Search This Blog

Saturday, August 20, 2022

Distributed control system

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Distributed_control_system

A distributed control system (DCS) is a computerised control system for a process or plant usually with many control loops, in which autonomous controllers are distributed throughout the system, but there is no central operator supervisory control. This is in contrast to systems that use centralized controllers; either discrete controllers located at a central control room or within a central computer. The DCS concept increases reliability and reduces installation costs by localising control functions near the process plant, with remote monitoring and supervision.

Distributed control systems first emerged in large, high value, safety critical process industries, and were attractive because the DCS manufacturer would supply both the local control level and central supervisory equipment as an integrated package, thus reducing design integration risk. Today the functionality of Supervisory control and data acquisition (SCADA) and DCS systems are very similar, but DCS tends to be used on large continuous process plants where high reliability and security is important, and the control room is not geographically remote.

Structure

Functional levels of a manufacturing control operation

The key attribute of a DCS is its reliability due to the distribution of the control processing around nodes in the system. This mitigates a single processor failure. If a processor fails, it will only affect one section of the plant process, as opposed to a failure of a central computer which would affect the whole process. This distribution of computing power local to the field Input/Output (I/O) connection racks also ensures fast controller processing times by removing possible network and central processing delays.

The accompanying diagram is a general model which shows functional manufacturing levels using computerised control.

Referring to the diagram;

  • Level 0 contains the field devices such as flow and temperature sensors, and final control elements, such as control valves
  • Level 1 contains the industrialised Input/Output (I/O) modules, and their associated distributed electronic processors.
  • Level 2 contains the supervisory computers, which collect information from processor nodes on the system, and provide the operator control screens.
  • Level 3 is the production control level, which does not directly control the process, but is concerned with monitoring production and monitoring targets
  • Level 4 is the production scheduling level.

Levels 1 and 2 are the functional levels of a traditional DCS, in which all equipment are part of an integrated system from a single manufacturer.

Levels 3 and 4 are not strictly process control in the traditional sense, but where production control and scheduling takes place.

Technical points

Example of a continuous flow control loop. Signalling is by industry standard 4–20 mA current loops, and a "smart" valve positioner ensures the control valve operates correctly.

The processor nodes and operator graphical displays are connected over proprietary or industry standard networks, and network reliability is increased by dual redundancy cabling over diverse routes. This distributed topology also reduces the amount of field cabling by siting the I/O modules and their associated processors close to the process plant.

The processors receive information from input modules, process the information and decide control actions to be signalled by the output modules. The field inputs and outputs can be analog signals e.g. 4–20 mA DC current loop or two-state signals that switch either "on" or "off", such as relay contacts or a semiconductor switch.

DCSs are connected to sensors and actuators and use setpoint control to control the flow of material through the plant. A typical application is a PID controller fed by a flow meter and using a control valve as the final control element. The DCS sends the setpoint required by the process to the controller which instructs a valve to operate so that the process reaches and stays at the desired setpoint. (see 4–20 mA schematic for example).

Large oil refineries and chemical plants have several thousand I/O points and employ very large DCS. Processes are not limited to fluidic flow through pipes, however, and can also include things like paper machines and their associated quality controls, variable speed drives and motor control centers, cement kilns, mining operations, ore processing facilities, and many others.

DCSs in very high reliability applications can have dual redundant processors with "hot" switch over on fault, to enhance the reliability of the control system.

Although 4–20 mA has been the main field signalling standard, modern DCS systems can also support fieldbus digital protocols, such as Foundation Fieldbus, profibus, HART, modbus, PC Link, etc.

Modern DCSs also support neural networks and fuzzy logic applications. Recent research focuses on the synthesis of optimal distributed controllers, which optimizes a certain H-infinity or the H 2 control criterion.

Typical applications

Distributed control systems (DCS) are dedicated systems used in manufacturing processes that are continuous or batch-oriented.

Processes where a DCS might be used include:

History

A pre-DCS era central control room. Whilst the controls are centralised in one place, they are still discrete and not integrated into one system.
 
A DCS control room where plant information and controls are displayed on computer graphics screens. The operators are seated as they can view and control any part of the process from their screens, whilst retaining a plant overview.

Evolution of process control operations

Process control of large industrial plants has evolved through many stages. Initially, control would be from panels local to the process plant. However this required a large manpower resource to attend to these dispersed panels, and there was no overall view of the process. The next logical development was the transmission of all plant measurements to a permanently-manned central control room. Effectively this was the centralisation of all the localised panels, with the advantages of lower manning levels and easier overview of the process. Often the controllers were behind the control room panels, and all automatic and manual control outputs were transmitted back to plant. However, whilst providing a central control focus, this arrangement was inflexible as each control loop had its own controller hardware, and continual operator movement within the control room was required to view different parts of the process.

With the coming of electronic processors and graphic displays it became possible to replace these discrete controllers with computer-based algorithms, hosted on a network of input/output racks with their own control processors. These could be distributed around plant, and communicate with the graphic display in the control room or rooms. The distributed control system was born.

The introduction of DCSs allowed easy interconnection and re-configuration of plant controls such as cascaded loops and interlocks, and easy interfacing with other production computer systems. It enabled sophisticated alarm handling, introduced automatic event logging, removed the need for physical records such as chart recorders, allowed the control racks to be networked and thereby located locally to plant to reduce cabling runs, and provided high level overviews of plant status and production levels.

Origins

Early minicomputers were used in the control of industrial processes since the beginning of the 1960s. The IBM 1800, for example, was an early computer that had input/output hardware to gather process signals in a plant for conversion from field contact levels (for digital points) and analog signals to the digital domain.

