Search This Blog

Wednesday, October 10, 2018

Endocrine disruptor

From Wikipedia, the free encyclopedia
 
 
A comparison of the structures of the natural hormone estradiol (left) and one of the nonyl-phenols (right), an endocrine disruptor

Endocrine disruptors are chemicals that can interfere with endocrine (or hormone) systems at certain doses. These disruptions can cause cancerous tumors, birth defects, and other developmental disorders. Any system in the body controlled by hormones can be derailed by hormone disruptors. Specifically, endocrine disruptors may be associated with the development of learning disabilities, severe attention deficit disorder, cognitive and brain development problems; deformations of the body (including limbs); breast cancer, prostate cancer, thyroid and other cancers; sexual development problems such as feminizing of males or masculinizing effects on females, etc.

Recently the Endocrine Society released a statement on endocrine-disrupting chemicals (EDCs) specifically listing obesity, diabetes, female reproduction, male reproduction, hormone-sensitive cancers in females, prostate cancer in males, thyroid, and neurodevelopment and neuroendocrine systems as being affected biological aspects of being exposed to EDCs. The critical period of development for most organisms is between the transition from a fertilized egg into a fully formed infant. As the cells begin to grow and differentiate, there are critical balances of hormones and protein changes that must occur. Therefore, a dose of disrupting chemicals may do substantial damage to a developing fetus. The same dose may not significantly affect adult mothers.

There has been controversy over endocrine disruptors, with some groups calling for swift action by regulators to remove them from the market, and regulators and other scientists calling for further study. Some endocrine disruptors have been identified and removed from the market (for example, a drug called diethylstilbestrol), but it is uncertain whether some endocrine disruptors on the market actually harm humans and wildlife at the doses to which wildlife and humans are exposed. Additionally, a key scientific paper, published in the journal Science, which helped launch the movement of those opposed to endocrine disruptors, was retracted and its author found to have committed scientific misconduct.

Found in many household and industrial products, endocrine disruptors are substances that "interfere with the synthesis, secretion, transport, binding, action, or elimination of natural hormones in the body that are responsible for development, behavior, fertility, and maintenance of homeostasis (normal cell metabolism)." They are sometimes also referred to as hormonally active agents, endocrine disrupting chemicals, or endocrine disrupting compounds. The variety of terms used to describe these substances reflects not only a range of meanings but a range of connotations, with endocrine disruptor emphasizing harmful effects, while hormonally active agent or xenohormone are more neutral, in keeping with the pharmacological principle the dose makes the poison.

Studies in cells and laboratory animals have shown that EDCs can cause adverse biological effects in animals, and low-level exposures may also cause similar effects in human beings. EDCs in the environment may also be related to reproductive and infertility problems in wildlife and bans and restrictions on their use has been associated with a reduction in health problems and the recovery of some wildlife populations.

History

The term endocrine disruptor was coined at the Wingspread Conference Centre in Wisconsin, in 1991. One of the early papers on the phenomenon was by Theo Colborn in 1993. In this paper, she stated that environmental chemicals disrupt the development of the endocrine system, and that effects of exposure during development are often permanent. Although the endocrine disruption has been disputed by some, work sessions from 1992 to 1999 have generated consensus statements from scientists regarding the hazard from endocrine disruptors, particularly in wildlife and also in humans.

The Endocrine Society released a scientific statement outlining mechanisms and effects of endocrine disruptors on “male and female reproduction, breast development and cancer, prostate cancer, neuroendocrinology, thyroid, metabolism and obesity, and cardiovascular endocrinology,” and showing how experimental and epidemiological studies converge with human clinical observations “to implicate EDCs as a significant concern to public health.” The statement noted that it is difficult to show that endocrine disruptors cause human diseases, and it recommended that the precautionary principle should be followed. A concurrent statement expresses policy concerns.

Endocrine disrupting compounds encompass a variety of chemical classes, including drugs, pesticides, compounds used in the plastics industry and in consumer products, industrial by-products and pollutants, and even some naturally produced botanical chemicals. Some are pervasive and widely dispersed in the environment and may bioaccumulate. Some are persistent organic pollutants (POPs), and can be transported long distances across national boundaries and have been found in virtually all regions of the world, and may even concentrate near the North Pole, due to weather patterns and cold conditions. Others are rapidly degraded in the environment or human body or may be present for only short periods of time. Health effects attributed to endocrine disrupting compounds include a range of reproductive problems (reduced fertility, male and female reproductive tract abnormalities, and skewed male/female sex ratios, loss of fetus, menstrual problems); changes in hormone levels; early puberty; brain and behavior problems; impaired immune functions; and various cancers.

One example of the consequences of the exposure of developing animals, including humans, to hormonally active agents is the case of the drug diethylstilbestrol (DES), a nonsteroidal estrogen and not an environmental pollutant. Prior to its ban in the early 1970s, doctors prescribed DES to as many as five million pregnant women to block spontaneous abortion, an off-label use of this medication prior to 1947. It was discovered after the children went through puberty that DES affected the development of the reproductive system and caused vaginal cancer. The relevance of the DES saga to the risks of exposure to endocrine disruptors is questionable, as the doses involved are much higher in these individuals than in those due to environmental exposures.

Aquatic life subjected to endocrine disruptors in an urban effluent have experienced decreased levels of serotonin and increased feminization.

In 2013 the WHO and the United Nations Environment Programme released a study, the most comprehensive report on EDCs to date, calling for more research to fully understand the associations between EDCs and the risks to health of human and animal life. The team pointed to wide gaps in knowledge and called for more research to obtain a fuller picture of the health and environmental impacts of endocrine disruptors. To improve global knowledge the team has recommended:
  • Testing: known EDCs are only the 'tip of the iceberg' and more comprehensive testing methods are required to identify other possible endocrine disruptors, their sources, and routes of exposure.
  • Research: more scientific evidence is needed to identify the effects of mixtures of EDCs on humans and wildlife (mainly from industrial by-products) to which humans and wildlife are increasingly exposed.
  • Reporting: many sources of EDCs are not known because of insufficient reporting and information on chemicals in products, materials and goods.
  • Collaboration: more data sharing between scientists and between countries can fill gaps in data, primarily in developing countries and emerging economies.

Endocrine system

Endocrine systems are found in most varieties of animals. The endocrine system consists of glands that secrete hormones, and receptors that detect and react to the hormones.

Hormones travel throughout the body and act as chemical messengers. Hormones interface with cells that contain matching receptors in or on their surfaces. The hormone binds with the receptor, much like a key would fit into a lock. The endocrine system regulates adjustments through slower internal processes, using hormones as messengers. The endocrine system secretes hormones in response to environmental stimuli and to orchestrate developmental and reproductive changes. The adjustments brought on by the endocrine system are biochemical, changing the cell's internal and external chemistry to bring about a long term change in the body. These systems work together to maintain the proper functioning of the body through its entire life cycle. Sex steroids such as estrogens and androgens, as well as thyroid hormones, are subject to feedback regulation, which tends to limit the sensitivity of these glands.

Hormones work at very small doses (part per billion ranges). Endocrine disruption can thereby also occur from low-dose exposure to exogenous hormones or hormonally active chemicals such as bisphenol A. These chemical can bind to receptors for other hormonally mediated processes. Furthermore, since endogenous hormones are already present in the body in biologically active concentrations, additional exposure to relatively small amounts of exogenous hormonally active substances can disrupt the proper functioning of the body's endocrine system. Thus, an endocrine disruptor can elicit adverse effects at much lower doses than a toxicity, acting through a different mechanism.

The timing of exposure is also critical. Most critical stages of development occur in utero, where the fertilized egg divides, rapidly developing every structure of a fully formed baby, including much of the wiring in the brain. Interfering with the hormonal communication in utero can have profound effects both structurally and toward brain development. Depending on the stage of reproductive development, interference with hormonal signaling can result in irreversible effects not seen in adults exposed to the same dose for the same length of time. Experiments with animals have identified critical developmental time points in utero and days after birth when exposure to chemicals that interfere with or mimic hormones have adverse effects that persist into adulthood. Disruption of thyroid function early in development may be the cause of abnormal sexual development in both males and females early motor development impairment, and learning disabilities.

