Search This Blog

Saturday, August 12, 2023

Nuclear chemistry

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Nuclear_chemistry
Alpha decay is one type of radioactive decay, in which an atomic nucleus emits an alpha particle, and thereby transforms (or "decays") into an atom with a mass number decreased by 4 and atomic number decreased by 2.

Nuclear chemistry is the sub-field of chemistry dealing with radioactivity, nuclear processes, and transformations in the nuclei of atoms, such as nuclear transmutation and nuclear properties.

It is the chemistry of radioactive elements such as the actinides, radium and radon together with the chemistry associated with equipment (such as nuclear reactors) which are designed to perform nuclear processes. This includes the corrosion of surfaces and the behavior under conditions of both normal and abnormal operation (such as during an accident). An important area is the behavior of objects and materials after being placed into a nuclear waste storage or disposal site.

It includes the study of the chemical effects resulting from the absorption of radiation within living animals, plants, and other materials. The radiation chemistry controls much of radiation biology as radiation has an effect on living things at the molecular scale. To explain it another way, the radiation alters the biochemicals within an organism, the alteration of the bio-molecules then changes the chemistry which occurs within the organism; this change in chemistry then can lead to a biological outcome. As a result, nuclear chemistry greatly assists the understanding of medical treatments (such as cancer radiotherapy) and has enabled these treatments to improve.

It includes the study of the production and use of radioactive sources for a range of processes. These include radiotherapy in medical applications; the use of radioactive tracers within industry, science and the environment, and the use of radiation to modify materials such as polymers.

It also includes the study and use of nuclear processes in non-radioactive areas of human activity. For instance, nuclear magnetic resonance (NMR) spectroscopy is commonly used in synthetic organic chemistry and physical chemistry and for structural analysis in macro-molecular chemistry.

History

After Wilhelm Röntgen discovered X-rays in 1895, many scientists began to work on ionizing radiation. One of these was Henri Becquerel, who investigated the relationship between phosphorescence and the blackening of photographic plates. When Becquerel (working in France) discovered that, with no external source of energy, the uranium generated rays which could blacken (or fog) the photographic plate, radioactivity was discovered. Marie Skłodowska-Curie (working in Paris) and her husband Pierre Curie isolated two new radioactive elements from uranium ore. They used radiometric methods to identify which stream the radioactivity was in after each chemical separation; they separated the uranium ore into each of the different chemical elements that were known at the time, and measured the radioactivity of each fraction. They then attempted to separate these radioactive fractions further, to isolate a smaller fraction with a higher specific activity (radioactivity divided by mass). In this way, they isolated polonium and radium. It was noticed in about 1901 that high doses of radiation could cause an injury in humans. Henri Becquerel had carried a sample of radium in his pocket and as a result he suffered a highly localized dose which resulted in a radiation burn. This injury resulted in the biological properties of radiation being investigated, which in time resulted in the development of medical treatment.

Ernest Rutherford, working in Canada and England, showed that radioactive decay can be described by a simple equation (a linear first degree derivative equation, now called first order kinetics), implying that a given radioactive substance has a characteristic "half-life" (the time taken for the amount of radioactivity present in a source to diminish by half). He also coined the terms alpha, beta and gamma rays, he converted nitrogen into oxygen, and most importantly he supervised the students who conducted the Geiger–Marsden experiment (gold foil experiment) which showed that the 'plum pudding model' of the atom was wrong. In the plum pudding model, proposed by J. J. Thomson in 1904, the atom is composed of electrons surrounded by a 'cloud' of positive charge to balance the electrons' negative charge. To Rutherford, the gold foil experiment implied that the positive charge was confined to a very small nucleus leading first to the Rutherford model, and eventually to the Bohr model of the atom, where the positive nucleus is surrounded by the negative electrons.

In 1934, Marie Curie's daughter (Irène Joliot-Curie) and son-in-law (Frédéric Joliot-Curie) were the first to create artificial radioactivity: they bombarded boron with alpha particles to make the neutron-poor isotope nitrogen-13; this isotope emitted positrons. In addition, they bombarded aluminium and magnesium with neutrons to make new radioisotopes.

In the early 1920s Otto Hahn created a new line of research. Using the "emanation method", which he had recently developed, and the "emanation ability", he founded what became known as "applied radiochemistry" for the researching of general chemical and physical-chemical questions. In 1936 Cornell University Press published a book in English (and later in Russian) titled Applied Radiochemistry, which contained the lectures given by Hahn when he was a visiting professor at Cornell University in Ithaca, New York, in 1933. This important publication had a major influence on almost all nuclear chemists and physicists in the United States, the United Kingdom, France, and the Soviet Union during the 1930s and 1940s, laying the foundation for modern nuclear chemistry. Hahn and Lise Meitner discovered radioactive isotopes of radium, thorium, protactinium and uranium. He also discovered the phenomena of radioactive recoil and nuclear isomerism, and pioneered rubidium–strontium dating. In 1938, Hahn, Lise Meitner and Fritz Strassmann discovered nuclear fission, for which Hahn received the 1944 Nobel Prize for Chemistry. Nuclear fission was the basis for nuclear reactors and nuclear weapons. Hahn is referred to as the father of nuclear chemistry and godfather of nuclear fission.

Main areas

Radiochemistry is the chemistry of radioactive materials, in which radioactive isotopes of elements are used to study the properties and chemical reactions of non-radioactive isotopes (often within radiochemistry the absence of radioactivity leads to a substance being described as being inactive as the isotopes are stable).

For further details please see the page on radiochemistry.

Radiation chemistry

Radiation chemistry is the study of the chemical effects of radiation on matter; this is very different from radiochemistry as no radioactivity needs to be present in the material which is being chemically changed by the radiation. An example is the conversion of water into hydrogen gas and hydrogen peroxide. Prior to radiation chemistry, it was commonly believed that pure water could not be destroyed.

Initial experiments were focused on understanding the effects of radiation on matter. Using a X-ray generator, Hugo Fricke studied the biological effects of radiation as it became a common treatment option and diagnostic method. Fricke proposed and subsequently proved that the energy from X - rays were able to convert water into activated water, allowing it to react with dissolved species.

Chemistry for nuclear power

Radiochemistry, radiation chemistry and nuclear chemical engineering play a very important role for uranium and thorium fuel precursors synthesis, starting from ores of these elements, fuel fabrication, coolant chemistry, fuel reprocessing, radioactive waste treatment and storage, monitoring of radioactive elements release during reactor operation and radioactive geological storage, etc.

Study of nuclear reactions

A combination of radiochemistry and radiation chemistry is used to study nuclear reactions such as fission and fusion. Some early evidence for nuclear fission was the formation of a short-lived radioisotope of barium which was isolated from neutron irradiated uranium (139Ba, with a half-life of 83 minutes and 140Ba, with a half-life of 12.8 days, are major fission products of uranium). At the time, it was thought that this was a new radium isotope, as it was then standard radiochemical practice to use a barium sulfate carrier precipitate to assist in the isolation of radium. More recently, a combination of radiochemical methods and nuclear physics has been used to try to make new 'superheavy' elements; it is thought that islands of relative stability exist where the nuclides have half-lives of years, thus enabling weighable amounts of the new elements to be isolated. For more details of the original discovery of nuclear fission see the work of Otto Hahn.