The first industrial control computer system was built 1959 at the Texaco Port Arthur, Texas, refinery with an RW-300 of the Ramo-Wooldridge Company.

In 1975, both Yamatake-Honeywelland Japanese electrical engineering firm Yokogawa introduced their own independently produced DCS's - TDC 2000 and CENTUM systems, respectively. US-based Bristol also introduced their UCS 3000 universal controller in 1975. In 1978 Valmet introduced their own DCS system called Damatic (latest generation named Valmet DNA). In 1980, Bailey (now part of ABB) introduced the NETWORK 90 system, Fisher Controls (now part of Emerson Electric) introduced the PROVoX system, Fischer & Porter Company (now also part of ABB) introduced DCI-4000 (DCI stands for Distributed Control Instrumentation).

The DCS largely came about due to the increased availability of microcomputers and the proliferation of microprocessors in the world of process control. Computers had already been applied to process automation for some time in the form of both direct digital control (DDC) and setpoint control. In the early 1970s Taylor Instrument Company, (now part of ABB) developed the 1010 system, Foxboro the FOX1 system, Fisher Controls the DC2 system and Bailey Controls the 1055 systems. All of these were DDC applications implemented within minicomputers (DEC PDP-11, Varian Data Machines, MODCOMP etc.) and connected to proprietary Input/Output hardware. Sophisticated (for the time) continuous as well as batch control was implemented in this way. A more conservative approach was setpoint control, where process computers supervised clusters of analog process controllers. A workstation provided visibility into the process using text and crude character graphics. Availability of a fully functional graphical user interface was a way away.

Development

Central to the DCS model was the inclusion of control function blocks. Function blocks evolved from early, more primitive DDC concepts of "Table Driven" software. One of the first embodiments of object-oriented software, function blocks were self-contained "blocks" of code that emulated analog hardware control components and performed tasks that were essential to process control, such as execution of PID algorithms. Function blocks continue to endure as the predominant method of control for DCS suppliers, and are supported by key technologies such as Foundation Fieldbus today.

Midac Systems, of Sydney, Australia, developed an objected-oriented distributed direct digital control system in 1982. The central system ran 11 microprocessors sharing tasks and common memory and connected to a serial communication network of distributed controllers each running two Z80s. The system was installed at the University of Melbourne.

Digital communication between distributed controllers, workstations and other computing elements (peer to peer access) was one of the primary advantages of the DCS. Attention was duly focused on the networks, which provided the all-important lines of communication that, for process applications, had to incorporate specific functions such as determinism and redundancy. As a result, many suppliers embraced the IEEE 802.4 networking standard. This decision set the stage for the wave of migrations necessary when information technology moved into process automation and IEEE 802.3 rather than IEEE 802.4 prevailed as the control LAN.

The network-centric era of the 1980s

In the 1980s, users began to look at DCSs as more than just basic process control. A very early example of a Direct Digital Control DCS was completed by the Australian business Midac in 1981–82 using R-Tec Australian designed hardware. The system installed at the University of Melbourne used a serial communications network, connecting campus buildings back to a control room "front end". Each remote unit ran two Z80 microprocessors, while the front end ran eleven Z80s in a parallel processing configuration with paged common memory to share tasks and that could run up to 20,000 concurrent control objects.

It was believed that if openness could be achieved and greater amounts of data could be shared throughout the enterprise that even greater things could be achieved. The first attempts to increase the openness of DCSs resulted in the adoption of the predominant operating system of the day: UNIX. UNIX and its companion networking technology TCP-IP were developed by the US Department of Defense for openness, which was precisely the issue the process industries were looking to resolve.

As a result, suppliers also began to adopt Ethernet-based networks with their own proprietary protocol layers. The full TCP/IP standard was not implemented, but the use of Ethernet made it possible to implement the first instances of object management and global data access technology. The 1980s also witnessed the first PLCs integrated into the DCS infrastructure. Plant-wide historians also emerged to capitalize on the extended reach of automation systems. The first DCS supplier to adopt UNIX and Ethernet networking technologies was Foxboro, who introduced the I/A Series system in 1987.

The application-centric era of the 1990s

The drive toward openness in the 1980s gained momentum through the 1990s with the increased adoption of commercial off-the-shelf (COTS) components and IT standards. Probably the biggest transition undertaken during this time was the move from the UNIX operating system to the Windows environment. While the realm of the real time operating system (RTOS) for control applications remains dominated by real time commercial variants of UNIX or proprietary operating systems, everything above real-time control has made the transition to Windows.

The introduction of Microsoft at the desktop and server layers resulted in the development of technologies such as OLE for process control (OPC), which is now a de facto industry connectivity standard. Internet technology also began to make its mark in automation and the world, with most DCS HMI supporting Internet connectivity. The 1990s were also known for the "Fieldbus Wars", where rival organizations competed to define what would become the IEC fieldbus standard for digital communication with field instrumentation instead of 4–20 milliamp analog communications. The first fieldbus installations occurred in the 1990s. Towards the end of the decade, the technology began to develop significant momentum, with the market consolidated around Ethernet I/P, Foundation Fieldbus and Profibus PA for process automation applications. Some suppliers built new systems from the ground up to maximize functionality with fieldbus, such as Rockwell PlantPAx System, Honeywell with Experion & Plantscape SCADA systems, ABB with System 800xA, Emerson Process Management with the Emerson Process Management DeltaV control system, Siemens with the SPPA-T3000 or Simatic PCS 7, Forbes Marshall with the Microcon+ control system and Azbil Corporation with the Harmonas-DEO system. Fieldbus technics have been used to integrate machine, drives, quality and condition monitoring applications to one DCS with Valmet DNA system.

