Search This Blog

Wednesday, January 8, 2014

Organic mega flow battery promises breakthrough for renewable energy

59 minutes ago in Phys.org 

Organic mega flow battery promises breakthrough for renewable energy       
Large-scale storage of renewable energy for use when the sun isn't shining and the wind isn't blowing. Energy from solar panels is shown stored in green and blue chemicals in Harvard flow battery storage tanks, powering this green city at …

A team of Harvard scientists and engineers has demonstrated a new type of battery that could fundamentally transform the way electricity is stored on the grid, making power from renewable energy sources such as wind and solar far more economical and reliable.
The novel battery technology is reported in a paper published in Nature on January 9. Under the OPEN 2012 program, the Harvard team received funding from the U.S. Department of Energy's Advanced Research Projects Agency–Energy (ARPA-E) to develop the innovative grid-scale battery and plans to work with ARPA-E to catalyze further technological and market breakthroughs over the next several years.

The paper reports a metal-free that relies on the electrochemistry of naturally abundant, inexpensive, small organic (carbon-based) molecules called quinones, which are similar to molecules that store energy in plants and animals.

The mismatch between the availability of intermittent wind or sunshine and the variability of demand is the biggest obstacle to getting a large fraction of our electricity from renewable sources. A cost-effective means of storing large amounts of electrical energy could solve this problem.

The battery was designed, built, and tested in the laboratory of Michael J. Aziz, Gene and Tracy Sykes Professor of Materials and Energy Technologies at the Harvard School of Engineering and Applied Sciences (SEAS). Roy G. Gordon, Thomas Dudley Cabot Professor of Chemistry and Professor of Materials Science, led the work on the synthesis and chemical screening of molecules. Alán Aspuru-Guzik, Professor of Chemistry and Chemical Biology, used his pioneering high-throughput molecular screening methods to calculate the properties of more than 10,000 quinone molecules in search of the best candidates for the battery.

Flow batteries store energy in chemical fluids contained in external tanks—as with fuel cells—instead of within the battery container itself. The two main components—the electrochemical conversion hardware through which the fluids are flowed (which sets the peak power capacity), and the chemical storage tanks (which set the energy capacity)—may be independently sized. Thus the amount of energy that can be stored is limited only by the size of the tanks. The design permits larger amounts of energy to be stored at lower cost than with traditional batteries.


Read more at: http://phys.org/news/2014-01-mega-battery-breakthrough-renewable-energy.html#jCp
 


‘Habitable zones’ around stars ten times wider than we thought – study

Published time: January 08, 2014 14:31 by RT
 

A new paper published in the journal, Planetary and Space Science, describes how living organisms have just as much chance of surviving in areas below their uninhabitable planets’ surfaces.
This includes planets a staggering distance away from their stars, as well as even those that were recently discovered to be drifting in space by themselves, with no apparent host star. It is all about temperature.

The previous commonly accepted assertion was that the ‘Goldilocks’ zone was a requirement. It is the zone both far away and near to its star to provide the kind of climate capable of sustaining life, because it supports water which is neither boiling hot nor frozen.

Now a team of researchers from Aberdeen and St. Andrews universities has an updated view of things. PhD student Sean McMahon, author of the paper, says “that theory fails to take into account life that can exist beneath a planet's surface. As you get deeper …the temperature increases, and once you get down to a temperature where liquid water can exist – life can exist there too.”

To prove this, the scientists devised a computer model to cleverly approximate temperatures below the surfaces of planets by inputting the distance to their respective stars and crossing that with the planet’s size.

Using that model they discovered that the radius around a star, capable of supporting life, increased three-fold if new data on depth at which life can exist below the surface of a given planet were taken into account.

"The deepest known life on Earth is 5.3 km below the surface, but there may well be life even 10 km deep in places on Earth that haven't yet been drilled,” McMahon said.
What adds to the excitement is that the model allows for potentially expanding the habitable zone even more. If indeed we do find life 10km below the Earth’s surface, the math tells us that Earth-like planets could support life as far as 14 times the distance previously considered to be the Goldilocks zone.
To put this into perspective – our current habitable zone is considered to reach out as far as Mars. But new measurements that account for life existing under rocky surfaces take that radius as far as Jupiter and Saturn.