There are studies of cell cultures, laboratory animals, wildlife, and accidentally exposed humans that show that environmental chemicals cause a wide range of reproductive, developmental, growth, and behavior effects, and so while "endocrine disruption in humans by pollutant chemicals remains largely undemonstrated, the underlying science is sound and the potential for such effects is real." While compounds that produce estrogenic, androgenic, antiandrogenic, and antithyroid actions have been studied, less is known about interactions with other hormones.

The interrelationship between exposures to chemicals and health effects are rather complex. It is hard to definitively link a particular chemical with a specific health effect, and exposed adults may not show any ill effects. But, fetuses and embryos, whose growth and development are highly controlled by the endocrine system, are more vulnerable to exposure and may suffer overt or subtle lifelong health and/or reproductive abnormalities. Prebirth exposure, in some cases, can lead to permanent alterations and adult diseases.

Some in the scientific community are concerned that exposure to endocrine disruptors in the womb or early in life may be associated with neurodevelopmental disorders including reduced IQ, ADHD, and autism. Certain cancers and uterine abnormalities in women are associated with exposure to Diethylstilbestrol (DES) in the womb due to DES used as a medical treatment.

In another case, phthalates in pregnant women’s urine was linked to subtle, but specific, genital changes in their male infants – a shorter, more female-like anogenital distance and associated incomplete descent of testes and a smaller scrotum and penis. The science behind this study has been questioned by phthalate industry consultants. As of June 2008, there are only five studies of anogenital distance in humans, and one researcher has stated "Whether AGD measures in humans relate to clinically important outcomes, however, remains to be determined, as does its utility as a measure of androgen action in epidemiologic studies."

U-shaped dose-response curve

Most toxicants, including endocrine disruptors, have been claimed to follow a U-shaped dose response curve. This means that very low and very high levels have more effects than mid-level exposure to a toxicant. Endocrine disrupting effects have been noted in animals exposed to environmentally relevant levels of some chemicals. For example, a common flame retardant, BDE-47, affects the reproductive system and thyroid gland of female rats in doses of the order of those to which humans are exposed. Low concentrations of endocrine disruptors can also have synergistic effects in amphibians, but it is not clear that this is an effect mediated through the endocrine system.

Critics have argued that data suggest that the amounts of chemicals in the environment are too low to cause an effect. A consensus statement by the Learning and Developmental Disabilities Initiative argued that "The very low-dose effects of endocrine disruptors cannot be predicted from high-dose studies, which contradicts the standard 'dose makes the poison' rule of toxicology. Nontraditional dose-response curves are referred to as nonmonotonic dose response curves."

The dosage objection could also be overcome if low concentrations of different endocrine disruptors are synergistic. This paper was published in Science in June 1996, and was one reason for the passage of the Food Quality Protection Act of 1996. The results could not be confirmed with the same and alternative methodologies, and the original paper was retracted, with Arnold found to have committed scientific misconduct by the United States Office of Research Integrity.

It has been claimed that Tamoxifen and some phthalates have fundamentally different (and harmful) effects on the body at low doses than at high doses.

Routes of exposure

Food is a major mechanism by which people are exposed to pollutants. Diet is thought to account for up to 90% of a person's PCB and DDT body burden. In a study of 32 different common food products from three grocery stores in Dallas, fish and other animal products were found to be contaminated with PBDE. Since these compounds are fat soluble, it is likely they are accumulating from the environment in the fatty tissue of animals we eat. Some suspect fish consumption is a major source of many environmental contaminants. Indeed, both wild and farmed salmon from all over the world have been shown to contain a variety of man-made organic compounds.

With the increase in household products containing pollutants and the decrease in the quality of building ventilation, indoor air has become a significant source of pollutant exposure. Residents living in homes with wood floors treated in the 1960s with PCB-based wood finish have a much higher body burden than the general population. A study of indoor house dust and dryer lint of 16 homes found high levels of all 22 different PBDE congeners tested for in all samples. Recent studies suggest that contaminated house dust, not food, may be the major source of PBDE in our bodies. One study estimated that ingestion of house dust accounts for up to 82% of our PBDE body burden.

Research conducted by the Environmental Working Group found that 19 out of 20 children tested had levels of PBDE in their blood 3.5 times higher than the amount in their mothers' blood. It has been shown that contaminated house dust is a primary source of lead in young children's bodies. It may be that babies and toddlers ingest more contaminated house dust than the adults they live with, and therefore have much higher levels of pollutants in their systems.

Consumer goods are another potential source of exposure to endocrine disruptors. An analysis of the composition of 42 household cleaning and personal care products versus 43 "chemical free" products has been performed. The products contained 55 different chemical compounds: 50 were found in the 42 conventional samples representing 170 product types, while 41 were detected in 43 "chemical free" samples representing 39 product types. Parabens, a class of chemicals that has been associated with reproductive-tract issues, were detected in seven of the "chemical free" products, including three sunscreens that did not list parabens on the label. Vinyl products such as shower curtains were found to contain more than 10% by weight of the compound DEHP, which when present in dust has been associated with asthma and wheezing in children. The risk of exposure to EDCs increases as products, both conventional and "chemical free," are used in combination. "If a consumer used the alternative surface cleaner, tub and tile cleaner, laundry detergent, bar soap, shampoo and conditioner, facial cleanser and lotion, and toothpaste [he or she] would potentially be exposed to at least 19 compounds: 2 parabens, 3 phthalates, MEA, DEA, 5 alkylphenols, and 7 fragrances."

An analysis of the endocrine disrupting chemicals in Old Order Mennonite women in mid-pregnancy determined that they have much lower levels in their systems than the general population. Mennonites eat mostly fresh, unprocessed foods, farm without pesticides, and use few or no cosmetics or personal care products. One woman who had reported using hairspray and perfume had high levels of monoethyl phthalate, while the other women all had levels below detection. Three women who reported being in a car or truck within 48 hours of providing a urine sample had higher levels of diethylhexyl phthalate which is found in polyvinyl chloride, and is used in car interiors.

Additives added to plastics during manufacturing may leach into the environment after the plastic item is discarded; additives in microplastics in the ocean leach into ocean water and in plastics in landfills may escape and leach into the soil and then into groundwater.

Types

All people are exposed to chemicals with estrogenic effects in their everyday life, because endocrine disrupting chemicals are found in low doses in thousands of products. Chemicals commonly detected in people include DDT, polychlorinated biphenyls (PCB's), bisphenol A (BPA), polybrominated diphenyl ethers (PBDE's), and a variety of phthalates. In fact, almost all plastic products, including those advertised as "BPA free", have been found to leach endocrine-disrupting chemicals. In a 2011, study it was found that some "BPA-free" products released more endocrine active chemicals than the BPA-containing products. Other forms of endocrine disruptors are phytoestrogens (plant hormones).

Xenoestrogens

Xenoestrogens are a type of xenohormone that imitates estrogen. Synthetic xenoestrogens include widely used industrial compounds, such as PCBs, BPA and phthalates, which have estrogenic effects on a living organism.

Alkylphenols

Alkylphenols are xenoestrogens. The European Union has implemented sales and use restrictions on certain applications in which nonylphenols are used because of their alleged "toxicity, persistence, and the liability to bioaccumulate" but the United States Environmental Protections Agency (EPA) has taken a slower approach to make sure that action is based on "sound science".

The long-chain alkylphenols are used extensively as precursors to the detergents, as additives for fuels and lubricants, polymers, and as components in phenolic resins. These compounds are also used as building block chemicals that are also used in making fragrances, thermoplastic elastomers, antioxidants, oil field chemicals and fire retardant materials. Through the downstream use in making alkylphenolic resins, alkylphenols are also found in tires, adhesives, coatings, carbonless copy paper and high performance rubber products. They have been used in industry for over 40 years.

Certain alkylphenols are degradation products from nonionic detergents. Nonylphenol is considered to be a low-level endocrine disruptor owing to its tendency to mimic estrogen.

Bisphenol A (BPA)

Bisphenol A chemical structure

Bisphenol A is commonly found in plastic bottles, plastic food containers, dental materials, and the linings of metal food and infant formula cans. Another exposure comes from receipt paper commonly used at grocery stores and restaurants, because today the paper is commonly coated with a BPA containing clay for printing purposes.

