Search This Blog

Saturday, June 17, 2023

Immune tolerance in pregnancy

From Wikipedia, the free encyclopedia

Immune tolerance in pregnancy or maternal immune tolerance is the immune tolerance shown towards the fetus and placenta during pregnancy. This tolerance counters the immune response that would normally result in the rejection of something foreign in the body, as can happen in cases of spontaneous abortion. It is studied within the field of reproductive immunology.

Mechanisms

Placental mechanisms

The placenta functions as an immunological barrier between the mother and the fetus.

The placenta functions as an immunological barrier between the mother and the fetus, creating an immunologically privileged site. For this purpose, it uses several mechanisms:

  • It secretes neurokinin B containing phosphocholine molecules. This is the same mechanism used by parasitic nematodes to avoid detection by the immune system of their host.
  • Also, there is the presence of small lymphocytic suppressor cells in the fetus that inhibit maternal cytotoxic T cells by inhibiting the response to interleukin 2.
  • The placental trophoblast cells do not express the classical MHC class I isotypes HLA-A and HLA-B, unlike most other cells in the body, and this absence is assumed to prevent destruction by maternal cytotoxic T cells, which otherwise would recognize the fetal HLA-A and HLA-B molecules as foreign. On the other hand, they do express the atypical MHC class I isotypes HLA-E and HLA-G, which is assumed to prevent destruction by maternal natural killer cells, which otherwise destroy cells that do not express any MHC class I. However, trophoblast cells do express the rather typical HLA-C.
  • It forms a syncytium without any extracellular spaces between cells in order to limit the exchange of migratory immune cells between the developing embryo and the body of the mother (something an epithelium will not do sufficiently, as certain blood cells are specialized to be able to insert themselves between adjacent epithelial cells). The fusion of the cells is apparently caused by viral fusion proteins from endosymbiotic endogenous retrovirus. An immunoevasive action was the initial normal behavior of the viral protein, in order to avail for the virus to spread to other cells by simply merging them with the infected one. It is believed that the ancestors of modern viviparous mammals evolved after an infection by this virus, enabling the fetus to better resist the immune system of the mother.

Still, the placenta does allow maternal immunoglobulin G (IgG) to pass to the fetus to protect it against infections. However, these antibodies do not target fetal cells, unless any fetal material has escaped across the placenta where it can come in contact with maternal B cells and make those B cells start to produce antibodies against fetal targets. The mother does produce antibodies against foreign ABO blood types, where the fetal blood cells are possible targets, but these preformed antibodies are usually of the immunoglobulin M type, and therefore usually do not cross the placenta. Still, rarely, ABO incompatibility can give rise to IgG antibodies that cross the placenta, and are caused by sensitization of mothers (usually of blood type O) to antigens in foods or bacteria that are homologous to A and B antigens.

Other mechanisms

Still, the placental barrier is not the sole means to evade the immune system, as foreign fetal cells also persist in the maternal circulation, on the other side of the placental barrier.

The placenta does not block maternal IgG antibodies, which thereby may pass through the human placenta, providing immune protection to the fetus against infectious diseases.

One model for the induction of tolerance during the very early stages of pregnancy is the eutherian fetoembryonic defense system (eu-FEDS) hypothesis. The basic premise of the eu-FEDS hypothesis is that both soluble and cell surface associated glycoproteins, present in the reproductive system and expressed on gametes, suppress any potential immune responses, and inhibit rejection of the fetus. The eu-FEDS model further suggests that specific carbohydrate sequences (oligosaccharides) are covalently linked to these immunosuppressive glycoproteins and act as “functional groups” that suppress the immune response. The major uterine and fetal glycoproteins that are associated with the eu-FEDS model in the human include alpha-fetoprotein, CA125, and glycodelin-A (also known as placental protein 14).

Regulatory T cells also likely play a role.

Also, a shift from cell-mediated immunity toward humoral immunity is believed to occur.

Insufficient tolerance

Many cases of spontaneous abortion may be described in the same way as maternal transplant rejection, and a chronic insufficient tolerance may cause infertility. Other examples of insufficient immune tolerance in pregnancy are Rh disease and pre-eclampsia:

  • Rh disease is caused by the mother producing antibodies (including IgG antibodies) against the Rhesus D antigen on their baby's red blood cells. It occurs if the mother is Rh negative and the baby is Rh positive, and a small amount of Rh positive blood from any previous pregnancy has entered the mother's circulation to make their produce IgG antibodies against the D antigen (Anti-D). Maternal IgG is able to pass through the placenta into the fetus and if the level of it is sufficient, it will cause destruction of D positive fetal red blood cells, leading to development of the anti-Rh type of hemolytic disease of the fetus and newborn (HDFN). Generally, HDFN becomes worse with each additional Rh incompatible pregnancy.
  • One cause of pre-eclampsia is an abnormal immune response towards the placenta. There is substantial evidence for exposure to partner's semen as prevention for pre-eclampsia, largely due to the absorption of several immune modulating factors present in seminal fluid.

Pregnancies resulting from egg donation, where the carrier is less genetically similar to the fetus than a biological mother, are associated with a higher incidence of pregnancy-induced hypertension and placental pathology. The local and systemic immunologic changes are also more pronounced than in normal pregnancies, so it has been suggested that the higher frequency of some conditions in egg donation may be caused by reduced immune tolerance from the mother.

Infertility and miscarriage

Immunological responses could be the cause in many cases of infertility and miscarriage. Some immunological factors that contribute to infertility are reproductive autoimmune failure syndrome, the presence of antiphospholipid antibodies, and antinuclear antibodies.

