. This may be calcified, forming structures such as shells, bones, and spicules. In contrast, the cells of other multicellular organisms (primarily algae, plants, and fungi) are held in place by cell walls, and so develop by progressive growth. Animal cells uniquely possess the cell junctions called tight junctions, gap junctions, and desmosomes.

With few exceptions—in particular, the sponges and placozoans—animal bodies are differentiated into tissues. These include muscles, which enable locomotion, and nerve tissues, which transmit signals and coordinate the body. Typically, there is also an internal digestive chamber with either one opening (in Ctenophora, Cnidaria, and flatworms) or two openings (in most bilaterians).

Reproduction and development

Sexual reproduction is nearly universal in animals, such as these dragonflies.

Nearly all animals make use of some form of sexual reproduction. They produce haploid gametes by meiosis; the smaller, motile gametes are spermatozoa and the larger, non-motile gametes are ova. These fuse to form zygotes, which develop via mitosis into a hollow sphere, called a blastula. In sponges, blastula larvae swim to a new location, attach to the seabed, and develop into a new sponge. In most other groups, the blastula undergoes more complicated rearrangement. It first invaginates to form a gastrula with a digestive chamber and two separate germ layers, an external ectoderm and an internal endoderm. In most cases, a third germ layer, the mesoderm, also develops between them. These germ layers then differentiate to form tissues and organs.

Repeated instances of mating with a close relative during sexual reproduction generally leads to inbreeding depression within a population due to the increased prevalence of harmful recessive traits. Animals have evolved numerous mechanisms for avoiding close inbreeding.

Some animals are capable of asexual reproduction, which often results in a genetic clone of the parent. This may take place through fragmentation; budding, such as in Hydra and other cnidarians; or parthenogenesis, where fertile eggs are produced without mating, such as in aphids.

Ecology

Predators, such as this ultramarine flycatcher (Ficedula superciliaris), feed on other animals.

Animals are categorised into ecological groups depending on how they obtain or consume organic material, including carnivores, herbivores, omnivores, detritivores, and parasites. Interactions between animals form complex food webs. In carnivorous or omnivorous species, predation is a consumer-resource interaction where a predator feeds on another organism (called its prey). Selective pressures imposed on one another lead to an evolutionary arms race between predator and prey, resulting in various anti-predator adaptations. Almost all multicellular predators are animals. Some consumers use multiple methods; for example, in parasitoid wasps, the larvae feed on the hosts' living tissues, killing them in the process, but the adults primarily consume nectar from flowers. Other animals may have very specific feeding behaviours, such as hawksbill sea turtles primarily eating sponges.

Hydrothermal vent mussels and shrimps

Most animals rely on the biomass and energy produced by plants through photosynthesis. Herbivores eat plant material directly, while carnivores, and other animals on higher trophic levels typically acquire it indirectly by eating other animals. Animals oxidize carbohydrates, lipids, proteins, and other biomolecules to unlock the chemical energy of molecular oxygen, which allows the animal to grow and to sustain biological processes such as locomotion. Animals living close to hydrothermal vents and cold seeps on the dark sea floor consume organic matter of archaea and bacteria produced in these locations through chemosynthesis (by oxidizing inorganic compounds, such as hydrogen sulfide).

Animals originally evolved in the sea. Lineages of arthropods colonised land around the same time as land plants, probably between 510 and 471 million years ago during the Late Cambrian or Early Ordovician. Vertebrates such as the lobe-finned fish Tiktaalik started to move on to land in the late Devonian, about 375 million years ago. Animals occupy virtually all of earth's habitats and microhabitats, including salt water, hydrothermal vents, fresh water, hot springs, swamps, forests, pastures, deserts, air, and the interiors of animals, plants, fungi and rocks. Animals are however not particularly heat tolerant; very few of them can survive at constant temperatures above 50 °C (122 °F). Only very few species of animals (mostly nematodes) inhabit the most extreme cold deserts of continental Antarctica.

Diversity

The blue whale is the largest animal that has ever lived.

Size

The blue whale (Balaenoptera musculus) is the largest animal that has ever lived, weighing up to at least 190 tonnes and measuring up to 33.6 metres (110 ft) long. The largest extant terrestrial animal is the African bush elephant (Loxodonta africana), weighing up to 12.25 tonnes and measuring up to 10.67 metres (35.0 ft) long. The largest terrestrial animals that ever lived were titanosaur sauropod dinosaurs such as Argentinosaurus, which may have weighed as much as 73 tonnes. Several animals are microscopic; some Myxozoa (obligate parasites within the Cnidaria) never grow larger than 20 µm, and one of the smallest species (Myxobolus shekel) is no more than 8.5 µm when fully grown.

