Search This Blog

Wednesday, December 1, 2021

Nanomaterials

From Wikipedia, the free encyclopedia

Nanomaterials describe, in principle, materials of which a single unit small sized (in at least one dimension) between 1 and 100 nm (the usual definition of nanoscale).

Nanomaterials research takes a materials science-based approach to nanotechnology, leveraging advances in materials metrology and synthesis which have been developed in support of microfabrication research. Materials with structure at the nanoscale often have unique optical, electronic, thermo-physical or mechanical properties.

Nanomaterials are slowly becoming commercialized and beginning to emerge as commodities.

Definition

In ISO/TS 80004, nanomaterial is defined as the "material with any external dimension in the nanoscale or having internal structure or surface structure in the nanoscale", with nanoscale defined as the "length range approximately from 1 nm to 100 nm". This includes both nano-objects, which are discrete pieces of material, and nanostructured materials, which have internal or surface structure on the nanoscale; a nanomaterial may be a member of both these categories.

On 18 October 2011, the European Commission adopted the following definition of a nanomaterial: "A natural, incidental or manufactured material containing particles, in an unbound state or as an aggregate or as an agglomerate and for 50% or more of the particles in the number size distribution, one or more external dimensions is in the size range 1 nm – 100 nm. In specific cases and where warranted by concerns for the environment, health, safety or competitiveness the number size distribution threshold of 50% may be replaced by a threshold between 1% to 50%."

Sources

Engineered

Engineered nanomaterials have been deliberately engineered and manufactured by humans to have certain required properties.

Legacy nanomaterials are those that were in commercial production prior to the development of nanotechnology as incremental advancements over other colloidal or particulate materials. They include carbon black and titanium dioxide nanoparticles.

Incidental

Nanomaterials may be unintentionally produced as a byproduct of mechanical or industrial processes through combustion and vaporization. Sources of incidental nanoparticles include vehicle engine exhausts, smelting, welding fumes, combustion processes from domestic solid fuel heating and cooking. For instance, the class of nanomaterials called fullerenes are generated by burning gas, biomass, and candle. It can also be a byproduct of wear and corrosion products. Incidental atmospheric nanoparticles are often referred to as ultrafine particles, which are unintentionally produced during an intentional operation, and could contribute to air pollution.

Natural

Biological systems often feature natural, functional nanomaterials. The structure of foraminifera (mainly chalk) and viruses (protein, capsid), the wax crystals covering a lotus or nasturtium leaf, spider and spider-mite silk, the blue hue of tarantulas, the "spatulae" on the bottom of gecko feet, some butterfly wing scales, natural colloids (milk, blood), horny materials (skin, claws, beaks, feathers, horns, hair), paper, cotton, nacre, corals, and even our own bone matrix are all natural organic nanomaterials.

Natural inorganic nanomaterials occur through crystal growth in the diverse chemical conditions of the Earth's crust. For example, clays display complex nanostructures due to anisotropy of their underlying crystal structure, and volcanic activity can give rise to opals, which are an instance of a naturally occurring photonic crystals due to their nanoscale structure. Fires represent particularly complex reactions and can produce pigments, cement, fumed silica etc.

Natural sources of nanoparticles include combustion products forest fires, volcanic ash, ocean spray, and the radioactive decay of radon gas. Natural nanomaterials can also be formed through weathering processes of metal- or anion-containing rocks, as well as at acid mine drainage sites.

Gallery of natural nanomaterials

Types

Nano-objects are often categorized as to how many of their dimensions fall in the nanoscale. A nanoparticle is defined a nano-object with all three external dimensions in the nanoscale, whose longest and the shortest axes do not differ significantly. A nanofiber has two external dimensions in the nanoscale, with nanotubes being hollow nanofibers and nanorods being solid nanofibers. A nanoplate/nanosheet has one external dimension in the nanoscale, and if the two larger dimensions are significantly different it is called a nanoribbon. For nanofibers and nanoplates, the other dimensions may or may not be in the nanoscale, but must be significantly larger. In all cases, a significant difference is noted to typically be at least a factor of 3.

Nanostructured materials are often categorized by what phases of matter they contain. A nanocomposite is a solid containing at least one physically or chemically distinct region, or collection of regions, having at least one dimension in the nanoscale.. A nanofoam has a liquid or solid matrix, filled with a gaseous phase, where one of the two phases has dimensions on the nanoscale. A nanoporous material is a solid material containing nanopores, voids in the form of open or closed pores of sub-micron lengthscales. A nanocrystalline material has a significant fraction of crystal grains in the nanoscale.

Nanoporous materials

The term nanoporous materials contain subsets of microporous and mesoporous materials. Microporous materials are porous materials with a mean pore size smaller than 2nm, while mesoporous materials are those with pores sizes in the region 2-50 nm. Microporous materials exhibit pore sizes with comparable length-scale to small molecules. For this reason such materials may serve valuable applications including separation membranes. Mesoporous materials are interesting towards applications that require high specific surface areas, while enabling penetration for molecules that may be too large to enter the pores of a microporous material. In some sources, nanoporous materials and nanofoam are sometimes considered nanostructures but not nanomaterials because only the voids and not the materials themselves are nanoscale. Although the ISO definition only considers round nano-objects to be nanoparticles, other sources use the term nanoparticle for all shapes.

Nanoparticles

Nanoparticles have all three dimensions on the nanoscale. Nanoparticles can also be embedded in a bulk solid to form a nanocomposite.


Fullerenes

The fullerenes are a class of allotropes of carbon which conceptually are graphene sheets rolled into tubes or spheres. These include the carbon nanotubes (or silicon nanotubes) which are of interest both because of their mechanical strength and also because of their electrical properties.

Rotating view of C60, one kind of fullerene

The first fullerene molecule to be discovered, and the family's namesake, buckminsterfullerene (C60), was prepared in 1985 by Richard Smalley, Robert Curl, James Heath, Sean O'Brien, and Harold Kroto at Rice University. The name was a homage to Buckminster Fuller, whose geodesic domes it resembles. Fullerenes have since been found to occur in nature. More recently, fullerenes have been detected in outer space.