Antiphospholipid antibodies are targeted toward the phospholipids of the cell membrane. Studies have shown that antibodies against phosphatidylserine, phosphatidylcholine, phosphatidylglycerol, phosphatidylinositol and phosphatidylethanolamine target the pre-embryo. Antibodies against phosphatidylserine and phosphatidylethanolamine are against the trophoblast. These phospholipids are essential in enabling the cells of the fetus to remain attached to the cells of the uterus with implantation. If a female has antibodies against these phospholipids, they will be destroyed through the immune response and ultimately the fetus will not be able to remain bound to the uterus. These antibodies also jeopardize the health of the uterus by altering the blood flow to the uterus.

Antinuclear antibodies cause an inflammation in the uterus that does not allow it to be a suitable host for implantation of the embryo. Natural killer cells misinterpret the fetal cells as cancer cells and attack them. An individual that presents with reproductive autoimmune failure syndrome has unexplained infertility, endometriosis, and repetitive miscarriages due to elevated levels of antinuclear antibodies circulating. Both the presence of antiphospholipids antibodies and antinuclear antibodies have toxic effects on the implantation of embryos. This does not apply to anti-thyroid antibodies. Elevated levels do not have a toxic effect, but they are indicative of a risk of miscarriage. Elevated anti-thyroid antibodies act as a marker for females who have T-lymphocyte dysfunction because these levels indicate T cells that are secreting high levels of cytokines that induce inflammation in the uterine wall.

Still, there is currently no drug that has evidence of preventing miscarriage by inhibition of maternal immune responses; aspirin has no effect in this case.

Increased infectious susceptibility

The increased immune tolerance is believed to be a major contributing factor to an increased susceptibility and severity of infections in pregnancy. Pregnant women are more severely affected by, for example, influenza, hepatitis E, herpes simplex and malaria. The evidence is more limited for coccidioidomycosis, measles, smallpox, and varicella. Pregnancy does not appear to alter the protective effects of vaccination.

Interspecific pregnancy

If the mechanisms of rejection-immunity of the fetus could be understood, it might lead to interspecific pregnancy, having, for example, pigs carry human fetuses to term as an alternative to a human surrogate mother.

Immune tolerance

From Wikipedia, the free encyclopedia

Immune tolerance, or immunological tolerance, or immunotolerance, is a state of unresponsiveness of the immune system to substances or tissue that would otherwise have the capacity to elicit an immune response in a given organism. It is induced by prior exposure to that specific antigen and contrasts with conventional immune-mediated elimination of foreign antigens (see Immune response). Tolerance is classified into central tolerance or peripheral tolerance depending on where the state is originally induced—in the thymus and bone marrow (central) or in other tissues and lymph nodes (peripheral). The mechanisms by which these forms of tolerance are established are distinct, but the resulting effect is similar.

Immune tolerance is important for normal physiology. Central tolerance is the main way the immune system learns to discriminate self from non-self. Peripheral tolerance is key to preventing over-reactivity of the immune system to various environmental entities (allergens, gut microbes, etc.). Deficits in central or peripheral tolerance also cause autoimmune disease, resulting in syndromes such as systemic lupus erythematosus, rheumatoid arthritis, type 1 diabetes, autoimmune polyendocrine syndrome type 1 (APS-1), and immunodysregulation polyendocrinopathy enteropathy X-linked syndrome (IPEX), and potentially contribute to asthma, allergy, and inflammatory bowel disease. And immune tolerance in pregnancy is what allows a mother animal to gestate a genetically distinct offspring with an alloimmune response muted enough to prevent miscarriage.

Tolerance, however, also has its negative tradeoffs. It allows for some pathogenic microbes to successfully infect a host and avoid elimination. In addition, inducing peripheral tolerance in the local microenvironment is a common survival strategy for a number of tumors that prevents their elimination by the host immune system.

Historical background

The phenomenon of immune tolerance was first described by Ray D. Owen in 1945, who noted that dizygotic twin cattle sharing a common placenta also shared a stable mixture of each other's red blood cells (though not necessarily 50/50), and retained that mixture throughout life. Although Owen did not use the term immune tolerance, his study showed the body could be tolerant of these foreign tissues. This observation was experimentally validated by Leslie Brent, Rupert E. Billingham and Peter Medawar in 1953, who showed by injecting foreign cells into fetal or neonatal mice, they could become accepting of future grafts from the same foreign donor. However, they were not thinking of the immunological consequences of their work at the time: as Medawar explains:

"We did not set out with the idea in mind of studying the immunological consequences of the phenomenon described by Owen; on the contrary, we had been goaded by Dr. H.P. Donald into trying to devise a foolproof method of distinguishing monozygotic from dizygotic twins... ."

However, these discoveries, and the host of allograft experiments and observations of twin chimerism they inspired, were seminal for the theories of immune tolerance formulated by Sir Frank McFarlane Burnet and Frank Fenner, who were the first to propose the deletion of self-reactive lymphocytes to establish tolerance, now termed clonal deletion. Burnet and Medawar were ultimately credited for "the discovery of acquired immune tolerance" and shared the Nobel Prize in Physiology or Medicine in 1960.

Definitions and usage

In their Nobel Lecture, Medawar and Burnet define immune tolerance as "a state of indifference or non-reactivity towards a substance that would normally be expected to excite an immunological response." Other more recent definitions have remained more or less the same. The 8th edition of Janeway's Immunobiology defines tolerance as "immunologically unresponsive…to another's tissues.".

Immune tolerance encompasses the range of physiological mechanisms by which the body reduces or eliminates an immune response to particular agents. It is used to describe the phenomenon underlying discrimination of self from non-self, suppressing allergic responses, allowing chronic infection instead of rejection and elimination, and preventing attack of fetuses by the maternal immune system. Typically, a change in the host, not the antigen, is implied. Though some pathogens can evolve to become less virulent in host-pathogen coevolution, tolerance does not refer to the change in the pathogen but can be used to describe the changes in host physiology. Immune tolerance also does not usually refer to artificially induced immunosuppression by corticosteroids, lymphotoxic chemotherapy agents, sublethal irradiation, etc. Nor does it refer to other types of non-reactivity such as immunological paralysis. In the latter two cases, the host's physiology is handicapped but not fundamentally changed.

