Search This Blog

Sunday, November 28, 2021

Epigenetic therapy

From Wikipedia, the free encyclopedia

Epigenetic therapy is the use of drugs or other epigenome-influencing techniques to treat medical conditions. Many diseases, including cancer, heart disease, diabetes, and mental illnesses are influenced by epigenetic mechanisms. Epigenetic therapy offers a potential way to influence those pathways directly.

Background

Epigenetics refers to the study of changes in gene expressions that do not result from alterations in the DNA sequence'. Altered gene expression patterns can result from chemical modifications in DNA and chromatin, to changes in several regulatory mechanisms. Epigenetic markings can be inherited in some cases, and can change in response to environmental stimuli over the course of an organism's life.

Many diseases are known to have a genetic component, but the epigenetic mechanisms underlying many conditions are still being discovered. A significant number of diseases are known to change the expression of genes within the body, and epigenetic involvement is a plausible hypothesis for how they do this. These changes can be the cause of symptoms to the disease. Several diseases, especially cancer, have been suspected of selectively turning genes on or off, thereby resulting in a capability for the tumorous tissues to escape the host’s immune reaction.

Known epigenetic mechanisms typically cluster into three categories. The first is DNA methylation, where a cytosine residue that is followed by a guanine residue (CpG) is methylated. In general, DNA methylation attracts proteins which fold that section of the chromatin and repress the related genes. The second category is histone modifications. Histones are proteins which are involved in the folding and compaction of the chromatin. There are several different types of histones, and they can be chemically modified in a number of ways. Acetylation of histone tails typically leads to weaker interactions between the histones and the DNA, which is associated with gene expression. Histones can be modified in many positions, with many different types of chemical modifications, but the precise details of the histone code are currently unknown. The final category of epigenetic mechanism is regulatory RNA. MicroRNAs are small, noncoding sequences that are involved in gene expression. Thousands of miRNAs are known, and the extent of their involvement in epigenetic regulation is an area of ongoing research. Epigenetic therapies are reversible, unlike gene therapy. This means that they are druggable for targeted therapies.

Diabetic retinopathy

Diabetes is a disease where an affected individual is unable to convert food into energy. When left untreated, the condition can lead to other, more severe complications. A common sign of diabetes is the degradation of blood vessels in various tissues throughout the body. Retinopathy refers to damage from this process in the retina, the part of the eye that senses light. Diabetic retinopathy is known to be associated with a number of epigenetic markers, including methylation of the Sod2 and MMP-9 genes, an increase in transcription of LSD1, a H3K4 and H3K9 demethylase, and various DNA Methyl-Transferases (DNMTs), and increased presence of miRNAs for transcription factors and VEGF.

It is believed that much of the retinal vascular degeneration characteristic of diabetic retinopathy is due to impaired mitochondrial activity in the retina. Sod2 codes for a superoxide disputes enzyme, which scavenges free radicals and prevents oxidative damage to cells. LSD1 may play a major role in diabetic retinopathy through the downregulation of Sod2 in retinal vascular tissue, leading to oxidative damage in those cells. MMP-9 is believed to be involved in cellular apoptosis, and is similarly downregulated, which may help to propagate the effects of diabetic retinopathy.

Several avenues to epigenetic treatment of diabetic retinopathy have been studied. One approach is to inhibit the methylation of the Sod2 and MMP-9. The DNMT inhibitors 5-azacytidine and 5-aza-20-deoxycytidine have both been approved by the FDA for the treatment of other conditions, and studies have examined the effects of those compounds on diabetic retinopathy, where they seem to inhibit these methylation patterns with some success at reducing symptoms. The DNA methylation inhibitor Zebularine has also been studied, although results are currently inconclusive. A second approach is to attempt to reduce the miRNAs observed at elevated levels in retinopathic patients, although the exact role of those miRNAs is still unclear. The Histone Acetyltransferase (HAT) inhibitors Epigallocatechin-3-gallate, Vorinostat, and Romidepsin have also been the subject of experimentation for this purpose, with some limited success. The possibility of using Small Interfering RNAs, or siRNAs, to target the miRNAs mentioned above has been discussed, but there are currently no known methods to do so. This method is somewhat hindered by the difficulty involved in delivering the siRNAs to the affected tissues.

Type 2 diabetes mellitus (T2DM) has many variations and factors that influence how it affects the body. DNA methylation is a process by which methyl groups attach to DNA structure causing the gene to not be expressed. This is thought to be an epigenetic cause of T2DM by causing the body to develop an insulin resistance and inhibit the production of beta cells in the pancreas. Because of the repressed genes the body does not regulate blood sugar transport to cells, causing a high concentration of glucose in the blood stream.

Another variation of T2DM is mitochondrial reactive oxygen species (ROS) which causes a lack of antioxidants in the blood. This leads to oxidation stress of cells leading to the release of free radicals inhibiting blood glucose regulation and hyperglycemic conditions. This leads to persistent vascular complications that can inhibit blood flow to limbs and the eyes. This persistent hyperglycemic environment is leads to DNA methylation as well because the chemistry within chromatin in the nucleus is affected.

Current medicine used by T2DM sufferers includes Metformin hydrochloride which stimulates production in the pancreas and promotes insulin sensitivity. A number of preclinical studies have suggested that adding a treatment to metformin that would inhibit acetylation and methylation of DNA and histone complexes. DNA methylation occurs throughout the human genome and is believed to be a natural method of suppressing genes during development. Treatments targeting specific genes with methylation and acetylation inhibitors is being studied and debated.

Fear, anxiety, and trauma

Traumatic experiences can lead to a number of mental problems, including posttraumatic stress disorder. Advances in cognitive behavioral therapy methods, such as Exposure therapy have improved our ability to treat patients with these conditions. In Exposure therapy, patients are exposed to stimuli which provokes fear and anxiety, but in a safe, controlled environment. Over time, this method leads to a decreased connection between the stimuli and the anxiety. The biochemical mechanisms underlying these systems are not completely understood. However, brain-derived neurotrophic factor (BDNF) and the N-methyl-D-aspartate receptors (NMDA) have been identified as crucial in the exposure therapy process. Successful exposure therapy is associated with increased acetylation of these two genes, leading to transcriptional activation of these genes, which appears to increase neural plasticity. For these reasons, increasing the acetylation of these two genes has been a major area of recent research into the treatment of anxiety disorders.