For the past decade, the chemical and physical properties of fullerenes have been a hot topic in the field of research and development, and are likely to continue to be for a long time. In April 2003, fullerenes were under study for potential medicinal use: binding specific antibiotics to the structure of resistant bacteria and even target certain types of cancer cells such as melanoma. The October 2005 issue of Chemistry and Biology contains an article describing the use of fullerenes as light-activated antimicrobial agents. In the field of nanotechnology, heat resistance and superconductivity are among the properties attracting intense research.

A common method used to produce fullerenes is to send a large current between two nearby graphite electrodes in an inert atmosphere. The resulting carbon plasma arc between the electrodes cools into sooty residue from which many fullerenes can be isolated.

There are many calculations that have been done using ab-initio Quantum Methods applied to fullerenes. By DFT and TDDFT methods one can obtain IR, Raman and UV spectra. Results of such calculations can be compared with experimental results.

Metal-based nanoparticles

Inorganic nanomaterials, (e.g. quantum dots, nanowires and nanorods) because of their interesting optical and electrical properties, could be used in optoelectronics. Furthermore, the optical and electronic properties of nanomaterials which depend on their size and shape can be tuned via synthetic techniques. There are the possibilities to use those materials in organic material based optoelectronic devices such as Organic solar cells, OLEDs etc. The operating principles of such devices are governed by photoinduced processes like electron transfer and energy transfer. The performance of the devices depends on the efficiency of the photoinduced process responsible for their functioning. Therefore, better understanding of those photoinduced processes in organic/inorganic nanomaterial composite systems is necessary in order to use them in optoelectronic devices.

Nanoparticles or nanocrystals made of metals, semiconductors, or oxides are of particular interest for their mechanical, electrical, magnetic, optical, chemical and other properties. Nanoparticles have been used as quantum dots and as chemical catalysts such as nanomaterial-based catalysts. Recently, a range of nanoparticles are extensively investigated for biomedical applications including tissue engineering, drug delivery, biosensor.

Nanoparticles are of great scientific interest as they are effectively a bridge between bulk materials and atomic or molecular structures. A bulk material should have constant physical properties regardless of its size, but at the nano-scale this is often not the case. Size-dependent properties are observed such as quantum confinement in semiconductor particles, surface plasmon resonance in some metal particles and superparamagnetism in magnetic materials.

Nanoparticles exhibit a number of special properties relative to bulk material. For example, the bending of bulk copper (wire, ribbon, etc.) occurs with movement of copper atoms/clusters at about the 50 nm scale. Copper nanoparticles smaller than 50 nm are considered super hard materials that do not exhibit the same malleability and ductility as bulk copper. The change in properties is not always desirable. Ferroelectric materials smaller than 10 nm can switch their polarization direction using room temperature thermal energy, thus making them useless for memory storage. Suspensions of nanoparticles are possible because the interaction of the particle surface with the solvent is strong enough to overcome differences in density, which usually result in a material either sinking or floating in a liquid. Nanoparticles often have unexpected visual properties because they are small enough to confine their electrons and produce quantum effects. For example, gold nanoparticles appear deep red to black in solution.

The often very high surface area to volume ratio of nanoparticles provides a tremendous driving force for diffusion, especially at elevated temperatures. Sintering is possible at lower temperatures and over shorter durations than for larger particles. This theoretically does not affect the density of the final product, though flow difficulties and the tendency of nanoparticles to agglomerate do complicate matters. The surface effects of nanoparticles also reduces the incipient melting temperature.

One-dimensional nanostructures

The smallest possible crystalline wires with cross-section as small as a single atom can be engineered in cylindrical confinement. Carbon nanotubes, a natural semi-1D nanostructure, can be used as a template for synthesis. Confinement provides mechanical stabilization and prevents linear atomic chains from disintegration; other structures of 1D nanowires are predicted to be mechanically stable even upon isolation from the templates.

Two-dimensional nanostructures

2D materials are crystalline materials consisting of a two-dimensional single layer of atoms. The most important representative graphene was discovered in 2004. Thin films with nanoscale thicknesses are considered nanostructures, but are sometimes not considered nanomaterials because they do not exist separately from the substrate.

Bulk nanostructured materials

Some bulk materials contain features on the nanoscale, including nanocomposites, nanocrystalline materials, nanostructured films, and nanotextured surfaces.

Box-shaped graphene (BSG) nanostructure is an example of 3D nanomaterial. BSG nanostructure has appeared after mechanical cleavage of pyrolytic graphite. This nanostructure is a multilayer system of parallel hollow nanochannels located along the surface and having quadrangular cross-section. The thickness of the channel walls is approximately equal to 1 nm. The typical width of channel facets makes about 25 nm.

Applications

Nano materials are used in a variety of, manufacturing processes, products and healthcare including paints, filters, insulation and lubricant additives. In healthcare Nanozymes are nanomaterials with enzyme-like characteristics. They are an emerging type of artificial enzyme, which have been used for wide applications in such as biosensing, bioimaging, tumor diagnosis, antibiofouling and more. High quality filters may be produced using nanostructures, these filters are capable of removing particulate as small as a virus as seen in a water filter created by Seldon Technologies. Nanomaterials membrane bioreactor (NMs-MBR), the next generation of conventional MBR, are recently proposed for the advanced treatment of wastewater. In the air purification field, nano technology was used to combat the spread of MERS in Saudi Arabian hospitals in 2012. Nanomaterials are being used in modern and human-safe insulation technologies, in the past they were found in Asbestos-based insulation. As a lubricant additive, nano materials have the ability to reduce friction in moving parts. Worn and corroded parts can also be repaired with self-assembling anisotropic nanoparticles called TriboTEX. Nanomaterials have also been applied in a range of industries and consumer products. Mineral nanoparticles such as titanium-oxide have been used to improve UV protection in sunscreen. In the sports industry, lighter bats to have been produced with carbon nanotubes to improve performance. Another application is in the military, where mobile pigment nanoparticles have been used to create more effective camouflage. Nanomaterials can also be used in three-way-catalyst (TWC) applications. TWC converters have the advantage of controlling the emission of nitrogen oxides (NOx), which are precursors to acid rain and smog. In core-shell structure, nanomaterials form shell as the catalyst support to protect the noble metals such as palladium and rhodium. The primary function is that the supports can be used for carrying catalysts active components, making them highly dispersed, reducing the use of noble metals, enhancing catalysts activity, and improving the mechanical strength.

