Search This Blog

Wednesday, November 2, 2022

Tooth

From Wikipedia, the free encyclopedia

A chimpanzee displaying its teeth

A tooth (PL: teeth) is a hard, calcified structure found in the jaws (or mouths) of many vertebrates and used to break down food. Some animals, particularly carnivores and omnivores, also use teeth to help with capturing or wounding prey, tearing food, for defensive purposes, to intimidate other animals often including their own, or to carry prey or their young. The roots of teeth are covered by gums. Teeth are not made of bone, but rather of multiple tissues of varying density and hardness that originate from the embryonic germ layer, the ectoderm.

The general structure of teeth is similar across the vertebrates, although there is considerable variation in their form and position. The teeth of mammals have deep roots, and this pattern is also found in some fish, and in crocodilians. In most teleost fish, however, the teeth are attached to the outer surface of the bone, while in lizards they are attached to the inner surface of the jaw by one side. In cartilaginous fish, such as sharks, the teeth are attached by tough ligaments to the hoops of cartilage that form the jaw.

Some animals develop only one set of teeth (monophyodonts) while others are diphyodonts, i.e. they have an early set of deciduous teeth and a later set of permanent or "adult" teeth. Still others develop many sets (polyphyodonts). Sharks, for example, grow a new set of teeth every two weeks to replace worn teeth. Most extant mammals including humans are diphyodonts, but there are exceptions including elephants, kangaroos, and manatees, all of which are polyphyodonts.

Rodent incisors grow and wear away continually through gnawing, which helps maintain relatively constant length. The industry of the beaver is due in part to this qualification. Many rodents such as voles and guinea pigs, but not mice, as well as leporidae like rabbits, have continuously growing molars in addition to incisors. Also, tusks (in tusked mammals) grow almost throughout life.

Teeth are not always attached to the jaw, as they are in mammals. In many reptiles and fish, teeth are attached to the palate or to the floor of the mouth, forming additional rows inside those on the jaws proper. Some teleosts even have teeth in the pharynx. While not true teeth in the usual sense, the dermal denticles of sharks are almost identical in structure and are likely to have the same evolutionary origin. Indeed, teeth appear to have first evolved in sharks, and are not found in the more primitive jawless fish – while lampreys do have tooth-like structures on the tongue, these are in fact, composed of keratin, not of dentine or enamel, and bear no relationship to true teeth. Though "modern" teeth-like structures with dentine and enamel have been found in late conodonts, they are now supposed to have evolved independently of later vertebrates' teeth.

Living amphibians typically have small teeth, or none at all, since they commonly feed only on soft foods. In reptiles, teeth are generally simple and conical in shape, although there is some variation between species, most notably the venom-injecting fangs of snakes. The pattern of incisors, canines, premolars and molars is found only in mammals, and to varying extents, in their evolutionary ancestors. The numbers of these types of teeth vary greatly between species; zoologists use a standardised dental formula to describe the precise pattern in any given group.

Etymology

The word tooth comes from Proto-Germanic *tanthu- which in turn comes from Proto-Indo-European *h₁dent-, which was composed of the root *h₁ed- ("to eat") plus the active participle suffix -nt, therefore it literally meant "that which eats". Cognate with Latin dēns, Greek ὀδούς odous, and Sanskrit dát.

Origin

Teeth are assumed to have evolved either from ectoderm denticles (scales, much like those on the skin of sharks) that folded and integrated into the mouth (called the "outside–in" theory), or from endoderm pharyngeal teeth (primarily formed in the pharynx of jawless vertebrates) (the "inside–out" theory). In addition, there is another theory stating that neural crest gene regulatory network, and neural crest-derived ectomesenchyme are the key to generate teeth (with any epithelium, either ectoderm or endoderm).

The genes governing tooth development in mammals are homologous to those involved in the development of fish scales. Study of a tooth plate of a fossil of the extinct fish Romundina stellina showed that the teeth and scales were made of the same tissues, also found in mammal teeth, lending support to the theory that teeth evolved as a modification of scales.

Mammals

Teeth are among the most distinctive (and long-lasting) features of mammal species. Paleontologists use teeth to identify fossil species and determine their relationships. The shape of the animal's teeth are related to its diet. For example, plant matter is hard to digest, so herbivores have many molars for chewing and grinding. Carnivores, on the other hand, have canine teeth to kill prey and to tear meat.

Mammals, in general, are diphyodont, meaning that they develop two sets of teeth. In humans, the first set (the "baby," "milk," "primary" or "deciduous" set) normally starts to appear at about six months of age, although some babies are born with one or more visible teeth, known as neonatal teeth. Normal tooth eruption at about six months is known as teething and can be painful. Kangaroos, elephants, and manatees are unusual among mammals because they are polyphyodonts.

