Search This Blog

Sunday, December 9, 2018

Moon (updated)

From Wikipedia, the free encyclopedia

Moon Moon symbol
FullMoon2010.jpg
Designations
Adjectives
Orbital characteristics
Epoch J2000
Perigee362600 km
(356400370400 km)
Apogee405400 km
(404000406700 km)
384399 km  (0.00257 AU)
Eccentricity0.0549
27.321661 d
(27 d 7 h 43 min 11.5 s)
29.530589 d
(29 d 12 h 44 min 2.9 s)
Average orbital speed
1.022 km/s
Inclination5.145° to the ecliptic
Regressing by one revolution in 18.61 years
Progressing by one revolution in 8.85 years
Satellite ofEarth
Physical characteristics
Mean radius
1737.1 km  (0.273 of Earth's)
Equatorial radius
1738.1 km  (0.273 of Earth's)
Polar radius
1736.0 km  (0.273 of Earth's)
Flattening0.0012
Circumference10921 km  (equatorial)
3.793×107 km2  (0.074 of Earth's)
Volume2.1958×1010 km3  (0.020 of Earth's)
Mass7.342×1022 kg  (0.012300 of Earth's)
Mean density
3.344 g/cm3
0.606 × Earth
1.62 m/s2  (0.1654 g)
0.3929±0.0009
2.38 km/s
Sidereal rotation period
27.321661 d  (synchronous)
Equatorial rotation velocity
4.627 m/s
North pole right ascension
  • 17h 47m 26s
  • 266.86°
North pole declination
65.64°
Albedo0.136
Surface temp. min mean max
Equator 100 K 220 K 390 K
85°N 
150 K 230 K
  • −2.5 to −12.9
  • −12.74  (mean full moon)
29.3 to 34.1 arcminutes
Atmosphere
Surface pressure
  • 10−7 Pa (1 picobar)  (day)
  • 10−10 Pa (1 femtobar)   (night)
Composition by volume

The Moon is an astronomical body that orbits planet Earth and is Earth's only permanent natural satellite. It is the fifth-largest natural satellite in the Solar System, and the largest among planetary satellites relative to the size of the planet that it orbits (its primary). The Moon is after Jupiter's satellite Io the second-densest satellite in the Solar System among those whose densities are known.

The Moon is thought to have formed about 4.51 billion years ago, not long after Earth. The most widely accepted explanation is that the Moon formed from the debris left over after a giant impact between Earth and a Mars-sized body called Theia.

The Moon is in synchronous rotation with Earth, and thus always shows the same side to Earth, the near side. The near side is marked by dark volcanic maria that fill the spaces between the bright ancient crustal highlands and the prominent impact craters. After the Sun, the Moon is the second-brightest regularly visible celestial object in Earth's sky. Its surface is actually dark, although compared to the night sky it appears very bright, with a reflectance just slightly higher than that of worn asphalt. Its gravitational influence produces the ocean tides, body tides, and the slight lengthening of the day.

The Moon's average orbital distance is 384,402 km (238,856 mi), or 1.28 light-seconds. This is about thirty times the diameter of Earth. The Moon's apparent size in the sky is almost the same as that of the Sun, since the star is about 400 times the lunar distance and diameter. Therefore, the Moon covers the Sun nearly precisely during a total solar eclipse. This matching of apparent visual size will not continue in the far future because the Moon's distance from Earth is gradually increasing.

The Moon was first reached in September 1959 by the Soviet Union's Luna 2, an unmanned spacecraft. The United States' NASA Apollo program achieved the only manned lunar missions to date, beginning with the first manned orbital mission by Apollo 8 in 1968, and six manned landings between 1969 and 1972, with the first being Apollo 11. These missions returned lunar rocks which have been used to develop a geological understanding of the Moon's origin, internal structure, and the Moon's later history. Since the Apollo 17 mission in 1972, the Moon has been visited only by unmanned spacecraft.

Both the Moon's natural prominence in the earthly sky and its regular cycle of phases as seen from Earth have provided cultural references and influences for human societies and cultures since time immemorial. Such cultural influences can be found in language, lunar calendar systems, art, and mythology.