Synthesis

The goal of any synthetic method for nanomaterials is to yield a material that exhibits properties that are a result of their characteristic length scale being in the nanometer range (1 – 100 nm). Accordingly, the synthetic method should exhibit control of size in this range so that one property or another can be attained. Often the methods are divided into two main types, "bottom up" and "top down".

Bottom up methods

Bottom up methods involve the assembly of atoms or molecules into nanostructured arrays. In these methods the raw material sources can be in the form of gases, liquids or solids. The latter require some sort of disassembly prior to their incorporation onto a nanostructure. Bottom up methods generally fall into two categories: chaotic and controlled.

Chaotic processes involve elevating the constituent atoms or molecules to a chaotic state and then suddenly changing the conditions so as to make that state unstable. Through the clever manipulation of any number of parameters, products form largely as a result of the insuring kinetics. The collapse from the chaotic state can be difficult or impossible to control and so ensemble statistics often govern the resulting size distribution and average size. Accordingly, nanoparticle formation is controlled through manipulation of the end state of the products. Examples of chaotic processes are laser ablation, exploding wire, arc, flame pyrolysis, combustion, and precipitation synthesis techniques.

Controlled processes involve the controlled delivery of the constituent atoms or molecules to the site(s) of nanoparticle formation such that the nanoparticle can grow to a prescribed sizes in a controlled manner. Generally the state of the constituent atoms or molecules are never far from that needed for nanoparticle formation. Accordingly, nanoparticle formation is controlled through the control of the state of the reactants. Examples of controlled processes are self-limiting growth solution, self-limited chemical vapor deposition, shaped pulse femtosecond laser techniques, and molecular beam epitaxy.

Top down methods

Top down methods adopt some 'force' (e. g. mechanical force, laser) to break bulk materials into nanoparticles. A popular method involves mechanical break apart bulk materials into nanomaterials is 'ball milling'. Besides, nanoparticles can also be made by laser ablation which apply short pulse lasers (e. g. femtosecond laser) to ablate a target (solid).

Characterization

Novel effects can occur in materials when structures are formed with sizes comparable to any one of many possible length scales, such as the de Broglie wavelength of electrons, or the optical wavelengths of high energy photons. In these cases quantum mechanical effects can dominate material properties. One example is quantum confinement where the electronic properties of solids are altered with great reductions in particle size. The optical properties of nanoparticles, e.g. fluorescence, also become a function of the particle diameter. This effect does not come into play by going from macrosocopic to micrometer dimensions, but becomes pronounced when the nanometer scale is reached.

In addition to optical and electronic properties, the novel mechanical properties of many nanomaterials is the subject of nanomechanics research. When added to a bulk material, nanoparticles can strongly influence the mechanical properties of the material, such as the stiffness or elasticity. For example, traditional polymers can be reinforced by nanoparticles (such as carbon nanotubes) resulting in novel materials which can be used as lightweight replacements for metals. Such composite materials may enable a weight reduction accompanied by an increase in stability and improved functionality.

Finally, nanostructured materials with small particle size such as zeolites, and asbestos, are used as catalysts in a wide range of critical industrial chemical reactions. The further development of such catalysts can form the basis of more efficient, environmentally friendly chemical processes.

The first observations and size measurements of nano-particles were made during the first decade of the 20th century. Zsigmondy made detailed studies of gold sols and other nanomaterials with sizes down to 10 nm and less. He published a book in 1914. He used an ultramicroscope that employs a dark field method for seeing particles with sizes much less than light wavelength.

There are traditional techniques developed during the 20th century in interface and colloid science for characterizing nanomaterials. These are widely used for first generation passive nanomaterials specified in the next section.

These methods include several different techniques for characterizing particle size distribution. This characterization is imperative because many materials that are expected to be nano-sized are actually aggregated in solutions. Some of methods are based on light scattering. Others apply ultrasound, such as ultrasound attenuation spectroscopy for testing concentrated nano-dispersions and microemulsions.

There is also a group of traditional techniques for characterizing surface charge or zeta potential of nano-particles in solutions. This information is required for proper system stabilization, preventing its aggregation or flocculation. These methods include microelectrophoresis, electrophoretic light scattering and electroacoustics. The last one, for instance colloid vibration current method is suitable for characterizing concentrated systems.

Uniformity

The chemical processing and synthesis of high performance technological components for the private, industrial and military sectors requires the use of high purity ceramics, polymers, glass-ceramics and material composites. In condensed bodies formed from fine powders, the irregular sizes and shapes of nanoparticles in a typical powder often lead to non-uniform packing morphologies that result in packing density variations in the powder compact.

Uncontrolled agglomeration of powders due to attractive van der Waals forces can also give rise to in microstructural inhomogeneities. Differential stresses that develop as a result of non-uniform drying shrinkage are directly related to the rate at which the solvent can be removed, and thus highly dependent upon the distribution of porosity. Such stresses have been associated with a plastic-to-brittle transition in consolidated bodies, and can yield to crack propagation in the unfired body if not relieved.

In addition, any fluctuations in packing density in the compact as it is prepared for the kiln are often amplified during the sintering process, yielding inhomogeneous densification. Some pores and other structural defects associated with density variations have been shown to play a detrimental role in the sintering process by growing and thus limiting end-point densities. Differential stresses arising from inhomogeneous densification have also been shown to result in the propagation of internal cracks, thus becoming the strength-controlling flaws.