The nuclear fuel cycle

This is the chemistry associated with any part of the nuclear fuel cycle, including nuclear reprocessing. The fuel cycle includes all the operations involved in producing fuel, from mining, ore processing and enrichment to fuel production (Front-end of the cycle). It also includes the 'in-pile' behavior (use of the fuel in a reactor) before the back end of the cycle. The back end includes the management of the used nuclear fuel in either a spent fuel pool or dry storage, before it is disposed of into an underground waste store or reprocessed.

Normal and abnormal conditions

The nuclear chemistry associated with the nuclear fuel cycle can be divided into two main areas, one area is concerned with operation under the intended conditions while the other area is concerned with maloperation conditions where some alteration from the normal operating conditions has occurred or (more rarely) an accident is occurring. Without this process, none of this would be true.

Reprocessing

Law

In the United States, it is normal to use fuel once in a power reactor before placing it in a waste store. The long-term plan is currently to place the used civilian reactor fuel in a deep store. This non-reprocessing policy was started in March 1977 because of concerns about nuclear weapons proliferation. President Jimmy Carter issued a Presidential directive which indefinitely suspended the commercial reprocessing and recycling of plutonium in the United States. This directive was likely an attempt by the United States to lead other countries by example, but many other nations continue to reprocess spent nuclear fuels. The Russian government under President Vladimir Putin repealed a law which had banned the import of used nuclear fuel, which makes it possible for Russians to offer a reprocessing service for clients outside Russia (similar to that offered by BNFL).

PUREX chemistry

The current method of choice is to use the PUREX liquid-liquid extraction process which uses a tributyl phosphate/hydrocarbon mixture to extract both uranium and plutonium from nitric acid. This extraction is of the nitrate salts and is classed as being of a solvation mechanism. For example, the extraction of plutonium by an extraction agent (S) in a nitrate medium occurs by the following reaction.

Pu4+aq + 4NO3aq + 2Sorganic → [Pu(NO3)4S2]organic

A complex bond is formed between the metal cation, the nitrates and the tributyl phosphate, and a model compound of a dioxouranium(VI) complex with two nitrate anions and two triethyl phosphate ligands has been characterised by X-ray crystallography.

When the nitric acid concentration is high the extraction into the organic phase is favored, and when the nitric acid concentration is low the extraction is reversed (the organic phase is stripped of the metal). It is normal to dissolve the used fuel in nitric acid, after the removal of the insoluble matter the uranium and plutonium are extracted from the highly active liquor. It is normal to then back extract the loaded organic phase to create a medium active liquor which contains mostly uranium and plutonium with only small traces of fission products. This medium active aqueous mixture is then extracted again by tributyl phosphate/hydrocarbon to form a new organic phase, the metal bearing organic phase is then stripped of the metals to form an aqueous mixture of only uranium and plutonium. The two stages of extraction are used to improve the purity of the actinide product, the organic phase used for the first extraction will suffer a far greater dose of radiation. The radiation can degrade the tributyl phosphate into dibutyl hydrogen phosphate. The dibutyl hydrogen phosphate can act as an extraction agent for both the actinides and other metals such as ruthenium. The dibutyl hydrogen phosphate can make the system behave in a more complex manner as it tends to extract metals by an ion exchange mechanism (extraction favoured by low acid concentration), to reduce the effect of the dibutyl hydrogen phosphate it is common for the used organic phase to be washed with sodium carbonate solution to remove the acidic degradation products of the tributyl phosphatioloporus.

New methods being considered for future use

The PUREX process can be modified to make a UREX (URanium EXtraction) process which could be used to save space inside high level nuclear waste disposal sites, such as Yucca Mountain nuclear waste repository, by removing the uranium which makes up the vast majority of the mass and volume of used fuel and recycling it as reprocessed uranium.

The UREX process is a PUREX process which has been modified to prevent the plutonium being extracted. This can be done by adding a plutonium reductant before the first metal extraction step. In the UREX process, ~99.9% of the uranium and >95% of technetium are separated from each other and the other fission products and actinides. The key is the addition of acetohydroxamic acid (AHA) to the extraction and scrubs sections of the process. The addition of AHA greatly diminishes the extractability of plutonium and neptunium, providing greater proliferation resistance than with the plutonium extraction stage of the PUREX process.

Adding a second extraction agent, octyl(phenyl)-N,N-dibutyl carbamoylmethyl phosphine oxide (CMPO) in combination with tributylphosphate, (TBP), the PUREX process can be turned into the TRUEX (TRansUranic EXtraction) process this is a process which was invented in the US by Argonne National Laboratory, and is designed to remove the transuranic metals (Am/Cm) from waste. The idea is that by lowering the alpha activity of the waste, the majority of the waste can then be disposed of with greater ease. In common with PUREX this process operates by a solvation mechanism.

As an alternative to TRUEX, an extraction process using a malondiamide has been devised. The DIAMEX (DIAMideEXtraction) process has the advantage of avoiding the formation of organic waste which contains elements other than carbon, hydrogen, nitrogen, and oxygen. Such an organic waste can be burned without the formation of acidic gases which could contribute to acid rain. The DIAMEX process is being worked on in Europe by the French CEA. The process is sufficiently mature that an industrial plant could be constructed with the existing knowledge of the process. In common with PUREX this process operates by a solvation mechanism.

Selective Actinide Extraction (SANEX). As part of the management of minor actinides, it has been proposed that the lanthanides and trivalent minor actinides should be removed from the PUREX raffinate by a process such as DIAMEX or TRUEX. In order to allow the actinides such as americium to be either reused in industrial sources or used as fuel the lanthanides must be removed. The lanthanides have large neutron cross sections and hence they would poison a neutron-driven nuclear reaction. To date, the extraction system for the SANEX process has not been defined, but currently, several different research groups are working towards a process. For instance, the French CEA is working on a bis-triazinyl pyridine (BTP) based process.

Other systems such as the dithiophosphinic acids are being worked on by some other workers.

This is the UNiversal EXtraction process which was developed in Russia and the Czech Republic, it is a process designed to remove all of the most troublesome (Sr, Cs and minor actinides) radioisotopes from the raffinates left after the extraction of uranium and plutonium from used nuclear fuel. The chemistry is based upon the interaction of caesium and strontium with poly ethylene oxide (poly ethylene glycol) and a cobalt carborane anion (known as chlorinated cobalt dicarbollide). The actinides are extracted by CMPO, and the diluent is a polar aromatic such as nitrobenzene. Other diluents such as meta-nitrobenzotrifluoride and phenyl trifluoromethyl sulfone have been suggested as well.

Absorption of fission products on surfaces

Another important area of nuclear chemistry is the study of how fission products interact with surfaces; this is thought to control the rate of release and migration of fission products both from waste containers under normal conditions and from power reactors under accident conditions. Like chromate and molybdate, the 99TcO4 anion can react with steel surfaces to form a corrosion resistant layer. In this way, these metaloxo anions act as anodic corrosion inhibitors. The formation of 99TcO2 on steel surfaces is one effect which will retard the release of 99Tc from nuclear waste drums and nuclear equipment which has been lost before decontamination (e.g. submarine reactors lost at sea). This 99TcO2 layer renders the steel surface passive, inhibiting the anodic corrosion reaction. The radioactive nature of technetium makes this corrosion protection impractical in almost all situations. It has also been shown that 99TcO4 anions react to form a layer on the surface of activated carbon (charcoal) or aluminium. A short review of the biochemical properties of a series of key long lived radioisotopes can be read on line.