The impact of COTS, however, was most pronounced at the hardware layer. For years, the primary business of DCS suppliers had been the supply of large amounts of hardware, particularly I/O and controllers. The initial proliferation of DCSs required the installation of prodigious amounts of this hardware, most of it manufactured from the bottom up by DCS suppliers. Standard computer components from manufacturers such as Intel and Motorola, however, made it cost prohibitive for DCS suppliers to continue making their own components, workstations, and networking hardware.

As the suppliers made the transition to COTS components, they also discovered that the hardware market was shrinking fast. COTS not only resulted in lower manufacturing costs for the supplier, but also steadily decreasing prices for the end users, who were also becoming increasingly vocal over what they perceived to be unduly high hardware costs. Some suppliers that were previously stronger in the PLC business, such as Rockwell Automation and Siemens, were able to leverage their expertise in manufacturing control hardware to enter the DCS marketplace with cost effective offerings, while the stability/scalability/reliability and functionality of these emerging systems are still improving. The traditional DCS suppliers introduced new generation DCS System based on the latest Communication and IEC Standards, which resulting in a trend of combining the traditional concepts/functionalities for PLC and DCS into a one for all solution—named "Process Automation System" (PAS). The gaps among the various systems remain at the areas such as: the database integrity, pre-engineering functionality, system maturity, communication transparency and reliability. While it is expected the cost ratio is relatively the same (the more powerful the systems are, the more expensive they will be), the reality of the automation business is often operating strategically case by case. The current next evolution step is called Collaborative Process Automation Systems.

To compound the issue, suppliers were also realizing that the hardware market was becoming saturated. The life cycle of hardware components such as I/O and wiring is also typically in the range of 15 to over 20 years, making for a challenging replacement market. Many of the older systems that were installed in the 1970s and 1980s are still in use today, and there is a considerable installed base of systems in the market that are approaching the end of their useful life. Developed industrial economies in North America, Europe, and Japan already had many thousands of DCSs installed, and with few if any new plants being built, the market for new hardware was shifting rapidly to smaller, albeit faster growing regions such as China, Latin America, and Eastern Europe.

Because of the shrinking hardware business, suppliers began to make the challenging transition from a hardware-based business model to one based on software and value-added services. It is a transition that is still being made today. The applications portfolio offered by suppliers expanded considerably in the '90s to include areas such as production management, model-based control, real-time optimization, plant asset management (PAM), Real-time performance management (RPM) tools, alarm management, and many others. To obtain the true value from these applications, however, often requires a considerable service content, which the suppliers also provide.

Modern systems (2010 onwards)

The latest developments in DCS include the following new technologies:

  1. Wireless systems and protocols 
  2. Remote transmission, logging and data historian
  3. Mobile interfaces and controls
  4. Embedded web-servers

Increasingly, and ironically, DCS are becoming centralised at plant level, with the ability to log into the remote equipment. This enables operator to control both at enterprise level ( macro ) and at the equipment level (micro), both within and outside the plant, because the importance of the physical location drops due to interconnectivity primarily thanks to wireless and remote access.

The more wireless protocols are developed and refined, the more they are included in DCS. DCS controllers are now often equipped with embedded servers and provide on-the-go web access. Whether DCS will lead Industrial Internet of Things (IIOT) or borrow key elements from remains to be seen.

Many vendors provide the option of a mobile HMI, ready for both Android and iOS. With these interfaces, the threat of security breaches and possible damage to plant and process are now very real.

Thunderstorm

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Thunderstorm

Thunderstorm
FoggDam-NT.jpg
A typical thunderstorm over a field.
Area of occurrencePrimarily tropical and also temperate regions.
SeasonMost common in spring and summer. (in temperate regions)
Common in wet season. (in tropical regions)
EffectDepends on the storm, may involve rain, hail, and/or high winds. May cause flooding or fires.

A thunderstorm, also known as an electrical storm or a lightning storm, is a storm characterized by the presence of lightning and its acoustic effect on the Earth's atmosphere, known as thunder. Relatively weak thunderstorms are sometimes called thundershowers. Thunderstorms occur in a type of cloud known as a cumulonimbus. They are usually accompanied by strong winds and often produce heavy rain and sometimes snow, sleet, or hail, but some thunderstorms produce little precipitation or no precipitation at all. Thunderstorms may line up in a series or become a rainband, known as a squall line. Strong or severe thunderstorms include some of the most dangerous weather phenomena, including large hail, strong winds, and tornadoes. Some of the most persistent severe thunderstorms, known as supercells, rotate as do cyclones. While most thunderstorms move with the mean wind flow through the layer of the troposphere that they occupy, vertical wind shear sometimes causes a deviation in their course at a right angle to the wind shear direction.

Thunderstorms result from the rapid upward movement of warm, moist air, sometimes along a front. However, some kind of cloud forcing, whether it is a front, shortwave trough, or another system is needed for the air to rapidly accelerate upward. As the warm, moist air moves upward, it cools, condenses, and forms a cumulonimbus cloud that can reach heights of over 20 kilometres (12 mi). As the rising air reaches its dew point temperature, water vapor condenses into water droplets or ice, reducing pressure locally within the thunderstorm cell. Any precipitation falls the long distance through the clouds towards the Earth's surface. As the droplets fall, they collide with other droplets and become larger. The falling droplets create a downdraft as it pulls cold air with it, and this cold air spreads out at the Earth's surface, occasionally causing strong winds that are commonly associated with thunderstorms.