It would therefore appear desirable to process a material in such a way that it is physically uniform with regard to the distribution of components and porosity, rather than using particle size distributions which will maximize the green density. The containment of a uniformly dispersed assembly of strongly interacting particles in suspension requires total control over particle-particle interactions. A number of dispersants such as ammonium citrate (aqueous) and imidazoline or oleyl alcohol (nonaqueous) are promising solutions as possible additives for enhanced dispersion and deagglomeration. Monodisperse nanoparticles and colloids provide this potential.

Monodisperse powders of colloidal silica, for example, may therefore be stabilized sufficiently to ensure a high degree of order in the colloidal crystal or polycrystalline colloidal solid which results from aggregation. The degree of order appears to be limited by the time and space allowed for longer-range correlations to be established. Such defective polycrystalline colloidal structures would appear to be the basic elements of sub-micrometer colloidal materials science, and, therefore, provide the first step in developing a more rigorous understanding of the mechanisms involved in microstructural evolution in high performance materials and components.

Nanomaterials in articles, patents, and products

The quantitative analysis of nanomaterials showed that nanoparticles, nanotubes, nanocrystalline materials, nanocomposites, and graphene have been mentioned in 400000, 181000, 144000, 140000, and 119000 ISI-indexed articles, respectively, by Sep 2018. As far as patents are concerned, nanoparticles, nanotubes, nanocomposites, graphene, and nanowires have been played a role in 45600, 32100, 12700, 12500, and 11800 patents, respectively. Monitoring approximately 7000 commercial nano-based products available on global markets revealed that the properties of around 2330 products have been enabled or enhanced aided by nanoparticles. Liposomes, nanofibers, nanocolloids, and aerogels were also of the most common nanomaterials in consumer products.

The European Union Observatory for Nanomaterials (EUON) has produced a database (NanoData) that provides information on specific patents, products, and research publications on nanomaterials.

Health and safety

World Health Organization guidelines

The World Health Organization (WHO) published a guideline on protecting workers from potential risk of manufactured nanomaterials at the end of 2017. WHO used a precautionary approach as one of its guiding principles. This means that exposure has to be reduced, despite uncertainty about the adverse health effects, when there are reasonable indications to do so. This is highlighted by recent scientific studies that demonstrate a capability of nanoparticles to cross cell barriers and interact with cellular structures. In addition, the hierarchy of controls was an important guiding principle. This means that when there is a choice between control measures, those measures that are closer to the root of the problem should always be preferred over measures that put a greater burden on workers, such as the use of personal protective equipment (PPE). WHO commissioned systematic reviews for all important issues to assess the current state of the science and to inform the recommendations according to the process set out in the WHO Handbook for guideline development. The recommendations were rated as "strong" or "conditional" depending on the quality of the scientific evidence, values and preferences, and costs related to the recommendation.

The WHO guidelines contain the following recommendations for safe handling of manufactured nanomaterials (MNMs)

A. Assess health hazards of MNMs

  1. WHO recommends assigning hazard classes to all MNMs according to the Globally Harmonized System (GHS) of Classification and Labelling of Chemicals for use in safety data sheets. For a limited number of MNMs this information is made available in the guidelines (strong recommendation, moderate-quality evidence).
  2. WHO recommends updating safety data sheets with MNM-specific hazard information or indicating which toxicological end-points did not have adequate testing available (strong recommendation, moderate-quality evidence).
  3. For the respirable fibres and granular biopersistent particles' groups, the GDG suggests using the available classification of MNMs for provisional classification of nanomaterials of the same group (conditional recommendation, low-quality evidence).

B. Assess exposure to MNMs

  1. WHO suggests assessing workers' exposure in workplaces with methods similar to those used for the proposed specific occupational exposure limit (OEL) value of the MNM (conditional recommendation, low-quality evidence).
  2. Because there are no specific regulatory OEL values for MNMs in workplaces, WHO suggests assessing whether workplace exposure exceeds a proposed OEL value for the MNM. A list of proposed OEL values is provided in an annex of the guidelines. The chosen OEL should be at least as protective as a legally mandated OEL for the bulk form of the material (conditional recommendation, low-quality evidence).
  3. If specific OELs for MNMs are not available in workplaces, WHO suggests a step-wise approach for inhalation exposure with, first an assessment of the potential for exposure; second, conducting basic exposure assessment and third, conducting a comprehensive exposure assessment such as those proposed by the Organisation for Economic Cooperation and Development (OECD) or Comité Européen de Normalisation (the European Committee for Standardization, CEN) (conditional recommendation, moderate quality evidence).
  4. For dermal exposure assessment, WHO found that there was insufficient evidence to recommend one method of dermal exposure assessment over another.

C. Control exposure to MNMs

  1. Based on a precautionary approach, WHO recommends focusing control of exposure on preventing inhalation exposure with the aim of reducing it as much as possible (strong recommendation, moderate-quality evidence).
  2. WHO recommends reduction of exposures to a range of MNMs that have been consistently measured in workplaces especially during cleaning and maintenance, collecting material from reaction vessels and feeding MNMs into the production process. In the absence of toxicological information, WHO recommends implementing the highest level of controls to prevent workers from any exposure. When more information is available, WHO recommends taking a more tailored approach (strong recommendation, moderate-quality evidence).
  3. WHO recommends taking control measures based on the principle of hierarchy of controls, meaning that the first control measure should be to eliminate the source of exposure before implementing control measures that are more dependent on worker involvement, with PPE being used only as a last resort. According to this principle, engineering controls should be used when there is a high level of inhalation exposure or when there is no, or very little, toxicological information available. In the absence of appropriate engineering controls PPE should be used, especially respiratory protection, as part of a respiratory protection programme that includes fit-testing (strong recommendation, moderate-quality evidence).
  4. WHO suggests preventing dermal exposure by occupational hygiene measures such as surface cleaning, and the use of appropriate gloves (conditional recommendation, low quality evidence).
  5. When assessment and measurement by a workplace safety expert is not available, WHO suggests using control banding for nanomaterials to select exposure control measures in the workplace. Owing to a lack of studies, WHO cannot recommend one method of control banding over another (conditional recommendation, very low-quality evidence).