Aardvark

In aardvarks, teeth lack enamel and have many pulp tubules, hence the name of the order Tubulidentata.

Canines

In dogs, the teeth are less likely than humans to form dental cavities because of the very high pH of dog saliva, which prevents enamel from demineralizing. Sometimes called cuspids, these teeth are shaped like points (cusps) and are used for tearing and grasping food.

Cetaceans

Like human teeth, whale teeth have polyp-like protrusions located on the root surface of the tooth. These polyps are made of cementum in both species, but in human teeth, the protrusions are located on the outside of the root, while in whales the nodule is located on the inside of the pulp chamber. While the roots of human teeth are made of cementum on the outer surface, whales have cementum on the entire surface of the tooth with a very small layer of enamel at the tip. This small enamel layer is only seen in older whales where the cementum has been worn away to show the underlying enamel.

The toothed whale is a suborder of the cetaceans characterized by having teeth. The teeth differ considerably among the species. They may be numerous, with some dolphins bearing over 100 teeth in their jaws. On the other hand, the narwhals have a giant unicorn-like tusk, which is a tooth containing millions of sensory pathways and used for sensing during feeding, navigation, and mating. It is the most neurologically complex tooth known. Beaked whales are almost toothless, with only bizarre teeth found in males. These teeth may be used for feeding but also for demonstrating aggression and showmanship.

Primates

In humans (and most other primates) there are usually 20 primary (also "baby" or "milk") teeth, and later up to 32 permanent teeth. Four of these 32 may be third molars or wisdom teeth, although these are not present in all adults, and may be removed surgically later in life.

Among primary teeth, 10 of them are usually found in the maxilla (i.e. upper jaw) and the other 10 in the mandible (i.e. lower jaw). Among permanent teeth, 16 are found in the maxilla and the other 16 in the mandible. Most of the teeth have uniquely distinguishing features.

Horse

An adult horse has between 36 and 44 teeth. The enamel and dentin layers of horse teeth are intertwined. All horses have 12 premolars, 12 molars, and 12 incisors. Generally, all male equines also have four canine teeth (called tushes) between the molars and incisors. However, few female horses (less than 28%) have canines, and those that do usually have only one or two, which many times are only partially erupted. A few horses have one to four wolf teeth, which are vestigial premolars, with most of those having only one or two. They are equally common in male and female horses and much more likely to be on the upper jaw. If present these can cause problems as they can interfere with the horse's bit contact. Therefore, wolf teeth are commonly removed.

Horse teeth can be used to estimate the animal's age. Between birth and five years, age can be closely estimated by observing the eruption pattern on milk teeth and then permanent teeth. By age five, all permanent teeth have usually erupted. The horse is then said to have a "full" mouth. After the age of five, age can only be conjectured by studying the wear patterns on the incisors, shape, the angle at which the incisors meet, and other factors. The wear of teeth may also be affected by diet, natural abnormalities, and cribbing. Two horses of the same age may have different wear patterns.

A horse's incisors, premolars, and molars, once fully developed, continue to erupt as the grinding surface is worn down through chewing. A young adult horse will have teeth which are 110–130 mm (4.5–5 inches) long, with the majority of the crown remaining below the gumline in the dental socket. The rest of the tooth will slowly emerge from the jaw, erupting about 3 mm (18 in) each year, as the horse ages. When the animal reaches old age, the crowns of the teeth are very short and the teeth are often lost altogether. Very old horses, if lacking molars, may need to have their fodder ground up and soaked in water to create a soft mush for them to eat in order to obtain adequate nutrition.

Proboscideans

Section through the ivory tusk of a mammoth
 

Elephants' tusks are specialized incisors for digging food up and fighting. Some elephant teeth are similar to those in manatees, and it is notable that elephants are believed to have undergone an aquatic phase in their evolution.

At birth, elephants have a total of 28 molar plate-like grinding teeth not including the tusks. These are organized into four sets of seven successively larger teeth which the elephant will slowly wear through during its lifetime of chewing rough plant material. Only four teeth are used for chewing at a given time, and as each tooth wears out, another tooth moves forward to take its place in a process similar to a conveyor belt. The last and largest of these teeth usually becomes exposed when the animal is around 40 years of age, and will often last for an additional 20 years. When the last of these teeth has fallen out, regardless of the elephant's age, the animal will no longer be able to chew food and will die of starvation.

Rabbit

Rabbits and other lagomorphs usually shed their deciduous teeth before (or very shortly after) their birth, and are usually born with their permanent teeth. The teeth of rabbits complement their diet, which consists of a wide range of vegetation. Since many of the foods are abrasive enough to cause attrition, rabbit teeth grow continuously throughout life. Rabbits have a total of 6 incisors, three upper premolars, three upper molars, two lower premolars, and two lower molars on each side. There are no canines. Three to four millimeters of the tooth is worn away by incisors every week, whereas the posterior teeth require a month to wear away the same amount.