Thunderstorms can form and develop in any geographic location but most frequently within the mid-latitude, where warm, moist air from tropical latitudes collides with cooler air from polar latitudes. Thunderstorms are responsible for the development and formation of many severe weather phenomena. Thunderstorms, and the phenomena that occur along with them, pose great hazards. Damage that results from thunderstorms is mainly inflicted by downburst winds, large hailstones, and flash flooding caused by heavy precipitation. Stronger thunderstorm cells are capable of producing tornadoes and waterspouts.

There are three types of thunderstorms: single-cell, multi-cell, and supercell. Supercell thunderstorms are the strongest and most severe. Mesoscale convective systems formed by favorable vertical wind shear within the tropics and subtropics can be responsible for the development of hurricanes. Dry thunderstorms, with no precipitation, can cause the outbreak of wildfires from the heat generated from the cloud-to-ground lightning that accompanies them. Several means are used to study thunderstorms: weather radar, weather stations, and video photography. Past civilizations held various myths concerning thunderstorms and their development as late as the 18th century. Beyond the Earth's atmosphere, thunderstorms have also been observed on the planets of Jupiter, Saturn, Neptune, and, probably, Venus.

Life cycle

Stages of a thunderstorm's life.
 

Warm air has a lower density than cool air, so warmer air rises upwards and cooler air will settle at the bottom (this effect can be seen with a hot air balloon). Clouds form as relatively warmer air, carrying moisture, rises within cooler air. The moist air rises, and, as it does so, it cools and some of the water vapor in that rising air condenses. When the moisture condenses, it releases energy known as latent heat of condensation, which allows the rising packet of air to cool less than the cooler surrounding air continuing the cloud's ascension. If enough instability is present in the atmosphere, this process will continue long enough for cumulonimbus clouds to form and produce lightning and thunder. Meteorological indices such as convective available potential energy (CAPE) and the lifted index can be used to assist in determining potential upward vertical development of clouds. Generally, thunderstorms require three conditions to form:

  1. Moisture
  2. An unstable airmass
  3. A lifting force (heat)

All thunderstorms, regardless of type, go through three stages: the developing stage, the mature stage, and the dissipation stage. The average thunderstorm has a 24 km (15 mi) diameter. Depending on the conditions present in the atmosphere, each of these three stages take an average of 30 minutes.

Developing stage

A cumulus congestus' transformation into a mature cumulonimbus incus.

The first stage of a thunderstorm is the cumulus stage or developing stage. During this stage, masses of moisture are lifted upwards into the atmosphere. The trigger for this lift can be solar illumination, where the heating of the ground produces thermals, or where two winds converge forcing air upwards, or where winds blow over terrain of increasing elevation. The moisture carried upward cools into liquid drops of water due to lower temperatures at high altitude, which appear as cumulus clouds. As the water vapor condenses into liquid, latent heat is released, which warms the air, causing it to become less dense than the surrounding, drier air. The air tends to rise in an updraft through the process of convection (hence the term convective precipitation). This process creates a low-pressure zone within and beneath the forming thunderstorm. In a typical thunderstorm, approximately 500 million kilograms of water vapor are lifted into the Earth's atmosphere.

Mature stage

Anvil-shaped thundercloud in the mature stage

In the mature stage of a thunderstorm, the warmed air continues to rise until it reaches an area of warmer air and can rise no farther. Often this 'cap' is the tropopause. The air is instead forced to spread out, giving the storm a characteristic anvil shape. The resulting cloud is called cumulonimbus incus. The water droplets coalesce into larger and heavier droplets and freeze to become ice particles. As these fall, they melt to become rain. If the updraft is strong enough, the droplets are held aloft long enough to become so large that they do not melt completely but fall as hail. While updrafts are still present, the falling rain drags the surrounding air with it, creating downdrafts as well. The simultaneous presence of both an updraft and a downdraft marks the mature stage of the storm and produces cumulonimbus clouds. During this stage, considerable internal turbulence can occur, which manifests as strong winds, severe lightning, and even tornadoes.

Typically, if there is little wind shear, the storm will rapidly enter the dissipating stage and 'rain itself out', but, if there is sufficient change in wind speed or direction, the downdraft will be separated from the updraft, and the storm may become a supercell, where the mature stage can sustain itself for several hours.

Dissipating stage

A thunderstorm in an environment with no winds to shear the storm or blow the anvil in any one direction
 
Flanking line in front of a dissipating cumulonimbus incus cloud

In the dissipation stage, the thunderstorm is dominated by the downdraft. If atmospheric conditions do not support super cellular development, this stage occurs rather quickly, approximately 20–30 minutes into the life of the thunderstorm. The downdraft will push down out of the thunderstorm, hit the ground and spread out. This phenomenon is known as a downburst. The cool air carried to the ground by the downdraft cuts off the inflow of the thunderstorm, the updraft disappears and the thunderstorm will dissipate. Thunderstorms in an atmosphere with virtually no vertical wind shear weaken as soon as they send out an outflow boundary in all directions, which then quickly cuts off its inflow of relatively warm, moist air, and kills the thunderstorm's further growth. The downdraft hitting the ground creates an outflow boundary. This can cause downbursts, a potential hazardous condition for aircraft to fly through, as a substantial change in wind speed and direction occurs, resulting in a decrease of airspeed and the subsequent reduction in lift for the aircraft. The stronger the outflow boundary is, the stronger the resultant vertical wind shear becomes.

Classification

Conditions favorable for thunderstorm types and complexes

There are four main types of thunderstorms: single-cell, multi-cell, squall line (also called multi-cell line) and supercell. Which type forms depends on the instability and relative wind conditions at different layers of the atmosphere ("wind shear"). Single-cell thunderstorms form in environments of low vertical wind shear and last only 20–30 minutes.