For health surveillance WHO could not make a recommendation for targeted MNM-specific health surveillance programmes over existing health surveillance programmes that are already in use owing to the lack of evidence. WHO considers training of workers and worker involvement in health and safety issues to be best practice but could not recommend one form of training of workers over another, or one form of worker involvement over another, owing to the lack of studies available. It is expected that there will be considerable progress in validated measurement methods and risk assessment and WHO expects to update these guidelines in five years' time, in 2022.

Other guidance

Because nanotechnology is a recent development, the health and safety effects of exposures to nanomaterials, and what levels of exposure may be acceptable, are subjects of ongoing research. Of the possible hazards, inhalation exposure appears to present the most concern. Animal studies indicate that carbon nanotubes and carbon nanofibers can cause pulmonary effects including inflammation, granulomas, and pulmonary fibrosis, which were of similar or greater potency when compared with other known fibrogenic materials such as silica, asbestos, and ultrafine carbon black. Acute inhalation exposure of healthy animals to biodegradable inorganic nanomaterials have not demonstrated significant toxicity effects. Although the extent to which animal data may predict clinically significant lung effects in workers is not known, the toxicity seen in the short-term animal studies indicate a need for protective action for workers exposed to these nanomaterials, although no reports of actual adverse health effects in workers using or producing these nanomaterials were known as of 2013. Additional concerns include skin contact and ingestion exposure, and dust explosion hazards.

Elimination and substitution are the most desirable approaches to hazard control. While the nanomaterials themselves often cannot be eliminated or substituted with conventional materials, it may be possible to choose properties of the nanoparticle such as size, shape, functionalization, surface charge, solubility, agglomeration, and aggregation state to improve their toxicological properties while retaining the desired functionality. Handling procedures can also be improved, for example, using a nanomaterial slurry or suspension in a liquid solvent instead of a dry powder will reduce dust exposure. Engineering controls are physical changes to the workplace that isolate workers from hazards, mainly ventilation systems such as fume hoods, gloveboxes, biosafety cabinets, and vented balance enclosures. Administrative controls are changes to workers' behavior to mitigate a hazard, including training on best practices for safe handling, storage, and disposal of nanomaterials, proper awareness of hazards through labeling and warning signage, and encouraging a general safety culture. Personal protective equipment must be worn on the worker's body and is the least desirable option for controlling hazards. Personal protective equipment normally used for typical chemicals are also appropriate for nanomaterials, including long pants, long-sleeve shirts, and closed-toed shoes, and the use of safety gloves, goggles, and impervious laboratory coats. In some circumstances respirators may be used.

Exposure assessment is a set of methods used to monitor contaminant release and exposures to workers. These methods include personal sampling, where samplers are located in the personal breathing zone of the worker, often attached to a shirt collar to be as close to the nose and mouth as possible; and area/background sampling, where they are placed at static locations. The assessment should use both particle counters, which monitor the real-time quantity of nanomaterials and other background particles; and filter-based samples, which can be used to identify the nanomaterial, usually using electron microscopy and elemental analysis. As of 2016, quantitative occupational exposure limits have not been determined for most nanomaterials. The U.S. National Institute for Occupational Safety and Health has determined non-regulatory recommended exposure limits for carbon nanotubes, carbon nanofibers, and ultrafine titanium dioxide. Agencies and organizations from other countries, including the British Standards Institute and the Institute for Occupational Safety and Health in Germany, have established OELs for some nanomaterials, and some companies have supplied OELs for their products.


Nanoscale Diagnostics

Nanotechnology has been making headlines in the medical field, being responsible for biomedical imaging. The unique optical, magnetic and chemical properties of materials on the Nano scale has allowed the development of imaging probes with multi-functionality such as better contrast enhancement, better spatial information, controlled bio distribution, and multi-modal imaging across various scanning devices. These developments have had advantages such as being able to detect the location of tumors and inflammations, accurate assessment of disease progression, and personalized medicine.