99Tc in nuclear waste may exist in chemical forms other than the 99TcO4 anion, these other forms have different chemical properties. Similarly, the release of iodine-131 in a serious power reactor accident could be retarded by absorption on metal surfaces within the nuclear plant.

Education

Despite the growing use of nuclear medicine, the potential expansion of nuclear power plants, and worries about protection against nuclear threats and the management of the nuclear waste generated in past decades, the number of students opting to specialize in nuclear and radiochemistry has decreased significantly over the past few decades. Now, with many experts in these fields approaching retirement age, action is needed to avoid a workforce gap in these critical fields, for example by building student interest in these careers, expanding the educational capacity of universities and colleges, and providing more specific on-the-job training.

Nuclear and Radiochemistry (NRC) is mostly being taught at university level, usually first at the Master- and PhD-degree level. In Europe, as substantial effort is being done to harmonize and prepare the NRC education for the industry's and society's future needs. This effort is being coordinated in a project funded by the Coordinated Action supported by the European Atomic Energy Community's 7th Framework Program. Although NucWik is primarily aimed at teachers, anyone interested in nuclear and radiochemistry is welcome and can find a lot of information and material explaining topics related to NRC.

Spinout areas

Some methods first developed within nuclear chemistry and physics have become so widely used within chemistry and other physical sciences that they may be best thought of as separate from normal nuclear chemistry. For example, the isotope effect is used so extensively to investigate chemical mechanisms and the use of cosmogenic isotopes and long-lived unstable isotopes in geology that it is best to consider much of isotopic chemistry as separate from nuclear chemistry.

Kinetics (use within mechanistic chemistry)

The mechanisms of chemical reactions can be investigated by observing how the kinetics of a reaction is changed by making an isotopic modification of a substrate, known as the kinetic isotope effect. This is now a standard method in organic chemistry. Briefly, replacing normal hydrogen (protons) by deuterium within a molecule causes the molecular vibrational frequency of X-H (for example C-H, N-H and O-H) bonds to decrease, which leads to a decrease in vibrational zero-point energy. This can lead to a decrease in the reaction rate if the rate-determining step involves breaking a bond between hydrogen and another atom. Thus, if the reaction changes in rate when protons are replaced by deuteriums, it is reasonable to assume that the breaking of the bond to hydrogen is part of the step which determines the rate.

Uses within geology, biology and forensic science

Cosmogenic isotopes are formed by the interaction of cosmic rays with the nucleus of an atom. These can be used for dating purposes and for use as natural tracers. In addition, by careful measurement of some ratios of stable isotopes it is possible to obtain new insights into the origin of bullets, ages of ice samples, ages of rocks, and the diet of a person can be identified from a hair or other tissue sample. (See Isotope geochemistry and Isotopic signature for further details).

Biology

Within living things, isotopic labels (both radioactive and nonradioactive) can be used to probe how the complex web of reactions which makes up the metabolism of an organism converts one substance to another. For instance a green plant uses light energy to convert water and carbon dioxide into glucose by photosynthesis. If the oxygen in the water is labeled, then the label appears in the oxygen gas formed by the plant and not in the glucose formed in the chloroplasts within the plant cells.

For biochemical and physiological experiments and medical methods, a number of specific isotopes have important applications.

  • Stable isotopes have the advantage of not delivering a radiation dose to the system being studied; however, a significant excess of them in the organ or organism might still interfere with its functionality, and the availability of sufficient amounts for whole-animal studies is limited for many isotopes. Measurement is also difficult, and usually requires mass spectrometry to determine how much of the isotope is present in particular compounds, and there is no means of localizing measurements within the cell.
  • 2H (deuterium), the stable isotope of hydrogen, is a stable tracer, the concentration of which can be measured by mass spectrometry or NMR. It is incorporated into all cellular structures. Specific deuterated compounds can also be produced.
  • 15N, a stable isotope of nitrogen, has also been used. It is incorporated mainly into proteins.
  • Radioactive isotopes have the advantages of being detectable in very low quantities, in being easily measured by scintillation counting or other radiochemical methods, and in being localizable to particular regions of a cell, and quantifiable by autoradiography. Many compounds with the radioactive atoms in specific positions can be prepared, and are widely available commercially. In high quantities they require precautions to guard the workers from the effects of radiation—and they can easily contaminate laboratory glassware and other equipment. For some isotopes the half-life is so short that preparation and measurement is difficult.

By organic synthesis it is possible to create a complex molecule with a radioactive label that can be confined to a small area of the molecule. For short-lived isotopes such as 11C, very rapid synthetic methods have been developed to permit the rapid addition of the radioactive isotope to the molecule. For instance a palladium catalysed carbonylation reaction in a microfluidic device has been used to rapidly form amides and it might be possible to use this method to form radioactive imaging agents for PET imaging.

  • 3H (tritium), the radioisotope of hydrogen, is available at very high specific activities, and compounds with this isotope in particular positions are easily prepared by standard chemical reactions such as hydrogenation of unsaturated precursors. The isotope emits very soft beta radiation, and can be detected by scintillation counting.
  • 11C, carbon-11 is usually produced by cyclotron bombardment of 14N with protons. The resulting nuclear reaction is 14N(p,α)11C. Additionally, carbon-11 can also be made using a cyclotron; boron in the form of boric oxide is reacted with protons in a (p,n) reaction. Another alternative route is to react 10B with deuterons. By rapid organic synthesis, the 11C compound formed in the cyclotron is converted into the imaging agent which is then used for PET.
  • 14C, carbon-14 can be made (as above), and it is possible to convert the target material into simple inorganic and organic compounds. In most organic synthesis work it is normal to try to create a product out of two approximately equal sized fragments and to use a convergent route, but when a radioactive label is added, it is normal to try to add the label late in the synthesis in the form of a very small fragment to the molecule to enable the radioactivity to be localised in a single group. Late addition of the label also reduces the number of synthetic stages where radioactive material is used.
  • 18F, fluorine-18 can be made by the reaction of neon with deuterons, 20Ne reacts in a (d,4He) reaction. It is normal to use neon gas with a trace of stable fluorine (19F2). The 19F2 acts as a carrier which increases the yield of radioactivity from the cyclotron target by reducing the amount of radioactivity lost by absorption on surfaces. However, this reduction in loss is at the cost of the specific activity of the final product.

Nuclear spectroscopy

Nuclear spectroscopy are methods that use the nucleus to obtain information of the local structure in matter. Important methods are NMR (see below), Mössbauer spectroscopy and Perturbed angular correlation. These methods use the interaction of the hyperfine field with the nucleus' spin. The field can be magnetic or/and electric and are created by the electrons of the atom and its surrounding neighbours. Thus, these methods investigate the local structure in matter, mainly condensed matter in condensed matter physics and solid state chemistry.

Nuclear magnetic resonance (NMR)

NMR spectroscopy uses the net spin of nuclei in a substance upon energy absorption to identify molecules. This has now become a standard spectroscopic tool within synthetic chemistry. One major use of NMR is to determine the bond connectivity within an organic molecule.

NMR imaging also uses the net spin of nuclei (commonly protons) for imaging. This is widely used for diagnostic purposes in medicine, and can provide detailed images of the inside of a person without inflicting any radiation upon them. In a medical setting, NMR is often known simply as "magnetic resonance" imaging, as the word 'nuclear' has negative connotations for many people.