BPA is a known endocrine disruptor, and numerous studies have found that laboratory animals exposed to low levels of it have elevated rates of diabetes, mammary and prostate cancers, decreased sperm count, reproductive problems, early puberty, obesity, and neurological problems. Early developmental stages appear to be the period of greatest sensitivity to its effects, and some studies have linked prenatal exposure to later physical and neurological difficulties. Regulatory bodies have determined safety levels for humans, but those safety levels are currently being questioned or are under review as a result of new scientific studies. A 2011 study that investigated the number of chemicals pregnant women are exposed to in the U.S. found BPA in 96% of women.

In 2010 the World Health Organization expert panel recommended no new regulations limiting or banning the use of bisphenol A, stating that "initiation of public health measures would be premature."

In August 2008, the U.S. FDA issued a draft reassessment, reconfirming their initial opinion that, based on scientific evidence, it is safe. However, in October 2008, FDA's advisory Science Board concluded that the Agency's assessment was "flawed" and hadn't proven the chemical to be safe for formula-fed infants. In January 2010, the FDA issued a report indicating that, due to findings of recent studies that used novel approaches in testing for subtle effects, both the National Toxicology Program at the National Institutes of Health as well as the FDA have some level of concern regarding the possible effects of BPA on the brain and behavior of fetuses, infants and younger children. In 2012 the FDA did ban the use of BPA in baby bottles, however the Environmental Working Group called the ban "purely cosmetic". In a statement they said, “If the agency truly wants to prevent people from being exposed to this toxic chemical associated with a variety of serious and chronic conditions it should ban its use in cans of infant formula, food and beverages." The Natural Resources Defense Council called the move inadequate saying, the FDA needs to ban BPA from all food packaging. In a statement a FDA spokesman said the agency's action was not based on safety concerns and that "the agency continues to support the safety of BPA for use in products that hold food."

Bisphenol S (BPS)

Bisphenol S is an analog of bisphenol A. It is commonly found in thermal receipts, plastics, and household dust. Traces of BPS have also been found in personal care products. It is more presently being used because of the ban of BPA. BPS is used in place of BPA in “BPA free” items. However BPS has been shown to be as much of an endocrine disruptor as BPA.

DDT

DDT Chemical structure

Dichlorodiphenyltrichloroethane (DDT) was first used as a pesticide against Colorado potato beetles on crops beginning in 1936. An increase in the incidence of malaria, epidemic typhus, dysentery, and typhoid fever led to its use against the mosquitoes, lice, and houseflies that carried these diseases. Before World War II, pyrethrum, an extract of a flower from Japan, had been used to control these insects and the diseases they can spread. During World War II, Japan stopped exporting pyrethrum, forcing the search for an alternative. Fearing an epidemic outbreak of typhus, every British and American soldier was issued DDT, who used it to routinely dust beds, tents, and barracks all over the world.

DDT was approved for general, non-military use after the war ended. It became used worldwide to increase monoculture crop yields that were threatened by pest infestation, and to reduce the spread of malaria which had a high mortality rate in many parts of the world. Its use for agricultural purposes has since been prohibited by national legislation of most countries, while its use as a control against malaria vectors is permitted, as specifically stated by the Stockholm Convention on Persistent Organic Pollutants.
 
As early as 1946, the harmful effects of DDT on bird, beneficial insects, fish, and marine invertebrates were seen in the environment. The most infamous example of these effects were seen in the eggshells of large predatory birds, which did not develop to be thick enough to support the adult bird sitting on them. Further studies found DDT in high concentrations in carnivores all over the world, the result of biomagnification through the food chain. Twenty years after its widespread use, DDT was found trapped in ice samples taken from Antarctic snow, suggesting wind and water are another means of environmental transport. Recent studies show the historical record of DDT deposition on remote glaciers in the Himalayas.

More than sixty years ago when biologists began to study the effects of DDT on laboratory animals, it was discovered that DDT interfered with reproductive development. Recent studies suggest DDT may inhibit the proper development of female reproductive organs that adversely affects reproduction into maturity. Additional studies suggest that a marked decrease in fertility in adult males may be due to DDT exposure. Most recently, it has been suggested that exposure to DDT in utero can increase a child's risk of childhood obesity. DDT is still used as anti-malarial insecticide in Africa and parts of Southeast Asia in limited quantities.

Polychlorinated biphenyls

Polychlorinated biphenyls (PCBs) are a class of chlorinated compounds used as industrial coolants and lubricants. PCBs are created by heating benzene, a byproduct of gasoline refining, with chlorine. They were first manufactured commercially by the Swann Chemical Company in 1927. In 1933, the health effects of direct PCB exposure was seen in those who worked with the chemicals at the manufacturing facility in Alabama. In 1935, Monsanto acquired the company, taking over US production and licensing PCB manufacturing technology internationally.

General Electric was one of the largest US companies to incorporate PCBs into manufactured equipment. Between 1952 and 1977, the New York GE plant had dumped more than 500,000 pounds of PCB waste into the Hudson River. PCBs were first discovered in the environment far from its industrial use by scientists in Sweden studying DDT.

The effects of acute exposure to PCBs were well known within the companies who used Monsanto's PCB formulation who saw the effects on their workers who came into contact with it regularly. Direct skin contact results in a severe acne-like condition called chloracne. Exposure increases the risk of skin cancer, liver cancer, and brain cancer. Monsanto tried for years to downplay the health problems related to PCB exposure in order to continue sales.

The detrimental health effects of PCB exposure to humans became undeniable when two separate incidents of contaminated cooking oil poisoned thousands of residents in Japan (Yushō disease, 1968) and Taiwan (Yu-cheng disease, 1979), leading to a worldwide ban on PCB use in 1977. Recent studies show the endocrine interference of certain PCB congeners is toxic to the liver and thyroid, increases childhood obesity in children exposed prenatally, and may increase the risk of developing diabetes.

PCBs in the environment may also be related to reproductive and infertility problems in wildlife. In Alaska it is thought that they may contribute to reproductive defects, infertility and antler malformation in some deer populations. Declines in the populations of otters and sea lions may also be partially due to their exposure to PCBs, the insecticide DDT, other persistent organic pollutants. Bans and restrictions on the use of EDCs have been associated with a reduction in health problems and the recovery of some wildlife populations.

Polybrominated diphenyl ethers

Polybrominated diphenyl ethers (PBDEs) are a class of compounds found in flame retardants used in plastic cases of televisions and computers, electronics, carpets, lighting, bedding, clothing, car components, foam cushions and other textiles. Potential health concern: PBDE's are structurally very similar to Polychlorinated biphenyls (PCBs), and have similar neurotoxic effects. Research has correlated halogenated hydrocarbons, such as PCBs, with neurotoxicity. PBDEs are similar in chemical structure to PCBs, and it has been suggested that PBDEs act by the same mechanism as PCBs.

In the 1930s and 1940s, the plastics industry developed technologies to create a variety of plastics with broad applications. Once World War II began, the US military used these new plastic materials to improve weapons, protect equipment, and to replace heavy components in aircraft and vehicles. After WWII, manufacturers saw the potential plastics could have in many industries, and plastics were incorporated into new consumer product designs. Plastics began to replace wood and metal in existing products as well, and today plastics are the most widely used manufacturing materials.

By the 1960s, all homes were wired with electricity and had numerous electrical appliances. Cotton had been the dominant textile used to produce home furnishings, but now home furnishings were composed of mostly synthetic materials. More than 500 billion cigarettes were consumed each year in the 1960s, as compared to less than 3 billion per year in the beginning of the twentieth century. When combined with high density living, the potential for home fires was higher in the 1960s than it had ever been in the US. By the late 1970s, approximately 6000 people in the US died each year in home fires.

In 1972, in response to this situation, the National Commission on Fire Prevention and Control was created to study the fire problem in the US. In 1973 they published their findings in America Burning, a 192-page report that made recommendations to increase fire prevention. Most of the recommendations dealt with fire prevention education and improved building engineering, such as the installation of fire sprinklers and smoke detectors. The Commission expected that with the recommendations, a 5% reduction in fire losses could be expected each year, halving the annual losses within 14 years.