The incisors and cheek teeth of rabbits are called aradicular hypsodont teeth. This is sometimes referred to as an elodent dentition. These teeth grow or erupt continuously. The growth or eruption is held in balance by dental abrasion from chewing a diet high in fiber.

Buccal view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.
 
Buccal view of the lower incisor from the right dentary of a Rattus rattus
 
Lingual view of the lower incisor from the right dentary of a Rattus rattus
 
Midsagittal view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.

Rodents

Rodents have upper and lower hypselodont incisors that can continuously grow enamel throughout its life without having properly formed roots. These teeth are also known as aradicular teeth, and unlike humans whose ameloblasts die after tooth development, rodents continually produce enamel, they must wear down their teeth by gnawing on various materials. Enamel and dentin are produced by the enamel organ, and growth is dependent on the presence of stem cells, cellular amplification, and cellular maturation structures in the odontogenic region. Rodent incisors are used for cutting wood, biting through the skin of fruit, or for defense. This allows for the rate of wear and tooth growth to be at equilibrium. The microstructure of rodent incisor enamel has shown to be useful in studying the phylogeny and systematics of rodents because of its independent evolution from the other dental traits. The enamel on rodent incisors are composed of two layers: the inner portio interna (PI) with Hunter-Schreger bands (HSB) and an outer portio externa (PE) with radial enamel (RE). It usually involves the differential regulation of the epithelial stem cell niche in the tooth of two rodent species, such as guinea pigs.

Lingual view of top incisor from Rattus rattus. Top incisor outlined in yellow. Molars circled in blue.

The teeth have enamel on the outside and exposed dentin on the inside, so they self-sharpen during gnawing. On the other hand, continually growing molars are found in some rodent species, such as the sibling vole and the guinea pig. There is variation in the dentition of the rodents, but generally, rodents lack canines and premolars, and have a space between their incisors and molars, called the diastema region.

Manatee

Manatees are polyphyodont with mandibular molars developing separately from the jaw and are encased in a bony shell separated by soft tissue.

Walrus

Walrus tusks are canine teeth that grow continuously throughout life.

Fish

Fish, such as sharks, may go through many teeth in their lifetime. The replacement of multiple teeth is known as polyphyodontia.

A class of prehistoric shark are called cladodonts for their strange forked teeth.

Unlike the continuous shedding of functional teeth seen in modern sharks, the majority of stem chondrichthyan lineages retained all tooth generations developed throughout the life of the animal. This replacement mechanism is exemplified by the tooth whorl-based dentitions of acanthodians, which include the oldest known toothed vertebrate, Qianodus duplicis.

Amphibians

All amphibians have pedicellate teeth which are modified to be flexible due to connective tissue and uncalcified dentine that separates the crown from the base of the tooth.

Most amphibians exhibit teeth that have a slight attachment to the jaw or acrodont teeth. Acrodont teeth exhibit limited connection to the dentary and have little enervation. This is ideal for organisms who mostly use their teeth for grasping, but not for crushing and allows for rapid regeneration of teeth at a low energy cost. Teeth are usually lost in the course of feeding if the prey is struggling. Additionally, amphibians that undergo a metamorphosis develop bicuspid shaped teeth.

Reptiles

The teeth of reptiles are replaced constantly throughout their lives. Crocodilian juveniles replace teeth with larger ones at a rate as high as one new tooth per socket every month. Once mature, tooth replacement rates can slow to two years and even longer. Overall, crocodilians may use 3,000 teeth from birth to death. New teeth are created within old teeth.

Birds

A skull of Ichthyornis discovered in 2014 suggests that the beak of birds may have evolved from teeth to allow chicks to escape their shells earlier, and thus avoid predators and also to penetrate protective covers such as hard earth to access underlying food.

Invertebrates

The European medicinal leech has three jaws with numerous sharp teeth which function like little saws for incising a host.

True teeth are unique to vertebrates, although many invertebrates have analogous structures often referred to as teeth. The organisms with the simplest genome bearing such tooth-like structures are perhaps the parasitic worms of the family Ancylostomatidae. For example, the hookworm Necator americanus has two dorsal and two ventral cutting plates or teeth around the anterior margin of the buccal capsule. It also has a pair of subdorsal and a pair of subventral teeth located close to the rear.

Historically the European medicinal leech, another invertebrate parasite, has been used in medicine to remove blood from patients. They have three jaws (tripartite) that resemble saws in both appearance and function, and on them are about 100 sharp teeth used to incise the host. The incision leaves a mark that is an inverted Y inside of a circle. After piercing the skin and injecting anticoagulants (hirudin) and anaesthetics, they suck out blood, consuming up to ten times their body weight in a single meal.

