Search This Blog

Wednesday, September 22, 2021

Circumstellar habitable zone

From Wikipedia, the free encyclopedia

A diagram depicting the habitable zone boundaries around stars, and how the boundaries are affected by star type. This plot includes Solar System planets (Venus, Earth, and Mars) as well as especially significant exoplanets such as TRAPPIST-1d, Kepler-186f, and our nearest neighbor Proxima Centauri b.

In astronomy and astrobiology, the circumstellar habitable zone (CHZ), or simply the habitable zone, is the range of orbits around a star within which a planetary surface can support liquid water given sufficient atmospheric pressure. The bounds of the CHZ are based on Earth's position in the Solar System and the amount of radiant energy it receives from the Sun. Due to the importance of liquid water to Earth's biosphere, the nature of the CHZ and the objects within it may be instrumental in determining the scope and distribution of planets capable of supporting Earth-like extraterrestrial life and intelligence.

The habitable zone is also called the Goldilocks zone, a metaphor, allusion and antonomasia of the children's fairy tale of "Goldilocks and the Three Bears", in which a little girl chooses from sets of three items, ignoring the ones that are too extreme (large or small, hot or cold, etc.), and settling on the one in the middle, which is "just right".

Since the concept was first presented in 1953, many stars have been confirmed to possess a CHZ planet, including some systems that consist of multiple CHZ planets. Most such planets, being either super-Earths or gas giants, are more massive than Earth, because massive planets are easier to detect. On November 4, 2013, astronomers reported, based on Kepler data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs in the Milky Way. About 11 billion of these may be orbiting Sun-like stars. Proxima Centauri b, located about 4.2 light-years (1.3 parsecs) from Earth in the constellation of Centaurus, is the nearest known exoplanet, and is orbiting in the habitable zone of its star. The CHZ is also of particular interest to the emerging field of habitability of natural satellites, because planetary-mass moons in the CHZ might outnumber planets.

In subsequent decades, the CHZ concept began to be challenged as a primary criterion for life, so the concept is still evolving. Since the discovery of evidence for extraterrestrial liquid water, substantial quantities of it are now thought to occur outside the circumstellar habitable zone. The concept of deep biospheres, like Earth's, that exist independently of stellar energy, are now generally accepted in astrobiology given the large amount of liquid water known to exist within in lithospheres and asthenospheres of the Solar System. Sustained by other energy sources, such as tidal heating or radioactive decay or pressurized by non-atmospheric means, liquid water may be found even on rogue planets, or their moons. Liquid water can also exist at a wider range of temperatures and pressures as a solution, for example with sodium chlorides in seawater on Earth, chlorides and sulphates on equatorial Mars, or ammoniates, due to its different colligative properties.Thus, the term Goldilocks Edge has also been suggested. In addition, other circumstellar zones, where non-water solvents favorable to hypothetical life based on alternative biochemistries could exist in liquid form at the surface, have been proposed.

History

An estimate of the range of distances from the Sun allowing the existence of liquid water appears in Newton's Principia (Book III, Section 1, corol. 4).

The concept of a circumstellar habitable zone was first introduced in 1913, by Edward Maunder in his book "Are The Planets Inhabited?". The relevant quotations are given in . The concept was later discussed in 1953 by Hubertus Strughold, who in his treatise The Green and the Red Planet: A Physiological Study of the Possibility of Life on Mars, coined the term "ecosphere" and referred to various "zones" in which life could emerge. In the same year, Harlow Shapley wrote "Liquid Water Belt", which described the same concept in further scientific detail. Both works stressed the importance of liquid water to life. Su-Shu Huang, an American astrophysicist, first introduced the term "habitable zone" in 1959 to refer to the area around a star where liquid water could exist on a sufficiently large body, and was the first to introduce it in the context of planetary habitability and extraterrestrial life. A major early contributor to habitable zone concept, Huang argued in 1960 that circumstellar habitable zones, and by extension extraterrestrial life, would be uncommon in multiple star systems, given the gravitational instabilities of those systems.

The concept of habitable zones was further developed in 1964 by Stephen H. Dole in his book Habitable Planets for Man, in which he discussed the concept of circumstellar habitable zone as well as various other determinants of planetary habitability, eventually estimating the number of habitable planets in the Milky Way to be about 600 million. At the same time, science-fiction author Isaac Asimov introduced the concept of a circumstellar habitable zone to the general public through his various explorations of space colonization. The term "Goldilocks zone" emerged in the 1970s, referencing specifically a region around a star whose temperature is "just right" for water to be present in the liquid phase. In 1993, astronomer James Kasting introduced the term "circumstellar habitable zone" to refer more precisely to the region then (and still) known as the habitable zone. Kasting was the first to present a detailed model for the habitable zone for exoplanets.

An update to habitable zone concept came in 2000, when astronomers Peter Ward and Donald Brownlee, introduced the idea of the "galactic habitable zone", which they later developed with Guillermo Gonzalez. The galactic habitable zone, defined as the region where life is most likely to emerge in a galaxy, encompasses those regions close enough to a galactic center that stars there are enriched with heavier elements, but not so close that star systems, planetary orbits, and the emergence of life would be frequently disrupted by the intense radiation and enormous gravitational forces commonly found at galactic centers.

Subsequently, some astrobiologists propose that the concept be extended to other solvents, including dihydrogen, sulfuric acid, dinitrogen, formamide, and methane, among others, which would support hypothetical life forms that use an alternative biochemistry. In 2013, further developments in habitable zone concepts were made with the proposal of a circum planetary habitable zone, also known as the "habitable edge", to encompass the region around a planet where the orbits of natural satellites would not be disrupted, and at the same time tidal heating from the planet would not cause liquid water to boil away.

It has been noted that the current term of 'circumstellar habitable zone' poses confusion as the name suggests that planets within this region will possess a habitable environment. However, surface conditions are dependent on a host of different individual properties of that planet. This misunderstanding is reflected in excited reports of 'habitable planets'. Since it is completely unknown whether conditions on these distant CHZ worlds could host life, different terminology is needed.

Determination

Thermodynamic properties of water depicting the conditions at the surface of the terrestrial planets: Mars is near the triple point, Earth in the liquid; and Venus near the critical point.
 
The range of published estimates for the extent of the Sun's CHZ. The conservative CHZ[2] is indicated by a dark-green band crossing the inner edge of the aphelion of Venus, whereas an extended CHZ,[46] extending to the orbit of the dwarf planet Ceres, is indicated by a light-green band.

Whether a body is in the circumstellar habitable zone of its host star is dependent on the radius of the planet's orbit (for natural satellites, the host planet's orbit), the mass of the body itself, and the radiative flux of the host star. Given the large spread in the masses of planets within a circumstellar habitable zone, coupled with the discovery of super-Earth planets which can sustain thicker atmospheres and stronger magnetic fields than Earth, circumstellar habitable zones are now split into two separate regions—a "conservative habitable zone" in which lower-mass planets like Earth can remain habitable, complemented by a larger "extended habitable zone" in which a planet like Venus, with stronger greenhouse effects, can have the right temperature for liquid water to exist at the surface.

Solar System estimates

Estimates for the habitable zone within the Solar System range from 0.38 to 10.0 astronomical units, though arriving at these estimates has been challenging for a variety of reasons. Numerous planetary mass objects orbit within, or close to, this range and as such receive sufficient sunlight to raise temperatures above the freezing point of water. However their atmospheric conditions vary substantially.

The aphelion of Venus, for example, touches the inner edge of the zone in most estimates and while atmospheric pressure at the surface is sufficient for liquid water, a strong greenhouse effect raises surface temperatures to 462 °C (864 °F) at which water can only exist as vapour. The entire orbits of the Moon, Mars, and numerous asteroids also lie within various estimates of the habitable zone. Only at Mars' lowest elevations (less than 30% of the planet's surface) is atmospheric pressure and temperature sufficient for water to, if present, exist in liquid form for short periods. At Hellas Basin, for example, atmospheric pressures can reach 1,115 Pa and temperatures above zero Celsius (about the triple point for water) for 70 days in the Martian year. Despite indirect evidence in the form of seasonal flows on warm Martian slopes, no confirmation has been made of the presence of liquid water there. While other objects orbit partly within this zone, including comets, Ceres is the only one of planetary mass. A combination of low mass and an inability to mitigate evaporation and atmosphere loss against the solar wind make it impossible for these bodies to sustain liquid water on their surface.

Despite this, studies are strongly suggestive of past liquid water on the surface of Venus, Mars, Vesta and Ceres, suggesting a more common phenomena than previously thought. Since sustainable liquid water is thought to be essential to support complex life, most estimates, therefore, are inferred from the effect that a repositioned orbit would have on the habitability of Earth or Venus as their surface gravity allows sufficient atmosphere to be retained for several billion years.

According to extended habitable zone concept, planetary-mass objects with atmospheres capable of inducing sufficient radiative forcing could possess liquid water farther out from the Sun. Such objects could include those whose atmospheres contain a high component of greenhouse gas and terrestrial planets much more massive than Earth (super-Earth class planets), that have retained atmospheres with surface pressures of up to 100 kbar. There are no examples of such objects in the Solar System to study; not enough is known about the nature of atmospheres of these kinds of extrasolar objects, and their position in the habitable zone cannot determine the net temperature effect of such atmospheres including induced albedo, anti-greenhouse or other possible heat sources.

For reference, the average distance from the Sun of some major bodies within the various estimates of the habitable zone is: Mercury, 0.39 AU; Venus, 0.72 AU; Earth, 1.00 AU; Mars, 1.52 AU; Vesta, 2.36 AU; Ceres and Pallas, 2.77 AU; Jupiter, 5.20 AU; Saturn, 9.58 AU. In the most conservative estimates, only Earth lies within the zone; in the most permissive estimates, even Saturn at perihelion, or Mercury at aphelion, might be included.