Immune tolerance is formally differentiated into central or peripheral; however, alternative terms such as "natural" or "acquired" tolerance have at times been used to refer to establishment of tolerance by physiological means or by artificial, experimental, or pharmacological means. These two methods of categorization are sometimes confused, but are not equivalent—central or peripheral tolerance may be present naturally or induced experimentally. This difference is important to keep in mind.

Central tolerance

Central tolerance refers to the tolerance established by deleting autoreactive lymphocyte clones before they develop into fully immunocompetent cells. It occurs during lymphocyte development in the thymus and bone marrow for T and B lymphocytes, respectively. In these tissues, maturing lymphocytes are exposed to self-antigens presented by medullary thymic epithelial cells and thymic dendritic cells, or bone marrow cells. Self-antigens are present due to endogenous expression, importation of antigen from peripheral sites via circulating blood, and in the case of thymic stromal cells, expression of proteins of other non-thymic tissues by the action of the transcription factor AIRE.

Those lymphocytes that have receptors that bind strongly to self-antigens are removed by induction of apoptosis of the autoreactive cells, or by induction of anergy, a state of non-activity. Weakly autoreactive B cells may also remain in a state of immunological ignorance where they simply do not respond to stimulation of their B cell receptor. Some weakly self-recognizing T cells are alternatively differentiated into natural regulatory T cells (nTreg cells), which act as sentinels in the periphery to calm down potential instances of T cell autoreactivity (see peripheral tolerance below).

The deletion threshold is much more stringent for T cells than for B cells since T cells alone can cause direct tissue damage. Furthermore, it is more advantageous for the organism to let its B cells recognize a wider variety of antigen so it can produce antibodies against a greater diversity of pathogens. Since the B cells can only be fully activated after confirmation by more self-restricted T cells that recognize the same antigen, autoreactivity is held in check.

This process of negative selection ensures that T and B cells that could initiate a potent immune response to the host's own tissues are eliminated while preserving the ability to recognize foreign antigens. It is the step in lymphocyte education that is key for preventing autoimmunity (entire process detailed here). Lymphocyte development and education is most active in fetal development but continues throughout life as immature lymphocytes are generated, slowing as the thymus degenerates and the bone marrow shrinks in adult life.

Peripheral tolerance

Peripheral tolerance develops after T and B cells mature and enter the peripheral tissues and lymph nodes. It is established by a number of partly overlapping mechanisms that mostly involve control at the level of T cells, especially CD4+ helper T cells, which orchestrate immune responses and give B cells the confirmatory signals they need in order to produce antibodies. Inappropriate reactivity toward normal self-antigen that was not eliminated in the thymus can occur, since the T cells that leave the thymus are relatively but not completely safe. Some will have receptors (TCRs) that can respond to self-antigens that:

  • are present in such high concentration outside the thymus that they can bind to "weak" receptors.
  • the T cell did not encounter in the thymus (such as, tissue-specific molecules like those in the islets of Langerhans, brain, or spinal cord not expressed by AIRE in thymic tissues).

Those self-reactive T cells that escape intrathymic negative selection in the thymus can inflict cell injury unless they are deleted or effectively muzzled in the peripheral tissue chiefly by nTreg cells (see central tolerance above).

Appropriate reactivity toward certain antigens can also be quieted by induction of tolerance after repeated exposure, or exposure in a certain context. In these cases, there is a differentiation of naïve CD4+ helper T cells into induced Treg cells (iTreg cells) in the peripheral tissue or nearby lymphoid tissue (lymph nodes, mucosal-associated lymphoid tissue, etc.). This differentiation is mediated by IL-2 produced upon T cell activation, and TGF-β from any of a variety of sources, including tolerizing dendritic cells (DCs), other antigen presenting cells, or in certain conditions surrounding tissue.

Treg cells are not the only cells that mediate peripheral tolerance. Other regulatory immune cells include T cell subsets similar to but phenotypically distinct from Treg cells, including TR1 cells that make IL-10 but do not express Foxp3, TGF-β-secreting TH3 cells, as well as other less well-characterized cells that help establish a local tolerogenic environment. B cells also express CD22, a non-specific inhibitor receptor that dampens B cell receptor activation. A subset of B regulatory cells that makes IL-10 and TGF-β also exists. Some DCs can make Indoleamine 2,3-dioxygenase (IDO) that depletes the amino acid tryptophan needed by T cells to proliferate and thus reduce responsiveness. DCs also have the capacity to directly induce anergy in T cells that recognize antigen expressed at high levels and thus presented at steady-state by DCs. In addition, FasL expression by immune privileged tissues can result in activation-induced cell death of T cells.

nTreg vs. iTreg cells

The involvement of T cells, later classified as Treg cells, in immune tolerance was recognized in 1995 when animal models showed that CD4+ CD25+ T cells were necessary and sufficient for the prevention of autoimmunity in mice and rats. Initial observations showed removal of the thymus of a newborn mouse resulted in autoimmunity, which could be rescued by transplantation of CD4+ T cells. A more specific depletion and reconstitution experiment established the phenotype of these cells as CD4+ and CD25+. Later in 2003, experiments showed that Treg cells were characterized by the expression of the Foxp3 transcription factor, which is responsible for the suppressive phenotype of these cells.