In some species of Bryozoa, the first part of the stomach forms a muscular gizzard lined with chitinous teeth that crush armoured prey such as diatoms. Wave-like peristaltic contractions then move the food through the stomach for digestion.

The limpet rasps algae from rocks using teeth with the strongest known tensile strength of any biological material

Molluscs have a structure called a radula which bears a ribbon of chitinous teeth. However, these teeth are histologically and developmentally different from vertebrate teeth and are unlikely to be homologous. For example, vertebrate teeth develop from a neural crest mesenchyme-derived dental papilla, and the neural crest is specific to vertebrates, as are tissues such as enamel.

The radula is used by molluscs for feeding and is sometimes compared rather inaccurately to a tongue. It is a minutely toothed, chitinous ribbon, typically used for scraping or cutting food before the food enters the oesophagus. The radula is unique to molluscs, and is found in every class of mollusc apart from bivalves.

Within the gastropods, the radula is used in feeding by both herbivorous and carnivorous snails and slugs. The arrangement of teeth (also known as denticles) on the radula ribbon varies considerably from one group to another as shown in the diagram on the left.

Predatory marine snails such as the Naticidae use the radula plus an acidic secretion to bore through the shell of other molluscs. Other predatory marine snails, such as the Conidae, use a specialized radula tooth as a poisoned harpoon. Predatory pulmonate land slugs, such as the ghost slug, use elongated razor-sharp teeth on the radula to seize and devour earthworms. Predatory cephalopods, such as squid, use the radula for cutting prey.

In most of the more ancient lineages of gastropods, the radula is used to graze by scraping diatoms and other microscopic algae off rock surfaces and other substrates. Limpets scrape algae from rocks using radula equipped with exceptionally hard rasping teeth. These teeth have the strongest known tensile strength of any biological material, outperforming spider silk. The mineral protein of the limpet teeth can withstand a tensile stress of 4.9 GPa, compared to 4 GPa of spider silk and 0.5 GPa of human teeth.

Fossilization and taphonomy

Because teeth are very resistant, often preserved when bones are not, and reflect the diet of the host organism, they are very valuable to archaeologists and palaeontologists. Early fish such as the thelodonts had scales composed of dentine and an enamel-like compound, suggesting that the origin of teeth was from scales which were retained in the mouth. Fish as early as the late Cambrian had dentine in their exoskeletons, which may have functioned in defense or for sensing their environments. Dentine can be as hard as the rest of teeth and is composed of collagen fibres, reinforced with hydroxyapatite.

Though teeth are very resistant, they also can be brittle and highly susceptible to cracking. However, cracking of the tooth can be used as a diagnostic tool for predicting bite force. Additionally, enamel fractures can also give valuable insight into the diet and behaviour of archaeological and fossil samples.

Decalcification removes the enamel from teeth and leaves only the organic interior intact, which comprises dentine and cementine. Enamel is quickly decalcified in acids, perhaps by dissolution by plant acids or via diagenetic solutions, or in the stomachs of vertebrate predators. Enamel can be lost by abrasion or spalling, and is lost before dentine or bone are destroyed by the fossilisation process. In such a case, the 'skeleton' of the teeth would consist of the dentine, with a hollow pulp cavity. The organic part of dentine, conversely, is destroyed by alkalis.

International Space Station programme

From Wikipedia, the free encyclopedia
 
International Space Station programme
ISS emblem.png
Program overview
Organisation
Manager
StatusActive
Programme history
Cost$150 billion (2010)
Duration1983–present
First flightZarya
November 20, 1998
First crewed flightSTS-88
December 4, 1998
Launch site(s)
Vehicle information
Uncrewed vehicle(s)
Crewed vehicle(s)
Crew capacity
  • ISS: 7
  • Soyuz: 3
  • Crew Dragon: 4
Launch vehicle(s)

The International Space Station programme is tied together by a complex set of legal, political and financial agreements between the fifteen nations involved in the project, governing ownership of the various components, rights to crewing and utilisation, and responsibilities for crew rotation and resupply of the International Space Station. It was conceived in September 1993 by the United States and Russia after 1980s plans for separate American (Freedom) and Soviet (Mir-2) space stations failed due to budgetary reasons. These agreements tie together the five space agencies and their respective International Space Station programmes and govern how they interact with each other on a daily basis to maintain station operations, from traffic control of spacecraft to and from the station, to utilisation of space and crew time. In March 2010, the International Space Station Program Managers from each of the five partner agencies were presented with Aviation Week's Laureate Award in the Space category, and the ISS programme was awarded the 2009 Collier Trophy.

History and conception

In the early 1980s, NASA planned to launch a modular space station called Freedom as a counterpart to the Soviet Salyut and Mir space stations. In 1984 the ESA was invited to participate in Space Station Freedom, and the ESA approved the Columbus laboratory by 1987. The Japanese Experiment Module (JEM), or Kibō, was announced in 1985, as part of the Freedom space station in response to a NASA request in 1982.