  1. Silica Nanoparticles- Silica nanoparticles can be classified into solid, non-porous, and mesoporous. They have large surface are, hydrophilic surface, and chemical and physical stabilities. Silica nanoparticles are made by the use of the Stöber process. Which is the hydrolysis of silyl ethers such as tetraethyl silicate into silanols (Si-OH) using ammonia in a mixture of water and alcohol followed by the condensation of silanols into 50-2000 nm silica particles. The size of the particle can be controlled by varying the concentration of silyl ether and alcohol or the micro emulsion method. Mesoporous silica nanoparticles are synthesized by the sol-gel process. They have pores that range in diameter from 2nm to 50 nm. They are synthesized in a water-based solution in the presence of a base catalyst and a pore forming agent known as a surfactant. Surfactants are molecules that present the particularity to have a hydrophobic tail (alkyl chain) and a hydrophilic head (charged group, such as a quaternary amine for example). As these surfactants are added to a water-based solution, they will coordinate to form micelles with increasing concentration in order to stabilize the hydrophobic tails. Varying the pH of the solution and composition of the solvents, and the addition of certain swelling agents can control the pore size. Their hydrophilic surface is what makes silica nanoparticles so important and allows them to carry out functions such as drug and gene delivery, bio imaging and therapy. In order for this application to be successful, assorted surface functional groups are necessary and can be added either by the co-condensation process during preparation or by post surface modification. The high surface area of silica nanoparticles allows them to carry much larger amounts of the desired drug than through conventional methods like polymers and liposomes. It allows for site specific targeting, especially in the treatment of cancer. Once the particles have reached their destination, they can act as a reporter, release a compound, or be remotely heated to damage biological structures in close proximity.  Targeting is typically accomplished by modifying the surface of the nanoparticle with a chemical or biological compound. They accumulate at tumor sites through Enhanced Permeability Retention (EPR), where the tumor vessels accelerate the delivery of the nanoparticles directly into the tumor. The porous shell of the silica allows control over the rate at which the drug diffuses out of the nanoparticle. The shell can be modified to have an affinity for the drug, or even to be triggered by pH, heat, light, salts or other signaling molecules. Silica nanoparticles are also used in bio imaging because they can accommodate fluorescent/MRI/PET/ SPECT contrast agents and drug/DNA molecules to their adaptable surface and pores. This is made possible by using the silica nanoparticle as a vector for the expression of fluorescent proteins. Several different types of fluorescent probes, like cyanine dyes, methyl violegen, or semiconductor quantum dots can be conjugated to silica nanoparticles and delivered into specific cells or injected in vivo. Carrier molecule RGD peptide has been very useful of targeted in vivo imaging.
  2. Topically applied surface-enhanced resonance Raman ratiometric spectroscopy (TAS3RS)- TAS3RS is another technique that is starting to make advancement in the medical field. It is an imaging technique that uses Folate Receptors (FR) to detect tumor lesions as small as 370 micrometers. Folate Receptors are membrane bound surface proteins that bind folates and folate conjugates with high affinity. FR is frequently overexpressed in a number of human malignancies including cancer of the ovary, lung, kidney, breast, bladder, brain, and endometrium. Raman imaging is a type of spectroscopy that is used in chemistry to provide structural fingerprint by which molecules can be identified. It relies upon inelastic scattering of photons, which result in ultra high sensitivity. There was a study that was done where two different surface enhanced resonance Raman scattering were synthesized (SERRS). One of the SERRS was a “targeted nanoprobe functionalized with an anti-folate-receptor antibody (αFR-Ab) via a PEG-maleimide-succinimide and using the infrared dye IR780 as the Raman reporter, henceforth referred to as αFR-NP, and a nontargeted probe (nt-NP) coated with PEG5000-maleimide and featuring the IR140 infrared dye as the Raman reporter.” These two different mixtures were injected into tumor bearing mice and healthy controlled mice. The mice were imaged with Bioluminescence (BLI) signal that produces light energy within an organism’s body. They were also scanned with the Raman microscope in order to be able to see the correlation between the TAS3RS and the BLI map. TAS3RS did not show anything in the healthy mice, but was able to locate the tumor lesions in the infected mice and also able to create a TAS3RS map that could be used as guidance during surgery. TAS3RS shows to be promising in being able to combat ovarian and peritoneal cancer as it allows early detection with high accuracy. This technique can be administered locally, which is an advantage as it does not have to enter the bloodstream and therefore bypassing the toxicity concerns circulating nanoprobes.  This technique is also more photostable than fluorochromes because SERRS nanoparticles cannot form from biomolecules and therefore there would not be any false positives in TAS3RS as there is in fluorescence imaging.

Green vehicle

From Wikipedia, the free encyclopedia

The Toyota Prius is the world's top selling hybrid electric vehicle, with global sales of 3.7 million units through April 2016. Some owners use its identity to make an environmental statement.

A green vehicle, clean vehicle, eco-friendly vehicle or environmentally friendly vehicle is a road motor vehicle that produces less harmful impacts to the environment than comparable conventional internal combustion engine vehicles running on gasoline or diesel, or one that uses certain alternative fuels. Presently, in some countries the term is used for any vehicle complying or surpassing the more stringent European emission standards (such as Euro6), or California's zero-emissions vehicle standards (such as ZEV, ULEV, SULEV, PZEV), or the low-carbon fuel standards enacted in several countries.

Green vehicles can be powered by alternative fuels and advanced vehicle technologies and include hybrid electric vehicles, plug-in hybrid electric vehicles, battery electric vehicles, compressed-air vehicles, hydrogen and fuel-cell vehicles, neat ethanol vehicles, flexible-fuel vehicles, natural gas vehicles, clean diesel vehicles, and some sources also include vehicles using blends of biodiesel and ethanol fuel or gasohol. In November 2016, with an EPA-rated fuel economy of 136 miles per gallon gasoline equivalent (mpg-e) (1.7 L/100 km), the 2017 Hyundai Ioniq Electric became the most efficient EPA-certified vehicle considering all fuels and of all years, surpassing the 2014-2016 model year all-electric BMW i3.

Several authors also include conventional motor vehicles with high fuel economy, as they consider that increasing fuel economy is the most cost-effective way to improve energy efficiency and reduce carbon emissions in the transport sector in the short run. As part of their contribution to sustainable transport, these vehicles reduce air pollution and greenhouse gas emissions, and contribute to energy independence by reducing oil imports.

An environmental analysis extends beyond just the operating efficiency and emissions. A life-cycle assessment involves production and post-use considerations. A cradle-to-cradle design is more important than a focus on a single factor such as energy efficiency.

Energy efficiency

Cars with similar production of energy costs can obtain, during the life of the car (operational phase), large reductions in energy costs through several measures:

Comparison of several types of green car basic characteristics
(Values are overall for vehicles in current production and may differ between types)
Type of vehicle/
powertrain
Fuel economy
(mpg equivalent)
Range Production cost
for given range
Reduction in CO2
compared to conventional
Payback period
Conventional ICE 10–78 Long
(400–600 mi)
Low 0% -
Biodiesel 18–71 Long
(360–540 mi)
Low varies depending on biodiesel source -
All-electric 54–118 Shorter
(73–150 mi)
Luxury models
Medium
(160–300 mi)
High

Very high
varies depending
on energy source
-
Hydrogen fuel cell 80
Astronomical

Hybrid electric 30–60 380 mi Medium
5 years

Types

Comparison of energy efficiency between battery and hydrogen fuel-cell cars
 
Sales of both the Chevrolet Volt plug-in hybrid (top) and the Nissan Leaf all-electric car (bottom) began in December 2010.
 
PSA Peugeot Citroën Hybrid Air concept exhibited at the 2013 Geneva Motor Show

Green vehicles include vehicles types that function fully or partly on alternative energy sources other than fossil fuel or less carbon-intensive than gasoline or diesel.

Another option is the use of alternative fuel composition in conventional fossil fuel-based vehicles, making them function partially on renewable energy sources. Other approaches include personal rapid transit, a public transportation concept that offers automated, on-demand, non-stop transportation on a network of specially built guideways.

Electric and fuel cell-powered

Examples of vehicles with reduced petroleum consumption include electric cars, plug-in hybrids and fuel cell-powered hydrogen cars.