Name and etymology

The Moon, tinted reddish, during a lunar eclipse

The usual English proper name for Earth's natural satellite is "the Moon", which in nonscientific texts is usually not capitalized. The noun moon is derived from Old English mōna, which (like all Germanic language cognates) stems from Proto-Germanic *mēnô, which comes from Proto-Indo-European *mḗh₁n̥s "moon", "month", which comes from the Proto-Indo-European root *meh₁- "to measure", the month being the ancient unit of time measured by the Moon. Occasionally, the name "Luna" is used. In literature, especially science fiction, "Luna" is used to distinguish it from other moons, while in poetry, the name has been used to denote personification of our moon.

The modern English adjective pertaining to the Moon is lunar, derived from the Latin word for the Moon, luna. The adjective selenic (usually only used to refer to the chemical element selenium) is so rarely used to refer to the Moon that this meaning is not recorded in most major dictionaries. It is derived from the Ancient Greek word for the Moon, σελήνη (selḗnē), from which is however also derived the prefix "seleno-", as in selenography, the study of the physical features of the Moon, as well as the element name selenium. Both the Greek goddess Selene and the Roman goddess Diana were alternatively called Cynthia. The names Luna, Cynthia, and Selene are reflected in terminology for lunar orbits in words such as apolune, pericynthion, and selenocentric. The name Diana comes from the Proto-Indo-European *diw-yo, "heavenly", which comes from the PIE root *dyeu- "to shine," which in many derivatives means "sky, heaven, and god" and is also the origin of Latin dies, "day".

Formation

The Moon formed 4.51 billion years ago, some 60 million years after the origin of the Solar System. Several forming mechanisms have been proposed, including the fission of the Moon from Earth's crust through centrifugal force (which would require too great an initial spin of Earth), the gravitational capture of a pre-formed Moon (which would require an unfeasibly extended atmosphere of Earth to dissipate the energy of the passing Moon), and the co-formation of Earth and the Moon together in the primordial accretion disk (which does not explain the depletion of metals in the Moon). These hypotheses also cannot account for the high angular momentum of the Earth–Moon system.

The evolution of the Moon and a tour of the Moon

The prevailing hypothesis is that the Earth–Moon system formed after an impact of a Mars-sized body (named Theia) with the proto-Earth (giant impact). The impact blasted material into Earth's orbit and then the material accreted and formed the Moon.

The Moon's far side has a crust that is 30 mi (48 km) thicker than that of the near side. This is thought to be because the Moon fused from two different bodies. 

This hypothesis, although not perfect, perhaps best explains the evidence. Eighteen months prior to an October 1984 conference on lunar origins, Bill Hartmann, Roger Phillips, and Jeff Taylor challenged fellow lunar scientists: "You have eighteen months. Go back to your Apollo data, go back to your computer, do whatever you have to, but make up your mind. Don't come to our conference unless you have something to say about the Moon's birth." At the 1984 conference at Kona, Hawaii, the giant impact hypothesis emerged as the most popular.
Before the conference, there were partisans of the three "traditional" theories, plus a few people who were starting to take the giant impact seriously, and there was a huge apathetic middle who didn’t think the debate would ever be resolved. Afterward, there were essentially only two groups: the giant impact camp and the agnostics.
Giant impacts are thought to have been common in the early Solar System. Computer simulations of giant impacts have produced results that are consistent with the mass of the lunar core and the angular momentum of the Earth–Moon system. These simulations also show that most of the Moon derived from the impactor, rather than the proto-Earth. However, more recent simulations suggest a larger fraction of the Moon derived from the proto-Earth. Other bodies of the inner Solar System such as Mars and Vesta have, according to meteorites from them, very different oxygen and tungsten isotopic compositions compared to Earth. However, Earth and the Moon have nearly identical isotopic compositions. The isotopic equalization of the Earth-Moon system might be explained by the post-impact mixing of the vaporized material that formed the two, although this is debated.

The impact released a lot of energy and then the released material re-accreted into the Earth–Moon system. This would have melted the outer shell of Earth, and thus formed a magma ocean. Similarly, the newly formed Moon would also have been affected and had its own lunar magma ocean; its depth is estimated from about 500 km (300 miles) to 1,737 km (1,079 miles).

While the giant impact hypothesis might explain many lines of evidence, some questions are still unresolved, most of which involve the Moon's composition.