In early 1985, science ministers from the European Space Agency (ESA) countries approved the Columbus programme, the most ambitious effort in space undertaken by that organisation at the time. The plan spearheaded by Germany and Italy included a module which would be attached to Freedom, and with the capability to evolve into a full-fledged European orbital outpost before the end of the century. The space station was also going to tie the emerging European and Japanese national space programmes closer to the US-led project, thereby preventing those nations from becoming major, independent competitors too.

In September 1993, American Vice-President Al Gore and Russian Prime Minister Viktor Chernomyrdin announced plans for a new space station, which eventually became the International Space Station. They also agreed, in preparation for this new project, that the United States would be involved in the Mir programme, including American Shuttles docking, in the Shuttle–Mir programme.

On 12 April 2021, at a meeting with Russian President Vladimir Putin, then-Deputy Prime Minister Yury Borisov announced he had decided that Russia might withdraw from the ISS programme in 2025. According to Russian authorities, the timeframe of the station’s operations has expired and its condition leaves much to be desired. On 26 July 2022, Borisov, who had become head of Roscosmos, submitted to Putin his plans for withdrawal from the programme after 2024. However, Robyn Gatens, the NASA official in charge of space station operations, responded that NASA had not received any formal notices from Roscosmos concerning withdrawal plans.

1998 agreement

A commemorative plaque honouring Space Station Intergovernmental Agreement signed on January 29, 1998

The legal structure that regulates the station is multi-layered. The primary layer establishing obligations and rights between the ISS partners is the Space Station Intergovernmental Agreement (IGA), an international treaty signed on January 28, 1998 by fifteen governments involved in the space station project. The ISS consists of Canada, Japan, the Russian Federation, the United States, and eleven Member States of the European Space Agency (Belgium, Denmark, France, Germany, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland and the United Kingdom). Article 1 outlines its purpose:

This Agreement is a long term international co-operative framework on the basis of genuine partnership, for the detailed design, development, operation, and utilization of a permanently inhabited civil Space Station for peaceful purposes, in accordance with international law.

The IGA sets the stage for a second layer of agreements between the partners referred to as 'Memoranda of Understanding' (MOUs), of which four exist between NASA and each of the four other partners. There are no MOUs between ESA, Roskosmos, CSA and JAXA because NASA is the designated manager of the ISS. The MOUs are used to describe the roles and responsibilities of the partners in more detail.

A third layer consists of bartered contractual agreements or the trading of the partners' rights and duties, including the 2005 commercial framework agreement between NASA and Roscosmos that sets forth the terms and conditions under which NASA purchases seats on Soyuz crew transporters and cargo capacity on uncrewed Progress transporters.

A fourth legal layer of agreements implements and supplements the four MOUs further. Notably among them is the ISS code of conduct made in 2000, setting out criminal jurisdiction, anti-harassment and certain other behavior rules for ISS crewmembers.

Programme operations

Expeditions

Zarya and Unity were entered for the first time on 10 December 1998.
 
Soyuz TM-31 being prepared to bring the first resident crew to the station in October 2000
 
Each permanent crew is given an expedition number. Expeditions run up to six months, from launch until undocking, an 'increment' covers the same time period, but includes cargo spacecraft and all activities. Expeditions 1 to 6 consisted of three-person crews. Expeditions 7 to 12 were reduced to the safe minimum of two following the destruction of the NASA Shuttle Columbia. From Expedition 13 the crew gradually increased to six around 2010. With the arrival of crew on US commercial vehicles beginning in 2020, NASA has indicated that expedition size may be increased to seven crew members, the number ISS was originally designed for.

Private flights

Travellers who pay for their own passage into space are termed spaceflight participants by Roscosmos and NASA, and are sometimes referred to as "space tourists", a term they generally dislike. As of 2021, seven space tourists have visited the ISS; all seven were transported to the ISS on Russian Soyuz spacecraft. When professional crews change over in numbers not divisible by the three seats in a Soyuz, and a short-stay crewmember is not sent, the spare seat is sold by MirCorp through Space Adventures. Space tourism was halted in 2011 when the Space Shuttle was retired and the station's crew size was reduced to six, as the partners relied on Russian transport seats for access to the station. Soyuz flight schedules increased after 2013, allowing five Soyuz flights (15 seats) with only two expeditions (12 seats) required. The remaining seats were to be sold for around US$40 million to members of the public who could pass a medical exam. ESA and NASA criticised private spaceflight at the beginning of the ISS, and NASA initially resisted training Dennis Tito, the first person to pay for his own passage to the ISS.