Exposure therapy’s effectiveness in rodents is increased by the administration of Vorinostat, Entinostat, TSA, sodium butyrate, and VPA, all known histone deacetylase inhibitors. Several studies in the past two years have shown that in humans, Vorinostat and Entinostat increase the clinical effectiveness of exposure therapy as well, and human trials using the drugs successful in rodents are planned. In addition to research on the effectiveness of HDAC inhibitors, some researchers have suggested that histone acetyltransferase activators might have a similar effect, although not enough research has been completed to draw any conclusions. However, none of these drugs are likely to be able to replace exposure therapy or other cognitive behavioral therapy methods. Rodent studies have indicated that administration of HDAC inhibitors without successful exposure therapy actually worsens anxiety disorders significantly, although the mechanism for this trend is unknown. The most likely explanation is that exposure therapy works by a learning process, and can be enhanced by processes which increase neural plasticity and learning. However, if a subject is exposed to a stimulus which causes anxiety in such a way that their fear does not decrease, compounds which increase learning may also increase re-consolidation, ultimately strengthening the memory.

Cardiac dysfunction

A number of cardiac dysfunctions have been linked to cytosine methylation patterns. DNMT deficient mice show upregulation of inflammatory mediators, which cause increased atherosclerosis and inflammation. Atherosclerotic tissue has increased methylation in the promoter region for the estrogen gene, although any connection between the two is unknown. Hypermethylation of the HSD11B2 gene, which catalyzes conversions between cortisone and cortisol, and is therefore influential in the stress response in mammals, has been correlated with hypertension. Decreased LINE-1 methylation is a strong predictive indicator of ischemic heart disease and stroke, although the mechanism is unknown. Various impairments in lipid metabolism, leading to clogging of arteries, has been associated with the hypermethylation of GNASAS, IL-10, MEG3, ABCA1, and the hypomethylation of INSIGF and IGF2. Additionally, upregulation of a number of miRNAs has been shown to be associated with acute myocardial infarction, coronary artery disease, and heart failure. Strong research efforts into this area are very recent, with all of the aforementioned discoveries being made since 2009. Mechanisms are entirely speculative at this point, and an area of future research.

Epigenetic treatment methods for cardiac dysfunction are still highly speculative. SiRNA therapy targeting the miRNAs mentioned above is being investigated. The primary area of research in this field is on using epigenetic methods to increase the regeneration of cardiac tissues damaged by various diseases.

Cancer

The role of epigenetics in cancer has been the subject of intensive study. For the purposes of epigenetic therapy, the two key findings from this research are that cancers frequently use epigenetic mechanisms to deactivate cellular antitumor systems and that most human cancers epigenetically activate oncogenes, such as the MYC proto-oncogene, at some point in their development. For more information on the exact epigenetic changes which take place in cancerous tissues, see the Cancer epigenetics page.

The DNMT inhibitors 5-azacytidine and 5-aza-20-deoxycytidine mentioned above have both been approved by the FDA for the treatment of various forms of cancer. These drugs have been shown to reactivate the cellular antitumor systems repressed by the cancer, enabling the body to weaken the tumor. Zebularine, an activator of a demethylation enzyme has also been used with some success. Because of their wide-ranging effects throughout the entire organism, all of these drugs have major side effects, but survival rates are increased significantly when they are used for treatment.

Dietary polyphenols, such as those found in green tea and red wine, are linked to antitumor activity, and are known to epigenetically influence many systems within the human body. An epigenetic mechanism for polyphenol anti-cancer effects seems likely, although beyond the basic finding that global DNA methylation rates decrease in response to increased consumption of polyphenol compounds, no specific information is known.

Recent study has shown a role of BET inhibitors in colorectal cancer. It has been indicated that a combination of signaling pathway inhibitors and Bromodomain domain inhibitors (i.e. i-BET 151) could have synergistic impact on various genomic and epigenomic subtypes of colorectal cancer. 

Schizophrenia

Research findings have demonstrated that schizophrenia is linked to numerous epigenetic alterations, including DNA methylation and histone modifications. For example, the therapeutic efficacy of schizophrenic drugs such as antipsychotics are limited by epigenetic alterations and future studies are looking into the related biochemical mechanisms to improve the efficacy of such therapies. Even if epigenetic therapy wouldn't allow to fully reverse the disease, it can significantly improve the quality of life.

Behavioral epigenetics

From Wikipedia, the free encyclopedia

Behavioral epigenetics is the field of study examining the role of epigenetics in shaping animal (including human) behavior. It seeks to explain how nurture shapes nature, where nature refers to biological heredity and nurture refers to virtually everything that occurs during the life-span (e.g., social-experience, diet and nutrition, and exposure to toxins). Behavioral epigenetics attempts to provide a framework for understanding how the expression of genes is influenced by experiences and the environment to produce individual differences in behaviour, cognition, personality, and mental health.

Epigenetic gene regulation involves changes other than to the sequence of DNA and includes changes to histones (proteins around which DNA is wrapped) and DNA methylation. These epigenetic changes can influence the growth of neurons in the developing brain as well as modify the activity of neurons in the adult brain. Together, these epigenetic changes in neuron structure and function can have a marked influence on an organism's behavior.

Background

In biology, and specifically genetics, epigenetics is the study of heritable changes in gene activity which are not caused by changes in the DNA sequence; the term can also be used to describe the study of stable, long-term alterations in the transcriptional potential of a cell that are not necessarily heritable.

Examples of mechanisms that produce such changes are DNA methylation and histone modification, each of which alters how genes are expressed without altering the underlying DNA sequence. Gene expression can be controlled through the action of repressor proteins that attach to silencer regions of the DNA.

Modifications of the epigenome do not alter DNA.

DNA methylation turns a gene "off" – it results in the inability of genetic information to be read from DNA; removing the methyl tag can turn the gene back "on".