Historically, treatments with alum and borax were used to reduce the flammability of fabric and wood, as far back as Roman times. Since it is a non-absorbent material once created, flame retardant chemicals are added to plastic during the polymerization reaction when it is formed. Organic compounds based on halogens like bromine and chlorine are used as the flame retardant additive in plastics, and in fabric based textiles as well. The widespread use of brominated flame retardants may be due to the push from Great Lakes Chemical Corporation (GLCC) to profit from its huge investment in bromine. In 1992, the world market consumed approximately 150,000 tonnes of bromine-based flame retardants, and GLCC produced 30% of the world supply.

PBDEs have the potential to disrupt thyroid hormone balance and contribute to a variety of neurological and developmental deficits, including low intelligence and learning disabilities. Many of the most common PBDE's were banned in the European Union in 2006. Studies with rodents have suggested that even brief exposure to PBDEs can cause developmental and behavior problems in juvenile rodents and exposure interferes with proper thyroid hormone regulation.

Phthalates

Phthalates are found in some soft toys, flooring, medical equipment, cosmetics and air fresheners. They are of potential health concern because they are known to disrupt the endocrine system of animals, and some research has implicated them in the rise of birth defects of the male reproductive system.

Although an expert panel has concluded that there is "insufficient evidence" that they can harm the reproductive system of infants, California, Washington state and Europe have banned them from toys. One phthalate, bis(2-ethylhexyl) phthalate (DEHP), used in medical tubing, catheters and blood bags, may harm sexual development in male infants. In 2002, the Food and Drug Administration released a public report which cautioned against exposing male babies to DEHP. Although there are no direct human studies the FDA report states: "Exposure to DEHP has produced a range of adverse effects in laboratory animals, but of greatest concern are effects on the development of the male reproductive system and production of normal sperm in young animals. In view of the available animal data, precautions should be taken to limit the exposure of the developing male to DEHP". Similarly, phthalates may play a causal role in disrupting masculine neurological development when exposed prenatally.

Dibutyl phthalate (DBP) has also disrupted insulin and glucagon signaling in animal models.

Perfluorooctanoic acid

PFOA exerts hormonal effects including alteration of thyroid hormone levels. Blood serum levels of PFOA were associated with an increased time to pregnancy — or "infertility" — in a 2009 study. PFOA exposure is associated with decreased semen quality. PFOA appeared to act as an endocrine disruptor by a potential mechanism on breast maturation in young girls. A C8 Science Panel status report noted an association between exposure in girls and a later onset of puberty.

Other suspected endocrine disruptors

Some other examples of putative EDCs are polychlorinated dibenzo-dioxins (PCDDs) and -furans (PCDFs), polycyclic aromatic hydrocarbons (PAHs), phenol derivatives and a number of pesticides (most prominent being organochlorine insecticides like endosulfan, kepone (chlordecone) and DDT and its derivatives, the herbicide atrazine, and the fungicide vinclozolin), the contraceptive 17-alpha ethinylestradiol, as well as naturally occurring phytoestrogens such as genistein and mycoestrogens such as zearalenone.

The molting in crustaceans is an endocrine-controlled process. In the marine penaeid shrimp Litopenaeus vannamei, exposure to endosulfan resulted increased susceptibility to acute toxicity and increased mortalities in the postmolt stage of the shrimp.

Many sunscreens contain oxybenzone, a chemical blocker that provides broad-spectrum UV coverage, yet is subject to a lot of controversy due its potential estrogenic effect in humans.

Tributyltin (TBT) are organotin compounds that for 40 years TBT was used as a biocide in anti-fouling paint, commonly known as bottom paint. TBT has been shown to impact invertebrate and vertebrate development, disrupting the endocrine system, resulting in masculinization, lower survival rates, as well as many health problems in mammals.

Temporal trends of body burden

Since being banned, the average human body burdens of DDT and PCB have been declining. Since their ban in 1972, the PCB body burden in 2009 is one-hundredth of what it was in the early 1980s. On the other hand, monitoring programs of European breast milk samples have shown that PBDE levels are increasing. An analysis of PBDE content in breast milk samples from Europe, Canada, and the US shows that levels are 40 times higher for North American women than for Swedish women, and that levels in North America are doubling every two to six years.

Legal approach

United States

The multitude of possible endocrine disruptors are technically regulated in the United States by many laws, including: the Toxic Substances Control Act, the Federal Insecticide, Fungicide, and Rodenticide Act, the Food, Drug and Cosmetic Act, the Clean Water Act, the Safe Drinking Water Act, and the Clean Air Act.

The Congress of the United States has improved the evaluation and regulation process of drugs and other chemicals. The Food Quality Protection Act of 1996 and the Safe Drinking Water Act of 1996 simultaneously provided the first legislative direction requiring the EPA to address endocrine disruption through establishment of a program for screening and testing of chemical substances.
In 1998, the EPA announced the Endocrine Disruptor Screening Program by establishment of a framework for priority setting, screening and testing more than 85,000 chemicals in commerce. The basic concept behind the program is that prioritization will be based on existing information about chemical uses, production volume, structure-activity and toxicity. Screening is done by use of in vitro test systems (by examining, for instance, if an agent interacts with the estrogen receptor or the androgen receptor) and via the use of in animal models, such as development of tadpoles and uterine growth in prepubertal rodents. Full scale testing will examine effects not only in mammals (rats) but also in a number of other species (frogs, fish, birds and invertebrates). Since the theory involves the effects of these substances on a functioning system, animal testing is essential for scientific validity, but has been opposed by animal rights groups. Similarly, proof that these effects occur in humans would require human testing, and such testing also has opposition.

After failing to meet several deadlines to begin testing, the EPA finally announced that they were ready to begin the process of testing dozens of chemical entities that are suspected endocrine disruptors early in 2007, eleven years after the program was announced. When the final structure of the tests was announced there was objection to their design. Critics have charged that the entire process has been compromised by chemical company interference. In 2005, the EPA appointed a panel of experts to conduct an open peer-review of the program and its orientation. Their results found that "the long-term goals and science questions in the EDC program are appropriate", however this study was conducted over a year before the EPA announced the final structure of the screening program.

Europe

In 2013, a number of pesticides containing endocrine disrupting chemicals were in draft EU criteria to be banned. On the 2nd May, US TTIP negotiators insisted the EU drop the criteria. They stated that a risk-based approach should be taken on regulation. Later the same day Catherine Day wrote to Karl Falkenberg asking for the criteria to be removed.

The European Commission had been to set criteria by December 2013 identifying endocrine disrupting chemicals (EDCs) in thousands of products — including disinfectants, pesticides and toiletries — that have been linked to cancers, birth defects and development disorders in children. However, the body delayed the process, prompting Sweden to state that it would sue the commission in May 2014 — blaming chemical industry lobbying for the disruption.

“This delay is due to the European chemical lobby, which put pressure again on different commissioners. Hormone disrupters are becoming a huge problem. In some places in Sweden we see double-sexed fish. We have scientific reports on how this affects fertility of young boys and girls, and other serious effects,” Swedish Environment Minister Lena Ek told the AFP, noting that Denmark had also demanded action.

In November 2014, the Copenhagen-based Nordic Council of Ministers released its own independent report that estimated the impact of environmental EDCs on male reproductive health, and the resulting cost to public health systems. It concluded that EDCs likely cost health systems across the EU anywhere from 59 million to 1.18 billion Euros a year, noting that even this represented only "a fraction of the endocrine related diseases".

Environmental and human body cleanup

There is evidence that once a pollutant is no longer in use, or once its use is heavily restricted, the human body burden of that pollutant declines. Through the efforts of several large-scale monitoring programs, the most prevalent pollutants in the human population are fairly well known. The first step in reducing the body burden of these pollutants is eliminating or phasing out their production.

The second step toward lowering human body burden is awareness of and potentially labeling foods that are likely to contain high amounts of pollutants. This strategy has worked in the past - pregnant and nursing women are cautioned against eating seafood that is known to accumulate high levels of mercury. Ideally, a certification process should be in place to routinely test animal products for POP concentrations. This would help the consumer identify which foods have the highest levels of pollutants.
The most challenging aspect of this problem is discovering how to eliminate these compounds from the environment and where to focus remediation efforts. Even pollutants no longer in production persist in the environment, and bio-accumulate in the food chain. An understanding of how these chemicals, once in the environment, move through ecosystems, is essential to designing ways to isolate and remove them. Working backwards through the food chain may help to identify areas to prioritize for remediation efforts. This may be extremely challenging for contaminated fish and marine mammals that have a large habitat and who consume fish from many different areas throughout their lives.