Anousheh Ansari became the first self-funded woman to fly to the ISS as well as the first Iranian in space. Officials reported that her education and experience made her much more than a tourist, and her performance in training had been "excellent." She did Russian and European studies involving medicine and microbiology during her 10-day stay. The 2009 documentary Space Tourists follows her journey to the station, where she fulfilled "an age-old dream of man: to leave our planet as a 'normal person' and travel into outer space."

In 2008, spaceflight participant Richard Garriott placed a geocache aboard the ISS during his flight. This is currently the only non-terrestrial geocache in existence. At the same time, the Immortality Drive, an electronic record of eight digitised human DNA sequences, was placed aboard the ISS.

Fleet operations

Dragon and Cygnus cargo vessels were docked at the ISS together for the first time in April 2016.
 
Japan's Kounotori 4 berthing
 
Commercial Crew Program vehicles Starliner and Dragon

A wide variety of crewed and uncrewed spacecraft have supported the station's activities. Flights to the ISS include 37 Space Shuttle missions, 83 Progress resupply spacecraft (including the modified M-MIM2, M-SO1 and M-UM module transports), 63 crewed Soyuz spacecraft, 5 European ATVs, 9 Japanese HTVs, 1 Boeing Starliner, 30 SpaceX Dragon ( both crewed and uncrewed) and 18 Cygnus missions.

There are currently twelve available docking ports for visiting spacecraft:

  1. Harmony forward (with IDA 2)
  2. Harmony zenith (with IDA 3)
  3. Harmony nadir
  4. Unity nadir
  5. Prichal nadir
  6. Prichal aft
  7. Prichal forward
  8. Prichal starboard
  9. Prichal port
  10. Nauka forward
  11. Poisk zenith
  12. Rassvet nadir
  13. Zvezda aft

Crewed

As of 24 April 2021, 244 people from 19 countries had visited the space station, many of them multiple times. The United States sent 153 people, Russia sent 50, nine were Japanese, eight were Canadian, five were Italian, four were French, three were German, and there were one each from Belgium, Brazil, Denmark, Great Britain, Kazakhstan, Malaysia, the Netherlands, South Africa, South Korea, Spain, Sweden and the United Arab Emirates.

Uncrewed

Uncrewed spaceflights to the International Space Station (ISS) are made primarily to deliver cargo, however several Russian modules have also docked to the outpost following uncrewed launches. Resupply missions typically use the Russian Progress spacecraft, European Automated Transfer Vehicles, Japanese Kounotori vehicles, and the American Dragon and Cygnus spacecraft. The primary docking system for Progress spacecraft is the automated Kurs system, with the manual TORU system as a backup. ATVs also use Kurs, however they are not equipped with TORU. Progress and ATV can remain docked for up to six months. The other spacecraft — the Japanese HTV, the SpaceX Dragon (under CRS phase 1) and the Northrop Grumman Cygnus — rendezvous with the station before being grappled using Canadarm2 and berthed at the nadir port of the Harmony or Unity module for one to two months. Under CRS phase 2, Cargo Dragon will dock autonomously at IDA-2 or 3 as the case may be. As of May 2022, Progress spacecraft have flown most of the uncrewed missions to the ISS.

Repairs

Astronaut Scott Parazynski of STS-120 conducted a 7-hour, 19-minute spacewalk to repair (essentially sew) a damaged solar panel which helps supply power to the International Space Station. NASA considered the spacewalk dangerous with potential risk of electrical shock.
 
Since construction started, the International Space Station programme has had to deal with several maintenance issues, unexpected problems and failures. These incidents have affected the assembly timeline, led to periods of reduced capabilities of the station and in some cases could have forced the crew to abandon the space station for safety reasons, had these problems not been resolved.

Mission control centres

The components of the ISS are operated and monitored by their respective space agencies at mission control centres across the globe, including:

A world map highlighting the locations of space centres. See adjacent text for details.
Space centres involved with the ISS programme

Politics

A world map highlighting Belgium, Denmark, France, Germany, Italy, Netherlands, Norway, Spain, Sweden and Switzerland in red and Brazil in pink. See adjacent text for details.
  Primary contributing nations
  Formerly contracted nations
 
Politics of the International Space Station have been affected by superpower rivalries, international treaties and funding arrangements. The Cold War was an early factor, overtaken in recent years by the United States' distrust of China. The station has an international crew, with the use of their time, and that of equipment on the station, being governed by treaties between participant nations.

Usage of crew and hardware

Four pie charts indicating how each part of the American segment of the ISS is allocated. See adjacent text for details.
Allocation of US Orbital Segment hardware usage between nations.

There is no fixed percentage of ownership for the whole space station. Rather, Article 5 of the IGA sets forth that each partner shall retain jurisdiction and control over the elements it registers and over personnel in or on the Space Station who are its nationals. Therefore, for each ISS module only one partner retains sole ownership. Still, the agreements to use the space station facilities are more complex.

The station is composed of two sides: the Russian Orbital Segment (ROS) and U.S. Orbital Segment (USOS).