Histone modification changes the way that DNA is packaged into chromosomes. These changes impact how genes are expressed. 

Epigenetics has a strong influence on the development of an organism and can alter the expression of individual traits. Epigenetic changes occur not only in the developing fetus, but also in individuals throughout the human life-span. Because some epigenetic modifications can be passed from one generation to the next, subsequent generations may be affected by the epigenetic changes that took place in the parents.

Discovery

The first documented example of epigenetics affecting behavior was provided by Michael Meaney and Moshe Szyf. While working at McGill University in Montréal in 2004, they discovered that the type and amount of nurturing a mother rat provides in the early weeks of the rat's infancy determines how that rat responds to stress later in life. This stress sensitivity was linked to a down-regulation in the expression of the glucocorticoid receptor in the brain. In turn, this down-regulation was found to be a consequence of the extent of methylation in the promoter region of the glucocorticoid receptor gene. Immediately after birth, Meaney and Szyf found that methyl groups repress the glucocorticoid receptor gene in all rat pups, making the gene unable to unwind from the histone in order to be transcribed, causing a decreased stress response. Nurturing behaviours from the mother rat were found to stimulate activation of stress signalling pathways that remove methyl groups from DNA. This releases the tightly wound gene, exposing it for transcription. The glucocorticoid gene is activated, resulting in lowered stress response. Rat pups that receive a less nurturing upbringing are more sensitive to stress throughout their life-span.

This pioneering work in rodents has been difficult to replicate in humans because of a general lack of availability of human brain tissue for measurement of epigenetic changes.

Research into epigenetics in psychology

Anxiety and risk-taking

Monozygotic twins are identical twins. Twin studies help to reveal epigenetic differences related to various aspects of psychology.

In a small clinical study in humans published in 2008, epigenetic differences were linked to differences in risk-taking and reactions to stress in monozygotic twins. The study identified twins with different life paths, wherein one twin displayed risk-taking behaviours, and the other displayed risk-averse behaviours. Epigenetic differences in DNA methylation of the CpG islands proximal to the DLX1 gene correlated with the differing behavior. The authors of the twin study noted that despite the associations between epigenetic markers and differences personality traits, epigenetics cannot predict complex decision-making processes like career selection.

Stress

Animal and human studies have found correlations between poor care during infancy and epigenetic changes that correlate with long-term impairments that result from neglect.

Studies in rats have shown correlations between maternal care in terms of the parental licking of offspring and epigenetic changes. A high level of licking results in a long-term reduction in stress response as measured behaviorally and biochemically in elements of the hypothalamic-pituitary-adrenal axis (HPA). Further, decreased DNA methylation of the glucocorticoid receptor gene were found in offspring that experienced a high level of licking; the glucorticoid receptor plays a key role in regulating the HPA. The opposite is found in offspring that experienced low levels of licking, and when pups are switched, the epigenetic changes are reversed. This research provides evidence for an underlying epigenetic mechanism. Further support comes from experiments with the same setup, using drugs that can increase or decrease methylation. Finally, epigenetic variations in parental care can be passed down from one generation to the next, from mother to female offspring. Female offspring who received increased parental care (i.e., high licking) became mothers who engaged in high licking and offspring who received less licking became mothers who engaged in less licking.

In humans, a small clinical research study showed the relationship between prenatal exposure to maternal mood and genetic expression resulting in increased reactivity to stress in offspring. Three groups of infants were examined: those born to mothers medicated for depression with serotonin reuptake inhibitors; those born to depressed mothers not being treated for depression; and those born to non-depressed mothers. Prenatal exposure to depressed/anxious mood was associated with increased DNA methylation at the glucocorticoid receptor gene and to increased HPA axis stress reactivity. The findings were independent of whether the mothers were being pharmaceutically treated for depression.

Recent research has also shown the relationship of methylation of the maternal glucocorticoid receptor and maternal neural activity in response to mother-infant interactions on video. Longitudinal follow-up of those infants will be important to understand the impact of early caregiving in this high-risk population on child epigenetics and behavior.

Cognition

Learning and memory

A 2010 review discusses the role of DNA methylation in memory formation and storage, but the precise mechanisms involving neuronal function, memory, and methylation reversal remain unclear.

Studies in rodents have found that the environment exerts an influence on epigenetic changes related to cognition, in terms of learning and memory; environmental enrichment correlated with increased histone acetylation, and verification by administering histone deacetylase inhibitors induced sprouting of dendrites, an increased number of synapses, and reinstated learning behaviour and access to long-term memories. Research has also linked learning and long-term memory formation to reversible epigenetic changes in the hippocampus and cortex in animals with normal-functioning, non-damaged brains. In human studies, post-mortem brains from Alzheimer's patients show increased histone de-acetylase levels.

Psychopathology and mental health

Drug addiction

The image above contains clickable links
This diagram depicts the signaling events in the brain's reward center that are induced by chronic high-dose exposure to psychostimulants that increase the concentration of synaptic dopamine, like amphetamine, methamphetamine, and phenethylamine. Following presynaptic dopamine and glutamate co-release by such psychostimulants, postsynaptic receptors for these neurotransmitters trigger internal signaling events through a cAMP-dependent pathway and a calcium-dependent pathway that ultimately result in increased CREB phosphorylation. Phosphorylated CREB increases levels of ΔFosB, which in turn represses the c-Fos gene with the help of corepressors; c-Fos repression acts as a molecular switch that enables the accumulation of ΔFosB in the neuron. A highly stable (phosphorylated) form of ΔFosB, one that persists in neurons for 1–2 months, slowly accumulates following repeated high-dose exposure to stimulants through this process. ΔFosB functions as "one of the master control proteins" that produces addiction-related structural changes in the brain, and upon sufficient accumulation, with the help of its downstream targets (e.g., nuclear factor kappa B), it induces an addictive state.

Environmental and epigenetic influences seem to work together to increase the risk of addiction. For example, environmental stress has been shown to increase the risk of substance abuse. In an attempt to cope with stress, alcohol and drugs can be used as an escape. Once substance abuse commences, however, epigenetic alterations may further exacerbate the biological and behavioural changes associated with addiction.