Electric cars are typically more efficient than fuel cell-powered vehicles on a Tank-to-wheel basis. They have better fuel economy than conventional internal combustion engine vehicles but are hampered by range or maximum distance attainable before discharging the battery. The electric car batteries are their main cost. They provide a 0% to 99.9% reduction in CO2 emissions compared to an ICE (gasoline, diesel) vehicle, depending on the source of electricity.

Hybrid electric vehicles

Hybrid cars may be partly fossil fuel (or biofuel) powered and partly electric or hydrogen-powered. Most combine an internal combustion engine with an electric engine, though other variations too exist. The internal combustion engine is often either a gasoline or Diesel engine (in rare cases a Stirling engine may even be used). They are more expensive to purchase but cost redemption is achieved in a period of about 5 years due to better fuel economy.

Compressed air cars, stirling vehicles, and others

Compressed air cars, stirling-powered vehicles, Liquid nitrogen vehicles are even less polluting than electrical vehicles, as the vehicle and its components can be made more environmentally friendly.

Solar car races are held on a regular basis in order to promote green vehicles and other "green technology". These sleek driver-only vehicles can travel long distances at highway speeds using only the electricity generated instantaneously from the sun.

Improving conventional cars

The Fiat Siena Tetrafuel 1.4 is a multifuel car designed to run as a flex-fuel on gasoline, or E20–E25 blend, or neat ethanol (E100); or to run as a bi-fuel with natural gas (CNG).

A conventional vehicle can become a greener vehicle by mixing in renewable fuels or using less carbon intensive fossil fuel. Typical gasoline-powered cars can tolerate up to 10% ethanol. Brazil manufactured cars that run on neat ethanol, though there were discontinued. Another available option is a flexible-fuel vehicle which allows any blend of gasoline and ethanol, up to 85% in North America and Europe, and up to 100% in Brazil. Another existing option is to convert a conventional gasoline-powered to allow the alternative use of CNG. Pakistan, Argentina, Brazil, Iran, India, Italy, and China have the largest fleets of natural gas vehicles in the world.

Diesel-powered vehicles can often transition completely to biodiesel, though the fuel is a very strong solvent, which can occasionally damage rubber seals in vehicles built before 1994. More commonly, however, biodiesel causes problems simply because it removes all of the built-up residue in an engine, clogging filters, unless care is taken when switching from dirty fossil-fuel derived diesel to bio-diesel. It is very effective at 'de-coking' the diesel engines combustion chambers and keeping them clean. Biodiesel is the lowest emission fuel available for diesel engines. Diesel engines are the most efficient car internal combustion engines. Biodiesel is the only fuel allowed in some North American national parks because spillages will completely bio-degrade within 21 days. Biodiesel and vegetable oil fuelled, diesel engined vehicles have been declared amongst the greenest in the US Tour de Sol competition.

This presents problems, as biofuels can use food resources in order to provide mechanical energy for vehicles. Many experts point to this as a reason for growing food prices, particularly US Bio-ethanol fuel production which has affected maize prices. In order to have a low environmental impact, biofuels should be made only from waste products, or from new sources like algae.

Electric Motor and Pedal Powered Vehicles

Multiple companies are offering and developing two, three, and four wheel vehicles combining the characteristics of a bicycle with electric motors. US Federal, State and Local laws do not clearly nor consistently classify these vehicles as bicycles, electric bicycles, motorcycles, electric motorcycles, mopeds, Neighborhood Electric Vehicle, motorised quadricycle or as a car. Some laws have limits on top speeds, power of the motors, range, etc. while others do not.

Other

  • Public transportation vehicles are not usually included in the green vehicle category, but Personal rapid transit (PRT) vehicles probably should be. All vehicles that are powered from the track have the advantage of potentially being able to use any source of electric energy, including sustainable ones, rather than requiring liquid fuels. They can also switch regenerative braking energy between vehicles and the electric grid rather than requiring energy storage on the vehicles. Also, they can potentially use the entire track area for solar collectors, not just the vehicle surface. The potential PRT energy efficiency is much higher than that which traditional automobiles can attain.
  • Solar vehicles are electric vehicles powered by solar energy obtained from solar panels on the surface (generally, the roof) of the vehicle. Photovoltaic (PV) cells convert the Sun's energy directly into electrical energy. Solar vehicles are not practical day-to-day transportation devices at present, but are primarily demonstration vehicles and engineering exercises, often sponsored by government agencies. However, some cities have begun offering solar-powered buses, including the Tindo in Adelaide, Australia.
  • Wind-powered electric vehicles primarily use wind-turbines installed at a strategic point of the vehicle, which are then converted into electric energy which causes the vehicle to propel.

Animal powered vehicles

Horse and carriage are just one type of animal propelled vehicle. Once a common form of transportation, they became far less common as cities grew and automobiles took their place. In dense cities, the waste produced by large numbers of transportation animals was a significant health problem. Oftentimes the food is produced for them using diesel powered tractors, and thus there is some environmental impact as a result of their use.

Human powered vehicles

Human-powered transport includes walking, bicycles, velomobiles, row boats, and other environmentally friendly ways of getting around. In addition to the health benefits of the exercise provided, they are far more environmentally friendly than most other options. The only downside is the speed limitations, and how far one can travel before getting exhausted.

Benefits of green vehicle use

Environmental

Vehicle emissions contribute to the increasing concentration of gases linked to climate change. In order of significance, the principal greenhouse gases associated with road transport are carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). Road transport is the third largest source of greenhouse gases emitted in the UK, and accounts for about 27% of total emissions, and 33% in the United States. Of the total greenhouse gas emissions from transport, over 85% are due to CO2 emissions from road vehicles. The transport sector is the fastest growing source of greenhouse gases.

Health

Vehicle pollutants have been linked to human ill health including the incidence of respiratory and cardiopulmonary disease and lung cancer. A 1998 report estimated that up to 24,000 people die prematurely each year in the UK as a direct result of air pollution. According to the World Health Organization, up to 13,000 deaths per year among children (aged 0–4 years) across Europe are directly attributable to outdoor pollution. The organization estimates that if pollution levels were returned to within EU limits, more than 5,000 of these lives could be saved each year.