Many persistent organic compounds, PCB, DDT and PBDE included, accumulate in river and marine sediments. Several processes are currently being used by the EPA to clean up heavily polluted areas, as outlined in their Green Remediation program.

One of the most interesting ways is the utilization of naturally occurring microbes that degrade PCB congeners to remediate contaminated areas.

There are many success stories of cleanup efforts of large heavily contaminated Superfund sites. A 10-acre (40,000 m2) landfill in Austin, Texas contaminated with illegally dumped VOCs was restored in a year to a wetland and educational park.

A US uranium enrichment site that was contaminated with uranium and PCBs was cleaned up with high tech equipment used to find the pollutants within the soil. The soil and water at a polluted wetlands site were cleaned of VOCs, PCBs and lead, native plants were installed as biological filters, and a community program was implemented to ensure ongoing monitoring of pollutant concentrations in the area. These case studies are encouraging due to the short amount of time needed to remediate the site and the high level of success achieved.

Studies suggest that bisphenol A, certain PCBs, and phthalate compounds are preferentially eliminated from the human body through sweat.

Economic effects

Human exposure may cause some health effects, such as lower IQ and adult obesity. These effects may lead to lost productivity, disability, or premature death in some people. One source estimated that, within the European Union, this economic effect might have about twice the economic impact as the effects caused by mercury and lead contamination.

The socio-economic burden of endocrine disrupting chemicals (EDC)-associated health effects for the European Union was estimated based on currently available literature and considering the uncertainties with respect to causality with EDCs and corresponding health-related costs to be in the range of €46 billion to €288 billion per year.

Microplastics

From Wikipedia, the free encyclopedia
Microplastics are small barely visible pieces of plastic that enter and pollute the environment. To clarify, microplastics are not a specific kind of plastic, but rather is any type of plastic fragment that is less than five millimeters in length according to the U.S. National Oceanic and Atmospheric Administration (NOAA). NOAA classifies microplastics as less than 5 mm in diameter. They enter natural ecosystems from a variety of sources, including, but not limited to, cosmetics, clothing, and industrial processes.

Two classifications of microplastics currently exist. Primary microplastics, any plastic fragment or particle that is already less than 5.0 mm in size or less before entering the environment. These include microfibers from clothing, microbeads, and plastic pellets (also known as nurdles). Secondary microplastics, microplastics that are created from the degradation of larger plastic products once they enter the environment through natural weathering processes. Such sources of secondary microplastics include water and soda bottles, fishing nets, and plastic bags. Both types are recognized to persist in the environment at high levels, particularly in aquatic and marine ecosystems.

Image of microplastic samples in a lab

Additionally, plastics degrade slowly, often over hundreds if not thousands of years. This increases the probability of microplastics being ingested and incorporated into, and accumulated in, the bodies and tissues of many organisms. The entire cycle and movement of microplastics in the environment is not yet known, but research is currently underway to investigate this issue.

Polyethylene based microspherules in toothpaste

Worsening matters, microplastics are common in our world today. In 2014, it was estimated that there are between fifteen and fifty-one trillion individual pieces of microplastic in the world’s oceans, which was estimated to weigh between 93,000 and 236,000 tons.

Microplastic fibers identified in the marine environment
 
Microplastics in sediments from rivers
 
a) Artificial turf football field with ground tyre rubber (GTR) used for cushioning. b) Microplastics from the same field, washed away by rain, found in nature close to a stream.

Classification

Primary microplastics

These are small pieces of plastic that are purposefully manufactured. They are usually used in facial cleansers and cosmetics, or in air blasting technology. In some cases, their use in medicine as vectors for drugs was reported. Microplastic "scrubbers", used in exfoliating hand cleansers and facial scrubs, have replaced traditionally used natural ingredients, including ground almonds, oatmeal and pumice. Primary microplastics have also been produced for use in air blasting technology. This process involves blasting acrylic, melamine or polyester microplastic scrubbers at machinery, engines and boat hulls to remove rust and paint. As these scrubbers are used repeatedly until they diminish in size and their cutting power is lost, they often become contaminated with heavy metals such as cadmium, chromium, and lead. Although many companies have committed to reducing the production of microbeads there are still many bioplastic microbeads that also have a long degradation life cycle similar to normal plastic.

Secondary microplastics

These are small pieces of plastic derived from the breakdown of larger plastic debris, both at sea and on land. Over time, a culmination of physical, biological and chemical processes, including photo degradation caused by sunlight exposure, can reduce the structural integrity of plastic debris to a size that is eventually undetectable to the naked eye. This process of breaking down large plastic material into much smaller pieces is known as fragmentation. It is considered that microplastics might further degrade to be smaller in size, although the smallest microplastic reportedly detected in the oceans at present is 1.6 micrometres (6.3×10−5 in) in diameter. The prevalence of microplastics with uneven shapes suggests that fragmentation is a key source.

Other sources: as a by-product/dust emission during wear and tear

There are countless sources of both primary and secondary microplastics. Microfibers, microplastic fibers that enter the environment from the washing of synthetic clothing. As they are used, tires, composed partly of synthetic Styrene Butadiene Rubber, will erode into tiny plastic and rubber particles. Furthermore, 2.0-5.0 mm plastic pellets, used to create other plastic products, often enter ecosystems due to spillages and other accidents. A Norwegian Environment Agency review report about microplastics published in early 2015 states it would be beneficial to classify these sources as primary, as long as microplastics from these sources are added from human society at the "start of the pipe", and their emissions are inherently a result of human material and product use and not secondary defragmentation in nature.

Sources

Polystyrene foam beads on an Irish beach

The existence of microplastics in the environment is often established through aquatic studies. These include taking plankton samples, analyzing sandy and muddy sediments, observing vertebrate and invertebrate consumption, and evaluating chemical pollutant interactions. Through such methods, it has been shown that there are microplastics from multiple sources in the environment.

Microplastics could contribute up to 30% of the Great Pacific Garbage Patch polluting the world’s oceans and, in many developed countries, are a bigger source of marine plastic pollution than the visible larger pieces of marine litter, according to a 2017 IUCN report.

Sewage treatment plants

Sewage treatment plants, also known as wastewater treatment plants (WWTPs), remove contaminants from wastewater, primarily from household sewage, using various physical, chemical, and biological processes. Most plants in developed countries have both primary and secondary treatment stages. In the primary stage of treatment, physical processes are employed to remove oils, sand, and other large solids using conventional filters, clarifiers and settling tanks. Secondary treatment uses biological processes involving bacteria and protozoa to break down organic matter. Common secondary technologies are activated sludge systems, trickling filters and constructed wetlands. The optional tertiary treatment stage may include processes for nutrient removal (nitrogen and phosphorus) and disinfection.

Microplastics have been detected in both the primary and secondary treatment stages of the plants. A study estimated that about one particle per liter of microplastics are being released back into the environment, with a removal efficiency of about 99.9%. A 2016 study showed that most microplastics are actually removed during the primary treatment stage where solid skimming and sludge settling are used. When these treatment facilities are functioning properly, the contribution of microplastics into oceans and surface water environments from WWTPs is not disproportionately large.

However, it is important to note that in certain countries sewage sludge is used for soil fertilizer, which exposes plastics in the sludge to the weather, sunlight, and other biological factors, causing fragmentation. As a result, microplastics from these biosolids often end up in storm drains and eventually into bodies of water. In addition, some studies show that microplastics do pass through filtration processes at some WWTPs (Microplastics as Contaminants, 2011). According to a study from the UK, samples taken from sewage sludge disposal-sites on the coasts of six continents contained an average one particle of microplastic per liter. A significant amount of these particles was of clothing fibers from washing machine effluent.