Human skin color

From Wikipedia, the free encyclopedia
Extended Coloured (Afrikaans: Kleurlinge or Bruinmense) family from South Africa showing some spectrum of human skin coloration

Human skin color ranges from the darkest brown to the lightest hues. Differences in skin color among individuals is caused by variation in pigmentation, which is the result of genetics (inherited from one's biological parents and or individual gene alleles), exposure to the sun, natural and sexual selection, or all of these. Differences across populations evolved through natural selection or sexual selection, because of social norms and differences in environment, as well as regulations of the biochemical effects of ultraviolet radiation penetrating the skin.

The actual skin color of different humans is affected by many substances, although the single most important substance is the pigment melanin. Melanin is produced within the skin in cells called melanocytes and it is the main determinant of the skin color of darker-skin humans. The skin color of people with light skin is determined mainly by the bluish-white connective tissue under the dermis and by the hemoglobin circulating in the veins of the dermis. The red color underlying the skin becomes more visible, especially in the face, when, as consequence of physical exercise or sexual arousal, or the stimulation of the nervous system (anger, embarrassment), arterioles dilate. Color is not entirely uniform across an individual's skin; for example, the skin of the palm and the sole is lighter than most other skin, and this is especially noticeable in darker-skinned people.

There is a direct correlation between the geographic distribution of ultraviolet radiation (UVR) and the distribution of indigenous skin pigmentation around the world. Areas that receive higher amounts of UVR, generally located closer to the equator, tend to have darker-skinned populations. Areas that are far from the tropics and closer to the poles have lower intensity of UVR, which is reflected in lighter-skinned populations. Some researchers suggest that human populations over the past 50,000 years have changed from dark-skinned to light-skinned and vice versa as they migrated to different UV zones, and that such major changes in pigmentation may have happened in as little as 100 generations (≈2,500 years) through selective sweeps. Natural skin color can also darken as a result of tanning due to exposure to sunlight. The leading theory is that skin color adapts to intense sunlight irradiation to provide partial protection against the ultraviolet fraction that produces damage and thus mutations in the DNA of the skin cells. In addition, it has been observed that females on average are significantly lighter in skin pigmentation than males. Females need more calcium during pregnancy and lactation. The body synthesizes vitamin D from sunlight, which helps it absorb calcium. Females evolved to have lighter skin so their bodies absorb more calcium.

The social significance of differences in skin color has varied across cultures and over time, as demonstrated with regard to social status and discrimination.

Melanin and genes

Melanin is produced by cells called melanocytes in a process called melanogenesis. Melanin is made within small membrane–bound packages called melanosomes. As they become full of melanin, they move into the slender arms of melanocytes, from where they are transferred to the keratinocytes. Under normal conditions, melanosomes cover the upper part of the keratinocytes and protect them from genetic damage. One melanocyte supplies melanin to thirty-six keratinocytes according to signals from the keratinocytes. They also regulate melanin production and replication of melanocytes. People have different skin colors mainly because their melanocytes produce different amount and kinds of melanin.

The genetic mechanism behind human skin color is mainly regulated by the enzyme tyrosinase, which creates the color of the skin, eyes, and hair shades. Differences in skin color are also attributed to differences in size and distribution of melanosomes in the skin. Melanocytes produce two types of melanin. The most common form of biological melanin is eumelanin, a brown-black polymer of dihydroxyindole carboxylic acids, and their reduced forms. Most are derived from the amino acid tyrosine. Eumelanin is found in hair, areola, and skin, and the hair colors gray, black, blond, and brown. In humans, it is more abundant in people with dark skin. Pheomelanin, a pink to red hue is found in particularly large quantities in red hair, the lips, nipples, glans of the penis, and vagina.

Both the amount and type of melanin produced is controlled by a number of genes that operate under incomplete dominance. One copy of each of the various genes is inherited from each parent. Each gene can come in several alleles, resulting in the great variety of human skin tones. Melanin controls the amount of ultraviolet (UV) radiation from the sun that penetrates the skin by absorption. While UV radiation can assist in the production of vitamin D, excessive exposure to UV can damage health.

Evolution of skin color

Loss of body hair in Hominini species is assumed to be related to the emergence of bipedalism some 5 to 7 million years ago. Bipedal hominin body hair may have disappeared gradually to allow better heat dissipation through sweating. The emergence of skin pigmentation dates to about 1.2 million years ago, under conditions of a megadrought that drove early humans into arid, open landscapes. Such conditions likely caused excess UV-B radiation. This favored the emergence of skin pigmentation in order to protect from folate depletion due to the increased exposure to sunlight.

With the evolution of hairless skin, abundant sweat glands, and skin rich in melanin, early humans could walk, run, and forage for food for long periods of time under the hot sun without brain damage due to overheating, giving them an evolutionary advantage over other species. By 1.2 million years ago, around the time of Homo ergaster, archaic humans (including the ancestors of Homo sapiens) had exactly the same receptor protein as modern sub-Saharan Africans.

This was the genotype inherited by anatomically modern humans, but retained only by part of the extant populations, thus forming an aspect of human genetic variation. About 100,000–70,000 years ago, some anatomically modern humans (Homo sapiens) began to migrate away from the tropics to the north where they were exposed to less intense sunlight. This was possibly in part due to the need for greater use of clothing to protect against the colder climate. Under these conditions there was less photodestruction of folate and so the evolutionary pressure working against the survival of lighter-skinned gene variants was reduced. In addition, lighter skin is able to generate more vitamin D (cholecalciferol) than darker skin, so it would have represented a health benefit in reduced sunlight if there were limited sources of vitamin D. Hence the leading hypothesis for the evolution of human skin color proposes that:

  1. From about 1.2 million years ago to less than 100,000 years ago, archaic humans, including archaic Homo sapiens, were dark-skinned.
  2. As Homo sapiens populations began to migrate, the evolutionary constraint keeping skin dark decreased proportionally to the distance north a population migrated, resulting in a range of skin tones within northern populations.
  3. At some point, some northern populations experienced positive selection for lighter skin due to the increased production of vitamin D from sunlight and the genes for darker skin disappeared from these populations.
  4. Subsequent migrations into different UV environments and admixture between populations have resulted in the varied range of skin pigmentations we see today.

The genetic mutations leading to light skin, though partially different among East Asians and Western Europeans, suggest the two groups experienced a similar selective pressure after settlement in northern latitudes.

The theory is partially supported by a study into the SLC24A5 gene which found that the allele associated with light skin in Europe "determined […] that 18,000 years had passed since the light-skin allele was fixed in Europeans" but may have originated as recently as 12,000–6,000 years ago "given the imprecision of method" , which is in line with the earliest evidence of farming.

Research by Nina Jablonski suggests that an estimated time of about 10,000 to 20,000 years is enough for human populations to achieve optimal skin pigmentation in a particular geographic area but that development of ideal skin coloration may happen faster if the evolutionary pressure is stronger, even in as little as 100 generations. The length of time is also affected by cultural practices such as food intake, clothing, body coverings, and shelter usage which can alter the ways in which the environment affects populations.