Numbers and habitats

The following table lists estimated numbers of described extant species for the animal groups with the largest numbers of species, along with their principal habitats (terrestrial, fresh water, and marine), and free-living or parasitic ways of life. Species estimates shown here are based on numbers described scientifically; much larger estimates have been calculated based on various means of prediction, and these can vary wildly. For instance, around 25,000–27,000 species of nematodes have been described, while published estimates of the total number of nematode species include 10,000–20,000; 500,000; 10 million; and 100 million. Using patterns within the taxonomic hierarchy, the total number of animal species—including those not yet described—was calculated to be about 7.77 million in 2011.

Evolutionary origin

Dickinsonia costata from the Ediacaran biota (c. 635–542 MYA) is one of the earliest animal species known.

The first fossils that might represent animals appear in the 665-million-year-old rocks of the Trezona Formation of South Australia. These fossils are interpreted as most probably being early sponges.

The oldest animals are found in the Ediacaran biota, towards the end of the Precambrian, around 610 million years ago. It had long been doubtful whether these included animals, but the discovery of the animal lipid cholesterol in fossils of Dickinsonia establishes that these were indeed animals. Animals are thought to have originated under low-oxygen conditions, suggesting that they were capable of living entirely by anaerobic respiration, but as they became specialized for aerobic metabolism they became fully dependent on oxygen in their environments.

Anomalocaris canadensis is one of the many animal species that emerged in the Cambrian explosion, starting some 542 million years ago, and found in the fossil beds of the Burgess shale.

Many animal phyla first appear in the fossil record during the Cambrian explosion, starting about 542 million years ago, in beds such as the Burgess shale. Extant phyla in these rocks include molluscs, brachiopods, onychophorans, tardigrades, arthropods, echinoderms and hemichordates, along with numerous now-extinct forms such as the predatory Anomalocaris. The apparent suddenness of the event may however be an artefact of the fossil record, rather than showing that all these animals appeared simultaneously.

Some palaeontologists have suggested that animals appeared much earlier than the Cambrian explosion, possibly as early as 1 billion years ago. Trace fossils such as tracks and burrows found in the Tonian period may indicate the presence of triploblastic worm-like animals, roughly as large (about 5 mm wide) and complex as earthworms. However, similar tracks are produced today by the giant single-celled protist Gromia sphaerica, so the Tonian trace fossils may not indicate early animal evolution. Around the same time, the layered mats of microorganisms called stromatolites decreased in diversity, perhaps due to grazing by newly evolved animals.

Phylogeny

Animals are monophyletic, meaning they are derived from a common ancestor. Animals are sister to the Choanoflagellata, with which they form the Choanozoa. The most basal animals, the Porifera, Ctenophora, Cnidaria, and Placozoa, have body plans that lack bilateral symmetry. Their relationships are still disputed; the sister group to all other animals could be the Porifera or the Ctenophora, both of which lack hox genes, important in body plan development.

These genes are found in the Placozoa and the higher animals, the Bilateria. 6,331 groups of genes common to all living animals have been identified; these may have arisen from a single common ancestor that lived 650 million years ago in the Precambrian. 25 of these are novel core gene groups, found only in animals; of those, 8 are for essential components of the Wnt and TGF-beta signalling pathways which may have enabled animals to become multicellular by providing a pattern for the body's system of axes (in three dimensions), and another 7 are for transcription factors including homeodomain proteins involved in the control of development.

Non-bilateria

Non-bilaterians include sponges (centre) and corals (background).

Several animal phyla lack bilateral symmetry. Among these, the sponges (Porifera) probably diverged first, representing the oldest animal phylum. Sponges lack the complex organization found in most other animal phyla; their cells are differentiated, but in most cases not organised into distinct tissues. They typically feed by drawing in water through pores.

The Ctenophora (comb jellies) and Cnidaria (which includes jellyfish, sea anemones, and corals) are radially symmetric and have digestive chambers with a single opening, which serves as both mouth and anus. Animals in both phyla have distinct tissues, but these are not organised into organs. They are diploblastic, having only two main germ layers, ectoderm and endoderm. The tiny placozoans are similar, but they do not have a permanent digestive chamber.