It was assumed that, since the presence of the Treg cells originally characterized was dependent on the neonatal thymus, these cells were thymically derived. By the mid-2000s, however, evidence was accruing of conversion of naïve CD4+ T cells to Treg cells outside of the thymus. These were later defined as induced or iTreg cells to contrast them with thymus-derived nTreg cells. Both types of Treg cells quieten autoreactive T cell signaling and proliferation by cell-contact-dependent and -independent mechanisms including:

  • Contact-dependent:
  • Contact-independent
  • Secretion of TGF-β, which sensitizes cells to suppression and promotes Treg-like cell differentiation
  • Secretion of IL-10
  • Cytokine absorption leading to cytokine deprivation-mediated apoptosis

nTreg cells and iTreg cells, however, have a few important distinguishing characteristics that suggest they have different physiological roles:

  • nTreg cells develop in the thymus; iTreg cells develop outside the thymus in chronically inflamed tissue, lymph nodes, spleen, and gut-associated lymphoid tissue (GALT).
  • nTreg cells develop from Foxp3- CD25+ CD4+ cells while iTreg cells develop from Foxp3+ CD25- CD4- cells (both become Foxp3+ CD25+CD4+).
  • nTreg cells, when activated, require CD28 costimulation, while iTreg cells require CTLA-4 costimulation.
  • nTreg cells are specific, modestly, for self-antigen while iTreg cells recognize allergens, commensal bacteria, tumor antigens, alloantigens, and self-antigens in inflamed tissue.

Tolerance in physiology and medicine

Allograft tolerance

Immune recognition of non-self-antigens typically complicates transplantation and engrafting of foreign tissue from an organism of the same species (allografts), resulting in graft reaction. However, there are two general cases in which an allograft may be accepted. One is when cells or tissue are grafted to an immune-privileged site that is sequestered from immune surveillance (like in the eye or testes) or has strong molecular signals in place to prevent dangerous inflammation (like in the brain). The second is when a state of tolerance has been induced, either by previous exposure to the antigen of the donor in a manner that causes immune tolerance rather than sensitization in the recipient, or after chronic rejection. Long-term exposure to a foreign antigen from fetal development or birth may result in establishment of central tolerance, as was observed in Medawar's mouse-allograft experiments. In usual transplant cases, however, such early prior exposure is not possible. Nonetheless, a few patients can still develop allograft tolerance upon cessation of all exogenous immunosuppressive therapy, a condition referred to as operational tolerance. CD4+ Foxp3+ Treg cells, as well as CD8+ CD28- regulatory T cells that dampen cytotoxic responses to grafted organs, are thought to play a role. In addition, genes involved in NK cell and γδT cell function associated with tolerance have been implicated for liver transplant patients. The unique gene signatures of these patients implies their physiology may be predisposed toward immune tolerance.

Fetal development

The fetus has a different genetic makeup than the mother, as it also translates its father's genes, and is thus perceived as foreign by the maternal immune system. Women who have borne multiple children by the same father typically have antibodies against the father's red blood cell and major histocompatibility complex (MHC) proteins. However, the fetus usually is not rejected by the mother, making it essentially a physiologically tolerated allograft. It is thought that the placental tissues which interface with maternal tissues not only try to escape immunological recognition by downregulating identifying MHC proteins but also actively induce a marked peripheral tolerance. Placental trophoblast cells express a unique Human Leukocyte Antigen (HLA-G) that inhibits attack by maternal NK cells. These cells also express IDO, which represses maternal T cell responses by amino acid starvation. Maternal T cells specific for paternal antigens are also suppressed by tolerogenic DCs and activated iTregs or cross-reacting nTregs. Some maternal Treg cells also release soluble fibrinogen-like proteins 2 (sFGL2), which suppresses the function of DCs and macrophages involved in inflammation and antigen presentation to reactive T cells[24] These mechanisms altogether establish an immune-privileged state in the placenta that protects the fetus. A break in this peripheral tolerance results in miscarriage and fetal loss. (for more information, see Immune tolerance in pregnancy).

The microbiome

The skin and digestive tract of humans and many other organisms is colonized with an ecosystem of microorganisms that is referred to as the microbiome. Though in mammals a number of defenses exist to keep the microbiota at a safe distance, including a constant sampling and presentation of microbial antigens by local DCs, most organisms do not react against commensal microorganisms and tolerate their presence. Reactions are mounted, however, to pathogenic microbes and microbes that breach physiological barriers(epithelium barriers). Peripheral mucosal immune tolerance, in particular, mediated by iTreg cells and tolerogenic antigen-presenting cells, is thought to be responsible for this phenomenon. In particular, specialized gut CD103+ DCs that produce both TGF-β and retinoic acid efficiently promotes the differentiation of iTreg cells in the gut lymphoid tissue. Foxp3- TR1 cells that make IL-10 are also enriched in the intestinal lining. Break in this tolerance is thought to underlie the pathogenesis of inflammatory bowel diseases like Crohn's disease and ulcerative colitis.

Oral tolerance and hypersensitivity

Oral tolerance refers to a specific type of peripheral tolerance induced by antigens given by mouth and exposed to the gut mucosa and its associated lymphoid tissues. The hypo-responsiveness induced by oral exposure is systemic and can reduce hypersensitivity reactions in certain cases. Records from 1829 indicate that American Indians would reduce contact hypersensitivity from poison ivy by consuming leaves of related Rhus species; however, contemporary attempts to use oral tolerance to ameliorate autoimmune diseases like rheumatoid arthritis and other hypersensitivity reactions have been mixed. The systemic effects of oral tolerance may be explained by the extensive recirculation of immune cells primed in one mucosal tissue in another mucosal tissue, allowing extension of mucosal immunity. The same probably occurs for cells mediating mucosal immune tolerance.

Oral tolerance may depend on the same mechanisms of peripheral tolerance that limit inflammation to bacterial antigens in the microbiome since both involve the gut-associated lymphoid tissue. It may also have evolved to prevent hypersensitivity reactions to food proteins. It is of immense immunological importance, since it is a continuous natural immunologic event driven by exogenous antigen.