An alternative theory proposed by Elias et. al. in 2010 is based on research that shows a superior barrier function in darkly pigmented skin. Most protective functions of the skin, including the permeability barrier and the antimicrobial barrier, reside in the stratum corneum (SC) and the researchers surmise that the SC has undergone the most genetic change since the loss of human body hair. Natural selection would have favored mutations that protect this essential barrier; one such protective adaptation is the pigmentation of interfollicular epidermis, because it improves barrier function as compared to non-pigmented skin. The authors argue that lack of significant differences between modern light-skinned and dark-skinned populations in vitamin D deficiency, early death from UV-induced cancers and birth defects - as well as instances of light and dark populations living side-by-side in areas with similar UV - suggest the standard model is insufficient to explain the strong selection drive for pigmented skin. Jablonski rejects this theory on the grounds that the human tanning response is driven by UV-B exposure, not xeric stress, and that the positive selection for vitamin D production is "well-established".

Population and admixture studies suggest a three-way model for the evolution of human skin color, with dark skin evolving in early hominids in Africa and light skin evolving only recently after modern humans had expanded out of Africa. For the most part, the evolution of light skin has followed different genetic paths in Western and Eastern Eurasian populations however some mutations associated with lighter skin have estimated origin dates after humans spread out of Africa but before the divergence of the two lineages.

Genetics

Evolutionary model of human pigmentation in three continental populations. The rooted tree shows the genetic phylogeny of human populations from Africa, North Europe and East Asia, with the colors of the branches roughly indicating the generalized skin pigmetation level of these populations.

The understanding of the genetic mechanisms underlying human skin color variation is still incomplete; however, genetic studies have discovered a number of genes that affect human skin color in specific populations, and have shown that this happens independently of other physical features such as eye and hair color. Different populations have different allele frequencies of these genes, and it is the combination of these allele variations that bring about the complex, continuous variation in skin coloration we can observe today in modern humans. Population and admixture studies suggest a 3-way model for the evolution of human skin color, with dark skin evolving in early hominids in sub-Saharan Africa and light skin evolving independently in Europe and East Asia after modern humans had expanded out of Africa.

For skin color, the broad sense heritability (defined as the overall effect of genetic vs. nongenetic factors) is very high, provided one is able to control for the most important nongenetic factor, exposure to sunlight. Many aspects of the evolution of human skin and skin color can be reconstructed using comparative anatomy, physiology, and genomics. Enhancement of thermal sweating was a key innovation in human evolution that allowed maintenance of homeostasis (including constant brain temperature) during sustained physical activity in hot environments. Dark skin evolved simultaneously with the loss of body hair and was the original state for the genus Homo. Melanin pigmentation is adaptive and has been maintained by natural selection. In recent prehistory, humans became adept at protecting themselves from the environment through clothing and shelter, thus reducing the scope for the action of natural selection on human skin. Credit for describing the relationship between latitude and skin color in modern humans is usually ascribed to an Italian geographer, Renato Basutti, whose widely reproduced "skin color maps" illustrate the correlation of darker skin with equatorial proximity. More recent studies by physical anthropologists have substantiated and extended these observations; a recent review and analysis of data from more than 100 populations (Relethford 1997) found that skin reflectance is lowest at the equator, then gradually increases, about 8% per 10° of latitude in the Northern Hemisphere and about 4% per 10° of latitude in the Southern Hemisphere. This pattern is inversely correlated with levels of UV irradiation, which are greater in the Southern than in the Northern Hemisphere. An important caveat is that we do not know how patterns of UV irradiation have changed over time; more importantly, we do not know when skin color is likely to have evolved, with multiple migrations out of Africa and extensive genetic interchange over the last 500,000 years (Templeton 2002).Regardless, most anthropologists accept the notion that differences in UV irradiation have driven selection for dark human skin at the equator and for light human skin at greater latitudes. What remains controversial are the exact mechanisms of selection. The most popular theory posits that protection offered by dark skin from UV irradiation becomes a liability in more polar latitudes due to vitamin D deficiency (Murray 1934). UVB (short-wavelength UV) converts 7-dehydrocholesterol into an essential precursor of cholecaliferol (vitamin D3); when not otherwise provided by dietary supplements, deficiency for vitamin D causes rickets, a characteristic pattern of growth abnormalities and bony deformities. An oft-cited anecdote in support of the vitamin D hypothesis is that Arctic populations whose skin is relatively dark given their latitude, such as the Inuit and the Lapp, have had a diet that is historically rich in vitamin D. Sensitivity of modern humans to vitamin D deficiency is evident from the widespread occurrence of rickets in 19th-century industrial Europe, but whether dark-skinned humans migrating to polar latitudes tens or hundreds of thousands of years ago experienced similar problems is open to question. In any case, a risk for vitamin D deficiency can only explain selection for light skin. Among several mechanisms suggested to provide a selective advantage for dark skin in conditions of high UV irradiation (Loomis 1967; Robins 1991; Jablonski and Chaplin 2000), the most tenable are protection from sunburn and skin cancer due to the physical barrier imposed by epidermal melanin.

According to Crawford et al. (2017), most of the genetic variants associated with light and dark pigmentation in African populations appear to have originated more than 300,000 years ago. African, South Asian and Australo-Melanesian populations also carry derived alleles for dark skin pigmentation that are not found in Europeans or East Asians. Huang et al. 2021 found the existence of "selective pressure on light pigmentation in the ancestral population of Europeans and East Asians", prior to their divergence from each other. Skin pigmentation was also found to be affected by directional selection towards darker skin among Africans, as well as lighter skin among Eurasians. Crawford et al. (2017) similarly found evidence for selection towards light pigmentation prior to the divergence of West Eurasians and East Asians.

Dark skin

All modern humans share a common ancestor who lived around 200,000 years ago in Africa. Comparisons between known skin pigmentation genes in chimpanzees and modern Africans show that dark skin evolved along with the loss of body hair about 1.2 million years ago and that this common ancestor had dark skin. Investigations into dark-skinned populations in South Asia and Melanesia indicate that skin pigmentation in these populations is due to the preservation of this ancestral state and not due to new variations on a previously lightened population.

MC1R

MC1R (rs885479)

The melanocortin 1 receptor (MC1R) gene is primarily responsible for determining whether pheomelanin and eumelanin are produced in the human body. Research shows at least 10 differences in MC1R between African and chimpanzee samples and that the gene has probably undergone a strong positive selection (a selective sweep) in early Hominins around 1.2 million years ago. This is consistent with positive selection for the high-eumelanin phenotype seen in Africa and other environments with high UV exposure.

Light skin

For the most part, the evolution of light skin has followed different genetic paths in European and East Asian populations. Two genes, however, KITLG and ASIP, have mutations associated with lighter skin that have high frequencies in both European and East Asian populations. They are thought to have originated after humans spread out of Africa but before the divergence of the European and Asian lineages around 30,000 years ago. Two subsequent genome-wide association studies found no significant correlation between these genes and skin color, and suggest that the earlier findings may have been the result of incorrect correction methods and small panel sizes, or that the genes have an effect too small to be detected by the larger studies.

KITLG

KITLG (rs1881227)

The KIT ligand (KITLG) gene is involved in the permanent survival, proliferation and migration of melanocytes. A mutation in this gene, A326G (rs642742), has been positively associated with variations of skin color in African-Americans of mixed West African and European descent and is estimated to account for 15–20% of the melanin difference between African and European populations. This allele shows signs of strong positive selection outside Africa and occurs in over 80% of European and Asian samples, compared with less than 10% in African samples.