Estimates of the circumstellar habitable zone boundaries of the Solar System
Inner edge (AU) Outer edge (AU) Year Notes
0.725 1.24 1964, Dole Used optically thin atmospheres and fixed albedos. Places the aphelion of Venus just inside the zone.

1.005–1.008 1969, Budyko Based on studies of ice albedo feedback models to determine the point at which Earth would experience global glaciation. This estimate was supported in studies by Sellers 1969 and North 1975.
0.92-0.96
1970, Rasool and De Bergh Based on studies of Venus's atmosphere, Rasool and De Bergh concluded that this is the minimum distance at which Earth would have formed stable oceans.
0.958 1.004 1979, Hart et al. Based on computer modelling and simulations of the evolution of Earth's atmospheric composition and surface temperature. This estimate has often been cited by subsequent publications.

3.0 1992, Fogg Used the carbon cycle to estimate the outer edge of the circumstellar habitable zone.
0.95 1.37 1993, Kasting et al. Founded the most common working definition of the habitable zone used today. Assumes that CO2 and H2O are the key greenhouse gases as they are for the Earth. Argued that the habitable zone is wide because of the carbonate–silicate cycle. Noted the cooling effect of cloud albedo. Table shows conservative limits. Optimistic limits were 0.84–1.67 AU.

2.0 2010, Spiegel et al. Proposed that seasonal liquid water is possible to this limit when combining high obliquity and orbital eccentricity.
0.75
2011, Abe et al. Found that land-dominated "desert planets" with water at the poles could exist closer to the Sun than watery planets like Earth.

10 2011, Pierrehumbert and Gaidos Terrestrial planets that accrete tens-to-thousands of bars of primordial hydrogen from the protoplanetary disc may be habitable at distances that extend as far out as 10 AU in the Solar System.
0.77–0.87 1.02–1.18 2013, Vladilo et al. Inner edge of circumstellar habitable zone is closer and outer edge is farther for higher atmospheric pressures; determined minimum atmospheric pressure required to be 15 mbar.
0.99 1.70 2013, Kopparapu et al. Revised estimates of the Kasting et al. (1993) formulation using updated moist greenhouse and water loss algorithms. According to this measure Earth is at the inner edge of the HZ and close to, but just outside, the moist greenhouse limit. As with Kasting et al. (1993), this applies to an Earth-like planet where the "water loss" (moist greenhouse) limit, at the inner edge of the habitable zone, is where the temperature has reached around 60 Celsius and is high enough, right up into the troposphere, that the atmosphere has become fully saturated with water vapour. Once the stratosphere becomes wet, water vapour photolysis releases hydrogen into space. At this point cloud feedback cooling does not increase significantly with further warming. The "maximum greenhouse" limit, at the outer edge, is where a CO
2
dominated atmosphere, of around 8 bars, has produced the maximum amount of greenhouse warming, and further increases in CO
2
will not create enough warming to prevent CO
2
catastrophically freezing out of the atmosphere. Optimistic limits were 0.97–1.70 AU. This definition does not take into account possible radiative warming by CO
2
clouds.
0.38
2013, Zsom et al.

Estimate based on various possible combinations of atmospheric composition, pressure and relative humidity of the planet's atmosphere.
0.95
2013, Leconte et al. Using 3-D models, these authors computed an inner edge of 0.95 AU for the Solar System.
0.95 2.4 2017, Ramirez and Kaltenegger

An expansion of the classical carbon dioxide-water vapor habitable zone  assuming a volcanic hydrogen atmospheric concentration of 50%.
0.93–0.91
2019, Gomez-Leal et al.

Estimation of the moist greenhouse threshold by measuring the water mixing ratio in the lower stratosphere, the surface temperature, and the climate sensitivity on an Earth analog with and without ozone, using a global climate model (GCM). It shows the correlation of a water mixing ratio value of 7 g/kg, a surface temperature of about 320 K, and a peak of the climate sensitivity in both cases.
0.99 1.004
Tightest bounded estimate from above
0.38 10
Most relaxed estimate from above

Extrasolar extrapolation

Astronomers use stellar flux and the inverse-square law to extrapolate circumstellar habitable zone models created for the Solar System to other stars. For example, according to Kopparapu's habitable zone estimate, although the Solar System has a circumstellar habitable zone centered at 1.34 AU from the Sun, a star with 0.25 times the luminosity of the Sun would have a habitable zone centered at , or 0.5, the distance from the star, corresponding to a distance of 0.67 AU. Various complicating factors, though, including the individual characteristics of stars themselves, mean that extrasolar extrapolation of the CHZ concept is more complex.

Spectral types and star-system characteristics

A video explaining the significance of the 2011 discovery of a planet in the circumbinary habitable zone of Kepler-47.

Some scientists argue that the concept of a circumstellar habitable zone is actually limited to stars in certain types of systems or of certain spectral types. Binary systems, for example, have circumstellar habitable zones that differ from those of single-star planetary systems, in addition to the orbital stability concerns inherent with a three-body configuration. If the Solar System were such a binary system, the outer limits of the resulting circumstellar habitable zone could extend as far as 2.4 AU.

With regard to spectral types, Zoltán Balog proposes that O-type stars cannot form planets due to the photoevaporation caused by their strong ultraviolet emissions. Studying ultraviolet emissions, Andrea Buccino found that only 40% of stars studied (including the Sun) had overlapping liquid water and ultraviolet habitable zones. Stars smaller than the Sun, on the other hand, have distinct impediments to habitability. For example, Michael Hart proposed that only main-sequence stars of spectral class K0 or brighter could offer habitable zones, an idea which has evolved in modern times into the concept of a tidal locking radius for red dwarfs. Within this radius, which is coincidental with the red-dwarf habitable zone, it has been suggested that the volcanism caused by tidal heating could cause a "tidal Venus" planet with high temperatures and no hospitable environment to life.

Others maintain that circumstellar habitable zones are more common, and that it is indeed possible for water to exist on planets orbiting cooler stars. Climate modelling from 2013 supports the idea that red dwarf stars can support planets with relatively constant temperatures over their surfaces in spite of tidal locking. Astronomy professor Eric Agol argues that even white dwarfs may support a relatively brief habitable zone through planetary migration. At the same time, others have written in similar support of semi-stable, temporary habitable zones around brown dwarfs. Also, a habitable zone in the outer parts of stellar systems may exist during the pre-main-sequence phase of stellar evolution, especially around M-dwarfs, potentially lasting for billion-year timescales.

Stellar evolution

Natural shielding against space weather, such as the magnetosphere depicted in this artistic rendition, may be required for planets to sustain surface water for prolonged periods.

Circumstellar habitable zones change over time with stellar evolution. For example, hot O-type stars, which may remain on the main sequence for fewer than 10 million years, would have rapidly changing habitable zones not conducive to the development of life. Red dwarf stars, on the other hand, which can live for hundreds of billions of years on the main sequence, would have planets with ample time for life to develop and evolve. Even while stars are on the main sequence, though, their energy output steadily increases, pushing their habitable zones farther out; our Sun, for example, was 75% as bright in the Archaean as it is now, and in the future, continued increases in energy output will put Earth outside the Sun's habitable zone, even before it reaches the red giant phase. In order to deal with this increase in luminosity, the concept of a continuously habitable zone has been introduced. As the name suggests, the continuously habitable zone is a region around a star in which planetary-mass bodies can sustain liquid water for a given period. Like the general circumstellar habitable zone, the continuously habitable zone of a star is divided into a conservative and extended region.

In red dwarf systems, gigantic stellar flares which could double a star's brightness in minutes and huge starspots which can cover 20% of the star's surface area, have the potential to strip an otherwise habitable planet of its atmosphere and water. As with more massive stars, though, stellar evolution changes their nature and energy flux, so by about 1.2 billion years of age, red dwarfs generally become sufficiently constant to allow for the development of life. Once a star has evolved sufficiently to become a red giant, its circumstellar habitable zone will change dramatically from its main-sequence size. For example, the Sun is expected to engulf the previously-habitable Earth as a red giant. However, once a red giant star reaches the horizontal branch, it achieves a new equilibrium and can sustain a new circumstellar habitable zone, which in the case of the Sun would range from 7 to 22 AU. At such stage, Saturn's moon Titan would likely be habitable in Earth's temperature sense. Given that this new equilibrium lasts for about 1 Gyr, and because life on Earth emerged by 0.7 Gyr from the formation of the Solar System at latest, life could conceivably develop on planetary mass objects in the habitable zone of red giants. However, around such a helium-burning star, important life processes like photosynthesis could only happen around planets where the atmosphere has carbon dioxide, as by the time a solar-mass star becomes a red giant, planetary-mass bodies would have already absorbed much of their free carbon dioxide. Moreover, as Ramirez and Kaltenegger (2016) showed, intense stellar winds would completely remove the atmospheres of such smaller planetary bodies, rendering them uninhabitable anyway. Thus, Titan would not be habitable even after the Sun becomes a red giant. Nevertheless, life need not originate during this stage of stellar evolution for it to be detected. Once the star becomes a red giant, and the habitable zone extends outward, the icy surface would melt, forming a temporary atmosphere that can be searched for signs of life that may have been thriving before the start of the red giant stage.

Desert planets

A planet's atmospheric conditions influence its ability to retain heat, so that the location of the habitable zone is also specific to each type of planet: desert planets (also known as dry planets), with very little water, will have less water vapor in the atmosphere than Earth and so have a reduced greenhouse effect, meaning that a desert planet could maintain oases of water closer to its star than Earth is to the Sun. The lack of water also means there is less ice to reflect heat into space, so the outer edge of desert-planet habitable zones is further out.

Other considerations

Earth's hydrosphere. Water covers 71% of Earth's surface, with the global ocean accounting for 97.3% of the water distribution on Earth.
 