Allergy and hypersensitivity reactions in general are traditionally thought of as misguided or excessive reactions by the immune system, possibly due to broken or underdeveloped mechanisms of peripheral tolerance. Usually, Treg cells, TR1, and Th3 cells at mucosal surfaces suppress type 2 CD4 helper cells, mast cells, and eosinophils, which mediate allergic response. Deficits in Treg cells or their localization to mucosa have been implicated in asthma and atopic dermatitis. Attempts have been made to reduce hypersensitivity reactions by oral tolerance and other means of repeated exposure. Repeated administration of the allergen in slowly increasing doses, subcutaneously or sublingually appears to be effective for allergic rhinitis. Repeated administration of antibiotics, which can form haptens to cause allergic reactions, can also reduce antibiotic allergies in children.

The tumor microenvironment

Immune tolerance is an important means by which growing tumors, which have mutated proteins and altered antigen expression, prevent elimination by the host immune system. It is well recognized that tumors are a complex and dynamic population of cells composed of transformed cells as well as stromal cells, blood vessels, tissue macrophages, and other immune infiltrates. These cells and their interactions all contribute to the changing tumor microenvironment, which the tumor largely manipulates to be immunotolerant so as to avoid elimination. There is an accumulation of metabolic enzymes that suppress T cell proliferation and activation, including IDO and arginase, and high expression of tolerance-inducing ligands like FasL, PD-1, CTLA-4, and B7. Pharmacologic monoclonal antibodies targeted against some of these ligands has been effective in treating cancer. Tumor-derived vesicles known as exosomes have also been implicated promoting differentiation of iTreg cells and myeloid derived suppressor cells (MDSCs), which also induce peripheral tolerance. In addition to promoting immune tolerance, other aspects of the microenvironment aid in immune evasion and induction of tumor-promoting inflammation.

Evolution

Though the exact evolutionary rationale behind the development of immunological tolerance is not completely known, it is thought to allow organisms to adapt to antigenic stimuli that will consistently be present instead of expending considerable resources fighting it off repeatedly. Tolerance in general can be thought of as an alternative defense strategy that focuses on minimizing impact of an invader on host fitness, instead of on destroying and eliminating the invader. Such efforts may have a prohibitive cost on host fitness. In plants, where the concept was originally used, tolerance is defined as a reaction norm of host fitness over a range of parasite burdens, and can be measured from the slope of the line fitting these data. Immune tolerance may constitute one aspect of this defense strategy, though other types of tissue tolerance have been described.

Schematic of the reaction norm of tolerance. Organisms of genotype 2 are considered more tolerant to the pathogen than organisms of genotype 1.

The advantages of immune tolerance, in particular, may be seen in experiments with mice infected with malaria, in which more tolerant mice have higher fitness at greater pathogen burdens. In addition, development of immune tolerance would have allowed organisms to reap the benefits of having a robust commensal microbiome, such as increased nutrient absorption and decreased colonization by pathogenic bacteria.

Though it seems that the existence of tolerance is mostly adaptive, allowing an adjustment of the immune response to a level appropriate for the given stressor, it comes with important evolutionary disadvantages. Some infectious microbes take advantage of existing mechanisms of tolerance to avoid detection and/or elimination by the host immune system. Induction of regulatory T cells, for instance, has been noted in infections with Helicobacter pylori, Listeria monocytogenes, Brugia malayi, and other worms and parasites. Another important disadvantage of the existence of tolerance may be susceptibility to cancer progression. Treg cells inhibit anti-tumor NK cells. The injection of Treg cells specific for a tumor antigen also can reverse experimentally-mediated tumor rejection based on that same antigen. The prior existence of immune tolerance mechanisms due to selection for its fitness benefits facilitates its utilization in tumor growth.

Tradeoffs between immune tolerance and resistance

Immune tolerance contrasts with resistance. Upon exposure to a foreign antigen, either the antigen is eliminated by the standard immune response (resistance), or the immune system adapts to the pathogen, promoting immune tolerance instead.

Resistance typically protects the host at the expense of the parasite, while tolerance reduces harm to the host without having any direct negative effects on the parasite. Each strategy has its unique costs and benefits for host fitness:


Costs Benefits
Elimination (resistance)
  • Pain, swelling, and disruption of tissue function by inflammation.
  • Tissue damage by inflammatory mediators (immunopathology)
  • High energy cost
  • Risk of autoimmunity, hypersensitivity, allergy
  • Reduces pathogen burden
  • Neutralizes toxins and eliminates dangerous organisms
  • Prevents parasitism
Tolerance
  • Direct damage by pathogen (toxins, digestion, etc.)
  • Energy and resources lost to pathogen
  • Reduced tissue damage from immune response
  • Less selection pressure on pathogens for resistance
  • Promotes commensalism
  • Lower energy cost

Evolution works to optimize host fitness, so whether elimination or tolerance occurs depends on which would benefit the organism most in a given scenario. If the antigen is from a rare, dangerous invader, the costs of tolerating its presence are high and it is more beneficial to the host to eliminate it. Conversely, if experience (of the organism or its ancestors) has shown that the antigen is innocuous, then it would be more beneficial to tolerate the presence of the antigen rather than pay the costs of inflammation.

Despite having mechanisms for both immune resistance and tolerance, any one organism may be overall more skewed toward a tolerant or resistant phenotype depending on individual variation in both traits due to genetic and environmental factors. In mice infected with malaria, different genetic strains of mice fall neatly along a spectrum of being more tolerant but less resistant or more resistant but less tolerant. Patients with autoimmune diseases also often have a unique gene signature and certain environmental risk factors that predispose them to disease. This may have implications for current efforts to identify why certain individuals may be disposed to or protected against autoimmunity, allergy, inflammatory bowel disease, and other such diseases.