Bilateria

Idealised bilaterian body plan. With an elongated body and a direction of movement the animal has head and tail ends. Sense organs and mouth form the basis of the head. Opposed circular and longitudinal muscles enable peristaltic motion.

The remaining animals, the great majority—comprising some 29 phyla and over a million species—form a clade, the Bilateria. The body is triploblastic, with three well-developed germ layers, and their tissues form distinct organs. The digestive chamber has two openings, a mouth and an anus, and there is an internal body cavity, a coelom or pseudocoelom. Animals with this bilaterally symmetric body plan and a tendency to move in one direction have a head end (anterior) and a tail end (posterior) as well as a back (dorsal) and a belly (ventral); therefore they also have a left side and a right side.

Having a front end means that this part of the body encounters stimuli, such as food, favouring cephalisation, the development of a head with sense organs and a mouth. Many bilaterians have a combination of circular muscles that constrict the body, making it longer, and an opposing set of longitudinal muscles, that shorten the body; these enable soft-bodied animals with a hydrostatic skeleton to move by peristalsis. They also have a gut that extends through the basically cylindrical body from mouth to anus. Many bilaterian phyla have primary larvae which swim with cilia and have an apical organ containing sensory cells. However, there are exceptions to each of these characteristics; for example, adult echinoderms are radially symmetric (unlike their larvae), while some parasitic worms have extremely simplified body structures.

Genetic studies have considerably changed zoologists' understanding of the relationships within the Bilateria. Most appear to belong to two major lineages, the protostomes and the deuterostomes. The basalmost bilaterians are the Xenacoelomorpha.

Protostomes and deuterostomes

The bilaterian gut develops in two ways. In many protostomes, the blastopore develops into the mouth, while in deuterostomes it becomes the anus.

Protostomes and deuterostomes differ in several ways. Early in development, deuterostome embryos undergo radial cleavage during cell division, while many protostomes (the Spiralia) undergo spiral cleavage. Animals from both groups possess a complete digestive tract, but in protostomes the first opening of the embryonic gut develops into the mouth, and the anus forms secondarily. In deuterostomes, the anus forms first while the mouth develops secondarily. Most protostomes have schizocoelous development, where cells simply fill in the interior of the gastrula to form the mesoderm. In deuterostomes, the mesoderm forms by enterocoelic pouching, through invagination of the endoderm.

The main deuterostome phyla are the Echinodermata and the Chordata. Echinoderms are exclusively marine and include starfish, sea urchins, and sea cucumbers. The chordates are dominated by the vertebrates (animals with backbones), which consist of fishes, amphibians, reptiles, birds, and mammals. The deuterostomes also include the Hemichordata (acorn worms).

Ecdysozoa
Ecdysis: a dragonfly has emerged from its dry exuviae and is expanding its wings. Like other arthropods, its body is divided into segments.

The Ecdysozoa are protostomes, named after their shared trait of ecdysis, growth by moulting. They include the largest animal phylum, the Arthropoda, which contains insects, spiders, crabs, and their kin. All of these have a body divided into repeating segments, typically with paired appendages. Two smaller phyla, the Onychophora and Tardigrada, are close relatives of the arthropods and share these traits. The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water; some are important parasites. Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.

Spiralia
Spiral cleavage in a sea snail embryo

The Spiralia are a large group of protostomes that develop by spiral cleavage in the early embryo. The Spiralia's phylogeny has been disputed, but it contains a large clade, the superphylum Lophotrochozoa, and smaller groups of phyla such as the Rouphozoa which includes the gastrotrichs and the flatworms. All of these are grouped as the Platytrochozoa, which has a sister group, the Gnathifera, which includes the rotifers.

The Lophotrochozoa includes the molluscs, annelids, brachiopods, nemerteans, bryozoa and entoprocts. The molluscs, the second-largest animal phylum by number of described species, includes snails, clams, and squids, while the annelids are the segmented worms, such as earthworms, lugworms, and leeches. These two groups have long been considered close relatives because they share trochophore larvae.

History of classification

Jean-Baptiste de Lamarck led the creation of a modern classification of invertebrates, breaking up Linnaeus's "Vermes" into 9 phyla by 1809.

In the classical era, Aristotle divided animals, based on his own observations, into those with blood (roughly, the vertebrates) and those without. The animals were then arranged on a scale from man (with blood, 2 legs, rational soul) down through the live-bearing tetrapods (with blood, 4 legs, sensitive soul) and other groups such as crustaceans (no blood, many legs, sensitive soul) down to spontaneously-generating creatures like sponges (no blood, no legs, vegetable soul). Aristotle was uncertain whether sponges were animals, which in his system ought to have sensation, appetite, and locomotion, or plants, which did not: he knew that sponges could sense touch, and would contract if about to be pulled off their rocks, but that they were rooted like plants and never moved about.