A planet cannot have a hydrosphere—a key ingredient for the formation of carbon-based life—unless there is a source for water within its stellar system. The origin of water on Earth is still not completely understood; possible sources include the result of impacts with icy bodies, outgassing, mineralization, leakage from hydrous minerals from the lithosphere, and photolysis. For an extrasolar system, an icy body from beyond the frost line could migrate into the habitable zone of its star, creating an ocean planet with seas hundreds of kilometers deep such as GJ 1214 br Kepler-22b may be.

Maintenance of liquid surface water also requires a sufficiently thick atmosphere. Possible origins of terrestrial atmospheres are currently theorised to outgassing, impact degassing and ingassing. Atmospheres are thought to be maintained through similar processes along with biogeochemical cycles and the mitigation of atmospheric escape. In a 2013 study led by Italian astronomer Giovanni Vladilo, it was shown that the size of the circumstellar habitable zone increased with greater atmospheric pressure. Below an atmospheric pressure of about 15 millibars, it was found that habitability could not be maintained because even a small shift in pressure or temperature could render water unable to form as a liquid.

Although traditional definitions of the habitable zone assume that carbon dioxide and water vapor are the most important greenhouse gases (as they are on the Earth), a study led by Ramses Ramirez and co-author Lisa Kaltenegger has shown that the size of the habitable zone is greatly increased if prodigious volcanic outgassing of hydrogen is also included along with the carbon dioxide and water vapor. The outer edge in the Solar System would extend out as far as 2.4 AU in that case. Similar increases in the size of the habitable zone were computed for other stellar systems. An earlier study by Ray Pierrehumbert and Eric Gaidos  had eliminated the CO2-H2O concept entirely, arguing that young planets could accrete many tens to hundreds of bars of hydrogen from the protoplanetary disc, providing enough of a greenhouse effect to extend the solar system outer edge to 10 AU. In this case, though, the hydrogen is not continuously replenished by volcanism and is lost within millions to tens-of-millions of years.

In the case of planets orbiting in the CHZs of red dwarf stars, the extremely close distances to the stars cause tidal locking, an important factor in habitability. For a tidally locked planet, the sidereal day is as long as the orbital period, causing one side to permanently face the host star and the other side to face away. In the past, such tidal locking was thought to cause extreme heat on the star-facing side and bitter cold on the opposite side, making many red dwarf planets uninhabitable; however, three-dimensional climate models in 2013 showed that the side of a red dwarf planet facing the host star could have extensive cloud cover, increasing its bond albedo and reducing significantly temperature differences between the two sides.

Planetary-mass natural satellites have the potential to be habitable as well. However, these bodies need to fulfill additional parameters, in particular being located within the circumplanetary habitable zones of their host planets. More specifically, moons need to be far enough from their host giant planets that they are not transformed by tidal heating into volcanic worlds like Io, but must remain within the Hill radius of the planet so that they are not pulled out of the orbit of their host planet. Red dwarfs that have masses less than 20% of that of the Sun cannot have habitable moons around giant planets, as the small size of the circumstellar habitable zone would put a habitable moon so close to the star that it would be stripped from its host planet. In such a system, a moon close enough to its host planet to maintain its orbit would have tidal heating so intense as to eliminate any prospects of habitability.

Artist's concept of a planet on an eccentric orbit that passes through the CHZ for only part of its orbit

A planetary object that orbits a star with high orbital eccentricity may spend only some of its year in the CHZ and experience a large variation in temperature and atmospheric pressure. This would result in dramatic seasonal phase shifts where liquid water may exist only intermittently. It is possible that subsurface habitats could be insulated from such changes and that extremophiles on or near the surface might survive through adaptions such as hibernation (cryptobiosis) and/or hyperthermostability. Tardigrades, for example, can survive in a dehydrated state temperatures between 0.150 K (−273 °C) and 424 K (151 °C). Life on a planetary object orbiting outside CHZ might hibernate on the cold side as the planet approaches the apastron where the planet is coolest and become active on approach to the periastron when the planet is sufficiently warm.

Extrasolar discoveries

A 2015 review concluded that the exoplanets Kepler-62f, Kepler-186f and Kepler-442b were likely the best candidates for being potentially habitable. These are at a distance of 990, 490 and 1,120 light-years away, respectively. Of these, Kepler-186f is closest in size to Earth with 1.2 times Earth's radius, and it is located towards the outer edge of the habitable zone around its red dwarf star. Among nearest terrestrial exoplanet candidates, Tau Ceti e is 11.9 light-years away. It is in the inner edge of its solar system's habitable zone, giving it an estimated average surface temperature of 68 °C (154 °F).

Studies that have attempted to estimate the number of terrestrial planets within the circumstellar habitable zone tend to reflect the availability of scientific data. A 2013 study by Ravi Kumar Kopparapu put ηe, the fraction of stars with planets in the CHZ, at 0.48, meaning that there may be roughly 95–180 billion habitable planets in the Milky Way. However, this is merely a statistical prediction; only a small fraction of these possible planets have yet been discovered.

Previous studies have been more conservative. In 2011, Seth Borenstein concluded that there are roughly 500 million habitable planets in the Milky Way. NASA's Jet Propulsion Laboratory 2011 study, based on observations from the Kepler mission, raised the number somewhat, estimating that about "1.4 to 2.7 percent" of all stars of spectral class F, G, and K are expected to have planets in their CHZs.

Early findings

The first discoveries of extrasolar planets in the CHZ occurred just a few years after the first extrasolar planets were discovered. However these early detections were all gas giant sized, and many in eccentric orbits. Despite this, studies indicate the possibility of large, Earth-like moons around these planets supporting liquid water. One of the first discoveries was 70 Virginis b, a gas giant initially nicknamed "Goldilocks" due to it being neither "too hot" nor "too cold". Later study revealed temperatures analogous to Venus, ruling out any potential for liquid water. 16 Cygni Bb, also discovered in 1996, has an extremely eccentric orbit that spends only part of its time in the CHZ, such an orbit would causes extreme seasonal effects. In spite of this, simulations have suggested that a sufficiently large companion could support surface water year-round.

Gliese 876 b, discovered in 1998, and Gliese 876 c, discovered in 2001, are both gas giants discovered in the habitable zone around Gliese 876 that may also have large moons. Another gas giant, Upsilon Andromedae d was discovered in 1999 orbiting Upsilon Andromidae's habitable zone.

Announced on April 4, 2001, HD 28185 b is a gas giant found to orbit entirely within its star's circumstellar habitable zone and has a low orbital eccentricity, comparable to that of Mars in the Solar System. Tidal interactions suggest it could harbor habitable Earth-mass satellites in orbit around it for many billions of years, though it is unclear whether such satellites could form in the first place.

HD 69830 d, a gas giant with 17 times the mass of Earth, was found in 2006 orbiting within the circumstellar habitable zone of HD 69830, 41 light years away from Earth. The following year, 55 Cancri f was discovered within the CHZ of its host star 55 Cancri A. Hypothetical satellites with sufficient mass and composition are thought to be able to support liquid water at their surfaces.

Though, in theory, such giant planets could possess moons, the technology did not exist to detect moons around them, and no extrasolar moons had been discovered. Planets within the zone with the potential for solid surfaces were therefore of much higher interest.

Habitable super-Earths

The habitable zone of Gliese 581 compared with the Solar System's habitable zone.

The 2007 discovery of Gliese 581 c, the first super-Earth in the circumstellar habitable zone, created significant interest in the system by the scientific community, although the planet was later found to have extreme surface conditions that may resemble Venus. Gliese 581 d, another planet in the same system and thought to be a better candidate for habitability, was also announced in 2007. Its existence was later disconfirmed in 2014, but only for short time. As of 2015, the planet has no newer disconfirmations. Gliese 581 g, yet another planet thought to have been discovered in the circumstellar habitable zone of the system, was considered to be more habitable than both Gliese 581 c and d. However, its existence was also disconfirmed in 2014, and astronomers are divided about its existence.

A diagram comparing size (artist's impression) and orbital position of planet Kepler-22b within Sun-like star Kepler 22's habitable zone and that of Earth in the Solar System

Discovered in August 2011, HD 85512 b was initially speculated to be habitable, but the new circumstellar habitable zone criteria devised by Kopparapu et al. in 2013 place the planet outside the circumstellar habitable zone.

Kepler-22 b, discovered in December 2011 by the Kepler space probe, is the first transiting exoplanet discovered around a Sun-like star. With a radius 2.4 times that of Earth, Kepler-22b has been predicted by some to be an ocean planet. Gliese 667 Cc, discovered in 2011 but announced in 2012, is a super-Earth orbiting in the circumstellar habitable zone of Gliese 667 C. It is one of the most Earth-like planet known.

Gliese 163 c, discovered in September 2012 in orbit around the red dwarf Gliese 163 is located 49 light years from Earth. The planet has 6.9 Earth masses and 1.8–2.4 Earth radii, and with its close orbit receives 40 percent more stellar radiation than Earth, leading to surface temperatures of about 60° C. HD 40307 g, a candidate planet tentatively discovered in November 2012, is in the circumstellar habitable zone of HD 40307. In December 2012, Tau Ceti e and Tau Ceti f were found in the circumstellar habitable zone of Tau Ceti, a Sun-like star 12 light years away. Although more massive than Earth, they are among the least massive planets found to date orbiting in the habitable zone; however, Tau Ceti f, like HD 85512 b, did not fit the new circumstellar habitable zone criteria established by the 2013 Kopparapu study. It is now considered as uninhabitable.

Near Earth-sized planets and Solar analogs

Comparison of the CHZ position of Earth-radius planet Kepler-186f and the Solar System (17 April 2014)
 
While larger than Kepler 186f, Kepler-452b's orbit and star are more similar to Earth's.