Even short-term substance abuse can produce long-lasting epigenetic changes in the brain of rodents, via DNA methylation and histone modification. Epigenetic modifications have been observed in studies on rodents involving ethanol, nicotine, cocaine, amphetamine, methamphetamine and opiates. Specifically, these epigenetic changes modify gene expression, which in turn increases the vulnerability of an individual to engage in repeated substance overdose in the future. In turn, increased substance abuse results in even greater epigenetic changes in various components of a rodent's reward system (e.g., in the nucleus accumbens). Hence, a cycle emerges whereby changes in areas of the reward system contribute to the long-lasting neural and behavioural changes associated with the increased likelihood of addiction, the maintenance of addiction and relapse. In humans, alcohol consumption has been shown to produce epigenetic changes that contribute to the increased craving of alcohol. As such, epigenetic modifications may play a part in the progression from the controlled intake to the loss of control of alcohol consumption. These alterations may be long-term, as is evidenced in smokers who still possess nicotine-related epigenetic changes ten years after cessation. Therefore, epigenetic modifications may account for some of the behavioural changes generally associated with addiction. These include: repetitive habits that increase the risk of disease, and personal and social problems; need for immediate gratification; high rates of relapse following treatment; and, the feeling of loss of control.

Evidence for related epigenetic changes has come from human studies involving alcohol, nicotine, and opiate abuse. Evidence for epigenetic changes stemming from amphetamine and cocaine abuse derives from animal studies. In animals, drug-related epigenetic changes in fathers have also been shown to negatively affect offspring in terms of poorer spatial working memory, decreased attention and decreased cerebral volume.

Eating disorders and obesity

Epigenetic changes may help to facilitate the development and maintenance of eating disorders via influences in the early environment and throughout the life-span. Pre-natal epigenetic changes due to maternal stress, behaviour and diet may later predispose offspring to persistent, increased anxiety and anxiety disorders. These anxiety issues can precipitate the onset of eating disorders and obesity, and persist even after recovery from the eating disorders.

Epigenetic differences accumulating over the life-span may account for the incongruent differences in eating disorders observed in monozygotic twins. At puberty, sex hormones may exert epigenetic changes (via DNA methylation) on gene expression, thus accounting for higher rates of eating disorders in men as compared to women. Overall, epigenetics contribute to persistent, unregulated self-control behaviours related to the urge to binge.

Schizophrenia

Epigenetic changes including hypomethylation of glutamatergic genes (i.e., NMDA-receptor-subunit gene NR3B and the promoter of the AMPA-receptor-subunit gene GRIA2) in the post-mortem human brains of schizophrenics are associated with increased levels of the neurotransmitter glutamate. Since glutamate is the most prevalent, fast, excitatory neurotransmitter, increased levels may result in the psychotic episodes related to schizophrenia. Epigenetic changes affecting a greater number of genes have been detected in men with schizophrenia as compared to women with the illness.

Population studies have established a strong association linking schizophrenia in children born to older fathers. Specifically, children born to fathers over the age of 35 years are up to three times more likely to develop schizophrenia. Epigenetic dysfunction in human male sperm cells, affecting numerous genes, have been shown to increase with age. This provides a possible explanation for increased rates of the disease in men. To this end, toxins (e.g., air pollutants) have been shown to increase epigenetic differentiation. Animals exposed to ambient air from steel mills and highways show drastic epigenetic changes that persist after removal from the exposure. Therefore, similar epigenetic changes in older human fathers are likely. Schizophrenia studies provide evidence that the nature versus nurture debate in the field of psychopathology should be re-evaluated to accommodate the concept that genes and the environment work in tandem. As such, many other environmental factors (e.g., nutritional deficiencies and cannabis use) have been proposed to increase the susceptibility of psychotic disorders like schizophrenia via epigenetics.

Bipolar disorder

Evidence for epigenetic modifications for bipolar disorder is unclear. One study found hypomethylation of a gene promoter of a prefrontal lobe enzyme (i.e., membrane-bound catechol-O-methyl transferase, or COMT) in post-mortem brain samples from individuals with bipolar disorder. COMT is an enzyme that metabolizes dopamine in the synapse. These findings suggest that the hypomethylation of the promoter results in over-expression of the enzyme. In turn, this results in increased degradation of dopamine levels in the brain. These findings provide evidence that epigenetic modification in the prefrontal lobe is a risk factor for bipolar disorder. However, a second study found no epigenetic differences in post-mortem brains from bipolar individuals.

Major depressive disorder

The causes of major depressive disorder (MDD) are poorly understood from a neuroscience perspective. The epigenetic changes leading to changes in glucocorticoid receptor expression and its effect on the HPA stress system discussed above, have also been applied to attempts to understand MDD.

Much of the work in animal models has focused on the indirect downregulation of brain derived neurotrophic factor (BDNF) by over-activation of the stress axis. Studies in various rodent models of depression, often involving induction of stress, have found direct epigenetic modulation of BDNF as well.

Psychopathy

Epigenetics may be relevant to aspects of psychopathic behaviour through methylation and histone modification. These processes are heritable but can also be influenced by environmental factors such as smoking and abuse. Epigenetics may be one of the mechanisms through which the environment can impact the expression of the genome. Studies have also linked methylation of genes associated with nicotine and alcohol dependence in women, ADHD, and drug abuse. It is probable that epigenetic regulation as well as methylation profiling will play an increasingly important role in the study of the play between the environment and genetics of psychopaths.

Suicide

A study of the brains of 24 suicide victims, 12 of whom had a history of child abuse and 12 who did not, found decreased levels of glucocorticoid receptor in victims of child abuse and associated epigenetic changes.

Social insects

Several studies have indicated DNA cytosine methylation linked to the social behavior of insects, such as honeybees and ants. In honeybees, when nurse bee switched from her in-hive tasks to out foraging, cytosine methylation marks are changing. When a forager bee was reversed to do nurse duties, the cytosine methylation marks were also reversed. Knocking down the DNMT3 in the larvae changed the worker to queen-like phenotype. Queen and worker are two distinguish castes with different morphology, behavior, and physiology. Studies in DNMT3 silencing also indicated DNA methylation may regulate gene alternative splicing and pre-mRNA maturation.