Car and truck tires

Wear and tear from tires significantly contributes to the flow of (micro-)plastics into the environment. Estimates of emissions of microplastics to the environment in Denmark are between 5,500 and 14,000 tonnes (6,100 and 15,400 tons) per year. Secondary microplastics (e.g. from car and truck tyres or footwear) are more important than primary microplastics by two orders of magnitude. The formation of microplastics from the degradation of larger plastics in the environment is not accounted for in the study.

The estimated per capita emission ranges from 0.23 to 4.7 kg/year, with a global average of 0.81 kg/year. The emissions from car tires (100%) are substantially higher than those of other sources of microplastics, e.g., airplane tires (2%), artificial turf (12–50%), brake wear (8%) and road markings (5%). Emissions and pathways depend on local factors like road type or sewage systems. The relative contribution of tire wear and tear to the total global amount of plastics ending up in our oceans is estimated to be 5–10%. In air, 3–7% of the particulate matter (PM2.5) is estimated to consist of tire wear and tear, indicating that it may contribute to the global health burden of air pollution which has been projected by the World Health Organization (WHO) at 3 million deaths in 2012. The wear and tear also enters our food chain, but further research is needed to assess human health risks.

Cosmetics industry

Some companies have replaced natural exfoliating ingredients with microplastics, usually in the form of "microbeads" or "micro-exfoliates". These products are typically composed of polyethylene, a common component of plastics, but they can also be manufactured from polypropylene, polyethylene terephthalate, and nylon. They are often found in face washes, hand soaps, and other personal care products, so the beads are usually washed into the sewage system immediately after use. Their small size prevents them from fully being retained by preliminary treatment screens at wastewater plants, thereby allowing some to enter rivers and oceans.Their small size prevents them from fully being retained by preliminary treatment screens at wastewater plants, thereby allowing some to enter rivers and oceans. In fact, wastewater treatment plants only remove an average of 95-99.9% of microbeads because of their small design . This leaves an average of 0-7 microbeads L^-1 being discharged. Considering that one treatment plant discharges 160 trillion liters of water per day, around 8 trillion microbeads are released into waterways every day. This averages out to around 8 trillion microbeads being released into waterways per day. This number doesn’t account for the sewage sludge that is reused as fertilizer after the waste water treatment that has been know to still contain these microbeads.

This is an issue at the household level because it has been estimated that around 808 trillion beads per househous are discharged in a single day whether due to cosmetic exfoliates, face wash, toothpaste, or other sources. Although many companies have committed to phasing out the use of microbead in their products a research found that there are at least 80 different facial scrub products that are still being sold with microbeads as a main component. This fact contributes to the total of 80 metric tons of microbead discharge per year just by the United Kingdom alone. This not only has a negative impact on the wildlife and food chain but also in terms of toxicity because plastics such as microbeads have been proven to absorb dangerous chemicals such as pesticides and polycyclic aromatic hydrocarbons.  

Clothing

Studies have shown that many synthetic fibers, such as polyester, nylon and acrylics, can be shed from clothing and persist in the environment. Each garment in a load of laundry can shed more than 1,900 fibers of microplastics, with fleeces releasing the highest percentage of fibers, over 170% more than other garments. Washing machine manufacturers have also reviewed research into whether washing machine filters can reduce the amount of microfiber fibers that need to be treated by water treatment facilities. These microfibers have been found to persist throughout the food chain from zoo plankton to larger animals such as whales. The primary fiber that persist throughout the textile industry is polyester which is a cheap cotton alternative that can be easily manufactured. However, these types of fibers contribute greatly to the persistence to microplastics in terrestrial, aerial, and marine ecosystems. The process of washing clothes causes garments to lose an average of over 100 fibers per liter of water. This have been linked with health effects possibly caused by the release of monomers, dispersive dyes, mordants, and plasticisers from manufacturing. The commonality of these types of fibers in the common households has been shown to represent 33% of all fibers in indoor environments.

Anthropomorphic fibers have been studied in both indoor and outdoor environments to study the concentration of these to see what the average human exposure to microfibers look like. The indoor concentration was 1.0 - 60.0 fibers/m^3 whereas the outdoor concentration was much lower at 0.3-1.5 fibers/m^3. The deposition rate indoors was 1586-11,130 fibers  per day/m^3 which accumulates to around 190-670 fibers/mg of dust. The largest concern with these concentrations is that it increases exposure to children and the elderly which can cause adverse health effects.

Manufacturing

The manufacture of plastic products uses granules and small resin pellets as their raw material. In the United States, production increased from 2.9 million pellets in 1960 to 21.7 million pellets in 1987. Through accidental spillage during land or sea transport, inappropriate use as packing materials, and direct outflow from processing plants, these raw materials can enter aquatic ecosystems. In an assessment of Swedish waters using an 80 µm mesh, KIMO Sweden found typical microplastic concentrations of 150–2,400 microplastics per m3; in a harbor adjacent to a plastic production facility, the concentration was 102,000 per m3.

Many industrial sites in which convenient raw plastics are frequently used are located near bodies of water. If spilled during production, these materials may leak into the surrounding environment, polluting waterways. “More recently, Operation Cleansweep (www.opcleansweep.org), a joint initiative of the American Chemistry Council and Society of the Plastics Industry, is aiming for industries to commit to zero pellet loss during their operations”. Overall, there is a significant lack of research conducted about specific industries and companies that contribute to microplastics pollution.

Fishing industry

Recreational and commercial fishing, marine vessels, and marine industries are all sources of plastic that can directly enter the marine environment, posing a risk to biota both as macroplastics, and as secondary microplastics following long-term degradation. Marine debris observed on beaches also arises from beaching of materials carried on in-shore and ocean currents. Fishing gear is a form of plastic debris with a marine source. Discarded or lost fishing gear, including plastic monofilament line and nylon netting, is typically neutrally buoyant and can therefore drift at variable depths within the oceans. Various countries have reported microplastics from the industry and other sources have been accumulating in different types of seafood. In Indonesia 55% of all fish species had evidence of manufactured debris similar to America which reported 67%. However, in Indonesia the majority of debris was plastic and in North America the majority was synthetic fibers found in clothing and some types of nets. The implication that fish are being contaminated with microplastic is that those plastics and chemicals will bioaccumulate in the food chain.

One study analyzed the plastic-derived chemical called polybrominated diphenyl ethers (PBDEs) in short-tailed shearwaters birds’ stomachs. They found that one fourth of the birds had higher-brominated congeners that are not naturally found in their pray. However, the PBDE got into the birds system through plastic that was found in the stomachs of the birds. Therefore it is not just the plastics that are being transferred through the food chain but the chemicals from the plastics as well.

Packaging and shipping

Shipping has significantly contributed to marine pollution. Some statistics indicate that in 1970, commercial shipping fleets around the world dumped over 23,000 tons of plastic waste into the marine environment. In 1988, an international agreement (MARPOL 73/78, Annex V) prohibited the dumping of waste from ships into the marine environment. However, shipping remains a dominant source of plastic pollution, having contributed around 6.5 million tons of plastic in the early 1990s. Research has shown that approximately 10% of the plastic found on the beaches in Hawaii are nurdles. In one incident on July 24th 2012, 150 tonnes of nurdles and other raw plastic material spilled from a shipping vessel off the coast near Hong Kong after a major storm. This waste from the Chinese company Sinopec were reported to have piled up in large quantities on beaches. While this is a large incident of spillage, researchers speculate that smaller accidents also occur and further contribute to marine microplastic pollution.

Plastic water bottles

In one study, 93% of the bottled water from 11 different brands showed microplastic contamination. Per liter, researcher’s found an average of 325 microplastic particles. Of the tested brands, Nestle Pure Life and Gerolsteiner bottles contained the most microplastic with 930 and 807 microplastic particles per liter (MPP/L), respectively. San Pellegrino products showed the least quantity of microplastic densities. Compared to water from taps, water from plastic bottles contained twice as much microplastic. Some of the contamination likely comes from the process of bottling and packaging the water.

Potential effects on the environment

Participants at the 2008 International Research Workshop on the Occurrence, Effects and Fate of Microplastic Marine Debris at the University of Washington at Tacoma concluded that microplastics are a problem in the marine environment, based on:
  • the documented occurrence of microplastics in the marine environment,
  • the long residence times of these particles (and, therefore, their likely buildup in the future), and
  • their demonstrated ingestion by marine organisms.
So far, research has mainly focused on larger plastic items. Widely-recognized problems facing marine life are entanglement, ingestion, suffocation and general debilitation often leading to death and/or strandings. This causes serious public concern. In contrast, microplastics are not as conspicuous, being less than 5 mm, and are usually invisible to the naked eye. Particles of this size are available to a much broader range of species, enter the food chain at the bottom, become embedded in animal tissue, and are then undetectable by unaided visual inspection.