Tumor antigen

From Wikipedia, the free encyclopedia
 
 
The spectrum of target antigens associated with tumor immunity and allo-immunity after allogeneic hematopoietic stem cell transplantation. Host-derived T and B cells can be induced to recognize tumor-associated antigens, whereas donor-derived B and T cells can recognize both tumor-associated antigens and alloantigens.

Tumor antigen is an antigenic substance produced in tumor cells, i.e., it triggers an immune response in the host. Tumor antigens are useful tumor markers in identifying tumor cells with diagnostic tests and are potential candidates for use in cancer therapy. The field of cancer immunology studies such topics.

Mechanism of tumor antigenesis

Processing of tumor antigens recognized by CD8+ T cells

Normal proteins in the body are not antigenic because of self-tolerance, a process in which self-reacting cytotoxic T lymphocytes (CTLs) and autoantibody-producing B lymphocytes are culled "centrally" in primary lymphatic tissue (BM) and "peripherally" in secondary lymphatic tissue (mostly thymus for T-cells and spleen/lymph nodes for B cells). Thus any protein that is not exposed to the immune system triggers an immune response. This may include normal proteins that are well sequestered from the immune system, proteins that are normally produced in extremely small quantities, proteins that are normally produced only in certain stages of development, or proteins whose structure is modified due to mutation.

Classification of tumor antigens

Classes of human tumor antigens recognized by T lymphocytes, with their genetic process

Initially tumor antigens were broadly classified into two categories based on their pattern of expression: Tumor-Specific Antigens (TSA), which are present only on tumor cells and not on any other cell and Tumor-Associated Antigens (TAA), which are present on some tumor cells and also some normal cells.

This classification, however, is imperfect because many antigens thought to be tumor-specific turned out to be expressed on some normal cells as well. The modern classification of tumor antigens is based on their molecular structure and source.

Accordingly, they can be classified as;

  • Products of Mutated Oncogenes and Tumor Suppressor Genes
  • Products of Other Mutated Genes
    • Overexpressed or Aberrantly Expressed Cellular Proteins
    • Tumor Antigens Produced by Oncogenic Viruses
    • Oncofetal Antigens
    • Altered Cell Surface Glycolipids and Glycoproteins
    • Cell Type-Specific Differentiation Antigens

Types

Any protein produced in a tumor cell that has an abnormal structure due to mutation can act as a tumor antigen. Such abnormal proteins are produced due to mutation of the concerned gene. Mutation of protooncogenes and tumor suppressors which lead to abnormal protein production are the cause of the tumor and thus such abnormal proteins are called tumor-specific antigens. Examples of tumor-specific antigens include the abnormal products of ras and p53 genes. In contrast, mutation of other genes unrelated to the tumor formation may lead to synthesis of abnormal proteins which are called tumor-associated antigens.

Other examples include tissue differentiation antigens, mutant protein antigens, oncogenic viral antigens, cancer-testis antigens and vascular or stromal specific antigens. Tissue differentiation antigens are those that are specific to a certain type of tissue. Mutant protein antigens are likely to be much more specific to cancer cells because normal cells shouldn't contain these proteins. Normal cells will display the normal protein antigen on their MHC molecules, whereas cancer cells will display the mutant version. Some viral proteins are implicated in forming cancer (oncogenesis), and some viral antigens are also cancer antigens. Cancer-testis antigens are antigens expressed primarily in the germ cells of the testes, but also in fetal ovaries and the trophoblast. Some cancer cells aberrantly express these proteins and therefore present these antigens, allowing attack by T-cells specific to these antigens. Example antigens of this type are CTAG1B and MAGEA1.

Proteins that are normally produced in very low quantities but whose production is dramatically increased in tumor cells, trigger an immune response. An example of such a protein is the enzyme tyrosinase, which is required for melanin production. Normally tyrosinase is produced in minute quantities but its levels are very much elevated in melanoma cells.

Oncofetal antigens are another important class of tumor antigens. Examples are alphafetoprotein (AFP) and carcinoembryonic antigen (CEA). These proteins are normally produced in the early stages of embryonic development and disappear by the time the immune system is fully developed. Thus self-tolerance does not develop against these antigens.

Abnormal proteins are also produced by cells infected with oncoviruses, e.g. EBV and HPV. Cells infected by these viruses contain latent viral DNA which is transcribed and the resulting protein produces an immune response.

In addition to proteins, other substances like cell surface glycolipids and glycoproteins may also have an abnormal structure in tumor cells and could thus be targets of the immune system.

Importance of tumor antigens

Tumor antigens, because of their relative abundance in tumor cells are useful in identifying specific tumor cells. Certain tumors have certain tumor antigens in abundance.

Tumor antigen Tumor in which it is found Remarks
Alphafetoprotein (AFP) Germ cell tumors

Hepatocellular carcinoma


Carcinoembryonic antigen (CEA) Bowel cancers Occasional lung or breast cancer
CA-125 Ovarian cancer
MUC-1 Breast cancer
Epithelial tumor antigen (ETA) Breast cancer
Tyrosinase Malignant melanoma normally present in minute quantities; greatly elevated levels in melanoma
Melanoma-associated antigen (MAGE) Malignant melanoma Also normally present in the testis
abnormal products of ras, p53 Various tumors

Certain tumor antigens are thus used as tumor markers. More importantly, tumor antigens can be used in cancer therapy as tumor antigen vaccines.