  • Russian Orbital Segment (mostly Russian ownership, except the Zarya module)
    • Zarya: first component of the Space Station, storage, USSR/Russia-built, U.S.-funded (hence U.S.-owned)
    • Zvezda: the functional centre of the Russian portion, living quarters, Russia-owned
    • Pirs: airlock, docking, Russia-owned (Decommissioned)
    • Poisk: redundancy for Pirs, Russia-owned
    • Rassvet: storage, docking, Russia-owned
    • Nauka: Russian multipurpose laboratory module
  • U.S. Orbital Segment (mixed U.S. and international ownership)
    • Columbus laboratory: 51% for ESA, 46.7% for NASA and 2.3% for CSA.
    • Kibō laboratory: Japanese module, 51% for JAXA, 46.7% for NASA and 2.3% for CSA.
    • Destiny laboratory: 97.7% for NASA and 2.3% for CSA.
    • Crew time, electrical power and rights to purchase supporting services (such as data upload & download and communications) are divided 76.6% for NASA, 12.8% for JAXA, 8.3% for ESA, and 2.3% for CSA.

Future of the ISS

The heads of the ISS agencies from Canada, Europe, Japan, Russia and the United States meet in Tokyo to review ISS cooperation.

Former NASA Administrator Michael D. Griffin says the International Space Station has a role to play as NASA moves forward with a new focus for the crewed space programme, which is to go out beyond Earth orbit for purposes of human exploration and scientific discovery. "The International Space Station is now a stepping stone on the way, rather than being the end of the line," Griffin said. Griffin has said that station crews will not only continue to learn how to live and work in space, but also will learn how to build hardware that can survive and function for the years required to make the round-trip voyage from Earth to Mars.

Despite this view, however, in an internal e-mail leaked to the press on August 18, 2008 from Griffin to NASA managers, Griffin apparently communicated his belief that the current US administration had made no viable plan for US crews to participate in the ISS beyond 2011, and that the Office of Management and Budget (OMB) and Office of Science and Technology Policy (OSTP) were actually seeking its demise. The e-mail appeared to suggest that Griffin believed the only reasonable solution was to extend the operation of the Space Shuttle beyond 2010, but noted that Executive Policy (i.e. the White House) was firm that there would be no extension of the Space Shuttle retirement date, and thus no US capability to launch crews into orbit until the Orion spacecraft would become operational in 2020 as part of the Constellation programme. He did not see purchase of Russian launches for NASA crews as politically viable following the 2008 South Ossetia war, and hoped the incoming Barack Obama administration would resolve the issue in 2009 by extending Space Shuttle operations beyond 2010.

A solicitation issued by NASA JSC indicates NASA's intent to purchase from Roscosmos "a minimum of 3 Soyuz seats up to a maximum of 24 seats beginning in the Spring of 2012" to provide ISS crew transportation.

On September 7, 2008, NASA released a statement regarding the leaked email, in which Griffin said:

The leaked internal email fails to provide the contextual framework for my remarks, and my support for the administration's policies. Administration policy is to retire the shuttle in 2010 and purchase crew transport from Russia until Ares and Orion are available. The administration continues to support our request for an INKSNA exemption. Administration policy continues to be that we will take no action to preclude continued operation of the International Space Station past 2016. I strongly support these administration policies, as do OSTP and OMB.

— Michael D. Griffin

On October 15, 2008, President Bush signed the NASA Authorization Act of 2008, giving NASA funding for one additional mission to "deliver science experiments to the station". The Act allows for an additional Space Shuttle flight, STS-134, to the ISS to install the Alpha Magnetic Spectrometer, which was previously cancelled.

President of the United States Barack Obama has supported the continued operation of the station, and supported the NASA Authorization Act of 2008. Obama's plan for space exploration includes finishing the station and completion of the US programmes related to the Orion spacecraft.

End of mission

Many ISS resupply spacecraft have already undergone atmospheric re-entry, such as Jules Verne ATV

According to the Outer Space Treaty, the United States and Russia are legally responsible for all modules they have launched. Several possible disposal options were considered: Natural orbital decay with random reentry (as with Skylab), boosting the station to a higher altitude (which would delay reentry), and a controlled targeted de-orbit to a remote ocean area. In late 2010, the preferred plan was to use a slightly modified Progress spacecraft to de-orbit the ISS. This plan was seen as the simplest, cheapest and with the highest margin of safety.

OPSEK was previously intended to be constructed of modules from the Russian Orbital Segment after the ISS is decommissioned. The modules under consideration for removal from the current ISS included the Multipurpose Laboratory Module (Nauka), launched in July 2021, and the other new Russian modules that are proposed to be attached to Nauka. These newly launched modules would still be well within their useful lives in 2024.