Recent discoveries have uncovered planets that are thought to be similar in size or mass to Earth. "Earth-sized" ranges are typically defined by mass. The lower range used in many definitions of the super-Earth class is 1.9 Earth masses; likewise, sub-Earths range up to the size of Venus (~0.815 Earth masses). An upper limit of 1.5 Earth radii is also considered, given that above 1.5 R the average planet density rapidly decreases with increasing radius, indicating these planets have a significant fraction of volatiles by volume overlying a rocky core. A genuinely Earth-like planet – an Earth analog or "Earth twin" – would need to meet many conditions beyond size and mass; such properties are not observable using current technology.

A solar analog (or "solar twin") is a star that resembles the Sun. To date, no solar twin with an exact match as that of the Sun has been found. However, some stars are nearly identical to the Sun and are considered solar twins. An exact solar twin would be a G2V star with a 5,778 K temperature, be 4.6 billion years old, with the correct metallicity and a 0.1% solar luminosity variation. Stars with an age of 4.6 billion years are at the most stable state. Proper metallicity and size are also critical to low luminosity variation.

Using data collected by NASA's Kepler Space observatory and the W. M. Keck Observatory, scientists have estimated that 22% of solar-type stars in the Milky Way galaxy have Earth-sized planets in their habitable zone.

On 7 January 2013, astronomers from the Kepler team announced the discovery of Kepler-69c (formerly KOI-172.02), an Earth-size exoplanet candidate (1.7 times the radius of Earth) orbiting Kepler-69, a star similar to our Sun, in the CHZ and expected to offer habitable conditions. The discovery of two planets orbiting in the habitable zone of Kepler-62, by the Kepler team was announced on April 19, 2013. The planets, named Kepler-62e and Kepler-62f, are likely solid planets with sizes 1.6 and 1.4 times the radius of Earth, respectively.

With a radius estimated at 1.1 Earth, Kepler-186f, discovery announced in April 2014, is the closest yet size to Earth of an exoplanet confirmed by the transit method though its mass remains unknown and its parent star is not a Solar analog.

Kapteyn b, discovered in June 2014 is a possible rocky world of about 4.8 Earth masses and about 1.5 earth radii was found orbiting the habitable zone of the red subdwarf Kapteyn's Star, 12.8 light-years away.

On 6 January 2015, NASA announced the 1000th confirmed exoplanet discovered by the Kepler Space Telescope. Three of the newly confirmed exoplanets were found to orbit within habitable zones of their related stars: two of the three, Kepler-438b and Kepler-442b, are near-Earth-size and likely rocky; the third, Kepler-440b, is a super-Earth. However, Kepler-438b is found to be a subject of powerful flares, so it is now considered uninhabitable. 16 January, K2-3d a planet of 1.5 Earth radii was found orbiting within the habitable zone of K2-3, receiving 1.4 times the intensity of visible light as Earth.

Kepler-452b, announced on 23 July 2015 is 50% bigger than Earth, likely rocky and takes approximately 385 Earth days to orbit the habitable zone of its G-class (solar analog) star Kepler-452.

The discovery of a system of three tidally-locked planets orbiting the habitable zone of an ultracool dwarf star, TRAPPIST-1, was announced in May 2016. The discovery is considered significant because it dramatically increases the possibility of smaller, cooler, more numerous and closer stars possessing habitable planets.

Two potentially habitable planets, discovered by the K2 mission in July 2016 orbiting around the M dwarf K2-72 around 227 light year from the Sun: K2-72c and K2-72e are both of similar size to Earth and receive similar amounts of stellar radiation.

Announced on the 20 April 2017, LHS 1140b is a super-dense super-Earth 39 light years away, 6.6 times Earth's mass and 1.4 times radius, its star 15% the mass of the Sun but with much less observable stellar flare activity than most M dwarfs. The planet is one of few observable by both transit and radial velocity that's mass is confirmed with an atmosphere may be studied.

Discovered by radial velocity in June 2017, with approximately three times the mass of Earth, Luyten b orbits within the habitable zone of Luyten's Star just 12.2 light-years away.

At 11 light-years away, a second closest planet, Ross 128 b, was announced in November 2017 following a decade's radial velocity study of relatively "quiet" red dwarf star Ross 128. At 1.35 Earth's mass is it roughly Earth-sized and likely rocky in composition.

Discovered in March 2018, K2-155d is about 1.64 time the radius of Earth, is likely rocky and orbits in the habitable zone of its red dwarf star 203 light years away.

One of the earliest discoveries by the Transiting Exoplanet Survey Satellite (TESS) announced July 31, 2019 is a Super Earth planet GJ 357 d orbiting the outer edge of a red dwarf 31 light years away.

K2-18b is an exoplanet 124 light-years away, orbiting in the habitable zone of the K2-18, a red dwarf. This planet is significant for water vapour found in its atmosphere; this was announced on September 17, 2019.

In September 2020, astronomers identified 24 superhabitable planet (planets better than Earth) contenders, from among more than 4000 confirmed exoplanets at present, based on astrophysical parameters, as well as the natural history of known life forms on the Earth.

Notable exoplanetsKepler Space Telescope
PIA19827-Kepler-SmallPlanets-HabitableZone-20150723.jpg
Confirmed small exoplanets in habitable zones.
(Kepler-62e, Kepler-62f, Kepler-186f, Kepler-296e, Kepler-296f, Kepler-438b, Kepler-440b, Kepler-442b)
(Kepler Space Telescope; January 6, 2015).

Habitability outside the CHZ

The discovery of hydrocarbon lakes on Saturn's moon Titan has begun to call into question the carbon chauvinism that underpins CHZ concept.

Liquid-water environments have been found to exist in the absence of atmospheric pressure, and at temperatures outside the CHZ temperature range. For example, Saturn's moons Titan and Enceladus and Jupiter's moons Europa and Ganymede, all of which are outside the habitable zone, may hold large volumes of liquid water in subsurface oceans.

Outside the CHZ, tidal heating and radioactive decay are two possible heat sources that could contribute to the existence of liquid water. Abbot and Switzer (2011) put forward the possibility that subsurface water could exist on rogue planets as a result of radioactive decay-based heating and insulation by a thick surface layer of ice.

With some theorising that life on Earth may have actually originated in stable, subsurface habitats, it has been suggested that it may be common for wet subsurface extraterrestrial habitats such as these to 'teem with life'. Indeed, on Earth itself living organisms may be found more than 6 kilometres below the surface.

Another possibility is that outside the CHZ organisms may use alternative biochemistries that do not require water at all. Astrobiologist Christopher McKay, has suggested that methane (CH
4
) may be a solvent conducive to the development of "cryolife", with the Sun's "methane habitable zone" being centered on 1,610,000,000 km (1.0×109 mi; 11 AU) from the star. This distance is coincident with the location of Titan, whose lakes and rain of methane make it an ideal location to find McKay's proposed cryolife. In addition, testing of a number of organisms has found some are capable of surviving in extra-CHZ conditions.

Significance for complex and intelligent life

The Rare Earth hypothesis argues that complex and intelligent life is uncommon and that the CHZ is one of many critical factors. According to Ward & Brownlee (2004) and others, not only is a CHZ orbit and surface water a primary requirement to sustain life but a requirement to support the secondary conditions required for multicellular life to emerge and evolve. The secondary habitability factors are both geological (the role of surface water in sustaining necessary plate tectonics) and biochemical (the role of radiant energy in supporting photosynthesis for necessary atmospheric oxygenation). But others, such as Ian Stewart and Jack Cohen in their 2002 book Evolving the Alien argue that complex intelligent life may arise outside the CHZ. Intelligent life outside the CHZ may have evolved in subsurface environments, from alternative biochemistries or even from nuclear reactions.

On Earth, several complex multicellular life forms (or eukaryotes) have been identified with the potential to survive conditions that might exist outside the conservative habitable zone. Geothermal energy sustains ancient circumvental ecosystems, supporting large complex life forms such as Riftia pachyptila. Similar environments may be found in oceans pressurised beneath solid crusts, such as those of Europa and Enceladus, outside of the habitable zone. Numerous microorganisms have been tested in simulated conditions and in low Earth orbit, including eukaryotes. An animal example is the Milnesium tardigradum, which can withstand extreme temperatures well above the boiling point of water and the cold vacuum of outer space. In addition, the lichens Rhizocarpon geographicum and Xanthoria elegans have been found to survive in an environment where the atmospheric pressure is far too low for surface liquid water and where the radiant energy is also much lower than that which most plants require to photosynthesize. The fungi Cryomyces antarcticus and Cryomyces minteri are also able to survive and reproduce in Mars-like conditions.

Species, including humans, known to possess animal cognition require large amounts of energy, and have adapted to specific conditions, including an abundance of atmospheric oxygen and the availability of large quantities of chemical energy synthesized from radiant energy. If humans are to colonize other planets, true Earth analogs in the CHZ are most likely to provide the closest natural habitat; this concept was the basis of Stephen H. Dole's 1964 study. With suitable temperature, gravity, atmospheric pressure and the presence of water, the necessity of spacesuits or space habitat analogues on the surface may be eliminated, and complex Earth life can thrive.

Planets in the CHZ remain of paramount interest to researchers looking for intelligent life elsewhere in the universe. The Drake equation, sometimes used to estimate the number of intelligent civilizations in our galaxy, contains the factor or parameter ne, which is the average number of planetary-mass objects orbiting within the CHZ of each star. A low value lends support to the Rare Earth hypothesis, which posits that intelligent life is a rarity in the Universe, whereas a high value provides evidence for the Copernican mediocrity principle, the view that habitability—and therefore life—is common throughout the Universe. A 1971 NASA report by Drake and Bernard Oliver proposed the "water hole", based on the spectral absorption lines of the hydrogen and hydroxyl components of water, as a good, obvious band for communication with extraterrestrial intelligence that has since been widely adopted by astronomers involved in the search for extraterrestrial intelligence. According to Jill Tarter, Margaret Turnbull and many others, CHZ candidates are the priority targets to narrow waterhole searches and the Allen Telescope Array now extends Project Phoenix to such candidates.