Cancer biomarker

From Wikipedia, the free encyclopedia
text
Questions that can be answered by biomarkers

A cancer biomarker refers to a substance or process that is indicative of the presence of cancer in the body. A biomarker may be a molecule secreted by a tumor or a specific response of the body to the presence of cancer. Genetic, epigenetic, proteomic, glycomic, and imaging biomarkers can be used for cancer diagnosis, prognosis, and epidemiology. Ideally, such biomarkers can be assayed in non-invasively collected biofluids like blood or serum.

Cancer is a disease that affects society at a world-wide level. By testing for biomarkers, early diagnosis can be given to prevent deaths.

While numerous challenges exist in translating biomarker research into the clinical space; a number of gene and protein based biomarkers have already been used at some point in patient care; including, AFP (liver cancer), BCR-ABL (chronic myeloid leukemia), BRCA1 / BRCA2 (breast/ovarian cancer), BRAF V600E (melanoma/colorectal cancer), CA-125 (ovarian cancer), CA19.9 (pancreatic cancer), CEA (colorectal cancer), EGFR (Non-small-cell lung carcinoma), HER-2 (Breast Cancer), KIT (gastrointestinal stromal tumor), PSA (prostate specific antigen) (prostate cancer), S100 (melanoma), and many others. Mutant proteins themselves detected by selected reaction monitoring (SRM) have been reported to be the most specific biomarkers for cancers because they can only come from an existing tumor. About 40% of cancers can be cured if detected early through examinations.

Definitions of cancer biomarkers

Organizations and publications vary in their definition of biomarker. In many areas of medicine, biomarkers are limited to proteins identifiable or measurable in the blood or urine. However, the term is often used to cover any molecular, biochemical, physiological, or anatomical property that can be quantified or measured.

The National Cancer Institute (NCI), in particular, defines biomarker as a: “A biological molecule found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process, or of a condition or disease. A biomarker may be used to see how well the body responds to a treatment for a disease or condition. Also called molecular marker and signature molecule."

In cancer research and medicine, biomarkers are used in three primary ways:

  1. To help diagnose conditions, as in the case of identifying early stage cancers (diagnostic)
  2. To forecast how aggressive a condition is, as in the case of determining a patient's ability to fare in the absence of treatment (prognostic)
  3. To predict how well a patient will respond to treatment (predictive)

Role of biomarkers in cancer research and medicine

Uses of biomarkers in cancer medicine

Risk assessment

Cancer biomarkers, particular those associated with genetic mutations or epigenetic alterations, often offer a quantitative way to determine when individuals are predisposed to particular types of cancers. Notable examples of potentially predictive cancer biomarkers include mutations on genes KRAS, p53, EGFR, erbB2 for colorectal, esophageal, liver, and pancreatic cancer; mutations of genes BRCA1 and BRCA2 for breast and ovarian cancer; abnormal methylation of tumor suppressor genes p16, CDKN2B, and p14ARF for brain cancer; hypermethylation of MYOD1, CDH1, and CDH13 for cervical cancer; and hypermethylation of p16, p14, and RB1, for oral cancer.

Diagnosis

Cancer biomarkers can also be useful in establishing a specific diagnosis. This is particularly the case when there is a need to determine whether tumors are of primary or metastatic origin. To make this distinction, researchers can screen the chromosomal alterations found on cells located in the primary tumor site against those found in the secondary site. If the alterations match, the secondary tumor can be identified as metastatic; whereas if the alterations differ, the secondary tumor can be identified as a distinct primary tumor. For example, people with tumors have high levels of circulating tumor DNA (ctDNA) due to tumor cells that have gone through apoptosis. This tumor marker can be detected in the blood, saliva, or urine. The possibility of identifying an effective biomarker for early cancer diagnosis has recently been questioned, in light of the high molecular heterogeneity of tumors observed by next-generation sequencing studies.

Prognosis and treatment predictions

Another use of biomarkers in cancer medicine is for disease prognosis, which take place after an individual has been diagnosed with cancer. Here biomarkers can be useful in determining the aggressiveness of an identified cancer as well as its likelihood of responding to a given treatment. In part, this is because tumors exhibiting particular biomarkers may be responsive to treatments tied to that biomarker's expression or presence. Examples of such prognostic biomarkers include elevated levels of metallopeptidase inhibitor 1 (TIMP1), a marker associated with more aggressive forms of multiple myeloma, elevated estrogen receptor (ER) and/or progesterone receptor (PR) expression, markers associated with better overall survival in patients with breast cancer; HER2/neu gene amplification, a marker indicating a breast cancer will likely respond to trastuzumab treatment; a mutation in exon 11 of the proto-oncogene c-KIT, a marker indicating a gastrointestinal stromal tumor (GIST) will likely respond to imatinib treatment; and mutations in the tyrosine kinase domain of EGFR1, a marker indicating a patient's non-small-cell lung carcinoma (NSCLC) will likely respond to gefitinib or erlotinib treatment.

Pharmacodynamics and pharmacokinetics

Cancer biomarkers can also be used to determine the most effective treatment regime for a particular person's cancer. Because of differences in each person's genetic makeup, some people metabolize or change the chemical structure of drugs differently. In some cases, decreased metabolism of certain drugs can create dangerous conditions in which high levels of the drug accumulate in the body. As such, drug dosing decisions in particular cancer treatments can benefit from screening for such biomarkers. An example is the gene encoding the enzyme thiopurine methyl-transferase (TPMPT). Individuals with mutations in the TPMT gene are unable to metabolize large amounts of the leukemia drug, mercaptopurine, which potentially causes a fatal drop in white blood count for such patients. Patients with TPMT mutations are thus recommended to be given a lower dose of mercaptopurine for safety considerations.

Monitoring treatment response

Cancer biomarkers have also shown utility in monitoring how well a treatment is working over time. Much research is going into this particular area, since successful biomarkers have the potential of providing significant cost reduction in patient care, as the current image-based tests such as CT and MRI for monitoring tumor status are highly costly.