Oceanus Procellarum ("Ocean of Storms")
Ancient rift valleys – rectangular structure (visible – topography – GRAIL gravity gradients)
Ancient rift valleys – context
Ancient rift valleys – closeup (artist's concept)

In 2001, a team at the Carnegie Institute of Washington reported the most precise measurement of the isotopic signatures of lunar rocks. To their surprise, the rocks from the Apollo program had the same isotopic signature as rocks from Earth, however they differed from almost all other bodies in the Solar System. Indeed, this observation was unexpected, because most of the material that formed the Moon was thought to come from Theia and it was announced in 2007 that there was less than a 1% chance that Theia and Earth had identical isotopic signatures. Other Apollo lunar samples had in 2012 the same titanium isotopes composition as Earth, which conflicts with what is expected if the Moon formed far from Earth or is derived from Theia. These discrepancies may be explained by variations of the giant impact hypothesis.

Physical characteristics

Internal structure

Structure of the Moon
Chemical composition of the lunar surface regolith (derived from crustal rocks)
Compound Formula Composition (wt %)
Maria Highlands
silica SiO2 45.4% 45.5%
alumina Al2O3 14.9% 24.0%
lime CaO 11.8% 15.9%
iron(II) oxide FeO 14.1% 5.9%
magnesia MgO 9.2% 7.5%
titanium dioxide TiO2 3.9% 0.6%
sodium oxide Na2O 0.6% 0.6%
Total 99.9% 100.0%

The Moon is a differentiated body: it has a geochemically distinct crust, mantle, and core. The Moon has a solid iron-rich inner core with a radius possibly as small as 240 km (150 mi) and a fluid outer core primarily made of liquid iron with a radius of roughly 300 km (190 mi). Around the core is a partially molten boundary layer with a radius of about 500 km (310 mi). This structure is thought to have developed through the fractional crystallization of a global magma ocean shortly after the Moon's formation 4.5 billion years ago. Crystallization of this magma ocean would have created a mafic mantle from the precipitation and sinking of the minerals olivine, clinopyroxene, and orthopyroxene; after about three-quarters of the magma ocean had crystallised, lower-density plagioclase minerals could form and float into a crust atop. The final liquids to crystallise would have been initially sandwiched between the crust and mantle, with a high abundance of incompatible and heat-producing elements. Consistent with this perspective, geochemical mapping made from orbit suggests the crust of mostly anorthosite. The Moon rock samples of the flood lavas that erupted onto the surface from partial melting in the mantle confirm the mafic mantle composition, which is more iron-rich than that of Earth. The crust is on average about 50 km (31 mi) thick.

The Moon is the second-densest satellite in the Solar System, after Io. However, the inner core of the Moon is small, with a radius of about 350 km (220 mi) or less, around 20% of the radius of the Moon. Its composition is not well defined, but is probably metallic iron alloyed with a small amount of sulfur and nickel; analyses of the Moon's time-variable rotation suggest that it is at least partly molten.

Surface geology

Topography of the Moon measured from the Lunar Orbiter Laser Altimeter on the mission Lunar Reconnaissance Orbiter, referenced to a sphere of radius 1737.4 km
Topography of the Moon
STL 3D model of the Moon with 10× elevation exaggeration rendered with data from the Lunar Orbiter Laser Altimeter of the Lunar Reconnaissance Orbiter

The topography of the Moon has been measured with laser altimetry and stereo image analysis. Its most visible topographic feature is the giant far-side South Pole–Aitken basin, some 2,240 km (1,390 mi) in diameter, the largest crater on the Moon and the second-largest confirmed impact crater in the Solar System. At 13 km (8.1 mi) deep, its floor is the lowest point on the surface of the Moon. The highest elevations of the Moon's surface are located directly to the northeast, and it has been suggested might have been thickened by the oblique formation impact of the South Pole–Aitken basin. Other large impact basins, such as Imbrium, Serenitatis, Crisium, Smythii, and Orientale, also possess regionally low elevations and elevated rims. The far side of the lunar surface is on average about 1.9 km (1.2 mi) higher than that of the near side.

The discovery of fault scarp cliffs by the Lunar Reconnaissance Orbiter suggest that the Moon has shrunk within the past billion years, by about 90 metres (300 ft). Similar shrinkage features exist on Mercury.