Organized thunderstorms and thunderstorm clusters/lines can have longer life cycles as they form in environments of significant vertical wind shear, normally greater than 25 knots (13 m/s) in the lowest 6 kilometres (3.7 mi) of the troposphere, which aids the development of stronger updrafts as well as various forms of severe weather. The supercell is the strongest of the thunderstorms, most commonly associated with large hail, high winds, and tornado formation. Precipitable water values of greater than 31.8 millimetres (1.25 in) favor the development of organized thunderstorm complexes. Those with heavy rainfall normally have precipitable water values greater than 36.9 millimetres (1.45 in). Upstream values of CAPE of greater than 800 J/kg are usually required for the development of organized convection.

Single-cell

A single-cell thunderstorm over Wagga Wagga.

This term technically applies to a single thunderstorm with one main updraft. Also known as air-mass thunderstorms, these are the typical summer thunderstorms in many temperate locales. They also occur in the cool unstable air that often follows the passage of a cold front from the sea during winter. Within a cluster of thunderstorms, the term "cell" refers to each separate principal updraft. Thunderstorm cells occasionally form in isolation, as the occurrence of one thunderstorm can develop an outflow boundary that sets up new thunderstorm development. Such storms are rarely severe and are a result of local atmospheric instability; hence the term "air mass thunderstorm". When such storms have a brief period of severe weather associated with them, it is known as a pulse severe storm. Pulse severe storms are poorly organized and occur randomly in time and space, making them difficult to forecast. Single-cell thunderstorms normally last 20–30 minutes.

Multi-cell clusters

A group of thunderstorms over Brazil photographed by the Space Shuttle Challenger.

This is the most common type of thunderstorm development. Mature thunderstorms are found near the center of the cluster, while dissipating thunderstorms exist on their downwind side. Multicell storms form as clusters of storms but may then evolve into one or more squall lines. While each cell of the cluster may only last 20 minutes, the cluster itself may persist for hours at a time. They often arise from convective updrafts in or near mountain ranges and linear weather boundaries, such as strong cold fronts or troughs of low pressure. These type of storms are stronger than the single-cell storm, yet much weaker than the supercell storm. Hazards with the multicell cluster include moderate-sized hail, flash flooding, and weak tornadoes.

Multicell lines

A squall line is an elongated line of severe thunderstorms that can form along or ahead of a cold front. In the early 20th century, the term was used as a synonym for cold front. The squall line contains heavy precipitation, hail, frequent lightning, strong straight line winds, and possibly tornadoes and waterspouts. Severe weather in the form of strong straight-line winds can be expected in areas where the squall line itself is in the shape of a bow echo, within the portion of the line that bows out the most. Tornadoes can be found along waves within a line echo wave pattern, or LEWP, where mesoscale low pressure areas are present. Some bow echoes in the summer are called derechos, and move quite fast through large sections of territory. On the back edge of the rain shield associated with mature squall lines, a wake low can form, which is a mesoscale low pressure area that forms behind the mesoscale high pressure system normally present under the rain canopy, which are sometimes associated with a heat burst. This kind of storm is also known as "Wind of the Stony Lake" (Traditional Chinese:石湖風 – shi2 hu2 feng1, Simplified Chinese: 石湖风) in southern China.

Supercells

A supercell thunderstorm over Chaparral, New Mexico.
 
The setting sun illuminates the top of a classic anvil-shaped thunderstorm cloud in eastern Nebraska, United States.

Supercell storms are large, usually severe, quasi-steady-state storms that form in an environment where wind speed or wind direction varies with height ("wind shear"), and they have separate downdrafts and updrafts (i.e., where its associated precipitation is not falling through the updraft) with a strong, rotating updraft (a "mesocyclone"). These storms normally have such powerful updrafts that the top of the supercell storm cloud (or anvil) can break through the troposphere and reach into the lower levels of the stratosphere. Supercell storms can be 24 kilometres (15 mi) wide. Research has shown that at least 90 percent of supercells cause severe weather. These storms can produce destructive tornadoes, extremely large hailstones (10 centimetres or 4 inches diameter), straight-line winds in excess of 130 km/h (81 mph), and flash floods. In fact, research has shown that most tornadoes occur from this type of thunderstorm. Supercells are generally the strongest type of thunderstorm.

Severe thunderstorms

In the United States, a thunderstorm is classed as severe if winds reach at least 93 kilometres per hour (58 mph), hail is 25 millimetres (1 in) in diameter or larger, or if funnel clouds or tornadoes are reported. Although a funnel cloud or tornado indicates a severe thunderstorm, a tornado warning is issued in place of a severe thunderstorm warning. A severe thunderstorm warning is issued if a thunderstorm becomes severe, or will soon turn severe. In Canada, a rainfall rate greater than 50 millimetres (2 in) in one hour, or 75 millimetres (3 in) in three hours, is also used to indicate severe thunderstorms. Severe thunderstorms can occur from any type of storm cell. However, multicell, supercell, and squall lines represent the most common forms of thunderstorms that produce severe weather.

Mesoscale convective systems

MCC moving through the Great Lakes region: on June 13, 2022 at 18:45 UTC

A mesoscale convective system (MCS) is a complex of thunderstorms that becomes organized on a scale larger than the individual thunderstorms but smaller than extratropical cyclones, and normally persists for several hours or more. A mesoscale convective system's overall cloud and precipitation pattern may be round or linear in shape, and include weather systems such as tropical cyclones, squall lines, lake-effect snow events, polar lows, and mesoscale convective complexes (MCCs), and they generally form near weather fronts. Most mesoscale convective systems develop overnight and continue their lifespan through the next day. They tend to form when the surface temperature varies by more than 5 °C (9 °F) between day and night. The type that forms during the warm season over land has been noted across North America, Europe, and Asia, with a maximum in activity noted during the late afternoon and evening hours.