For example, the recently discovered Gliese 581 d could be a candidate. Sure, it is about 20 trillion kilometers away, but its cold surface could well hide life a couple of kilometers below the surface, scientists assume.

Scientists are excited at the subsurface theory on sustaining life. We can now widen our search for life, they hope, adding that the new findings are so radical that the fact of life on Earth (which itself is very different from the thousands of planets we know about) could itself be anomalous because life receives much more protection inside a warm, mineral-rich rock than risking survival on its inhospitable surface.

Tuesday, January 7, 2014

The Way Skeptical Thinking Works

















Many many years ago, I had a very good friend, someone I cared for deeply.  She was intelligent, funny, very kind and helpful, almost always (it seemed) in a good mood.  She did have one "flaw" however, although I use that word with compassion because it was the kind of flaw that is (alas) probably just part of human nature.  The flaw was a serious lack of skeptical thinking.  Why, I'm not certain.  She was easily intelligent enough to have it.  Perhaps it was her years as a member of the one true religion and acquisition of some position and responsibility in it that defeated her skepticism and left her a believer.  (To be fair, I was in this religion for a number of years too, but it didn't defeat my natural skepticism and I escaped in time.)

So much for overtures, because I want to discuss a specific event between her and me.  One fine day (all days in San Diego are fine days, until you get sick of it) she told me about her "theory" that the ancient Egyptians (and perhaps Mesopotamians) must have visited the Mayan and/or other Central American cultures.  Reasoning?  Both "ancient" cultures built large pyramids constructed of stone.  That was it; she offered no other reasoning, no other evidence or logic, in the "theory's" support.  She was probably as certain of it as she was of her religious truths.

If your mind is anything like mine's, and assuming you've heard this idea before, alarm bells were starting to clang in your head before you read this far.  If you have a reasonable knowledge of history and geography (shame on you if you don't!) you can just sense that there is something(s) seriously wrong here, that the pieces of this puzzle surely can't hang together.  To revive an old saying,  "You can feel it in your bones."

That was precisely my experience, and I believe it is essential for our skeptical abilities to mature.  Note that its main nutrient is knowledge, and not even very in-depth knowledge.  When anyone tells us something that feels (to confirm, yes, I believe this usually starts as an act intuition) out of synch with our own ideas and knowledge, it can make us startle as though we'd been teleported to a different world or time.  Of course, if your ideas and knowledge are incorrect, skepticism is pretty much in vain.

That's where it starts, I suggest, with that (often small) sense of dislocation, because it conflicts with at least something we know to be true.  But if you end there, you would rightfully accused of just dismissing the person without argument.  Furthermore, it would probably leave you with a funny feeling, as if you've failed yourself somehow.  And you would be right here too.  (Of course you can just make an agreeable grunt and change subject:  as I think Shaw said,  "Arguments are to be avoided.  They are always vulgar and often persuasive.)

Furthermore, there is always a real possibility of you being wrong, or not having enough facts at hand.  Or you can't summon all your defenses for the barrage of logical fallacies and cognitive biases about to assault you.

So I decided to file the issue away, to ruminate about it later when I was alone and could think clearly.  When I did, the objections to her "theory" came swiftly and completely enough.  I am not going to go over them (I am confident that you can find them yourselves quickly too).

So what happened to us, her historical speculations, and so forth?  Between us nothing, for I knew better than to debate a firm believer in the one true religion -- I did say I cared very much for her, didn't I?  Let sleeping cats sleep.  But for me, it was an important triumph of my mind, a victory I have always carried with me, knowing I may need it any time.  And don't doubt one thing:  life has that much richer for it.

Physicists and Archaeologists Tussle Over Long-Lost Lead

David Strumfels:  Even scientists practice inter-disciplinary conflict.
Roman mosaic from the 2nd century AD of a ship displaying similar hull shape to the Madrague de Giens wreck.
Image credit: via wikipedia | http://bit.ly/19mo34m,
Rights information: http://bit.ly/1lavRWo

By Peter Gwynne at http://physicsbuzz.physicscentral.com/2013/12/physicists-and-archaeologists-tussle.html A confrontation among ancient and modern studies is pitting particle physicists seeking concrete evidence of dark matter against marine archaeologists intent on preserving material in centuries-old shipwrecks.