Because the CHZ is considered the most likely habitat for intelligent life, METI efforts have also been focused on systems likely to have planets there. The 2001 Teen Age Message and the 2003 Cosmic Call 2, for example, were sent to the 47 Ursae Majoris system, known to contain three Jupiter-mass planets and possibly with a terrestrial planet in the CHZ. The Teen Age Message was also directed to the 55 Cancri system, which has a gas giant in its CHZ. A Message from Earth in 2008, and Hello From Earth in 2009, were directed to the Gliese 581 system, containing three planets in the CHZ—Gliese 581 c, d, and the unconfirmed g.

James Webb Space Telescope

From Wikipedia, the free encyclopedia

James Webb Space Telescope
JWST spacecraft model 2.png
A rendering of the James Webb Space Telescope with its components fully deployed
NamesNext Generation Space Telescope (NGST)

Mission typeAstronomy
OperatorNASA / ESA / STScI
Websitewww.jwst.nasa.gov
Mission duration10 years (planned)

Spacecraft properties
ManufacturerNorthrop Grumman
Ball Aerospace & Technologies
Launch mass6,500 kg (14,300 lb) 
Dimensions20.197 m × 14.162 m (66.26 ft × 46.46 ft), sunshield
Power2 kW

Start of mission
Launch date18 December 2021 
RocketAriane 5 ECA
Launch siteCentre Spatial Guyanais, ELA-3
ContractorArianespace

Orbital parameters
Reference systemSun–Earth L2 orbit
RegimeHalo orbit
Perigee altitude374,000 km (232,000 mi) 
Apogee altitude1,500,000 km (930,000 mi)
Period6 months

Main
TypeKorsch telescope
Diameter6.5 m (21 ft)
Focal length131.4 m (431 ft)
Collecting area25.4 m2 (273 sq ft) 
Wavelengths0.6–28.3 μm (orange to mid-infrared)

Transponders
Band
  • S-band, telemetry, tracking, and control
  • Ka-band, data acquisition
Bandwidth
  • S-band up: 16 kbit/s
  • S-band down: 40 kbit/s
  • Ka-band down: up to 28 Mbit/s
JWST logo
James Webb Space Telescope insignia  

The James Webb Space Telescope (JWST or "Webb") is a joint NASAESACSA space telescope that is planned to succeed the Hubble Space Telescope as NASA's flagship astrophysics mission. The JWST will provide improved infrared resolution and sensitivity over Hubble, and will enable a broad range of investigations across the fields of astronomy and cosmology, including observing some of the most distant events and objects in the universe, such as the formation of the first galaxies, and atmospheric characterization of potentially habitable exoplanets.

The primary mirror of the JWST, the Optical Telescope Element, consists of 18 hexagonal mirror segments made of gold-plated beryllium which combine to create a 6.5 m (21 ft) diameter mirror—considerably larger than Hubble's 2.4 m (7 ft 10 in) mirror. Unlike the Hubble telescope, which observes in the near ultraviolet, visible, and near infrared (0.1 to 1 μm) spectra, the JWST will observe in a lower frequency range, from long-wavelength visible light through mid-infrared (0.6 to 28.3 μm), which will allow it to observe high redshift objects that are too old and too distant for Hubble to observe. The telescope must be kept very cold in order to observe in the infrared without interference, so it will be deployed in space near the Sun–Earth L2 Lagrange point, and a large sunshield made of silicon- and aluminium-coated Kapton will keep its mirror and instruments below 50 K (−223 °C; −370 °F).

The JWST is being developed by NASA, the European Space Agency and the Canadian Space Agency. The NASA Goddard Space Flight Center is managing the development effort, and the Space Telescope Science Institute will operate Webb after launch. It is named for James E. Webb, who was the administrator of NASA from 1961 to 1968 and played an integral role in the Apollo program. The prime contractor is Northrop Grumman.

Development began in 1996 for a launch that was initially planned for 2007 and a 500-million-dollar budget, but the project has had numerous delays and cost overruns, and underwent a major redesign in 2005. The JWST's construction was completed in late 2016, after which its extensive testing phase began. In March 2018, NASA further delayed the launch after the telescope's sunshield ripped during a practice deployment. Launch was delayed again in June 2018 following recommendations from an independent review board. Work on integration and testing of the telescope was suspended in March 2020 due to the COVID-19 pandemic, adding further delays. Following work resumption, NASA announced that the launch date had been delayed to 31 October 2021. Problems with the Ariane 5 launch vehicle have now pushed the launch date to 18 December 2021. The estimated total cost of developing the telescope had in 2020 increased to over US$10 billion, but in 2021 has fallen back below US$10 billion.

Features

Launch configuration of the JWST in an Ariane 5

The JWST has an expected mass about half of Hubble Space Telescope's, but its primary mirror, a 6.5 meter diameter gold-coated beryllium reflector will have a collecting area over six times as large, 25.4 m2 (273 sq ft), using 18 hexagonal mirrors with 0.9 m2 (9.7 sq ft) obscuration for the secondary support struts.

The JWST is oriented toward near-infrared astronomy, but can also see orange and red visible light, as well as the mid-infrared region, depending on the instrument. The design emphasizes the near to mid-infrared for three main reasons:

  • high-redshift objects have their visible emissions shifted into the infrared
  • cold objects such as debris disks and planets emit most strongly in the infrared
  • this band is difficult to study from the ground or by existing space telescopes such as Hubble

Ground-based telescopes must look through Earth's atmosphere, which is opaque in many infrared bands (see figure of atmospheric absorption). Even where the atmosphere is transparent, many of the target chemical compounds, such as water, carbon dioxide, and methane, also exist in the Earth's atmosphere, vastly complicating analysis. Existing space telescopes such as Hubble cannot study these bands since their mirrors are insufficiently cool (the Hubble mirror is maintained at about 15 °C (288 K)) thus the telescope itself radiates strongly in the infrared bands.

The JWST will operate near the Earth–Sun L2 (Lagrange point), approximately 1,500,000 km (930,000 mi) beyond Earth's orbit. By way of comparison, Hubble orbits 550 km (340 mi) above Earth's surface, and the Moon is roughly 400,000 km (250,000 mi) from Earth. This distance made post-launch repair or upgrade of the JWST hardware virtually impossible with the spaceships available during the telescope design and fabrication stage. Objects near this Lagrange point can orbit the Sun in synchrony with the Earth, allowing the telescope to remain at a roughly constant distance and use a single sunshield to block heat and light from the Sun and Earth. This arrangement will keep the temperature of the spacecraft below 50 K (−223 °C; −370 °F), necessary for infrared observations.

Sunshield protection

Test unit of the sunshield stacked and expanded at the Northrop Grumman facility in California, 2014

To make observations in the infrared spectrum, the JWST must be kept under 50 K (−223.2 °C; −369.7 °F); otherwise, infrared radiation from the telescope itself would overwhelm its instruments. It therefore uses a large sunshield to block light and heat from the Sun, Earth, and Moon, and its position near the Earth–Sun L2 point keeps all three bodies on the same side of the spacecraft at all times. Its halo orbit around the L2 point avoids the shadow of the Earth and Moon, maintaining a constant environment for the sunshield and solar arrays. The shielding maintains a stable temperature for the structures on the dark side, which is critical to maintaining precise alignment of the primary mirror segments.

The five-layer sunshield, each layer as thin as a human hair, is constructed from Kapton E, a commercially available polyimide film from DuPont, with membranes specially coated with aluminum on both sides and doped silicon on the Sun-facing side of the two hottest layers to reflect the Sun's heat back into space. Accidental tears of the delicate film structure during testing in 2018 were among the factors delaying the project.

The sunshield is designed to be folded twelve times so that it will fit within the Ariane 5 rocket's (4.57 × 16.19 m) payload fairing. Once deployed at the L2 point, it will unfold to 14.162 × 21.197 m. The sunshield was hand-assembled at ManTech (NeXolve) in Huntsville, Alabama, before it was delivered to Northrop Grumman in Redondo Beach, California, for testing.

Optics

Main mirror assembled at Goddard Space Flight Center, May 2016.

JWST's primary mirror is a 6.5-meter-diameter gold-coated beryllium reflector with a collecting area of 25.4 m2. If it were built as a single large mirror, this would have been too large for existing launch vehicles. The mirror is therefore composed of 18 hexagonal segments which will unfold after the telescope is launched. Image plane wavefront sensing through phase retrieval will be used to position the mirror segments in the correct location using very precise micro-motors. Subsequent to this initial configuration, they will only need occasional updates every few days to retain optimal focus. This is unlike terrestrial telescopes, for example the Keck telescopes, which continually adjust their mirror segments using active optics to overcome the effects of gravitational and wind loading. The Webb telescope will use 126 small motors to occasionally adjust the optics as there is a lack of environmental disturbances of a telescope in space.

JWST's optical design is a three-mirror anastigmat, which makes use of curved secondary and tertiary mirrors to deliver images that are free of optical aberrations over a wide field. In addition, there is a fast steering mirror which can adjust its position many times per second to provide image stabilization.

Ball Aerospace & Technologies is the principal optical subcontractor for the JWST project, led by prime contractor Northrop Grumman Aerospace Systems, under a contract from the NASA Goddard Space Flight Center, in Greenbelt, Maryland. Eighteen primary mirror segments, secondary, tertiary and fine steering mirrors, plus flight spares have been fabricated and polished by Ball Aerospace & Technologies based on beryllium segment blanks manufactured by several companies including Axsys, Brush Wellman, and Tinsley Laboratories.

The final segment of the primary mirror was installed on 3 February 2016, and the secondary mirror was installed on 3 March 2016.