Forms of MCS that develop in the tropics are found in use either the Intertropical Convergence Zone or monsoon troughs, generally within the warm season between spring and fall. More intense systems form over land than over water. One exception is that of lake-effect snow bands, which form due to cold air moving across relatively warm bodies of water, and occurs from fall through spring. Polar lows are a second special class of MCS. They form at high latitudes during the cold season. Once the parent MCS dies, later thunderstorm development can occur in connection with its remnant mesoscale convective vortex (MCV). Mesoscale convective systems are important to the United States rainfall climatology over the Great Plains since they bring the region about half of their annual warm season rainfall.

Motion

Thunderstorm line viewed in reflectivity (dBZ) on a plan position indicator radar display

The two major ways thunderstorms move are via advection of the wind and propagation along outflow boundaries towards sources of greater heat and moisture. Many thunderstorms move with the mean wind speed through the Earth's troposphere, the lowest 8 kilometres (5.0 mi) of the Earth's atmosphere. Weaker thunderstorms are steered by winds closer to the Earth's surface than stronger thunderstorms, as the weaker thunderstorms are not as tall. Organized, long-lived thunderstorm cells and complexes move at a right angle to the direction of the vertical wind shear vector. If the gust front, or leading edge of the outflow boundary, races ahead of the thunderstorm, its motion will accelerate in tandem. This is more of a factor with thunderstorms with heavy precipitation (HP) than with thunderstorms with low precipitation (LP). When thunderstorms merge, which is most likely when numerous thunderstorms exist in proximity to each other, the motion of the stronger thunderstorm normally dictates the future motion of the merged cell. The stronger the mean wind, the less likely other processes will be involved in storm motion. On weather radar, storms are tracked by using a prominent feature and tracking it from scan to scan.

Back-building thunderstorm

A back-building thunderstorm, commonly referred to as a training thunderstorm, is a thunderstorm in which new development takes place on the upwind side (usually the west or southwest side in the Northern Hemisphere), such that the storm seems to remain stationary or propagate in a backward direction. Though the storm often appears stationary on radar, or even moving upwind, this is an illusion. The storm is really a multi-cell storm with new, more vigorous cells that form on the upwind side, replacing older cells that continue to drift downwind. When this happens, catastrophic flooding is possible. In Rapid City, South Dakota, in 1972, an unusual alignment of winds at various levels of the atmosphere combined to produce a continuously training set of cells that dropped an enormous quantity of rain upon the same area, resulting in devastating flash flooding. A similar event occurred in Boscastle, England, on 16 August 2004, and over Chennai on 1 December 2015.

Hazards

Each year, many people are killed or seriously injured by severe thunderstorms despite the advance warning. While severe thunderstorms are most common in the spring and summer, they can occur at just about any time of the year.

Cloud-to-ground lightning

A return stroke, cloud-to-ground lightning strike during a thunderstorm.

Cloud-to-ground lightning frequently occurs within the phenomena of thunderstorms and have numerous hazards towards landscapes and populations. One of the more significant hazards lightning can pose is the wildfires they are capable of igniting. Under a regime of low precipitation (LP) thunderstorms, where little precipitation is present, rainfall cannot prevent fires from starting when vegetation is dry as lightning produces a concentrated amount of extreme heat. Direct damage caused by lightning strikes occurs on occasion. In areas with a high frequency for cloud-to-ground lightning, like Florida, lightning causes several fatalities per year, most commonly to people working outside.

Acid rain is also a frequent risk produced by lightning. Distilled water has a neutral pH of 7. "Clean" or unpolluted rain has a slightly acidic pH of about 5.2, because carbon dioxide and water in the air react together to form carbonic acid, a weak acid (pH 5.6 in distilled water), but unpolluted rain also contains other chemicals. Nitric oxide present during thunderstorm phenomena, caused by the oxidation of atmospheric nitrogen, can result in the production of acid rain, if nitric oxide forms compounds with the water molecules in precipitation, thus creating acid rain. Acid rain can damage infrastructures containing calcite or certain other solid chemical compounds. In ecosystems, acid rain can dissolve plant tissues of vegetations and increase acidification process in bodies of water and in soil, resulting in deaths of marine and terrestrial organisms.

Hail

Hailstorm in Bogotá, Colombia.

Any thunderstorm that produces hail that reaches the ground is known as a hailstorm. Thunderclouds that are capable of producing hailstones are often seen obtaining green coloration. Hail is more common along mountain ranges because mountains force horizontal winds upwards (known as orographic lifting), thereby intensifying the updrafts within thunderstorms and making hail more likely. One of the more common regions for large hail is across mountainous northern India, which reported one of the highest hail-related death tolls on record in 1888. China also experiences significant hailstorms. Across Europe, Croatia experiences frequent occurrences of hail.

In North America, hail is most common in the area where Colorado, Nebraska, and Wyoming meet, known as "Hail Alley". Hail in this region occurs between the months of March and October during the afternoon and evening hours, with the bulk of the occurrences from May through September. Cheyenne, Wyoming is North America's most hail-prone city with an average of nine to ten hailstorms per season. In South America, areas prone to hail are cities like Bogotá, Colombia.