Limitations and future direction

Many researchers contribute information to the Human Epigenome Consortium. The aim of future research is to reprogram epigenetic changes to help with addiction, mental illness, age related changes, memory decline, and other issues. However, the sheer volume of consortium-based data makes analysis difficult. Most studies also focus on one gene. In actuality, many genes and interactions between them likely contribute to individual differences in personality, behaviour and health. As social scientists often work with many variables, determining the number of affected genes also poses methodological challenges. More collaboration between medical researchers, geneticists and social scientists has been advocated to increase knowledge in this field of study.

Limited access to human brain tissue poses a challenge to conducting human research. Not yet knowing if epigenetic changes in the blood and (non-brain) tissues parallel modifications in the brain, places even greater reliance on brain research. Although some epigenetic studies have translated findings from animals to humans, some researchers caution about the extrapolation of animal studies to humans. One view notes that when animal studies do not consider how the subcellular and cellular components, organs and the entire individual interact with the influences of the environment, results are too reductive to explain behaviour.

Some researchers note that epigenetic perspectives will likely be incorporated into pharmacological treatments. Others caution that more research is necessary as drugs are known to modify the activity of multiple genes and may, therefore, cause serious side effects. However, the ultimate goal is to find patterns of epigenetic changes that can be targeted to treat mental illness, and reverse the effects of childhood stressors, for example. If such treatable patterns eventually become well-established, the inability to access brains in living humans to identify them poses an obstacle to pharmacological treatment. Future research may also focus on epigenetic changes that mediate the impact of psychotherapy on personality and behaviour.

Most epigenetic research is correlational; it merely establishes associations. More experimental research is necessary to help establish causation. Lack of resources has also limited the number of intergenerational studies. Therefore, advancing longitudinal and multigenerational, experience-dependent studies will be critical to further understanding the role of epigenetics in psychology.

Epigenetics of anxiety and stress–related disorders

From Wikipedia, the free encyclopedia

Epigenetics of anxiety and stress–related disorders is the field studying the relationship between epigenetic modifications of genes and anxiety and stress-related disorders, including mental health disorders such as generalized anxiety disorder (GAD), post-traumatic stress disorder, obsessive-compulsive disorder (OCD), and more.

Epigenetic modifications play a role in the development and heritability of these disorders and related symptoms. For example, regulation of the hypothalamus-pituitary-adrenal axis by glucocorticoids plays a major role in stress response and is known to be epigenetically regulated.

As of 2015 most work has been done in animal models in laboratories, and little work has been done in humans; the work is not yet applicable to clinical psychiatry.

Epigenetic writers, erasers, and readers

Epigenetic changes are performed by enzymes known as writers, which can add epigenetic modifications, erasers, which erase epigenetic modifications, and readers, which can recognize epigenetic modifications and cause a downstream effect. Stress-induced modifications of these writers, erasers, and readers result in important epigenetic modifications such as DNA methylation and acetylation.

DNA methylation

During DNA methylation, cytosine is methylated.

DNA methylation is a type of epigenetic modification in which methyl groups are added to cytosines of DNA. DNA methylation is an important regulator of gene expression and is usually associated with gene repression.

MeCP2

Laboratory studies have found that early life stress in rodents can cause phosphorylation of methyl CpG binding protein 2 (MeCP2), a protein that preferentially binds CpGs and is most often associated with suppression of gene expression. Stress-dependent phosphorylation of MeCP2 causes MeCP2 to dissociate from the promoter region of a gene called arginine vasopressin (avp), causing avp to become demethylated and upregulated. This may be significant because arginine vasopressin is known to regulate mood and cognitive behavior. Additionally, arginine vasopressin upregulates corticotropin-releasing hormone (CRH), which is a hormone important for stress response. Thus, stress-induced upregulation of avp due to demethylation might alter mood, behavior, and stress responses. Demethylation of this locus can be explained by reduced binding of DNA methyl transferases (DNMT), an enzyme that adds methyl groups to DNA, to this locus.

MeCP2 is known to have interactions with several other enzymes that modify chromatin (for example, HDAC-containing complexes and co-repressors) and in turn regulate activity of genes that modulate stress response either by increasing or decreasing stress tolerance. For example, epigenetic upregulation of genes that increase stress response may cause decreased stress tolerance in an organism. These interactions are dependent on the phosphorylation status of MeCP2, which as previously mentioned, can be altered by stress.

DNMT1

DNA methyltransferase 1 (DNMT1) belongs to a family of proteins known as DNA methyltransferases, which are enzymes that add methyl groups to DNA. DNMT1 is specifically involved in maintaining DNA methylation; hence it is also known as the maintenance methylase DNMT1. DNMT1 aids in regulation of gene expression by methylating promoter regions of genes, causing transcriptional repression of these genes.

DNMT1 is transcriptionally repressed under stress-mimicking exposure both in vitro and in vivo using a mouse model. Accordingly, transcriptional repression of DNMT1 in response to long-term stress-mimicking exposure causes decreased DNA methylation, which is a marker of gene activation. In particular, there is decreased methylation of a gene called fkbp5, which plays a role in stress response as a glucocorticoid-responsive gene. Thus, chronic stress may cause demethylation and hyperactivation of a stress-related gene, causing increased stress response.

Additionally, DNMT1 gene locus has increased methylation in individuals who were exposed to trauma and developed post-traumatic stress disorder (PTSD). Increased methylation of DNMT1 did not occur in trauma-exposed individuals who did not develop PTSD. This may indicate an epigenetic phenotype that can differentiate PTSD-susceptible and PTSD-resilient individuals after exposure to trauma.

Transcription factors

Transcription factors are proteins that bind DNA and modulate the transcription of genes into RNA such as mRNA, tRNA, rRNA, and more; thus they are essential components of gene activation. Stress and trauma can affect expression of transcription factors, which in turn alter DNA methylation patterns.