Scientific instruments

NIRCam model
 
NIRSpec model
 
MIRI 1:3 scale model

The Integrated Science Instrument Module (ISIM) is a framework that provides electrical power, computing resources, cooling capability as well as structural stability to the Webb telescope. It is made with bonded graphite-epoxy composite attached to the underside of Webb's telescope structure. The ISIM holds the four science instruments and a guide camera.

  • NIRCam (Near InfraRed Camera) is an infrared imager which will have a spectral coverage ranging from the edge of the visible (0.6 micrometers) through the near infrared (5 micrometers). NIRCam will also serve as the observatory's wavefront sensor, which is required for wavefront sensing and control activities. NIRCam was built by a team led by the University of Arizona, with principal investigator Marcia J. Rieke. The industrial partner is Lockheed-Martin's Advanced Technology Center located in Palo Alto, California.
  • NIRSpec (Near InfraRed Spectrograph) will also perform spectroscopy over the same wavelength range. It was built by the European Space Agency at ESTEC in Noordwijk, Netherlands. The leading development team includes members from Airbus Defence and Space, Ottobrunn and Friedrichshafen, Germany, and the Goddard Space Flight Center; with Pierre Ferruit (École normale supérieure de Lyon) as NIRSpec project scientist. The NIRSpec design provides three observing modes: a low-resolution mode using a prism, an R~1000 multi-object mode, and an R~2700 integral field unit or long-slit spectroscopy mode. Switching of the modes is done by operating a wavelength preselection mechanism called the Filter Wheel Assembly, and selecting a corresponding dispersive element (prism or grating) using the Grating Wheel Assembly mechanism. Both mechanisms are based on the successful ISOPHOT wheel mechanisms of the Infrared Space Observatory. The multi-object mode relies on a complex micro-shutter mechanism to allow for simultaneous observations of hundreds of individual objects anywhere in NIRSpec's field of view. The mechanisms and their optical elements were designed, integrated and tested by Carl Zeiss Optronics GmbH of Oberkochen, Germany, under contract from Astrium.
  • MIRI (Mid-InfraRed Instrument) will measure the mid-to-long-infrared wavelength range from 5 to 27 micrometers. It contains both a mid-infrared camera and an imaging spectrometer. MIRI was developed as a collaboration between NASA and a consortium of European countries, and is led by George Rieke (University of Arizona) and Gillian Wright (UK Astronomy Technology Centre, Edinburgh, Scotland, part of the Science and Technology Facilities Council (STFC)). MIRI features similar wheel mechanisms as NIRSpec which are also developed and built by Carl Zeiss Optronics GmbH under contract from the Max Planck Institute for Astronomy, Heidelberg, Germany. The completed Optical Bench Assembly of MIRI was delivered to Goddard Space Flight Center in mid-2012 for eventual integration into the ISIM. The temperature of the MIRI must not exceed 6 kelvins (K): a helium gas mechanical cooler sited on the warm side of the environmental shield provides this cooling.
  • FGS/NIRISS (Fine Guidance Sensor and Near Infrared Imager and Slitless Spectrograph), led by the Canadian Space Agency under project scientist John Hutchings (Herzberg Institute of Astrophysics, National Research Council (Canada)), is used to stabilize the line-of-sight of the observatory during science observations. Measurements by the FGS are used both to control the overall orientation of the spacecraft and to drive the fine steering mirror for image stabilization. The Canadian Space Agency is also providing a Near Infrared Imager and Slitless Spectrograph (NIRISS) module for astronomical imaging and spectroscopy in the 0.8 to 5 micrometer wavelength range, led by principal investigator René Doyon at the Université de Montréal. Because the NIRISS is physically mounted together with the FGS, they are often referred to as a single unit; however, they serve entirely different purposes, with one being a scientific instrument and the other being a part of the observatory's support infrastructure.

NIRCam and MIRI feature starlight-blocking coronagraphs for observation of faint targets such as extrasolar planets and circumstellar disks very close to bright stars.

The infrared detectors for the NIRCam, NIRSpec, FGS, and NIRISS modules are being provided by Teledyne Imaging Sensors (formerly Rockwell Scientific Company). The James Webb Space Telescope (JWST) Integrated Science Instrument Module (ISIM) and Command and Data Handling (ICDH) engineering team uses SpaceWire to send data between the science instruments and the data-handling equipment.

Spacecraft Bus

Diagram of the Spacecraft Bus. The solar panel is in green and the light purple panels are radiators.

The Spacecraft Bus is the primary support component of the James Webb Space Telescope, that hosts a multitude of computing, communication, propulsion, and structural parts, bringing the different parts of the telescope together. Along with the sunshield, it forms the spacecraft element of the space telescope. The other two major elements of the JWST are the Integrated Science Instrument Module (ISIM) and the Optical Telescope Element (OTE). Region 3 of ISIM is also inside the Spacecraft Bus; region 3 includes ISIM Command and Data Handling subsystem and the MIRI cryocooler.

The Spacecraft Bus is connected to Optical Telescope Element via the Deployable Tower Assembly, which also connects to the sunshield.

The structure of the Spacecraft Bus weighs 350 kg (770 lb), and must support the 6.5-ton space telescope. It is made primarily of graphite composite material. It was assembled in California, assembly was completed in 2015, and then it had to be integrated with the rest of the space telescope leading up to its planned 2021 launch. The bus can provide pointing precision of one arcsecond, and isolates vibration down to two milliarcseconds.

The Spacecraft Bus is on the Sun-facing "warm" side and operates at a temperature of about 300 K. Everything on the Sun facing side must be able to handle the thermal conditions of JWST's halo orbit, which has one side in continuous sunlight and the other in the shade of the spacecraft sunshield.

Another important aspect of the Spacecraft Bus is the central computing, memory storage, and communications equipment. The processor and software direct data to and from the instruments, to the solid-state memory core, and to the radio system which can send data back to Earth and receive commands. The computer also controls the pointing and moment of the spacecraft, taking in sensor data from the gyroscopes and star tracker, and sending the necessary commands to the reaction wheels or thrusters.

Comparison with other telescopes

Comparison with Hubble primary mirror
 
Calisto architecture for SAFIR would be a successor to Spitzer, requiring greater passive cooling than JWST (5 Kelvin).

The desire for a large infrared space telescope traces back decades. In the United States, the Shuttle Infrared Telescope Facility (SIRTF) was planned while the Space Shuttle was in development, and the potential for infrared astronomy was acknowledged at that time. Compared to ground telescopes, space observatories were free from atmospheric absorption of infrared light. Space observatories opened up a whole "new sky" for astronomers.

The tenuous atmosphere above the 400 km nominal flight altitude has no measurable absorption so that detectors operating at all wavelengths from 5 μm to 1000 μm can achieve high radiometric sensitivity.

— S. G. McCarthy and G. W. Autio, 1978.

However, infrared telescopes have a disadvantage: they need to stay extremely cold, and the longer the wavelength of infrared, the colder they need to be. If not, the background heat of the device itself overwhelms the detectors, making it effectively blind. This can be overcome by careful spacecraft design, in particular by placing the telescope in a dewar with an extremely cold substance, such as liquid helium. This has meant most infrared telescopes have a lifespan limited by their coolant, as short as a few months, maybe a few years at most.

In some cases, it has been possible to maintain a temperature low enough through the design of the spacecraft to enable near-infrared observations without a supply of coolant, such as the extended missions of Spitzer Space Telescope and Wide-field Infrared Survey Explorer. Another example is Hubble's Near Infrared Camera and Multi-Object Spectrometer (NICMOS) instrument, which started out using a block of nitrogen ice that depleted after a couple of years, but was then converted to a cryocooler that worked continuously. The James Webb Space Telescope is designed to cool itself without a dewar, using a combination of sunshields and radiators, with the mid-infrared instrument using an additional cryocooler.

James Webb Space Telescope Official Poster
Selected space telescopes and instruments
Name Year Wavelength
(μm)
Aperture
(m)
Cooling
IRT 1985 1.7–118 0.15 Helium
Infrared Space Observatory (ISO) 1995 2.5–240 0.60 Helium
Hubble Space Telescope Imaging Spectrograph (STIS) 1997 0.115–1.03 2.4 Passive
Hubble Near Infrared Camera and Multi-Object Spectrometer (NICMOS) 1997 0.8–2.4 2.4 Nitrogen, later cryocooler
Spitzer Space Telescope 2003 3–180 0.85 Helium
Hubble Wide Field Camera 3 (WFC3) 2009 0.2–1.7 2.4 Passive, and thermo-electric 
Herschel Space Observatory 2009 55–672 3.5 Helium
JWST 2021 0.6–28.5 6.5 Passive, and cryocooler (MIRI)

The James Webb telescope's delays and cost increases can be compared to the Hubble Space Telescope. When Hubble formally started in 1972, it had an estimated development cost of US$300 million (or about US$1 billion in 2006 constant dollars), but by the time it was sent into orbit in 1990, the cost was about four times that. In addition, new instruments and servicing missions increased the cost to at least US$9 billion by 2006.

In contrast to other proposed observatories, most of which have already been canceled or put on hold, including Terrestrial Planet Finder (2011), Space Interferometry Mission (2010), International X-ray Observatory (2011), MAXIM (Microarcsecond X-ray Imaging Mission), SAFIR (Single Aperture Far-Infrared Observatory), SUVO (Space Ultraviolet-Visible Observatory), and the SPECS (Submillimeter Probe of the Evolution of Cosmic Structure), the JWST is the last big NASA astrophysics mission of its generation to be built.

History

Background

Selected events
Year Events
1996 NGST started.
2002 named JWST, 8 to 6 m
2004 NEXUS cancelled 
2007 ESA/NASA MOU
2010 MCDR passed
2011 Proposed cancel
2021 Planned launch

Early development work for a Hubble successor between 1989 and 1994 led to the Hi-Z telescope concept, a fully baffled 4-meter aperture infrared telescope that would recede to an orbit at 3 AU. This distant orbit would have benefited from reduced light noise from zodiacal dust. Other early plans called for a NEXUS precursor telescope mission.