Volcanic features

Lunar nearside with major maria and craters labeled

The dark and relatively featureless lunar plains, clearly seen with the naked eye, are called maria (Latin for "seas"; singular mare), as they were once believed to be filled with water; they are now known to be vast solidified pools of ancient basaltic lava. Although similar to terrestrial basalts, lunar basalts have more iron and no minerals altered by water. The majority of these lavas erupted or flowed into the depressions associated with impact basins. Several geologic provinces containing shield volcanoes and volcanic domes are found within the near side "maria".


Almost all maria are on the near side of the Moon, and cover 31% of the surface of the near side, compared with 2% of the far side. This is thought to be due to a concentration of heat-producing elements under the crust on the near side, seen on geochemical maps obtained by Lunar Prospector's gamma-ray spectrometer, which would have caused the underlying mantle to heat up, partially melt, rise to the surface and erupt. Most of the Moon's mare basalts erupted during the Imbrian period, 3.0–3.5 billion years ago, although some radiometrically dated samples are as old as 4.2 billion years. Until recently, the youngest eruptions, dated by crater counting, appeared to have been only 1.2 billion years ago. In 2006, a study of Ina, a tiny depression in Lacus Felicitatis, found jagged, relatively dust-free features that, because of the lack of erosion by infalling debris, appeared to be only 2 million years old. Moonquakes and releases of gas also indicate some continued lunar activity. In 2014 NASA announced "widespread evidence of young lunar volcanism" at 70 irregular mare patches identified by the Lunar Reconnaissance Orbiter, some less than 50 million years old. This raises the possibility of a much warmer lunar mantle than previously believed, at least on the near side where the deep crust is substantially warmer because of the greater concentration of radioactive elements. Just prior to this, evidence has been presented for 2–10 million years younger basaltic volcanism inside Lowell crater, Orientale basin, located in the transition zone between the near and far sides of the Moon. An initially hotter mantle and/or local enrichment of heat-producing elements in the mantle could be responsible for prolonged activities also on the far side in the Orientale basin.

The lighter-coloured regions of the Moon are called terrae, or more commonly highlands, because they are higher than most maria. They have been radiometrically dated to having formed 4.4 billion years ago, and may represent plagioclase cumulates of the lunar magma ocean. In contrast to Earth, no major lunar mountains are believed to have formed as a result of tectonic events.

The concentration of maria on the Near Side likely reflects the substantially thicker crust of the highlands of the Far Side, which may have formed in a slow-velocity impact of a second moon of Earth a few tens of millions of years after their formation.

Impact craters

A grey, many-ridged surface from high above. The largest feature is a circular ringed structure with high walled sides and a lower central peak: the entire surface out to the horizon is filled with similar structures that are smaller and overlapping.
Lunar crater Daedalus on the Moon's far side

The other major geologic process that has affected the Moon's surface is impact cratering, with craters formed when asteroids and comets collide with the lunar surface. There are estimated to be roughly 300,000 craters wider than 1 km (0.6 mi) on the Moon's near side alone. The lunar geologic timescale is based on the most prominent impact events, including Nectaris, Imbrium, and Orientale, structures characterized by multiple rings of uplifted material, between hundreds and thousands of kilometres in diameter and associated with a broad apron of ejecta deposits that form a regional stratigraphic horizon. The lack of an atmosphere, weather and recent geological processes mean that many of these craters are well-preserved. Although only a few multi-ring basins have been definitively dated, they are useful for assigning relative ages. Because impact craters accumulate at a nearly constant rate, counting the number of craters per unit area can be used to estimate the age of the surface. The radiometric ages of impact-melted rocks collected during the Apollo missions cluster between 3.8 and 4.1 billion years old: this has been used to propose a Late Heavy Bombardment of impacts.

Blanketed on top of the Moon's crust is a highly comminuted (broken into ever smaller particles) and impact gardened surface layer called regolith, formed by impact processes. The finer regolith, the lunar soil of silicon dioxide glass, has a texture resembling snow and a scent resembling spent gunpowder. The regolith of older surfaces is generally thicker than for younger surfaces: it varies in thickness from 10–20 km (6.2–12.4 mi) in the highlands and 3–5 km (1.9–3.1 mi) in the maria. Beneath the finely comminuted regolith layer is the megaregolith, a layer of highly fractured bedrock many kilometres thick.

Comparison of high-resolution images obtained by the Lunar Reconnaissance Orbiter has shown a contemporary crater-production rate significantly higher than previously estimated. A secondary cratering process caused by distal ejecta is thought to churn the top two centimetres of regolith a hundred times more quickly than previous models suggested—on a timescale of 81,000 years.