The source of the issue: samples of lead used for anchors and ballast in Roman ships that were sunk up to 2,000 years ago and remain underwater since then.

The ancient lead's purity makes it invaluable today for shielding underground experiments designed to detect evidence of dark matter, the mysterious invisible stuff that, according to physicists, accounts for 85 percent of all the matter in the universe. But some marine archaeologists assert that, as a part of the world's cultural heritage, the lead should stay in place for detailed historical study.

"The use of these objects as stock for experimentation had never been an issue before," wrote Elena Perez-Alvaro, a doctoral candidate in underwater cultural heritage maritime law at England's University of Birmingham, in the university's journal Rosetta. "But now it is beginning to be deemed ethically questionable."

Both sides of the affair cite strong scientific justification for their use of the lead. "Underwater archaeologists and cultural heritage protection policymakers need to evaluate the value of this underwater lead for future generations," Perez-Alvaro explained. But the lead "is an essential element of state-of-the-art dark-matter searches," added Cambridge University physicist Fernando Gonzalez Zalba, who collaborates with Perez-Alvaro on studying the issue. "These experiments could shed light some of the most fundamental properties of the universe."

There's no shortage of the material. "I personally have seen dozens of lead anchor stocks during our expeditions in the Mediterranean and Aegean," recalled Brendan Foley of the Woods Hole Oceanographic Institution's Deep Submergence Laboratory, in Massachusetts.

For archaeologists, studying those stocks has value far beyond understanding ancient metallurgical methods. The pieces of lead "are marked with indicators of where they came from," said James Delgado, director of maritime heritage at the National Oceanic and Atmospheric Administration in the United States. "That helps us to reconstruct ancient economies and global trade."

Physicists have inferred the existence of dark matter by observing its gravitational influence in distant galaxies. But they don't know what it consists of. Among the most popular candidates are entities called weakly interactive massive particles, or WIMPs.

Theorists believe that, although WIMPs are about the size of atomic nuclei, they scarcely interact at all with any other forms of matter. "Very occasionally one of them will bump into a nucleus and rattle it around a bit," explained Daniel Bauer, project manager of the Cryogenic Dark Matter Search, or CDMS. "Our detectors are set up to measure the recoil of the nucleus when that happens," he added.

It doesn't happen often. "Nobody has yet had a completely confirmed sighting," Bauer said. Their detectors are sensitive to a rate of one incident per year.

Because the bumps happen so infrequently, CDMS has designed its experimental setup to minimize false positives. To avoid cosmic rays, the team has buried its detectors half a mile deep in a mine in Minnesota. It also shields them with copper, plastics, water, and, most important, lead.

"Lead is the material of excellence as a shielding material in radiation-rich environments," said Gonzalez Zalba, who does not work directly on dark-matter experiments. "Its low intrinsic radioactivity, good mechanical properties, and reasonable cost make it an excellent shielding material."

However, recently mined lead has one disadvantage. "Uranium and thorium that coexist with lead will leave a fair amount of the radioactive isotope lead-210 in it," Bauer noted. "In our experiments, even tiny amounts of radioactivity can lead to false signals. We want the purest possible material to shield the experiment from radioactivity."

That means lead mined a long time ago and preserved under water. "There's no chance that uranium and thorium are nearby," Bauer continued. "And since its decay half life is about 23 years, its radioactivity has basically gone." The ancient lead has over 1,000 times less radioactivity than modern lead.

The CDMS team bought its ancient lead from French company Lemer Pax, which had salvaged it from a Roman ship sunk off the coast of France. Later, the company "got in trouble with French customs for selling archaeological material," Perez-Alvaro reported.

"We assumed that this company was reputable, and I would believe that to be true," Bauer said. "They're still selling lead. That's the best evidence that everything is in order."