Monetary

Hybrid taxi fleet operators in New York have also reported that reduced fuel consumption saves them thousands of dollars per year.

Criticism

A study by CNW Marketing Research suggested that the extra energy cost of manufacture, shipping, disposal, and the short lives of some of these types of vehicle (particularly gas-electric hybrid vehicles) outweighs any energy savings made by their using less petroleum during their useful lifespan. This type of argument is the long smokestack argument. Critics of the report note that the study prorated all of Toyota's hybrid research-and-development costs across the relatively small number of Priuses on the road, rather than using the incremental cost of building a vehicle; used109,000 miles (175,000 km) for the length of life of a Prius (Toyota offers a 150,000-mile (240,000 km) warranty on the Prius' hybrid components, including the battery), and calculated that a majority of a car's cradle-to-grave energy gets expended during the vehicle's production, not while it is driven. Norwegian Consumer Ombudsman official Bente Øverli stated that "Cars cannot do anything good for the environment except less damage than others." Based on this opinion, Norwegian law severely restricts the use of "greenwashing" to market automobiles, strongly prohibiting advertising a vehicle as being environmentally friendly, with large fines issued to violators.

Some studies try to compare environmental impact of electric and petrol vehicles over complete life cycle, including production, operation, and dismantling. In general, results differ vastly dependent on the region considered, due to difference in energy sources to produce electricity that fuels electric vehicles. When considering only CO2 emissions, it is noted that production of electric cars generate about twice as much emissions as that of internal combustion cars. However, emissions of CO2 during operation are much larger (on average) than during production. For electric cars, emissions caused during operation depend on energy sources used to produce electricity and thus vary a lot geographically. Studies suggest that when taking into account both production and operation, electric cars would cause more emissions in economies where production of electricity is not clean, e.g., it is mostly coal based. For this reason, some studies found that driving electric cars is less environmentally damaging in western US states than in eastern ones, where less electricity is produced using cleaner sources. Similarly, in countries like India, Australia or China, where large portion of electricity is produced by using coal, driving electric vehicles would cause larger environmental damage than driving petrol vehicles. When justifying use of electric cars over petrol cars, these kinds of studies do not provide sufficiently clear results. Environmental impact is calculated based on fuel mix used to produce electricity that powers electric cars. However, when a gas vehicle is replaced by an equivalent electric vehicle, additional power must be installed in electrical grid. This additional capacity would normally not be based on the same ratios of energy sources ("clean" versus fossil fuels) than the current capacity. Only when additional electricity production capacity installed to switch from petrol to electric vehicles would predominantly consist of clean sources, switch to electric vehicles could reduce environmental damage. Another common problem in methodology used in comparative studies is that it only focuses on specific kinds of environmental impact. While some studies focus only on emission of gas pollutants over life cycle or only on greenhouse gas emissions such as CO2, comparison should also account for other environmental impacts such as pollutants released otherwise during production and operation or ingredients that can not be effectively recycled. Examples include use of lighter high performing metals, lithium batteries and more rare metals in electric cars, which all have high environmental impact.

A study that also looked at factors other than energy consumption and carbon emissions has suggested that there is no such thing as an environmentally friendly car.

The use of vehicles with increased fuel efficiency is usually considered positive in the short term but criticism of any hydrocarbon-based personal transport remains. The Jevons paradox suggests that energy efficiency programs are often counter-productive, even increasing energy consumption in the long run. Many environmental researchers believe that sustainable transport may require a move away from hydrocarbon fuels and from our present automobile and highway paradigm.

National and international promotion

European Union

The European Union is promoting the marketing of greener cars via a combination of binding and non-binding measures. As of April 2010, 15 of the 27 member states of the European Union provide tax incentives for electrically chargeable vehicles and some alternative fuel vehicles, which includes all Western European countries except Italy and Luxembourg, plus the Czech Republic and Romania. The incentives consist of tax reductions and exemptions, as well as of bonus payments for buyers of electric cars, plug-in hybrids, hybrid electric vehicles and natural gas vehicles.

United States

The United States Environmental Protection Agency (EPA) is promoting the marketing of greener cars via the SmartWay program. The SmartWay and SmartWay Elite designation mean that a vehicle is a better environmental performer relative to other vehicles. This US EPA designation is arrived at by taking into account a vehicle's Air Pollution Score and Greenhouse Gas Score. Higher Air Pollution Scores indicate vehicles that emit lower amounts of pollutants that cause smog relative to other vehicles. Higher Greenhouse Gas Scores indicate vehicles that emit lower amounts of carbon dioxide and have improved fuel economy relative to other vehicles.

To earn the SmartWay designation, a vehicle must earn at least a 6 on the Air Pollution Score and at least a 6 on the Greenhouse Gas Score, but have a combined score of at least 13. SmartWay Elite is given to those vehicles that score 9 or better on both the Greenhouse Gas and Air Pollution Scores.

A Green Vehicle Marketing Alliance, in conjunction with the Oak Ridge National Laboratory (ONRL), periodically meets, and coordinates marketing efforts.

Progressive Insurance Automotive X Prize

The Progressive Insurance Automotive X PRIZE (PIAXP) is a set of competitions, programs and events, from the X PRIZE Foundation to "inspire a new generation of super-efficient vehicles that help break America's addiction to oil and stem the effects of climate change." Progressive Insurance is the title sponsor of the prize, the centerpiece of which is the Competition Division, within which a $10 million purse will be divided between the winners of three competitions.

The essence of each competition is to design, build and race super-efficient vehicles that will achieve 100 MPGe (2.35 liter/100 kilometer) and can be produced for the mass market. Within the Competition Division, there are two vehicle classes: Mainstream and Alternative. The mainstream class has a prize of $5 million. The alternate class has 2 separate prizes of $2.5 million, one for side-by-side seating and one for tandem seating.

Some of the competitors, such as Aptera and Tesla, are already taking deposits for 'green' vehicles from customers.

Genopolitics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Gen...