ASIP

Agouti signalling peptide (ASIP) acts as an inverse agonist, binding in place of alpha-MSH and thus inhibiting eumelanin production. Studies have found two alleles in the vicinity of ASIP are associated with skin color variation in humans. One, rs2424984, has been identified as an indicator of skin reflectance in a forensics analysis of human phenotypes across Caucasian, African-American, South Asian, East Asian, Hispanic and Native American populations and is about three times more common in non-African populations than in Africa. The other allele, 8188G (rs6058017) is significantly associated with skin color variation in African-Americans and the ancestral version occurs in only 12% of European and 28% of East Asian samples compared with 80% of West African samples.

Europe

A number of genes have been positively associated with the skin pigmentation difference between European and non-European populations. Mutations in SLC24A5 and SLC45A2 are believed to account for the bulk of this variation and show very strong signs of selection. A variation in TYR has also been identified as a contributor.

Research indicates the selection for the light-skin alleles of these genes in Europeans is comparatively recent, having occurred later than 20,000 years ago and perhaps as recently as 12,000 to 6,000 years ago. In the 1970s, Luca Cavalli-Sforza suggested that the selective sweep that rendered light skin ubiquitous in Europe might be correlated with the advent of farming and thus have taken place only around 6,000 years ago; This scenario found support in a 2014 analysis of mesolithic (7,000 years old) hunter-gatherer DNA from La Braña, Spain, which showed a version of these genes not corresponding with light skin color. In 2015 researchers analysed for light skin genes in the DNA of 94 ancient skeletons ranging from 8,000 to 3,000 years old from Europe and Russia. They found c. 8,000-year-old hunter-gatherers in Spain, Luxembourg, and Hungary were dark skinned while similarly aged hunter gatherers in Sweden were light skinned (having predominately derived alleles of SLC24A5, SLC45A2 and also HERC2/OCA2). Neolithic farmers entering Europe at around the same time were intermediate, being nearly fixed for the derived SLC24A5 variant but only having the derived SLC45A2 allele in low frequencies. The SLC24A5 variant spread very rapidly throughout central and southern Europe from about 8,000 years ago, whereas the light skin variant of SLC45A2 spread throughout Europe after 5,800 years ago.

Some authors have expressed caution regarding the skin pigmentation predictions. According to Ju et al. (2021), in a study addressing 40,000 years of modern human history, "we can assess the extent to which they carried the same light pigmentation alleles that are present today", but explain that c. 40,000 BP Early Upper Paleolithic hunter-gatherers "may have carried different alleles that we cannot now detect", and as a result "we cannot confidently make statements about the skin pigmentation of ancient populations.”

SLC24A5

Solute carrier family 24 member 5 (SLC24A5) regulates calcium in melanocytes and is important in the process of melanogenesis. The SLC24A5 gene's derived Ala111Thr allele (rs1426654) has been shown to be a major factor in light skin pigmentation and is common in Western Eurasia. Recent studies have found that the variant represents as much as 25–40% of the average skin tone difference between Europeans and West Africans. This derived allele is a reliable predictor of phenotype across a range of populations. It has been the subject of recent selection in Western Eurasia, and is fixed in European populations.

SLC45A2

Solute carrier family 45 member 2 (SLC45A2 or MATP) aids in the transport and processing of tyrosine, a precursor to melanin. It has also been shown to be one of the significant components of the skin color of modern Europeans through its Phe374Leu (rs16891982) allele that has been directly correlated with skin color variation across a range of populations. This variation is ubiquitous in European populations but extremely rare elsewhere and shows strong signs of selection.

TYR

The TYR gene encodes the enzyme tyrosinase, which is involved in the production of melanin from tyrosine. It has an allele, Ser192Tyr (rs1042602), found solely in 40–50% of Europeans and linked to light-colored skin in studies of South Asian and African-American populations.

East Asia

A number of genes known to affect skin color have alleles that show signs of positive selection in East Asian populations. Of these, only OCA2 has been directly related to skin color measurements, while DCT, MC1R and ATRN are marked as candidate genes for future study.

OCA2
OCA2 (rs12913832)

Oculocutaneous albinism II (OCA2) assists in the regulation of pH in melanocytes. The OCA2 gene's derived His615Arg (rs1800414) allele has been shown to account for about 8% of the skin tone difference between African and East Asian populations in studies of an East Asian population living in Toronto and a Chinese Han population. This variant is essentially restricted to East Asia, with highest frequencies in Eastern East Asia (49–63%), midrange frequencies in Southeast Asia, and the lowest frequencies in Western China and some Eastern European populations.

Candidate genes

A number of studies have found genes linked to human skin pigmentation that have alleles with statistically significant frequencies in Chinese and East Asian populations. While not linked to measurements of skin tone variation directly, dopachrome tautomerase (DCT or TYRP2 rs2031526), melanocortin 1 receptor (MC1R) Arg163Gln (rs885479) and attractin (ATRN) have been indicated as potential contributors to the evolution of light skin in East Asian populations.

Tanning response

Tanning response in humans is controlled by a variety of genes. MC1R variants Arg151Sys (rs1805007), Arg160Trp (rs1805008), Asp294Sys (rs1805009), Val60Leu (rs1805005) and Val92Met (rs2228479) have been associated with reduced tanning response in European and/or East Asian populations. These alleles show no signs of positive selection and only occur in relatively small numbers, reaching a peak in Europe with around 28% of the population having at least one allele of one of the variations. A study of self-reported tanning ability and skin type in American non-Hispanic Caucasians found that SLC24A5 Phe374Leu is significantly associated with reduced tanning ability and also associated TYR Arg402Gln (rs1126809), OCA2 Arg305Trp (rs1800401) and a 2-SNP haplotype in ASIP (rs4911414 and rs1015362) to skin type variation within a "fair/medium/olive" context.

Albinism

Oculocutaneous albinism (OCA) is a lack of pigment in the eyes, skin and sometimes hair that occurs in a very small fraction of the population. The four known types of OCA are caused by mutations in the TYR, OCA2, TYRP1, and SLC45A2 genes.

Age

In hominids, the parts of the body not covered with hair, like the face and the back of the hands, start out pale in infants and turn darker as the skin is exposed to more sun. All human babies are born pale, regardless of what their adult color will be. In humans, melanin production does not peak until after puberty.

The skin of children becomes darker as they go through puberty and experience the effects of sex hormones. This darkening is especially noticeable in the skin of the nipples, the areola of the nipples, the labia majora in females, and the scrotum in males. In some people, the armpits become slightly darker during puberty. The interaction of genetic, hormonal, and environmental factors on skin coloration with age is still not adequately understood, but it is known that men are at their darkest baseline skin color around the age of 30, without considering the effects of tanning. Around the same age, women experience darkening of some areas of their skin.

Human skin color fades with age. Humans over the age of thirty experience a decrease in melanin-producing cells by about 10% to 20% per decade as melanocyte stem cells gradually die. The skin of face and hands has about twice the amount of pigment cells as unexposed areas of the body, as chronic exposure to the sun continues to stimulate melanocytes. The blotchy appearance of skin color in the face and hands of older people is due to the uneven distribution of pigment cells and to changes in the interaction between melanocytes and keratinocytes.