For example, transcription factor nerve growth-induced protein A (NGFI-A, also called NAB1) is up-regulated in response to high maternal care in rodents, and down-regulated in response to low maternal care (a form of early life stress). Decreased NGFI-A due to low maternal care increases methylation of a glucocorticoid receptor promoter in rats. Glucocorticoid is known to play a role in downregulating stress response; therefore, downregulation of glucocorticoid receptor by methylation causes increased sensitivity to stress.

Histone acetylation

During histone acetylation, lysines are acetylated.

Histone acetylation and deacetylation is a type of epigenetic modification in which acetyl groups are added to lysine on histone tails. Histone acetylation, performed by enzymes known as histone acetyltransferases (HATs), removes the positive charge from lysine and results in gene activation by weakening the histone's interaction with negatively-charged DNA. In contrast, histone deacetylation performed by histone deacetylases (HDACs) results in gene deactivation.

HDAC

Transcriptional activity and expression of HDACs is altered in response to early life stress. For animals exposed to early life stress, HDAC expression tends to be lower when they are young and higher when they are older. This suggests an age-dependent effect of early life stress on HDAC expression. These HDACs may result in deacetylation and thus activation of genes that upregulate stress response and decrease stress tolerance.

Transgenerational epigenetic influences

Genome-wide association studies have shown that psychiatric disorders are partly heritable; however, heritability cannot be fully explained by classical Mendelian genetics. Epigenetics has been postulated to play a role. This is because there is strong evidence of transgenerational epigenetic effects in general. For example, one study found transmission of DNA methylation patterns from fathers to offspring during spermatogenesis. More specifically to mental illnesses, several studies have shown that traits of psychiatric illnesses (such as traits of PTSD and other anxiety disorders) can be transmitted epigenetically. Parental exposure to various stimuli, both positive and negative, can cause these transgenerational epigenetic and behavioral effects.

Parental exposure to trauma and stress

Trauma and stress experienced by a parent can cause epigenetic changes to its offspring. This has been observed both in population and experimental studies.

Holocaust

An epidemiological study investigating behavioral, physiological, and molecular changes in the children of Holocaust survivors found epigenetic modifications of a glucocorticoid receptor gene, Nr3c1. This is significant because glucocorticoid is a regulator of the hypothalamus-pituitary-adrenal axis (HPA) and is known to affect stress response. These stress-related epigenetic changes were accompanied by other characteristics that indicated higher stress and anxiety in these offspring, including increased symptoms of PTSD, greater risk of anxiety, and higher levels of the stress hormone cortisol.

Experimental evidence

The effect of parental exposure to stress has been tested experimentally as well. For example, male mice who were put under early life stress through poor maternal care—a scenario analogous to human childhood trauma—passed on epigenetic changes that resulted in behavioral changes in offspring. Offspring experienced altered DNA methylation of stress-response genes such as CB1 and CRF2 in the cortex, as well as epigenetic alterations in transcriptional regulation gene MeCP2. Offspring were also more sensitive to stress, which is in accordance with the altered epigenetic profile. These changes persisted for up to three generations.

In another example, male mice were socially isolated as a form of stress. Offspring of these mice had increased anxiety in response to stressful conditions, increased stress hormone levels, dysregulation of the HPA axis which plays a key role in stress response, and several other characteristics that indicated increased sensitivity to stress.

Inheritance of small-noncoding RNA

Studies have found that early life stress induced through poor maternal care alters sperm epigenome in male mice. In particular, expression patterns of small-noncoding RNAs (sncRNAs) are altered in the sperm, as well as in stress-related regions of the brain. Offspring of these mice exhibited the same sncRNA expression changes in the brain, but not in the sperm. These changes were coupled with behavioral changes in the offspring that were comparable to behavior of the stressed fathers, especially in terms of stress response. Additionally, when the sncRNAs in the fathers' sperm were isolated and injected into fertilized eggs, the resulting offspring inherited the stress behavior of the father. This suggests that stress-induced modifications of sncRNAs in sperm can cause inheritance of stress phenotype independent of the father's DNA.

Parental exposure to positive stimulation

Exercise

Just as parental stress can alter epigenetics of offspring, parental exposure to positive environmental factors cause epigenetic modifications as well. For example, male mice that participated in voluntary physical exercise resulted in offspring that had reduced fear memory and anxiety-like behavior in response to stress. This behavioral change likely occurred due to expressions of small non-coding RNAs that were altered in sperm cells of the fathers.

Stress effect reversal

Additionally, exposing fathers to enriching environments can reverse the effect of early life stress on their offspring. When early life stress is followed by environmental enrichment, anxiety-like behavior in offspring is prevented. Similar studies have been conducted in humans and suggest that DNA methylation plays a role.

Post-traumatic stress disorder (PTSD)

Post-traumatic stress disorder (PTSD) is a stress-related mental health disorder that emerges in response to traumatic or highly stressful experiences. It is believed that PTSD develops as a result of an interaction between these traumatic experiences and genetic factors. Evidence suggests epigenetics is a key element in this.

DNA methylation

Through a number of human studies, PTSD is known to affect DNA methylation of cytosine residues in several genes involved in stress response, neurotransmitter activity, and more.

Human Studies Supporting the Role of DNA Methylation in PTSD
Genetic Loci Finding(s)
SLC6A4 Following trauma exposure, low methylation levels of SLC6A4 increases risk of PTSD; high methylation levels decreases risk of PTSD
MAN2C1 Higher MAN2C1 methylation is correlated to greater risk of PTSD in individuals exposed to traumatic events
TPR, CLEC9A, APC5, ANXA2, TLR8 PTSD is associated with increased global methylation of these genes
ADCYAP1R1 Higher methylation is associated with PTSD symptoms in individuals exposed to trauma
LINE-1, Alu Higher methylation of these loci is observed in postdeployed veterans who developed PTSD compared to those who do not develop PTSD
SLC6A3 High SLC6A3 promoter methylation, combined with a nine-repeat allele of SLC6A3, is correlated to higher PTSD risk
IGF2, H19, IL8, IL16, IL18 Higher methylation of IL18 but lower methylation of H19 and IL18 is associated with deployed veterans who developed PTSD
NR3C1 Lower methylation levels of NR3C1 1B and 1C promoters is associated with PTSD;