Microplastics have been detected not just in marine but also in freshwater systems in three continents (Europe, North America and Asia). Samples collected across 29 Great Lakes tributaries from six states in the United States were found to contain plastic particles, 98% of which were microplastics ranging in size from 0.355mm to 4.75mm.

Biological integration into organisms

Microplastics can become embedded in animals' tissue through ingestion or respiration. Various annelid species, such as deposit-feeding lugworms (Arenicola marina), have been shown to have microplastics embedded in their gastrointestinal tracts. Many crustaceans, like the shore crab Carcinus maenas have been seen to integrate microplastics into both their respiratory and digestive tracts.

Additionally, bottom feeders, such as benthic sea cucumbers, who are non-selective scavengers that feed on debris on the ocean floor, ingest large amounts of sediment. It has been shown that four species of sea cucumber (Thyonella gemmate, Holothuria floridana, H. grisea and Cucumaria frondosa) ingested between 2- and 20-fold more PVC fragments and between 2- and 138-fold more nylon line fragments (as much as 517 fibers per organism) based on plastic-to-sand grain ratios from each sediment treatment. These results suggest that individuals may be selectively ingesting plastic particles. This contradicts the accepted indiscriminate feeding strategy of sea cucumbers, and may occur in all presumed non-selective feeders when presented with microplastics.

Not only fish and free-living organisms can ingest microplastics. Scleractinian corals, which are primary reef-builders, have been shown to ingest microplastics under laboratory conditions. While the effects of ingestion on these corals has not been studied, corals can easily become stressed and bleach. Microplastics have been shown to stick to the exterior of the corals after exposure in the laboratory. The adherence to the outside of corals can potentially be harmful, because corals cannot handle sediment or any particulate matter on their exterior and slough it off by secreting mucus, and they expend a large amount of energy in the process, increasing the chances of mortality.

Zooplankton ingest microplastics beads (1.7–30.6 μm) and excrete fecal matter contaminated with microplastics. Along with ingestion, the microplastics stick to the appendages and exoskeleton of the zooplankton. Zooplankton, among other marine organisms, consume microplastics because they emit similar infochemicals, notably dimethyl sulfide, just as phytoplankton do. Plastics such as high-density polyethylene (HDPE), low-density polyethylene (LDPE), and polypropylene (PP) produce dimethyl sulfide odors. These types of plastics are commonly found in plastic bags, bleach, food storage containers, and bottle caps.

It can take at least 14 days for microplastics to pass through an animal (as compared to a normal digestion periods of 2 days), but enmeshment of the particles in animals' gills can prevent elimination entirely. When microplastic-laden animals are consumed by predators, the microplastics are then incorporated into the bodies of higher trophic-level feeders. For example, scientists have reported plastic accumulation in the stomachs of lantern fish which are small filter feeders and are the main prey for commercial fish like tuna and swordfish. Microplastics also absorb chemical pollutants that can be transferred into the organism's tissues. Small animals are at risk of reduced food intake due to false satiation and resulting starvation or other physical harm from the microplastics.

A study done at the Argentinean coastline of the Rio de la Plata estuary, found the presence of microplastics in the guts of 11 species of coastal freshwater fish. These 11 species of fish represented four different feeding habits: detritivore, planktivore, omnivore and ichthyophagous.. This study is one of the few so far to show the ingestion of microplastics by freshwater organisms.

Humans

Fish is the primary source of protein for nearly one-fifth of the human population. The microplastics ingested by fish and crustaceans can be subsequently consumed by humans as the end of the food chain. In a study done at the State University of New York, 18 fish species were sampled and all species showed some level of plastics in their systems. Many additional researchers have found evidence that these fibers had become chemically associated with metals, polychlorinated biphenyls, and other toxic contaminants while in water. The microplastic-metal complex can then enter humans via consumption.

The primary concern with human health in regards to microplastics is more directed towards the different toxic and carcinogenic chemicals used to make these plastics and what they carry. It has also been thought that microplastics can act as a vector for pathogens as well as heavy metals. More specifically, pregnant women in particular are in danger of causing birth defects to male enfants such as anogenital distance, penile width, and testicular descent. This comes from phthalate exposure and DEHP metabolites that interfere with the development of the male reproductive tract.

BPA is a commonly well known substance that is an ingredient used to harden plastic that can also cause a wide range of disorders. Cardiovascular disease, type 2 diabetes, and abnormalities in liver enzymes are a few disorders that can arise from even small exposure to this chemical. Although these effects have  been more widely studied than other types of plastics it is still used in the production of many clothing (polyester).

Another dangerous ingredient is called Tetrabromobisphenol A (TBBPA)  which is a flame retardant in many different types of plastics such as those used in microcircuits. This chemical has been linked to disrupts thyroid hormones balance, pituitary function, and infertility. The endocrine system is affected by TBBPA by disrupting the natural T3 functions with the nuclear suspension in pituitary and thyroid.

Many people can expect to come in contact with various different types of microplastics on a daily basis in aforementioned sources (see sources). However, the average citizen is exposed to microplastics through their various types of food included in a normal diet. For instance: Salt. Researchers in China tested three types of table salt samples available in supermarkets and found the presence of microplastics in all of them. Sea salt has the highest amounts of microplastics compared to lake salt and rock/well salt. Sea salt and rock salt which are commonly used table salts in Spain have also been found to contain microplastics. The most common type of microplastic found in both these studies was polyethylene terephthalate (PET).
 
An example of bioaccumulation in the food chain that leads to human exposure was a study done into the tissue samples of mussels to approximate concentration of microplastics. After research scientists estimate that an average citizen might be exposed to 123 MP  articles/year/capita of microplastics through mussel consumption in the UK. Considering different diets it was also estimated that the microplastic exposure could go up to 4,620 particles/y/capita in countries with a higher shellfish consumption. However, it is also important to note that the humans on average are exposed to microplastics more in household dust than consuming mussels.

Buoyancy

Approximately half of the plastic material introduced to the marine environment is buoyant, but fouling by organisms can cause plastic debris to sink to the sea floor, where it may interfere with sediment-dwelling species and sedimental gas exchange processes. Several factors contribute to microplastic’s buoyancy, including the density of the plastic it is composed as well as the size and shape of the microplastic fragments themselves. Microplastics can also form a buoyant biofilm layer on the ocean’s surface. Buoyancy changes in relation to ingestion of microplastics have been clearly observed in autotrophs because the absorption can interfere with photosynthesis and subsequent gas levels. However, this issue is of more importance for larger plastic debris.

Plastic Type Abbreviation Density (g/cm3)
Polystyrene PS 1.04-1.08
Expanded Polystyrene EPS 0.01-0.04
Low-density Polyethylene LDPE 0.94-0.98
High-density Polyethylene HDPE 0.94-0.98
Polyamide PA 1.13-1.16
Polypropylene PP 0.85-0.92
Acrylonitrile-butadiene-styrene ABS 1.04-1.06
Polytetrafluoroethylene PTFE 2.10-2.30
Cellulose Acetate CA 1.30
Polycarbonate PC 1.20-1.22
Polymethyl methacrylate PMMA 1.16-1.20
Polyvinyl chloride PVC 1.38-1.41
Polyethylene terephthalate PET 1.38-1.41

Persistent organic pollutants

Plastic particles may highly concentrate and transport synthetic organic compounds (e.g. persistent organic pollutants, POPs), commonly present in the environment and ambient sea water, on their surface through adsorption. Microplastics can act as carriers for the transfer of POPs from the environment to organisms.

Additives added to plastics during manufacture may leach out upon ingestion, potentially causing serious harm to the organism. Endocrine disruption by plastic additives may affect the reproductive health of humans and wildlife alike.

Plastics, polymers derived from mineral oils, are virtually non-biodegradable. However, renewable natural polymers are now in development which can be used for the production of biodegradable materials similar to that of oil-based polymers.