Another underground experiment, the Cryogenic Underground Observatory for Rare Events in Italy, also uses Roman lead. A museum gave it 120 archaeological lead bricks from a ship built more than 2,000 years ago and recovered in the early 1990s off the coast of Sardinia.

Marine archaeologists don't want to deny physicists the use of the ancient lead. But they fear that such use could help to commercialize the salvage of ancient shipwrecks.

"It's another example of something from a shipwreck that has value and will encourage an approach to shipwrecks that won't be available for careful meticulous study. Science and archaeology go out of the window in the quest for profits," Delgado said. "The issue is the salvaging and selling of the lead; that's where archaeologists say 'Wait a minute.'"

The 2001 UNESCO convention for the protection of the underwater cultural heritage preserves the Roman lead and other ancient artifacts from any use that would damage them. "However," Perez-Alvaro explained, "there is no reference anywhere to the use of shipwrecks for the purpose of experimentation – new uses of underwater cultural heritage."

Nevertheless, archaeologists and physicists see opportunities for agreements that would protect the ancient lead's heritage while still benefiting dark-matter searches. "It's all right if it's been documented – like taking a bit of DNA and putting it in the DNA bank," Delgado suggested. "That's a respectable scientific process that benefits all branches of science."

Gonzalez Zalba agreed. "We follow the idea of 'salvage for knowledge and not for the marketplace,'" he said. "Dark-matter searches follow under the idea of research for knowledge. Therefore I believe the resources should be granted if required under the adequate regulation and archaeological supervision."

Perez-Alvaro calls for a formal route to regulation. "There is a need for dialogue between the two fields," she said. "Especially there is a need for a protocol [on the acquisition and use of ancient lead] set up by archaeologists."

"Archaeologists will always view as unethical the outright sale of artifacts recovered from cultural sites," Foley added. "But other creative solutions could be devised which would be win-win for physicists and archaeologists."

- Peter Gwynne, Inside Science News Service

The illiterate of the 21st century will not be those who cannot read and write ...

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Many people use the word "supernatural" without realizing that is an illogical oxymoron.  We don't know all laws about our universe, so what does the term even supposed to mean?  If a phenomenon can't be explained by existing science, then it is existing science that is inadequate, not nature in refusing to accommodate the phenomenon.
 
For me, the classic example is the end of the nineteenth century to the beginning of the twentieth.
Thanks to the work of brilliant scientists over 300 years -- Galileo, Kepler, Newton, Lavoisier, Gauss, Priestly, Faraday, Maxwell, others I've embarrassingly forgotten -- by the end of the 19'th century science seemed to be complete to many people.
 
Not that there weren't unsolved problems.  The heat capacity of polyatomic gasses for one; modeling stable atoms with existing physics; the photoelectric effect; and the quandary of the "ultraviolet catastrophe" in black body radiation.  Worse, try as they could, scientists there simply could not crack these nuts, could not make any progress, using the known (and complete) laws of physics.
 
Imagine that you lived at that time and are a believer in the supernatural.  Why then, there's your answer!  The problems couldn't be solved by natural science because they above and beyond science.  They're the work of God, or some supernatural deity or ... or who knew what, but they must be beyond our comprehension.  Forever.  Bow down and say amen.
 
Fortunately for all of us, any science worth his PhD intuitively understands my first paragraph.  They realized that if the "known" laws of nature couldn't, however much effort, solve some basic physical problems, then the laws were either in some kind error or there must be more laws than we had so far discovered.
 
I'm not going to take us through history of quantum mechanics and relativity.  This is a blog, not a book, after all.  I will say that so much of our technology -- the Internet, computers, other electronic devices, many medical devices, others I can't think of right now -- would not be in our lives.  We would be living pretty much as people live 100 years ago.
 
Supernatural.  The lethal superfallacy of so much of history.  Let's rid ourselves of it as swiftly as possible.

Perovskite solar cells become even more promising with cheaper materials by Lisa Zyga

perovskite solar cells
(A) Cross-section schematic of a perovskite solar cell with copper iodide hole conductor. (B) Image of the complete device. SEM cross-section images of solar cells using (C) copper iodide and (D) spiro-OMeTAD hole conductors
 
(Phys.org) —Due to their rapid improvements in a short amount of time, perovskite solar cells have become one of today's most promising up-and-coming photovoltaic technologies. Currently, the record efficiency for a perovskite solar cell is 15% and expected to improve further. Although the perovskite material itself is relatively inexpensive, the best devices commonly use an expensive organic hole-conducting polymer, called spiro-OMeTAD, which has a commercial price that is more than 10 times that of gold and platinum.