The JWST originated in 1996 as the Next Generation Space Telescope (NGST). In 2002, it was renamed after NASA's second administrator (1961–1968) James E. Webb (1906–1992), noted for playing a key role in the Apollo program and establishing scientific research as a core NASA activity. The JWST is a project of NASA, with international collaboration from the European Space Agency (ESA) and the Canadian Space Agency (CSA).

In the "faster, better, cheaper" era in the mid-1990s, NASA leaders pushed for a low-cost space telescope. The result was the NGST concept, with an 8-meter aperture and located at L2, roughly estimated to cost US$500 million. In 1997, NASA worked with the Goddard Space Flight Center, Ball Aerospace & Technologies, and TRW to conduct technical requirement and cost studies, and in 1999 selected Lockheed Martin and TRW for preliminary concept studies. Launch was at that time planned for 2007, but the launch date has subsequently been pushed back many times (see table further down).

In 2003, NASA awarded the US$824.8 million prime contract for the NGST, now renamed the James Webb Space Telescope, to TRW. The design called for a descoped 6.1 m (20 ft) primary mirror and a launch date of 2010. Later that year, TRW was acquired by Northrop Grumman in a hostile bid and became Northrop Grumman Space Technology.

Development

NASA's Goddard Space Flight Center in Greenbelt, Maryland, is leading the management of the observatory project. The project scientist for the James Webb Space Telescope is John C. Mather. Northrop Grumman Aerospace Systems serves as the primary contractor for the development and integration of the observatory. They are responsible for developing and building the spacecraft element, which includes both the spacecraft bus and sunshield. Ball Aerospace & Technologies has been subcontracted to develop and build the Optical Telescope Element (OTE). Northrop Grumman's Astro Aerospace business unit has been contracted to build the Deployable Tower Assembly (DTA) which connects the OTE to the spacecraft bus and the Mid Boom Assembly (MBA) which helps to deploy the large sunshields on orbit. Goddard Space Flight Center is also responsible for providing the Integrated Science Instrument Module (ISIM).

Cost growth revealed in spring 2005 led to an August 2005 re-planning. The primary technical outcomes of the re-planning were significant changes in the integration and test plans, a 22-month launch delay (from 2011 to 2013), and elimination of system-level testing for observatory modes at wavelength shorter than 1.7 micrometers. Other major features of the observatory were unchanged. Following the re-planning, the project was independently reviewed in April 2006. The review concluded the project was technically sound, but that funding phasing at NASA needed to be changed. NASA re-phased its JWST budgets accordingly.

In the 2005 re-plan, the life-cycle cost of the project was estimated at about US$4.5 billion. This comprised approximately US$3.5 billion for design, development, launch and commissioning, and approximately US$1.0 billion for ten years of operations. ESA is contributing about €300 million, including the launch. The Canadian Space Agency pledged $39 million Canadian in 2007 and in 2012 delivered its contributions in equipment to point the telescope and detect atmospheric conditions on distant planets.

Construction

A JWST mirror segment, 2010
 
Mirror segments undergoing cryogenic tests at the X-ray & Cryogenic Facility at Marshall Space Flight Center
 
The assembled telescope following environmental testing

In January 2007, nine of the ten technology development items in the project successfully passed a Non-Advocate Review. These technologies were deemed sufficiently mature to retire significant risks in the project. The remaining technology development item (the MIRI cryocooler) completed its technology maturation milestone in April 2007. This technology review represented the beginning step in the process that ultimately moved the project into its detailed design phase (Phase C). By May 2007, costs were still on target. In March 2008, the project successfully completed its Preliminary Design Review (PDR). In April 2008, the project passed the Non-Advocate Review. Other passed reviews include the Integrated Science Instrument Module review in March 2009, the Optical Telescope Element review completed in October 2009, and the Sunshield review completed in January 2010.

In April 2010, the telescope passed the technical portion of its Mission Critical Design Review (MCDR). Passing the MCDR signified the integrated observatory can meet all science and engineering requirements for its mission. The MCDR encompassed all previous design reviews. The project schedule underwent review during the months following the MCDR, in a process called the Independent Comprehensive Review Panel, which led to a re-plan of the mission aiming for a 2015 launch, but as late as 2018. By 2010, cost over-runs were impacting other projects, though JWST itself remained on schedule.

By 2011, the JWST project was in the final design and fabrication phase (Phase C). As is typical for a complex design that cannot be changed once launched, there are detailed reviews of every portion of design, construction, and proposed operation. New technological frontiers have been pioneered by the project, and it has passed its design reviews. In the 1990s it was unknown if a telescope so large and low mass was possible.

Assembly of the hexagonal segments of the primary mirror, which was done via robotic arm, began in November 2015 and was completed in February 2016. Final construction of the Webb telescope was completed in November 2016, after which extensive testing procedures began. In March 2018, NASA delayed the JWST's launch an additional year to May 2020 after the telescope's sunshield ripped during a practice deployment and the sunshield's cables did not sufficiently tighten. In June 2018, NASA delayed the JWST's launch an additional 10 months to March 2021, based on the assessment of the independent review board convened after the failed March 2018 test deployment. The review also found JWST had 344 potential single-point failures, any of which could doom the project. In August 2019, the mechanical integration of the telescope was completed, something that was scheduled to be done 12 years before in 2007. Following this, engineers now are working to add a five layer sunshield in place to prevent damage to telescope parts from infrared rays of the Sun.

Cost and schedule issues

The JWST has a history of major cost overruns and delays which have resulted in part from outside factors such as delays in deciding on a launch vehicle and adding extra funding for contingencies. By 2006, US$1 billion had been spent on developing JWST, with the budget at about US$4.5 billion at that time. A 2006 article in the journal Nature noted a study in 1984 by the Space Science Board, which estimated that a next generation infrared observatory would cost US$4 billion (about US$7 billion in 2006 dollars). By October 2019, the estimated cost of the project had reached US$10 billion for launch in 2021.

Then-planned launch and total budget
Year Planned
launch
Budget plan
(billion USD)
1997 2007 0.5
1998 2007 1
1999 2007 to 2008 1
2000 2009 1.8
2002 2010 2.5
2003 2011 2.5
2005 2013 3
2006 2014 4.5
2008, Preliminary Design Review
2008 2014 5.1
2010, Critical Design Review
2010 2015 to 2016 6.5
2011 2018 8.7
2013 2018 8.8
2017 2019 8.8
2018 2020 ≥8.8
2019 March 2021 9.66
2020 October 2021 ≥10
2021 December 2021  9.7

The telescope was originally estimated to cost US$1.6 billion, but the cost estimate grew throughout the early development and had reached about US$5 billion by the time the mission was formally confirmed for construction start in 2008. In summer 2010, the mission passed its Critical Design Review (CDR) with excellent grades on all technical matters, but schedule and cost slips at that time prompted Maryland U.S. Senator Barbara Mikulski to call for an independent review of the project. The Independent Comprehensive Review Panel (ICRP) chaired by J. Casani (JPL) found that the earliest possible launch date was in late 2015 at an extra cost of US$1.5 billion (for a total of US$6.5 billion). They also pointed out that this would have required extra funding in FY2011 and FY2012 and that any later launch date would lead to a higher total cost.

On 6 July 2011, the United States House of Representatives' appropriations committee on Commerce, Justice, and Science moved to cancel the James Webb project by proposing an FY2012 budget that removed US$1.9 billion from NASA's overall budget, of which roughly one quarter was for JWST. US$3 billion had been spent and 75% of its hardware was in production. This budget proposal was approved by subcommittee vote the following day. The committee charged that the project was "billions of dollars over budget and plagued by poor management". In response, the American Astronomical Society issued a statement in support of JWST, as did Maryland US Senator Barbara Mikulski. A number of editorials supporting JWST appeared in the international press during 2011 as well. In November 2011, Congress reversed plans to cancel the JWST and instead capped additional funding to complete the project at US$8 billion.

Some scientists have expressed concerns about growing costs and schedule delays for the Webb telescope, which competes for scant astronomy budgets and thus threatens funding for other space science programs. Because the runaway budget diverted funding from other research, a 2010 Nature article described the JWST as "the telescope that ate astronomy".

A review of NASA budget records and status reports noted that the JWST is plagued by many of the same problems that have affected other major NASA projects. Repairs and additional testing included underestimates of the telescope's cost that failed to budget for expected technical glitches and missed budget projections, thus extending the schedule and increasing costs further.

One reason for the early cost growth is that it is difficult to forecast the cost of development, and in general budget predictability improved when initial development milestones were achieved. By the mid-2010s, the U.S. contribution was still expected to cost US$8.8 billion. In 2007, the expected ESA contribution was about €350 million. With the U.S. and international funding combined, the overall cost not including extended operations is projected to be over US$10 billion when completed. On 27 March 2018, NASA officials announced that JWST's launch would be pushed back to May 2020 or later, and admitted that the project's costs might exceed the US$8.8 billion price tag. In the 27 March 2018 press release announcing the latest delay, NASA said that it will release a revised cost estimate after a new launch window is determined in cooperation with the European Space Agency (ESA). If this cost estimate exceeds the US$8 billion cap Congress put in place in 2011, as is considered unavoidable, NASA will have to have the mission re-authorized by the legislature.

In February 2019, despite expressing criticism over cost growth, Congress increased the mission's cost cap by US$800 million. In October 2019, the total cost estimate for the project reached US$10 billion.