Fathers with PTSD have offspring with higher NR3C1 1F promoter methylation;

Lower levels of NR3C1 1F promoter methylation is associated with PTSD in combat veterans;

Higher levels of NR3C1 methylation in male (but not female) Rwandan genocide survivors is associated with decreased PTSD risk

Hypothalamus-pituitary-adrenal axis

The hypothalamus-pituitary-adrenal (HPA) axis plays a key role in stress response. Based on several findings, the HPA axis appears to be dysregulated in PTSD. A common pathway dysregulated in HPA axis involves a hormone known as glucocorticoid and its receptor, which aid in stress tolerance by downregulating stress response. Dysregulation of glucocorticoid and/or glucocorticoid receptor can disrupt stress tolerance and increase risk of stress-related disorders such as PTSD. Epigenetic modifications play a role in this dysregulation, and these modifications are likely caused by the traumatic/stressful experience that triggered PTSD.

NR3C1

Nr3c1 is a gene that encodes a glucocorticoid receptor (GR) and contains many GR response elements. Early life stress increases methylation of the 1F promoter in this gene (or the 17 promoter analog in rodents). Because of its role in stress response and its link to early life stress, this gene has been of particular interest in the context of PTSD and has been studied in PTSD of both combat veterans and civilians.

In studies involving combat veterans, those who developed PTSD had lowered methylation of the Nr3c1 1F promoter compared to those who did not develop PTSD. Additionally, veterans who developed PTSD and had higher Nr3c1 promoter methylation responded better to long-term psychotherapy compared to veterans with PTSD who had lower methylation. These findings were recapitulated in studies involving civilians with PTSD. In civilians, PTSD is linked to lower methylation levels in the T-cells of exons 1B and 1C of Nr3c1, as well as higher GR expression. Thus, it seems that PTSD causes lowered methylation levels of GR loci and increased GR expression.

Although these results of decreased methylation and hyperactivation of GR conflict with the effect of early life stress at the same loci, these results match previous findings that distinguish HPA activity in early life stress versus PTSD. For example, cortisol levels of HPA in response to early life stress is hyperactive, whereas it is hypoactive in PTSD. Thus, the timing of trauma and stress—whether early or later in life—can cause differing effects on HPA and GR.

FKBP5

Fkbp5 encodes a GR-responsive protein known as Fk506 binding protein 51 (FKBP5). FKBP5 is induced by GR activation and functions in negative feedback by binding GR and reducing GR signaling. There is particular interest in this gene because some FKBP5 alleles have been correlated with increased risk of PTSD and development of PTSD symptoms—especially in PTSD caused by early life adversity. Therefore, FKBP5 likely plays an important role in PTSD.

As mentioned previously, certain FKBP5 alleles are correlated to increase PTSD risk, especially due to early life trauma. It is now known that epigenetic regulation of these alleles is also an important factor. For example, CpG sites in intron 7 of FKBP5 are demethylated after exposure to childhood trauma, but not adult trauma. Additionally, methylation of FKBP5 is alters in response to PTSD treatment; thus methylation levels of FKBP5 might correspond to PTSD disease progression and recovery.

ADCYAP1 and ADCYAP1R1

Pituitary adenylate cyclase-activating polypeptide (ADCYAP1) and its receptor (ADCYAP1R1) are stress responsive genes that play a role in modulating stress, among many other functions. Additionally, high levels of ADCYAP1 in peripheral blood is correlated to PTSD diagnosis in females who have experienced trauma, thus making ADCYAP1 a gene of interest in the context of PTSD.

Epigenetic regulation of these loci in relation to PTSD still require further investigation, but one study has found that high methylation levels of CpG islands in ADCYAP1R1 can predict PTSD symptoms in both males and females.

Immune dysregulation

PTSD is often linked with immune dysregulation. This is because trauma exposure can disrupt the HPA axis, thus altering peripheral immune function.

Epigenetic modifications have been observed in immune-related genes of individuals with PTSD. For example, deployed military members who developed PTSD have higher methylation in immune-related gene interleukin-18 (IL-18). This has interested scientists because high levels of IL-18 increase cardiovascular disease risk, and individuals with PTSD have elevated cardiovascular disease risk. Thus, stress-induced immune dysregulation via methylation of IL-18 may play a role in cardiovascular disease in individuals with PTSD.

Additionally, an epigenome-wide study found that individuals with PTSD have altered levels of methylation in the following immune-related genes: TPR, CLEC9A, APC5, ANXA2, TLR8, IL-4, and IL-2. This again shows that immune function in PTSD is disrupted, especially by epigenetic changes that are likely stress-induced.

Alcohol use disorder

Alcohol dependence and stress interact in many ways. For example, stress-related disorders such as anxiety and PTSD are known to increase risk of alcohol use disorder (AUD), and they are often co-morbid. This may in part be due to the fact that alcohol can alleviate some symptoms of these disorders, thus promoting dependence on alcohol. Conversely, early exposure to alcohol can increase vulnerability to stress and stress-related disorders. Moreover, alcohol dependence and stress are known to follow similar neuronal pathways, and these pathways are often dysregulated by similar epigenetic modifications.

Histone acetylation

HDAC

Histone acetylation is dysregulated by alcohol exposure and dependence, often through dysregulated expression and activity of HDACs, which modulate histone acetylation by removing acetyl groups from lysines of histone tails. For example, HDAC expression is upregulated in chronic alcohol use models. Monocyte-derived dendritic cells of alcohol users have increased HDAC gene expression compared to non-users. These results are also supported by in vivo rat studies, which show that HDAC expression is higher in alcohol-dependent mice that in non-dependent mice. Furthermore, knockout of HDAC2 in mice helps lower alcohol dependence behaviors. The same pattern of HDAC expression is seen in alcohol withdrawal, but acute alcohol exposure has the opposite effect; in vivo, HDAC expression and histone acetylation markers are decreased in the amygdala.

Dysregulation of HDACs is significant because it can cause upregulation or downregulation of genes that have important downstream effects both in alcohol dependence and anxiety-like behaviors, and the interaction between the two. A key example is BDNF (see "BDNF" below).