In a new study, Jeffrey A. Christians, Raymond C. M. Fung, and Prashant V. Kamat from the University of Notre Dame in Indiana have found that copper iodide, an inexpensive inorganic hole-conducting material, may serve as a possible alternative to spiro-OMeTAD. Although the efficiency of perovskite solar cells containing copper iodide measured in this study is not quite as high as those containing spiro-OMeTAD, the copper iodide devices exhibit some other advantages that, overall, suggest that they could lead to the development of inexpensive, high-efficiency perovskite solar cells.

"The hole conductor is currently the most expensive part of perovskite solar cells," Christians told Phys.org. "Other organic hole conductor alternatives to spiro-OMeTAD have been investigated, but these alternatives still remain very expensive. This is the first reported inorganic hole conductor for perovskite solar cells, and is much less expensive than previously reported hole conductor materials.

This low-cost hole conductor could further lower the cost of these already inexpensive solar cells."
Perovskite solar cells, as a whole, are attractive because perovskite is a class of materials with a particular crystal structure that is the same as that of calcium titanium dioxide. This structure gives solar cells high charge-carrier mobilities and long diffusion lengths, allowing the photo-generated electrons and holes to travel long distances without energy loss. As a result, the electrons and holes can travel through thicker solar cells, which absorb more light and therefore generate more electricity than thin ones.

Although this study marks the first time that copper iodide has been investigated for use as hole conductors in perovskite solar cells, copper-based hole conductors have previously shown promise for use in dye-sensitized and quantum dot-sensitized solar cells. Part of their appeal is their high conductivity. In fact, copper iodide hole conductors exhibit an electrical conductivity that is two orders of magnitude higher than spiro-OMeTAD, which allows for a higher fill factor, which in turn determines the solar cell's maximum power.

Despite the copper iodide's high conductivity, the results of the current study showed that perovskite solar cells made with copper iodide hole conductors have a power conversion efficiency of 6.0%, lower than the 7.9% measured here for cells with spiro-OMeTAD hole conductors. The researchers attribute this shortcoming to the fact that spiro-OMeTAD solar cells have exceptionally high voltages. In the future, they think that the voltages of copper iodide solar cells can be increased, in particular by reducing the high recombination rate. The researchers calculated that, if they could achieve the highest parameter values observed in this study, the resulting copper iodide solar cell would have an efficiency of 8.3%.

The researchers also observed that the copper iodide solar cells exhibited another surprising advantage, which is good stability. After two hours of continuous illumination, the copper iodide cells showed no decrease in current, while the current of the spiro-OMeTAD cells decreased by about 10%. The researchers plan to further improve the devices in the future.

"We are currently working to understand the cause of the low voltage in copper iodide-based perovskite solar cells," Christians said. "With further work, we aim to increase the stability and improve the efficiency of these solar cells above 10%.

"The biggest challenge facing perovskite solar cells is long-term stability in a wide range of environments. The efficiency of the best perovskite solar cells is competitive with current commercial technologies, and they are potentially much cheaper. However, commercial solar cells must last 20-30 years with minimal degradation, and whether or not perovskite are capable of this type of long-term stability is currently an unanswered question."
Journal reference: Journal of the American Chemical Society

Read more at: http://phys.org/news/2014-01-perovskite-solar-cells-cheaper-materials.html#jCp

Have You Met Fallacy Man? Here’s How to Defeat Him.

David Strumfels -- This was just to precious to let go by.

Have You Met Fallacy Man? Here’s How to Defeat Him.

The following comic, which was first published last Monday, has been reprinted with the author’s permission. For more, check out his site, Existential Comics.
The Adventures of Fallacy Man
The Adventures of Fallacy Man
 
 
 

Cooperative

From Wikipedia, the free encyclopedia ...