Partnership

NASA, ESA and CSA have collaborated on the telescope since 1996. ESA's participation in construction and launch was approved by its members in 2003 and an agreement was signed between ESA and NASA in 2007. In exchange for full partnership, representation and access to the observatory for its astronomers, ESA is providing the NIRSpec instrument, the Optical Bench Assembly of the MIRI instrument, an Ariane 5 ECA launcher, and manpower to support operations. The CSA will provide the Fine Guidance Sensor and the Near-Infrared Imager Slitless Spectrograph plus manpower to support operations.

Participating countries

Public displays and outreach

Early full-scale model on display at NASA Goddard Space Flight Center (2005)

A large telescope model has been on display at various places since 2005: in the United States at Seattle, Washington; Colorado Springs, Colorado; Greenbelt, Maryland; Rochester, New York; New York City; and Orlando, Florida; and elsewhere at Paris, France; Dublin, Ireland; Montreal, Canada; Hatfield, United Kingdom; and Munich, Germany. The model was built by the main contractor, Northrop Grumman Aerospace Systems.

In May 2007, a full-scale model of the telescope was assembled for display at the Smithsonian Institution's National Air and Space Museum on the National Mall, Washington, D.C. The model was intended to give the viewing public a better understanding of the size, scale and complexity of the satellite, as well as pique the interest of viewers in science and astronomy in general. The model is significantly different from the telescope, as the model must withstand gravity and weather, so is constructed mainly of Aluminium and steel measuring approximately 24 m × 12 m × 12 m (79 ft × 39 ft × 39 ft) and weighs 5,500 kg (12,100 lb).

The model was on display in New York City's Battery Park during the 2010 World Science Festival, where it served as the backdrop for a panel discussion featuring Nobel Prize laureate John C. Mather, astronaut John M. Grunsfeld and astronomer Heidi Hammel. In March 2013, the model was on display in Austin for SXSW 2013. Amber Straughn, the deputy project scientist for science communications, has been a spokesperson for the project at many SXSW events from 2013 on in addition to Comic Con, TEDx, and other public venues.

Mission

The JWST has four key goals:

These goals can be accomplished more effectively by observation in near-infrared light rather than light in the visible part of the spectrum. For this reason the JWST's instruments will not measure visible or ultraviolet light like the Hubble Telescope, but will have a much greater capacity to perform infrared astronomy. The JWST will be sensitive to a range of wavelengths from 0.6 (orange light) to 28 micrometers (deep infrared radiation at about 100 K (−173 °C; −280 °F)).

JWST may be used to gather information on the dimming light of star KIC 8462852, which was discovered in 2015, and has some abnormal light-curve properties.

Launch and mission length

As of September 2021, the launch is scheduled for 18 December 2021 on an Ariane 5 launch vehicle from French Guiana. The observatory attaches to the Ariane 5 launch vehicle via a launch vehicle adapter ring which could be used by a future spacecraft to grapple the observatory to attempt to fix gross deployment problems. However, the telescope itself is not serviceable, and astronauts would not be able to perform tasks such as swapping instruments, as with the Hubble Telescope. Its nominal mission time is five years, with a goal of ten years. JWST needs to use propellant to maintain its halo orbit around L2, which provides an upper limit to its designed lifetime, and it is being designed to carry enough for ten years. The planned five year science mission begins after a 6-month commissioning phase. An L2 orbit is unstable, so it requires orbital station-keeping, or the telescope will drift away from this orbital configuration.

Orbit

JWST will not be exactly at the L2 point, but circle around it in a halo orbit.
 
Two alternate Hubble Space Telescope views of the Carina Nebula, comparing ultraviolet and visible (top) and infrared (bottom) astronomy. Far more stars are visible in the latter.

The JWST will be located near the second Lagrange point (L2) of the Earth-Sun system, which is 1,500,000 km (930,000 mi) from Earth, directly opposite to the Sun. Normally an object circling the Sun farther out than Earth would take longer than one year to complete its orbit, but near the L2 point the combined gravitational pull of the Earth and the Sun allow a spacecraft to orbit the Sun in the same time it takes the Earth. The telescope will circle about the L2 point in a halo orbit, which will be inclined with respect to the ecliptic, have a radius of approximately 800,000 km (500,000 mi), and take about half a year to complete. Since L2 is just an equilibrium point with no gravitational pull, a halo orbit is not an orbit in the usual sense: the spacecraft is actually in orbit around the Sun, and the halo orbit can be thought of as controlled drifting to remain in the vicinity of the L2 point. This requires some station-keeping: around 2–4 m/s per year from the total budget of 150 m/s. Two sets of thrusters constitute the observatory's propulsion system.

Infrared astronomy

Infrared observations can see objects hidden in visible light, such as the HUDF-JD2 shown here.

JWST is the formal successor to the Hubble Space Telescope (HST), and since its primary emphasis is on infrared astronomy, it is also a successor to the Spitzer Space Telescope. JWST will far surpass both those telescopes, being able to see many more and much older stars and galaxies. Observing in the infrared spectrum is a key technique for achieving this, because of cosmological redshift, and because it better penetrates obscuring dust and gas. This allows observation of dimmer, cooler objects. Since water vapor and carbon dioxide in the Earth's atmosphere strongly absorbs most infrared, ground-based infrared astronomy is limited to narrow wavelength ranges where the atmosphere absorbs less strongly. Additionally, the atmosphere itself radiates in the infrared spectrum, often overwhelming light from the object being observed. This makes a space telescope preferable for infrared observation.

The more distant an object is, the younger it appears: its light has taken longer to reach human observers. Because the universe is expanding, as the light travels it becomes red-shifted, and objects at extreme distances are therefore easier to see if viewed in the infrared. JWST's infrared capabilities are expected to let it see back in time to the first galaxies forming just a few hundred million years after the Big Bang.

Infrared radiation can pass more freely through regions of cosmic dust that scatter visible light. Observations in infrared allow the study of objects and regions of space which would be obscured by gas and dust in the visible spectrum, such as the molecular clouds where stars are born, the circumstellar disks that give rise to planets, and the cores of active galaxies.

Relatively cool objects (temperatures less than several thousand degrees) emit their radiation primarily in the infrared, as described by Planck's law. As a result, most objects that are cooler than stars are better studied in the infrared. This includes the clouds of the interstellar medium, brown dwarfs, planets both in our own and other solar systems, comets, and Kuiper belt objects that will be observed with the Mid-Infrared Instrument (MIRI).

Some of the missions in infrared astronomy that impacted JWST development were Spitzer and the Wilkinson Microwave Anisotropy Probe (WMAP) probe. Spitzer showed the importance of mid-infrared, which is helpful for tasks such as observing dust disks around stars. Also, the WMAP probe showed the universe was "lit up" at redshift 17, further underscoring the importance of the mid-infrared. Both these missions were launched in the early 2000s, in time to influence JWST development.

Ground support and operations

The Space Telescope Science Institute (STScI), located in Baltimore, Maryland, on the Homewood Campus of Johns Hopkins University, was selected as the Science and Operations Center (S&OC) for JWST with an initial budget of US$162.2 million intended to support operations through the first year after launch. In this capacity, STScI will be responsible for the scientific operation of the telescope and delivery of data products to the astronomical community. Data will be transmitted from JWST to the ground via the NASA Deep Space Network, processed and calibrated at STScI, and then distributed online to astronomers worldwide. Similar to how Hubble is operated, anyone, anywhere in the world, will be allowed to submit proposals for observations. Each year several committees of astronomers will peer review the submitted proposals to select the projects to observe in the coming year. The authors of the chosen proposals will typically have one year of private access to the new observations, after which the data will become publicly available for download by anyone from the online archive at STScI.

The bandwidth and digital throughput of the satellite is designed to operate at 458 gigabits of data per day for the length of the mission. Most of the data processing on the telescope is done by conventional single-board computers. The conversion of the analog science data to digital form is performed by the custom-built SIDECAR ASIC (System for Image Digitization, Enhancement, Control And Retrieval Application Specific Integrated Circuit). NASA stated that the SIDECAR ASIC will include all the functions of a 9.1 kg (20 lb) instrument box in a 3 cm (1.2 in) package and consume only 11 milliwatts of power. Since this conversion must be done close to the detectors, on the cool side of the telescope, the low power use of this IC will be crucial for maintaining the low temperature required for optimal operation of the JWST.

After-launch deployment

Nearly a month after launch, a trajectory correction will be initiated to place the JWST into a Halo orbit at the L2 Lagrange point.

Once in position, JWST will go through the process of deploying its sunshade, mirror, and arm, which will take around three weeks. The mirror is in three pieces that will swing into place with motors.

Animation of James Webb Space Telescope trajectory
 
Polar view
 
Equatorial view

Allocation of observation time

JWST observing time will be allocated through a General Observers (GO) program, a Guaranteed Time Observations (GTO) program, and a Director's Discretionary Early Release Science (DD-ERS) program. The GTO program provides guaranteed observing time for scientists who developed hardware and software components for the observatory. The GO program provides all astronomers the opportunity to apply for observing time and will represent the bulk of the observing time. GO programs will be selected through peer review by a Time Allocation Committee (TAC), similar to the proposal review process used for the Hubble Space Telescope. JWST observing time is expected to be highly oversubscribed.

Early Release Science Program

Atmospheric windows in the infrared: Much of this type of light is blocked when viewed from the Earth's surface. It would be like looking at a rainbow but only seeing one color.

In November 2017, the Space Telescope Science Institute announced the selection of 13 Director's Discretionary Early Release Science (DD-ERS) programs, chosen through a competitive proposal process. The observations for these programs will be obtained during the first five months of JWST science operations after the end of the commissioning period. A total of 460 hours of observing time was awarded to these 13 programs, which span science topics including the Solar System, exoplanets, stars and star formation, nearby and distant galaxies, gravitational lenses, and quasars.

General Observer Program

Selection of Cycle 1 GO programs was announced on 30 March 2021. In the Cycle 1 proposal review, 266 proposals were approved, including 13 large and treasury programs.

Political psychology

From Wikipedia, the free encyclopedia ...