Hail can cause serious damage, notably to automobiles, aircraft, skylights, glass-roofed structures, livestock, and most commonly, farmers' crops. Hail is one of the most significant thunderstorm hazards to aircraft. When hail stones exceed 13 millimetres (0.5 in) in diameter, planes can be seriously damaged within seconds. The hailstones accumulating on the ground can also be hazardous to landing aircraft. Wheat, corn, soybeans, and tobacco are the most sensitive crops to hail damage. Hail is one of Canada's most costly hazards. Hailstorms have been the cause of costly and deadly events throughout history. One of the earliest recorded incidents occurred around the 9th century in Roopkund, Uttarakhand, India. The largest hailstone in terms of maximum circumference and length ever recorded in the United States fell in 2003 in Aurora, Nebraska, United States.

Tornadoes and waterspouts

In June 2007, the town of Elie, Manitoba was struck by an F5 tornado.
 

A tornado is a violent, rotating column of air in contact with both the surface of the earth and a cumulonimbus cloud (otherwise known as a thundercloud) or, in rare cases, the base of a cumulus cloud. Tornadoes come in many sizes but are typically in the form of a visible condensation funnel, whose narrow end touches the earth and is often encircled by a cloud of debris and dust. Most tornadoes have wind speeds between 40 and 110 mph (64 and 177 km/h), are approximately 75 metres (246 ft) across, and travel several kilometers (a few miles) before dissipating. Some attain wind speeds of more than 300 mph (480 km/h), stretch more than 1,600 metres (1 mi) across, and stay on the ground for more than 100 kilometres (dozens of miles).

The Fujita scale and the Enhanced Fujita Scale rate tornadoes by damage caused. An EF0 tornado, the weakest category, damages trees but does not cause significant damage to structures. An EF5 tornado, the strongest category, rips buildings off their foundations and can deform large skyscrapers. The similar TORRO scale ranges from a T0 for extremely weak tornadoes to T11 for the most powerful known tornadoes. Doppler radar data, photogrammetry, and ground swirl patterns (cycloidal marks) may also be analyzed to determine intensity and award a rating.

Formation of numerous waterspouts in the Great Lakes region. (North America)


Waterspouts have similar characteristics as tornadoes, characterized by a spiraling funnel-shaped wind current that form over bodies of water, connecting to large cumulonimbus clouds. Waterspouts are generally classified as forms of tornadoes, or more specifically, non-supercelled tornadoes that develop over large bodies of water. These spiralling columns of air frequently develop within tropical areas close to the equator, but are less common within areas of high latitude.

Flash flood

A flash flood caused by a severe thunderstorm

Flash flooding is the process where a landscape, most notably an urban environment, is subjected to rapid floods. These rapid floods occur more quickly and are more localized than seasonal river flooding or areal flooding and are frequently (though not always) associated with intense rainfall. Flash flooding can frequently occur in slow-moving thunderstorms and is usually caused by the heavy liquid precipitation that accompanies it. Flash floods are most common in densely populated urban environments, where few plants and bodies of water are present to absorb and contain the extra water. Flash flooding can be hazardous to small infrastructure, such as bridges, and weakly constructed buildings. Plants and crops in agricultural areas can be destroyed and devastated by the force of raging water. Automobiles parked within affected areas can also be displaced. Soil erosion can occur as well, exposing risks of landslide phenomena.

Downburst

Trees uprooted or displaced by the force of a downburst wind in northwest Monroe County, Wisconsin.

Downburst winds can produce numerous hazards to landscapes experiencing thunderstorms. Downburst winds are generally very powerful, and are often mistaken for wind speeds produced by tornadoes, due to the concentrated amount of force exerted by their straight-horizontal characteristic. Downburst winds can be hazardous to unstable, incomplete, or weakly constructed infrastructures and buildings. Agricultural crops, and other plants in nearby environments can be uprooted and damaged. Aircraft engaged in takeoff or landing can crash. Automobiles can be displaced by the force exerted by downburst winds. Downburst winds are usually formed in areas when high pressure air systems of downdrafts begin to sink and displace the air masses below it, due to their higher density. When these downdrafts reach the surface, they spread out and turn into the destructive straight-horizontal winds.

Thunderstorm asthma

Thunderstorm asthma is the triggering of an asthma attack by environmental conditions directly caused by a local thunderstorm. During a thunderstorm, pollen grains can absorb moisture and then burst into much smaller fragments with these fragments being easily dispersed by wind. While larger pollen grains are usually filtered by hairs in the nose, the smaller pollen fragments are able to pass through and enter the lungs, triggering the asthma attack.

Safety precautions

Most thunderstorms come and go fairly uneventfully; however, any thunderstorm can become severe, and all thunderstorms, by definition, present the danger of lightning. Thunderstorm preparedness and safety refers to taking steps before, during, and after a thunderstorm to minimize injury and damage.

Preparedness

Preparedness refers to precautions that should be taken before a thunderstorm. Some preparedness takes the form of general readiness (as a thunderstorm can occur at any time of the day or year). Preparing a family emergency plan, for example, can save valuable time if a storm arises quickly and unexpectedly. Preparing the home by removing dead or rotting limbs and trees, which can be blown over in high winds, can also significantly reduce the risk of property damage and personal injury.

The National Weather Service (NWS) in the United States recommends several precautions that people should take if thunderstorms are likely to occur:

  • Know the names of local counties, cities, and towns, as these are how warnings are described.
  • Monitor forecasts and weather conditions and know whether thunderstorms are likely in the area.
  • Be alert for natural signs of an approaching storm.
  • Cancel or reschedule outdoor events (to avoid being caught outdoors when a storm hits).
  • Take action early so you have time to get to a safe place.
  • Get inside a substantial building or hard-topped metal vehicle before threatening weather arrives.
  • If you hear thunder, get to the safe place immediately.
  • Avoid open areas like hilltops, fields, and beaches, and don't be or be near the tallest objects in an area when thunderstorms are occurring.
  • Don't shelter under tall or isolated trees during thunderstorms.
  • If in the woods, put as much distance as possible between you and any trees during thunderstorms.
  • If in a group, spread out to increase the chances of survivors who could come to the aid of any victims from a lightning strike.