Sexual dimorphism

It has been observed that females are found to have lighter skin pigmentation than males in some studied populations. This may be a form of sexual dimorphism due to the requirement in women for high amounts of calcium during pregnancy and lactation. Breastfeeding newborns, whose skeletons are growing, require high amounts of calcium intake from the mother's milk (about 4 times more than during prenatal development), part of which comes from reserves in the mother's skeleton. Adequate vitamin D resources are needed to absorb calcium from the diet, and it has been shown that deficiencies of vitamin D and calcium increase the likelihood of various birth defects such as spina bifida and rickets. Natural selection may have led to females with lighter skin than males in some indigenous populations because women must get enough vitamin D and calcium to support the development of fetus and nursing infants and to maintain their own health. However, in some populations such as in Italy, Poland, Ireland, Spain and Portugal men are found to have fairer complexions, and this has been ascribed as a cause to increased melanoma risk in men. Similarly, studies done in the late 19th Century/early 20th Century in Europe also conflicted with the notion at least in regards to Northern Europeans. The studies found that in England women tend to have darker hair, eyes, and skin complexation than men, and in particular women darken in relation to men during puberty. A study in Germany during this period showed that German men were more likely to have lighter skin, blond hair, and lighter eyes, while German women had darker hair, eyes and skin tone on average.

The sexes also differ in how they change their skin color with age. Men and women are not born with different skin color, they begin to diverge during puberty with the influence of sex hormones. Women can also change pigmentation in certain parts of their body, such as the areola, during the menstrual cycle and pregnancy and between 50 and 70% of pregnant women will develop the "mask of pregnancy" (melasma or chloasma) in the cheeks, upper lips, forehead, and chin. This is caused by increases in the female hormones estrogen and progesterone and it can develop in women who take birth control pills or participate in hormone replacement therapy.

Disorders of pigmentation

Uneven pigmentation of some sort affects most people, regardless of bioethnic background or skin color. Skin may either appear lighter, or darker than normal, or lack pigmentation at all; there may be blotchy, uneven areas, patches of brown to gray discoloration or freckling. Apart from blood-related conditions such as jaundice, carotenosis, or argyria, skin pigmentation disorders generally occur because the body produces either too much or too little melanin.

Depigmentation

Albinism

Some types of albinism affect only the skin and hair, while other types affect the skin, hair and eyes, and in rare cases only the eyes. All of them are caused by different genetic mutations. Albinism is a recessively inherited trait in humans where both pigmented parents may be carriers of the gene and pass it down to their children. Each child has a 25% chance of being albino and a 75% chance of having normally pigmented skin. One common type of albinism is oculocutaneous albinism or OCA, which has many subtypes caused by different genetic mutations. Albinism is a serious problem in areas of high sunlight intensity, leading to extreme sun sensitivity, skin cancer, and eye damage.

Albinism is more common in some parts of the world than in others, but it is estimated that 1 in 70 humans carry the gene for OCA. The most severe type of albinism is OCA1A, which is characterized by complete, lifelong loss of melanin production, other forms of OCA1B, OCA2, OCA3, OCA4, show some form of melanin accumulation and are less severe. The four known types of OCA are caused by mutations in the TYR, OCA2, TYRP1, and SLC45A2 genes.

Albinos often face social and cultural challenges (even threats), as the condition is often a source of ridicule, racism, fear, and violence. Many cultures around the world have developed beliefs regarding people with albinism. Albinos are persecuted in Tanzania by witchdoctors, who use the body parts of albinos as ingredients in rituals and potions, as they are thought to possess magical power.

Vitiligo

Former Chief Justice of India, P. Sathasivam, has vitiligo

Vitiligo is a condition that causes depigmentation of sections of skin. It occurs when melanocytes die or are unable to function. The cause of vitiligo is unknown, but research suggests that it may arise from autoimmune, genetic, oxidative stress, neural, or viral causes. The incidence worldwide is less than 1%. Individuals affected by vitiligo sometimes suffer psychological discomfort because of their appearance.

Hyperpigmentation

Increased melanin production, also known as hyperpigmentation, can be a few different phenomena:

  • Melasma describes the darkening of the skin.
  • Chloasma describes skin discolorations caused by hormones. These hormonal changes are usually the result of pregnancy, birth control pills or estrogen replacement therapy.
  • Solar lentigo, also known as "liver spots" or "senile freckles", refers to darkened spots on the skin caused by aging and the sun. These spots are quite common in adults with a long history of unprotected sun exposure.

Aside from sun exposure and hormones, hyperpigmentation can be caused by skin damage, such as remnants of blemishes, wounds or rashes. This is especially true for those with darker skin tones.

The most typical cause of darkened areas of skin, brown spots or areas of discoloration is unprotected sun exposure. Once incorrectly referred to as liver spots, these pigment problems are not connected with the liver.

On lighter to medium skin tones, solar lentigenes emerge as small- to medium-sized brown patches of freckling that can grow and accumulate over time on areas of the body that receive the most unprotected sun exposure, such as the back of the hands, forearms, chest, and face. For those with darker skin colors, these discolorations can appear as patches or areas of ashen-gray skin.

Exposure to the Sun

A suntanned arm showing darker skin where it has been exposed. This pattern of tanning is often called a farmer's tan.

Melanin in the skin protects the body by absorbing solar radiation. In general, the more melanin there is in the skin the more solar radiation can be absorbed. Excessive solar radiation causes direct and indirect DNA damage to the skin and the body naturally combats and seeks to repair the damage and protect the skin by creating and releasing further melanin into the skin's cells. With the production of the melanin, the skin color darkens, but can also cause sunburn. The tanning process can also be created by artificial UV radiation.

There are two different mechanisms involved. Firstly, the UVA-radiation creates oxidative stress, which in turn oxidizes existing melanin and leads to rapid darkening of the melanin, also known as IPD (immediate pigment darkening). Secondly, there is an increase in production of melanin known as melanogenesis. Melanogenesis leads to delayed tanning and first becomes visible about 72 hours after exposure. The tan that is created by an increased melanogenesis lasts much longer than the one that is caused by oxidation of existing melanin. Tanning involves not just the increased melanin production in response to UV radiation but the thickening of the top layer of the epidermis, the stratum corneum.

A person's natural skin color affects their reaction to exposure to the sun. Generally, those who start out with darker skin color and more melanin have better abilities to tan. Individuals with very light skin and albinos have no ability to tan. The biggest differences resulting from sun exposure are visible in individuals who start out with moderately pigmented brown skin: the change is dramatically visible as tan lines, where parts of the skin which tanned are delineated from unexposed skin.

Modern lifestyles and mobility have created mismatch between skin color and environment for many individuals. Vitamin D deficiencies and UVR overexposure are concerns for many. It is important for these people individually to adjust their diet and lifestyle according to their skin color, the environment they live in, and the time of year. For practical purposes, such as exposure time for sun tanning, six skin types are distinguished following Fitzpatrick (1975), listed in order of decreasing lightness:

Fitzpatrick scale

The following list shows the six categories of the Fitzpatrick scale in relation to the 36 categories of the older von Luschan scale:

Type Also called Sunburning Tanning behavior Von Luschan's chromatic scale
I Light, pale white Always Never 0–6
II White, fair Usually Minimally 7–13
III Medium white to light brown Sometimes Uniformly 14–20
IV Olive, moderate brown Rarely Easily 21–27
V Brown, dark brown Very rarely Very easily 28–34
VI Very dark brown to black Never Rarely 35–36

Dark skin with large concentrations of melanin protects against ultraviolet light and skin cancers; light-skinned people have about a tenfold greater risk of dying from skin cancer, compared with dark-skinned persons, under equal sunlight exposure. Furthermore, UV-A rays from sunlight are believed to interact with folic acid in ways that may damage health. In a number of traditional societies the sun was avoided as much as possible, especially around noon when the ultraviolet radiation in sunlight is at its most intense. Midday was a time when people stayed in the shade and had the main meal followed by a nap, a practice similar to the modern siesta.