In 1758, Carl Linnaeus created the first hierarchical classification in his Systema Naturae. In his original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then the last four have all been subsumed into a single phylum, the Chordata, while his Insecta (which included the crustaceans and arachnids) and Vermes have been renamed or broken up. The process was begun in 1793 by Jean-Baptiste de Lamarck, who called the Vermes une espèce de chaos (a chaotic mess) and split the group into three new phyla, worms, echinoderms, and polyps (which contained corals and jellyfish). By 1809, in his Philosophie Zoologique, Lamarck had created 9 phyla apart from vertebrates (where he still had 4 phyla: mammals, birds, reptiles, and fish) and molluscs, namely cirripedes, annelids, crustaceans, arachnids, insects, worms, radiates, polyps, and infusorians.

In his 1817 Le Règne Animal, Georges Cuvier used comparative anatomy to group the animals into four embranchements ("branches" with different body plans, roughly corresponding to phyla), namely vertebrates, molluscs, articulated animals (arthropods and annelids), and zoophytes (radiata) (echinoderms, cnidaria and other forms). This division into four was followed by the embryologist Karl Ernst von Baer in 1828, the zoologist Louis Agassiz in 1857, and the comparative anatomist Richard Owen in 1860.

In 1874, Ernst Haeckel divided the animal kingdom into two subkingdoms: Metazoa (multicellular animals, with five phyla: coelenterates, echinoderms, articulates, molluscs, and vertebrates) and Protozoa (single-celled animals), including a sixth animal phylum, sponges. The protozoa were later moved to the former kingdom Protista, leaving only the Metazoa as a synonym of Animalia.

In human culture

Sides of beef in a slaughterhouse

The human population exploits a large number of other animal species for food, both of domesticated livestock species in animal husbandry and, mainly at sea, by hunting wild species. Marine fish of many species are caught commercially for food. A smaller number of species are farmed commercially. Invertebrates including cephalopods, crustaceans, and bivalve or gastropod molluscs are hunted or farmed for food. Chickens, cattle, sheep, pigs and other animals are raised as livestock for meat across the world. Animal fibres such as wool are used to make textiles, while animal sinews have been used as lashings and bindings, and leather is widely used to make shoes and other items. Animals have been hunted and farmed for their fur to make items such as coats and hats. Dyestuffs including carmine (cochineal), shellac, and kermes have been made from the bodies of insects. Working animals including cattle and horses have been used for work and transport from the first days of agriculture.

Animals such as the fruit fly Drosophila melanogaster serve a major role in science as experimental models. Animals have been used to create vaccines since their discovery in the 18th century. Some medicines such as the cancer drug Yondelis are based on toxins or other molecules of animal origin.

A gun dog retrieving a duck during a hunt

People have used hunting dogs to help chase down and retrieve animals, and birds of prey to catch birds and mammals, while tethered cormorants have been used to catch fish. Poison dart frogs have been used to poison the tips of blowpipe darts. A wide variety of animals are kept as pets, from invertebrates such as tarantulas and octopuses, insects including praying mantises, reptiles such as snakes and chameleons, and birds including canaries, parakeets, and parrots all finding a place. However, the most kept pet species are mammals, namely dogs, cats, and rabbits. There is a tension between the role of animals as companions to humans, and their existence as individuals with rights of their own. A wide variety of terrestrial and aquatic animals are hunted for sport.

Artistic vision: Still Life with Lobster and Oysters by Alexander Coosemans, c. 1660

Animals have been the subjects of art from the earliest times, both historical, as in Ancient Egypt, and prehistoric, as in the cave paintings at Lascaux. Major animal paintings include Albrecht Dürer's 1515 The Rhinoceros, and George Stubbs's c. 1762 horse portrait Whistlejacket. Insects, birds and mammals play roles in literature and film, such as in giant bug movies. Animals including insects and mammals feature in mythology and religion. In both Japan and Europe, a butterfly was seen as the personification of a person's soul, while the scarab beetle was sacred in ancient Egypt. Among the mammals, cattle, deer, horses, lions, bats, bears, and wolves are the subjects of myths and worship. The signs of the Western and Chinese zodiacs are based on animals.

 

List of human positions

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lis...