Where microplastics can be found

Oceans

There is truly a staggering amount of microplastics in our world’s oceans. Though there is debate over exactly how much microplastic is in the world’s oceans a 2015 study estimated that there was between 93 and 236 thousand metric tons of microplastics in the world’s oceans. A study of the distribution of Eastern Pacific Ocean surface plastic debris helps to illustrate how the concentration of plastics in the ocean is on the rise. Though the study admits further research is needed to predict trends in ocean plastic concentration, the study, using data on surface plastic concentration (pieces of plastic km-2) from 1972-1985 n=60 and 2002-2012 n=457 within the same plastic accumulation zone, found the mean plastic concentration increase between the two sets of data, including a 10-fold increase of 18,160 to 189,800 pieces of plastic km-2. And though this study is based on data of surface plastic concentration, not specifically microplastic, additional research has found microplastics to account for 92% of plastic debris on the ocean’s surface, which adds context to the study.

Freshwater ecosystems

Though there have only been a few studies of microplastics in freshwater ecosystems, microplastics are being increasingly detected in the world’s aquatic environments. The first study on microplastics in freshwater ecosystems was published in 2011 that found an average of 37.8 fragments per square meter of Lake Huron sediment samples. Additionally, studies have found MP (microplastic) to be present in all of the Great Lakes with an average concentration of 43,000 MP particle km-2. Microplastics have also been detected in freshwater ecosystems outside of the United States. The highest concentration of microplastic ever discovered in a studied freshwater ecosystem was recorded in the Rhine river at 4000 MP particles kg-1.

Soil

A substantial portion of microplastics are expected to end up in the world’s soil, yet very little research has been conducted on microplastics in soil. There some speculation that fibrous secondary microplastics from washing machine could end up in soil through the failure of water treatment plants to completely filter out all of the microplastic fibers. Furthermore, geophagous soil fauna, such as earthworms, mites, and collembolan could contribute to the amount of secondary microplastic present in soil by converting consumed plastic debris into microplastic via digestive processes. But, further research is needed. There is concrete data linking one the use of organic waste materials to synthetic fibers being found in the soil; but most studies on plastics in soil merely reports its presence and do not quantify how much there is or where it came from.

In the air

Airborne microplastics have been detected in the atmosphere, as well as indoors and outdoors. A 2017 study found indoor airborne microfiber concentrations between 1.0-60.0 microfibers per cubic meter (33% of which were found to be microplastics).  Another study looked at microplastic in the street dust of Tehran Iran and found 2649 particles of microplastic within ten samples of street dust, with ranging samples concentrations from 83 particle – 605 particles (+/- 10) per 30.0 g of street dust. However, much like freshwater ecosystems and soil, more studies are needed to understand the full impact and significance of airborne microplastics.

Proposed solutions

Some researchers have proposed incinerating plastics to use as energy, which is known as energy recovery. As opposed to losing the energy from plastics into the atmosphere in landfills, this process turns some of the plastics back into energy that we can use. However, as opposed to recycling, this method does not diminish the amount of plastic material that is produced. Therefore, recycling plastics is a more beneficial solution.

Increasing education through recycling campaigns is another proposed solution for microplastic contamination. While this would be a smaller scale solution, education has been shown to reduce littering, especially in urban environments where there are often large concentrations of plastic waste. If recycling efforts are increased, a cycle of plastic use and reuse would be created to decrease our waste output and production of new raw materials. In order to achieve this, states would need to employ stronger infrastructure and investment around recycling. Some advocate for improving recycling technology to be able to recycle smaller plastics to reduce the need for production of new plastics.

Biodegradation is another possible solution to large amounts of microplastic waste. In this process, microorganisms consume and decompose synthetic polymers with using degrading enzymes. These plastics can then be used in the form of energy and as a source of carbon once broken down. The microbes could potentially be used to treat sewage wastewater, which would decrease the amount of microplastics that pass through into the surrounding environments.

Policy and legislation

With increasing awareness of the detrimental effects of microplastics on the environment, groups are now advocating for the removal and ban of microplastics from various products. One such campaign is "Beat the Microbead", which focuses on removing plastics from personal care products. The Adventurers and Scientists for Conservation run the Global Microplastics Initiative, a project to collect water samples to provide scientists with better data about microplastic dispersion in the environment. UNESCO has sponsored research and global assessment programs due to the trans-boundary issue that microplastic pollution constitutes. These environmental groups will keep pressuring companies to remove plastics from their products in order to maintain healthy ecosystems.
United States
In the US, some states have taken action to mitigate the negative environmental effects of microplastics. Illinois was the first US state to ban cosmetics containing microplastics. On the national level, the Microbead-Free Waters Act 2015 was enacted after being signed by President Barack Obama on December 28, 2015. The law bans “rinse-off” cosmetic products that perform an exfoliating function, such as toothpaste or face wash. It does not apply to other products such as household cleaners. The act took effect on July 1, 2017 with respect to manufacturing, and July 1, 2018 with respect to introduction or delivery for introduction into interstate commerce.

On July 25th, 2018, a microplastic reduction amendment was passed by the U.S. House of Representatives. The legislation, as part of the Save our Seas Act designed to combat marine pollution, aims to support the National Oceanic Atmospheric Administration's Marine Debris Program. In particular, the amendment is geared towards promoting NOAA’s Great Lakes Land-Based Marine Debris Action Plan to increase testing, cleanup, and education around plastic pollution in the Great Lakes.

Japan

On June 15th, 2018, the Japanese government passed a bill with the goal of reducing microplastic production and pollution, especially in aquatic environments. Proposed by the Environment Ministry and passed unanimously by the Upper House, this is also the first bill to pass in Japan that is specifically targeted at reducing microplastic production, specifically in the personal care industry with products such as face wash and toothpaste. This law is revised from previous legislation, which focused on removing plastic marine debris. It also focuses on increasing education and public awareness surrounding recycling and plastic waste. The Environment Ministry has also proposed a number of recommendations for methods to monitor microplastic quantities in the ocean (Recommendations, 2018). However, the legislation does not specify any penalties for those who continue manufacturing products with microplastics.

United Kingdom

The “Environmental Protection (Microbeads) (England) Regulations 2017” law from passed by the UK government bans the production of any rinse-off personal care products (such as exfoliants) containing microbeads. This particular law denotes specific penalties when it is not obeyed. Those who do not comply are required to pay a fine. In the event that a fine is not paid, product manufacturers may receive a stop notice, which prevents the manufacturer from continuing production until they have followed regulation preventing the use of microbeads. Criminal proceedings may occur if the stop notice is ignored.

Action for creating awareness

On April 11, 2013 in order to create awareness, artist Maria Cristina Finucci founded The Garbage patch state under the patronage of UNESCO and the Italian Ministry of the Environment.

The U.S. Environmental Protection Agency (EPA) launched its "Trash-Free Waters" initiative in 2013 to prevent single-use plastic wastes from ending up in waterways and ultimately the ocean. EPA collaborates with the United Nations Environment Programme–Caribbean Environment Programme (UNEP-CEP) and the Peace Corps to reduce and also remove trash in the Caribbean Sea. EPA has also funded various projects in the San Francisco Bay Area including one that is aimed at reducing the use of single-use plastics such as disposable cups, spoons and straws, from three University of California campuses.

Additionally, there are many organizations advocating action to counter microplastics and that are spreading microplastic awareness. One such group is the Florida Microplastic Awareness Project (FMAP), a group of volunteers who search for microplastics in costal water samples.

Cleanup

Computer modelling done by The Ocean Cleanup, a Netherlands foundation, has suggested that collecting devices placed nearer to the coasts could remove about 31% of the microplastics in the area. In addition, some bacteria have evolved to eat plastic, and some bacteria species have been genetically modified to eat (certain types of) plastics.

On September 9, 2018, The Ocean Cleanup launched the world’s first ocean cleanup system, 001 aka “Wilson” and is being deployed to the Great Pacific Garbage Patch. System 001 is 600 meters long that acts as a U-shaped skiff that uses natural oceanic currents to concentrate plastic and other debris on the ocean’s surface into a confined area for extraction by vessels.

Cooperative

From Wikipedia, the free encyclopedia ...