Safety

While safety and preparedness often overlap, "thunderstorm safety" generally refers to what people should do during and after a storm. The American Red Cross recommends that people follow these precautions if a storm is imminent or in progress:

  • Take action immediately upon hearing thunder. Anyone close enough to the storm to hear thunder can be struck by lightning.
  • Avoid electrical appliances, including corded telephones. Cordless and wireless telephones are safe to use during a thunderstorm.
  • Close and stay away from windows and doors, as glass can become a serious hazard in high wind.
  • Do not bathe or shower, as plumbing conducts electricity.
  • If driving, safely exit the roadway, turn on hazard lights, and park. Remain in the vehicle and avoid touching metal.

The NWS stopped recommending the "lightning crouch" in 2008 as it doesn't provide a significant level of protection and will not significantly lower the risk of being killed or injured from a nearby lightning strike.

Thunderstorm near Cuero, Texas

Frequent occurrences

Thunderstorms occur throughout the world, even in the polar regions, with the greatest frequency in tropical rainforest areas, where they may occur nearly daily. At any given time approximately 2,000 thunderstorms are occurring on Earth. Kampala and Tororo in Uganda have each been mentioned as the most thunderous places on Earth, a claim also made for Singapore and Bogor on the Indonesian island of Java. Other cities known for frequent storm activity include Darwin, Caracas, Manila and Mumbai. Thunderstorms are associated with the various monsoon seasons around the globe, and they populate the rainbands of tropical cyclones. In temperate regions, they are most frequent in spring and summer, although they can occur along or ahead of cold fronts at any time of year. They may also occur within a cooler air mass following the passage of a cold front over a relatively warmer body of water. Thunderstorms are rare in polar regions because of cold surface temperatures.

Some of the most powerful thunderstorms over the United States occur in the Midwest and the Southern states. These storms can produce large hail and powerful tornadoes. Thunderstorms are relatively uncommon along much of the West Coast of the United States, but they occur with greater frequency in the inland areas, particularly the Sacramento and San Joaquin Valleys of California. In spring and summer, they occur nearly daily in certain areas of the Rocky Mountains as part of the North American Monsoon regime. In the Northeast, storms take on similar characteristics and patterns as the Midwest, but with less frequency and severity. During the summer, air-mass thunderstorms are an almost daily occurrence over central and southern parts of Florida.

Energy

How thunderstorms launch particle beams into space
 

If the quantity of water that is condensed in and subsequently precipitated from a cloud is known, then the total energy of a thunderstorm can be calculated. In a typical thunderstorm, approximately 5×108 kg of water vapor are lifted, and the amount of energy released when this condenses is 1015 joules. This is on the same order of magnitude of energy released within a tropical cyclone, and more energy than that released during the atomic bomb blast at Hiroshima, Japan in 1945.

The Fermi Gamma-ray Burst Monitor results show that gamma rays and antimatter particles (positrons) can be generated in powerful thunderstorms. It is suggested that the antimatter positrons are formed in terrestrial gamma-ray flashes (TGF). TGFs are brief bursts occurring inside thunderstorms and associated with lightning. The streams of positrons and electrons collide higher in the atmosphere to generate more gamma rays. About 500 TGFs may occur every day worldwide, but mostly go undetected.

Studies

In more contemporary times, thunderstorms have taken on the role of a scientific curiosity. Every spring, storm chasers head to the Great Plains of the United States and the Canadian Prairies to explore the scientific aspects of storms and tornadoes through use of videotaping. Radio pulses produced by cosmic rays are being used to study how electric charges develop within thunderstorms. More organized meteorological projects such as VORTEX2 use an array of sensors, such as the Doppler on Wheels, vehicles with mounted automated weather stations, weather balloons, and unmanned aircraft to investigate thunderstorms expected to produce severe weather. Lightning is detected remotely using sensors that detect cloud-to-ground lightning strokes with 95 percent accuracy in detection and within 250 metres (820 ft) of their point of origin.

Summer storm in 19th century Polish countryside - picture by Jozef Chelmonski, 1896, 107 cm (42.1 in)x163 cm (64.1 in), National Museum in Cracow

Mythology and religion

Thunderstorms strongly influenced many early civilizations. Greeks believed that they were battles waged by Zeus, who hurled lightning bolts forged by Hephaestus. Some American Indian tribes associated thunderstorms with the Thunderbird, who they believed was a servant of the Great Spirit. The Norse considered thunderstorms to occur when Thor went to fight Jötnar, with the thunder and lightning being the effect of his strikes with the hammer Mjölnir. Hinduism recognizes Indra as the god of rain and thunderstorms. Christian doctrine accepts that fierce storms are the work of God. These ideas were still within the mainstream as late as the 18th century.

Martin Luther was out walking when a thunderstorm began, causing him to pray to God for being saved and promising to become a monk.

Outside of Earth

Thunderstorms, evidenced by flashes of lightning, on Jupiter have been detected and are associated with clouds where water may exist as both a liquid and ice, suggesting a mechanism similar to that on Earth. (Water is a polar molecule that can carry a charge, so it is capable of creating the charge separation needed to produce lightning). These electrical discharges can be up to a thousand times more powerful than lightning on the Earth. The water clouds can form thunderstorms driven by the heat rising from the interior. The clouds of Venus may also be capable of producing lightning; some observations suggest that the lightning rate is at least half of that on Earth.

Copper in biology

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cop...