At the end of 2011, the Exploration Gateway Platform concept also proposed using leftover USOS hardware and Zvezda 2 as a refuelling depot and service station located at one of the Earth-Moon Lagrange points. However, the entire USOS was not designed for disassembly and will be discarded.

On 30 September 2015, Boeing's contract with NASA as prime contractor for the ISS was extended to 30 September 2020. Part of Boeing's services under the contract related to extending the station's primary structural hardware past 2020 to the end of 2028.

There have also been suggestions in the commercial space industry that the station could be converted to commercial operations after it is retired by government entities.

In July 2018, the Space Frontier Act of 2018 was intended to extend operations of the ISS to 2030. This bill was unanimously approved in the Senate, but failed to pass in the U.S. House. In September 2018, the Leading Human Spaceflight Act was introduced with the intent to extend operations of the ISS to 2030, and was confirmed in December 2018. Congress later passed similar provisions in its CHIPS and Science Act, signed into law by President Joe Biden on 9 August 2022.

In January 2022, NASA announced a planned date of January 2031 to de-orbit the ISS using a deorbit module and direct any remnants into a remote area of the South Pacific Ocean.

New partners

China has reportedly expressed interest in the project, especially if it would be able to work with the RKA. Due to national security concerns, the United States Congress passed a law prohibiting contact between US and Chinese space programmes. As of 2019, China is not involved in the International Space Station. In addition to national security concerns, United States objections include China's human rights record and issues surrounding technology transfer. The heads of both the South Korean and Indian space agencies announced at the first plenary session of the 2009 International Astronautical Congress on 12 October that their nations intend to join the ISS programme. The talks began in 2010, and were not successful. The heads of agency also expressed support for extending ISS lifetime. European countries not a part of the International Space Station programme will be allowed access to the station in a three-year trial period, ESA officials say. The Indian Space Research Organisation has made it clear that it will not join the ISS and will instead build its own space station.

Cost

The ISS has been described as the most expensive single item ever constructed. As of 2010, the total cost was US$150 billion. This includes NASA's budget of $58.7 billion ($89.73 billion in 2021 dollars) for the station from 1985 to 2015, Russia's $12 billion, Europe's $5 billion, Japan's $5 billion, Canada's $2 billion, and the cost of 36 shuttle flights to build the station, estimated at $1.4 billion each, or $50.4 billion in total. Assuming 20,000 person-days of use from 2000 to 2015 by two- to six-person crews, each person-day would cost $7.5 million, less than half the inflation-adjusted $19.6 million ($5.5 million before inflation) per person-day of Skylab.

Public opinion

The International Space Station has been the target of varied criticism over the years. Critics contend that the time and money spent on the ISS could be better spent on other projects—whether they be robotic spacecraft missions, space exploration, investigations of problems here on Earth, or just tax savings. Some critics, like Robert L. Park, argue that very little scientific research was convincingly planned for the ISS in the first place. They also argue that the primary feature of a space-based laboratory is its microgravity environment, which can usually be studied more cheaply with a "vomit comet".

One of the most ambitious ISS modules to date, the Centrifuge Accommodations Module, has been cancelled due to the prohibitive costs NASA faces in simply completing the ISS. As a result, the research done on the ISS is generally limited to experiments which do not require any specialized apparatus. For example, in the first half of 2007, ISS research dealt primarily with human biological responses to being in space, covering topics like kidney stones, circadian rhythm, and the effects of cosmic rays on the nervous system.

Other critics have attacked the ISS on some technical design grounds:

  1. Jeff Foust argued that the ISS requires too much maintenance, especially by risky, expensive EVAs. The magazine The American Enterprise reports, for instance, that ISS astronauts "now spend 85 percent of their time on construction and maintenance" alone.
  2. The Astronomical Society of the Pacific has mentioned that its orbit is rather highly inclined, which makes Russian launches cheaper, but US launches more expensive.

Critics also say that NASA is often casually credited with "spin-offs" (such as Velcro and portable computers) that were developed independently for other reasons. NASA maintains a list of spin-offs from the construction of the ISS, as well as from work performed on the ISS.

In response to some of these criticisms, advocates of human space exploration say that criticism of the ISS programme is short-sighted, and that crewed space research and exploration have produced billions of dollars' worth of tangible benefits to people on Earth. Jerome Schnee estimated that the indirect economic return from spin-offs of human space exploration has been many times the initial public investment. A review of the claims by the Federation of American Scientists argued that NASA's rate of return from spin-offs is actually "astoundingly bad", except for aeronautics work that has led to aircraft sales.

It is therefore debatable whether the ISS, as distinct from the wider space programme, is a major contributor to society. Some advocates argue that apart from its scientific value, it is an important example of international cooperation. Others claim that the ISS is an asset that, if properly leveraged, could allow more economical crewed Lunar and Mars missions.

Copper in biology

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cop...