One notable biomarker garnering significant attention is the protein biomarker S100-beta in monitoring the response of malignant melanoma. In such melanomas, melanocytes, the cells that make pigment in our skin, produce the protein S100-beta in high concentrations dependent on the number of cancer cells. Response to treatment is thus associated with reduced levels of S100-beta in the blood of such individuals.

Similarly, additional laboratory research has shown that tumor cells undergoing apoptosis can release cellular components such as cytochrome c, nucleosomes, cleaved cytokeratin-18, and E-cadherin. Studies have found that these macromolecules and others can be found in circulation during cancer therapy, providing a potential source of clinical metrics for monitoring treatment.

Recurrence

Cancer biomarkers can also offer value in predicting or monitoring cancer recurrence. The Oncotype DX® breast cancer assay is one such test used to predict the likelihood of breast cancer recurrence. This test is intended for women with early-stage (Stage I or II), node-negative, estrogen receptor-positive (ER+) invasive breast cancer who will be treated with hormone therapy. Oncotype DX looks at a panel of 21 genes in cells taken during tumor biopsy. The results of the test are given in the form of a recurrence score that indicates likelihood of recurrence at 10 years.

Uses of biomarkers in cancer research

Developing drug targets

In addition to their use in cancer medicine, biomarkers are often used throughout the cancer drug discovery process. For instance, in the 1960s, researchers discovered the majority of patients with chronic myelogenous leukemia possessed a particular genetic abnormality on chromosomes 9 and 22 dubbed the Philadelphia chromosome. When these two chromosomes combine they create a cancer-causing gene known as BCR-ABL. In such patients, this gene acts as the principle initial point in all of the physiological manifestations of the leukemia. For many years, the BCR-ABL was simply used as a biomarker to stratify a certain subtype of leukemia. However, drug developers were eventually able to develop imatinib, a powerful drug that effectively inhibited this protein and significantly decreased production of cells containing the Philadelphia chromosome.

Surrogate endpoints

Another promising area of biomarker application is in the area of surrogate endpoints. In this application, biomarkers act as stand-ins for the effects of a drug on cancer progression and survival. Ideally, the use of validated biomarkers would prevent patients from having to undergo tumor biopsies and lengthy clinical trials to determine if a new drug worked. In the current standard of care, the metric for determining a drug's effectiveness is to check if it has decreased cancer progression in humans and ultimately whether it prolongs survival. However, successful biomarker surrogates could save substantial time, effort, and money if failing drugs could be eliminated from the development pipeline before being brought to clinical trials.

Some ideal characteristics of surrogate endpoint biomarkers include:

  • Biomarker should be involved in process that causes the cancer
  • Changes in biomarker should correlate with changes in the disease
  • Levels of biomarkers should be high enough that they can be measured easily and reliably
  • Levels or presence of biomarker should readily distinguish between normal, cancerous, and precancerous tissue
  • Effective treatment of the cancer should change the level of the biomarker
  • Level of the biomarker should not change spontaneously or in response to other factors not related to the successful treatment of the cancer

Two areas in particular that are receiving attention as surrogate markers include circulating tumor cells (CTCs) and circulating miRNAs. Both these markers are associated with the number of tumor cells present in the blood, and as such, are hoped to provide a surrogate for tumor progression and metastasis. However, significant barriers to their adoption include the difficulty of enriching, identifying, and measuring CTC and miRNA levels in blood. New technologies and research are likely necessary for their translation into clinical care.

Types of cancer biomarkers

Molecular cancer biomarkers

Tumor type Biomarker
Breast ER/PR (estrogen receptor/progesteron receptor)
HER-2/neu
Colorectal EGFR
KRAS
UGT1A1
Gastric HER-2/neu 
GIST c-KIT
Leukemia/lymphoma CD20
CD30
FIP1L1-PDGFRalpha
PDGFR
Philadelphia chromosome (BCR/ABL
PML/RAR-alpha
TPMT
UGT1A1
Lung EML4/ALK
EGFR
KRAS 
Melanoma BRAF
Pancreas Elevated levels of leucine, isoleucine and valine
Ovaries CA-125

Other examples of biomarkers:

Cancer biomarkers without specificity

Not all cancer biomarkers have to be specific to types of cancer. Some biomarkers found in the circulatory system can be used to determine an abnormal growth of cells present in the body. All these types of biomarkers can be identified through diagnostic blood tests, which is one of the main reasons to get regularly health tested. By getting regularly tested, many health issues such as cancer can be discovered at an early stage, preventing many deaths.

The neutrophil-to-lymphocyte ratio has been shown to be a non-specific determinant for many cancers. This ratio focuses on the activity of two components of the immune system that are involved in inflammatory response which is shown to be higher in presence of malignant tumors. Additionally, basic fibroblast growth factor (bFGF) is a protein that is involved in the proliferation of cells. Unfortunately, it has been shown that in the presence of tumors it is highly active which has led to the conclusion that it may help malignant cells reproduce at faster rates. Research has shown that anti-bFGF antibodies can be used to help treat tumors from many origins. Moreover, insulin-like growth factor (IGF-R) is involved in cell proliferation and growth. It has is possible that it is involved in inhibiting apoptosis, programmed cell death due to some defect. Due to this, the levels of IGF-R can be increased when cancer such as breast, prostate, lung, and colorectum is present.

Biomarker Description Biosensor used
NLR (neutrophil-to-lymphocyte ratio) Elevates with inflammation caused by cancer No
Basic Fibroblast Growth Factor (bFGF) This level increases when a tumor is present, helps with the fast reproduction of tumor cells Electrochemical
Insulin-like Growth Factor (IGF-R) High activity in cancer cells, help reproduction Electrochemical Impedance Spectroscopy Sensor

List of human positions

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Lis...