Geographic variation

Approximately 10% of the variance in skin color occurs within regions, and approximately 90% occurs between regions. Because skin color has been under strong selective pressure, similar skin colors can result from convergent adaptation rather than from genetic relatedness; populations with similar pigmentation may be genetically no more similar than other widely separated groups. Furthermore, in some parts of the world where people from different regions have mixed extensively, the connection between skin color and ancestry has substantially weakened. In Brazil, for example, skin color is not closely associated with the percentage of recent African ancestors a person has, as estimated from an analysis of genetic variants differing in frequency among continent groups.

In general, people living close to the equator are highly darkly pigmented, and those living near the poles are generally very lightly pigmented. The rest of humanity shows a high degree of skin color variation between these two extremes, generally correlating with UV exposure. The main exception to this rule is in the New World, where people have only lived for about 10,000 to 15,000 years and show a less pronounced degree of skin pigmentation.

In recent times, humans have become increasingly mobile as a consequence of improved technology, domestication, environmental change, strong curiosity, and risk-taking. Migrations over the last 4000 years, and especially the last 400 years, have been the fastest in human history and have led to many people settling in places far away from their ancestral homelands. This means that skin colors today are not as confined to geographical location as they were previously.

Social status, colorism and racism

Skin colors according to von Luschan's chromatic scale

According to classical scholar Frank Snowden, skin color did not determine social status in ancient Egypt, Greece or Rome. These ancient civilizations viewed relations between the major power and the subordinate state as more significant in a person's status than their skin colors.

Nevertheless, some social groups favor specific skin coloring. The preferred skin tone varies by culture and has varied over time. A number of indigenous African groups, such as the Maasai, associated pale skin with being cursed or caused by evil spirits associated with witchcraft. They would abandon their children born with conditions such as albinism and showed a sexual preference for darker skin.

Many cultures have historically favored lighter skin for women. Before the Industrial Revolution, inhabitants of the continent of Europe preferred pale skin, which they interpreted as a sign of high social status. The poorer classes worked outdoors and got darker skin from exposure to the sun, while the upper class stayed indoors and had light skin. Hence light skin became associated with wealth and high position. Women would put lead-based cosmetics on their skin to whiten their skin tone artificially. However, when not strictly monitored, these cosmetics caused lead poisoning. Other methods also aimed at achieving a light-skinned appearance, including the use of arsenic to whiten skin, and powders. Women would wear full-length clothes when outdoors, and would use gloves and parasols to provide shade from the sun.

Colonization and enslavement as carried out by European countries became involved with colorism and racism, associated with the belief that people with dark skin were uncivilized, inferior, and should be subordinate to lighter-skinned invaders. This belief exists to an extent in modern times as well. Institutionalized slavery in North America led people to perceive lighter-skinned African-Americans as more intelligent, cooperative, and beautiful. Such lighter-skinned individuals had a greater likelihood of working as house slaves and of receiving preferential treatment from plantation owners and from overseers. For example, they had a chance to get an education. The preference for fair skin remained prominent until the end of the Gilded Age, but racial stereotypes about worth and beauty persisted in the last half of the 20th century and continue in the present day. African-American journalist Jill Nelson wrote that, "To be both prettiest and black was impossible," and elaborated:

We learn as girls that in ways both subtle and obvious, personal and political, our value as females is largely determined by how we look. ... For black women, the domination of physical aspects of beauty in women's definition and value render us invisible, partially erased, or obsessed, sometimes for a lifetime, since most of us lack the major talismans of Western beauty. Black women find themselves involved in a lifelong effort to self-define in a culture that provides them no positive reflection.

A preference for fair or lighter skin continues in some countries, including Latin American countries where whites form a minority. In Brazil, a dark-skinned person is more likely to experience discrimination. Many actors and actresses in Latin America have European features—blond hair, blue eyes, and pale skin. A light-skinned person is more privileged and has a higher social status; a person with light skin is considered more beautiful and lighter skin suggests that the person has more wealth. Skin color is such an obsession in some countries that specific words describe distinct skin tones - from (for example) "jincha", Puerto Rican slang for "glass of milk" to "morena", literally "brown".

In South Asia, society regards pale skin as more attractive and associates dark skin with lower class status; this results in a massive market for skin-whitening creams. Fairer skin-tones also correlate to higher caste-status in the Hindu social order—although the system is not based on skin tone. Actors and actresses in Indian cinema tend to have light skin tones, and Indian cinematographers have used graphics and intense lighting to achieve more "desirable" skin tones. Fair skin tones are advertised as an asset in Indian marketing.

Skin-whitening products have remained popular over time, often due to historical beliefs and perceptions about fair skin. Sales of skin-whitening products across the world grew from $40 billion to $43 billion in 2008. In South and East Asian countries, people have traditionally seen light skin as more attractive, and a preference for lighter skin remains prevalent. In ancient China and Japan, for example, pale skin can be traced back to ancient drawings depicting women and goddesses with fair skin tones. In ancient China, Japan, and Southeast Asia, pale skin was seen as a sign of wealth. Thus skin-whitening cosmetic products are popular in East Asia. Four out of ten women surveyed in Hong Kong, Malaysia, the Philippines and South Korea used a skin-whitening cream, and more than 60 companies globally compete for Asia's estimated $18 billion market. Changes in regulations in the cosmetic industry led to skin-care companies introducing harm-free skin lighteners. In Japan, the geisha have a reputation for their white-painted faces, and the appeal of the bihaku (美白), or "beautiful white", ideal leads many Japanese women to avoid any form of tanning. There are exceptions to this, with Japanese fashion trends such as ganguro emphasizing tanned skin. Skin whitening is also not uncommon in Africa, and several research projects have suggested a general preference for lighter skin in the African-American community. In contrast, one study on men of the Bikosso tribe in Cameroon found no preference for attractiveness of females based on lighter skin color, bringing into question the universality of earlier studies that had exclusively focused on skin-color preferences among non-African populations.

Significant exceptions to a preference for lighter skin started to appear in Western culture in the mid-20th century. However a 2010 study found a preference for lighter-skinned women in New Zealand and California. Though sun-tanned skin was once associated with the sun-exposed manual labor of the lower class, the associations became dramatically reversed during this time—a change usually credited to the trendsetting Frenchwoman Coco Chanel (1883–1971) presenting tanned skin as fashionable, healthy, and luxurious. As of 2017, though an overall preference for lighter skin remains prevalent in the United States, many within the country regard tanned skin as both more attractive and healthier than pale or very dark skin. Western mass media and popular culture continued to reinforce negative stereotypes about dark skin, but in some circles pale skin has become associated with indoor office-work while tanned skin has become associated with increased leisure time, sportiness and good health that comes with wealth and higher social status. Studies have also emerged indicating that the degree of tanning is directly related to how attractive a young woman is.

Romance (love)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/w...