BDNF

Brain-derived neurotrophic factor (BDNF) is a key protein that is dysregulated by HDAC dysregulation. BDNF is a protein that regulates the structure and function of neuronal synapses. It plays an important role in neuronal activation, synaptic plasticity, and dendritic morphology—all of which are factors that may affect cognitive function. Dysregulation of BDNF is seen both in stress-related disorders and alcoholism; thus BDNF is likely an important molecule in the interaction between stress and alcoholism.

For example, BDNF is dysregulated by acute ethanol exposure. Acute ethanol exposure causes phosphorylation of CREB, which can cause increased histone acetylation at BDNF loci. Histone acetylation upregulates BDNF, in turn upregulating a downstream BDNF target called activity-regulated cytoskeleton associated protein (Arc), which is a protein responsible for dendritic spine structure and formation. This is significant because activation of Arc can be associated with anxiolytic (anxiety-reducing) effects. Therefore, ethanol consumption can cause epigenetic changes that alleviate stress and anxiety, thereby creating a pattern of stress-induced alcohol dependence.

Alcohol dependence is exacerbated by ethanol withdrawal. This is because ethanol withdrawal has the opposite effect of ethanol exposure; it causes lowered CREB phosphorylation, lowered acetylation, downregulation of BDNF, and increase in anxiety. Consequently, ethanol withdrawal reinforces desire for anxiolytic effects of ethanol exposure. Moreover, it is proposed that chronic ethanol exposure results in upregulation of HDAC activity, causing anxiety-like effects that can no longer be alleviated by acute ethanol exposure.

Potential epigenetic drug treatments

The most common treatments for anxiety disorders at the moment are benzodiazepines, Buspirone, and antidepresants. However, around one/third of patients with anxiety disorders do not respond well to the current anxiolytics, and many others have treatment-resistant anxiety disorders. Recent research surrounding DNA methylation changes in genes in genes encoding proteins associated with the HPA axis, histone modifications, and sncRNAs point to epigenetic drugs potentially being effective treatment methods for anxiety disorders.

HDACi

Histone deacetylase inhibitors (HDACi) fall into five different classes, not to be confused with the four different classes of HDACs. The five classes of HDACi consist of (I) hydroxamic acids, (II) short-chain fatty acids, (III) benzamides, (IV) cyclic tetrapeptides, and (V) sirtuin inhibitors. The three classes of HDACs are class I, consisting of HDAC1, HDAC2, HDAC3, HDAC8, class II, consisting of HDAC4, HDAC5, HDAC6, HDAC7, HDAC9, HDAC10, class III, consisting of NAD+-dependent HDACS, and class IV, consisting of HDAC11. While most HDACi inhibit only specific classes of HDACs, certain HDACi can act against all classes, making them pan-inhibitors.

HDACi are currently being researched as potential anxiolytics. At the moment, the mechanism of action of HDAC inhibitors in the treatment of anxiety disorders is not clear, as they affect several targets and have multiple pharmacological effects besides the inhibition of HDACs. However, they have been shown to cause DNA demethylation, possibly due to an increase in the levels of TET1, which is a demethylating enzyme. In the human peripheral cells of patients with anxiety disorders and in animal models of anxiety disorders, genes such as GAD1, NR3C1, BDNF, MAOA, HECA, and FKBP5 are shown to be hypermethylated. As such, the mechanism of action of HDACi in anxiety disorders could, in part, be potentially explained by the demethylation of those genes.

Valproate

Valproate is a drug that acts as an HDACi on class I and II HDACs. Six clinical trials surrounding its use as an anxiolytic have been performed so far. Five of the six trials were performed on patients with anxiety disorders, and one of the trials used healthy subjects with no anxiety disorders. Of the five trials performed on patients with anxiety disorders, three found that Valproate decreases panic disorder, one found that Valproate decreases social anxiety, and one found that Valproate reduces generalized anxiety. The trial performed on healthy subjects found that Valproate reduces anxiety and also acts as a nerve conduction inhibitor, which could be an explanation for some of its anxiety-reducing effects.

D-cycloserine, Trichostatin-a, Suberoylanilide hydroxamic acid, sodium butyrate, and valproic acid

Various preclinical drug trials using other HDAC inhibitors have also been performed, with most drugs targeting HDAC classes I and II and a select few targeting classes IV and III. The HDACi drug, d-cycloserine, was found to reduce fear in 129S1/SvImJ mice, which are mice that show poor extinction acquisition and recovery of fear-induced suppression of heart-rate variability, enlarged dendritic arbors in basolateral amygdala neurons, and functional abnormalities in cortico-amygdala circuitry that mediates fear extinction. Trichostatin-a was normalized BDNF and Arc expression in the central and the medial nucleus of the amygdala in rats experiencing alcohol withdrawal. Suberoylanilide hydroxamic acid significantly reversed anxiety-like behaviors and stress-induced gastrointestinal hypersensitivity and fecal pellet output. Anxiety-like and depression-like behaviors caused by immobilization stress and/or nicotine addiction were also reduced in mice treated with the HDACi sodium butyrate and valproic acid.

Lactate

Lactate, a metabolite that is naturally produced during exercise, was found to function as an HDAC II and III modulator in a pre-clinical trial. The trial was performed on C57BL/6 mice, which are mice that were exposed to chronic stress in the form of daily defeat by a CD-1 aggressive mouse. While control mice exhibited increased social avoidance, anxiety, and susceptibility to depression, mice that received lactate before each defeat demonstrated resilience to depression and stress and reduced social avoidance and anxiety. Lactate promoted this resilience by restoring regular hippocampal class I HDAC levels and activity.

sncRNA

Preliminary research has been done about therapy involving small non-coding RNAs, demonstrating that they can regulate epigenetic mechanisms of gene expression and could present as biomarkers for disease. One therapy option is for the sncRNAs in patients with anxiety disorders to be targeted for upregulation. Another option is to inhibit the miRNAs in order to reduce their effects, potentially using antisense oligonucleotides or antagomirs as inhibitors.

Anarchism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Anarchism   Anarchism is a political philosophy and movement t...