Lunar swirls at Reiner Gamma

Lunar swirls

Lunar swirls are enigmatic features found across the Moon's surface. They are characterized by a high albedo, appear optically immature (i.e. the optical characteristics of a relatively young regolith), and have often a sinuous shape. Their shape is often accentuated by low albedo regions that wind between the bright swirls.

Presence of water

Liquid water cannot persist on the lunar surface. When exposed to solar radiation, water quickly decomposes through a process known as photodissociation and is lost to space. However, since the 1960s, scientists have hypothesized that water ice may be deposited by impacting comets or possibly produced by the reaction of oxygen-rich lunar rocks, and hydrogen from solar wind, leaving traces of water which could possibly persist in cold, permanently shadowed craters at either pole on the Moon. Computer simulations suggest that up to 14,000 km2 (5,400 sq mi) of the surface may be in permanent shadow. The presence of usable quantities of water on the Moon is an important factor in rendering lunar habitation as a cost-effective plan; the alternative of transporting water from Earth would be prohibitively expensive.

In years since, signatures of water have been found to exist on the lunar surface. In 1994, the bistatic radar experiment located on the Clementine spacecraft, indicated the existence of small, frozen pockets of water close to the surface. However, later radar observations by Arecibo, suggest these findings may rather be rocks ejected from young impact craters. In 1998, the neutron spectrometer on the Lunar Prospector spacecraft showed that high concentrations of hydrogen are present in the first meter of depth in the regolith near the polar regions. Volcanic lava beads, brought back to Earth aboard Apollo 15, showed small amounts of water in their interior.

The 2008 Chandrayaan-1 spacecraft has since confirmed the existence of surface water ice, using the on-board Moon Mineralogy Mapper. The spectrometer observed absorption lines common to hydroxyl, in reflected sunlight, providing evidence of large quantities of water ice, on the lunar surface. The spacecraft showed that concentrations may possibly be as high as 1,000 ppm. Using the mapper's reflectance spectra, indirect lighting of areas in shadow confirmed water ice within 20° latitude of both poles in 2018. In 2009, LCROSS sent a 2,300 kg (5,100 lb) impactor into a permanently shadowed polar crater, and detected at least 100 kg (220 lb) of water in a plume of ejected material. Another examination of the LCROSS data showed the amount of detected water to be closer to 155 ± 12 kg (342 ± 26 lb).

In May 2011, 615–1410 ppm water in melt inclusions in lunar sample 74220 was reported, the famous high-titanium "orange glass soil" of volcanic origin collected during the Apollo 17 mission in 1972. The inclusions were formed during explosive eruptions on the Moon approximately 3.7 billion years ago. This concentration is comparable with that of magma in Earth's upper mantle. Although of considerable selenological interest, this announcement affords little comfort to would-be lunar colonists—the sample originated many kilometers below the surface, and the inclusions are so difficult to access that it took 39 years to find them with a state-of-the-art ion microprobe instrument.
Analysis of the findings of the Moon Mineralogy Mapper (M3) revealed in August 2018 for the first time "definitive evidence" for water-ice on the lunar surface. The data revealed the distinct reflective signatures of water-ice, as opposed to dust and other reflective substances. The ice deposits were found on the North and South poles, although it is more abundant in the South, where water is trapped in permanently shadowed craters and cravices, allowing it to persist as ice on the surface since they are shielded from the sun.

Gravitational field

GRAIL's gravity map of the Moon

The gravitational field of the Moon has been measured through tracking the Doppler shift of radio signals emitted by orbiting spacecraft. The main lunar gravity features are mascons, large positive gravitational anomalies associated with some of the giant impact basins, partly caused by the dense mare basaltic lava flows that fill those basins. The anomalies greatly influence the orbit of spacecraft about the Moon. There are some puzzles: lava flows by themselves cannot explain all of the gravitational signature, and some mascons exist that are not linked to mare volcanism.

Magnetic field

The Moon has an external magnetic field of about 1–100 nanoteslas, less than one-hundredth that of Earth. The Moon does not currently have a global dipolar magnetic field and only has crustal magnetization, probably acquired early in its history when a dynamo was still operating. Alternatively, some of the remnant magnetization may be from transient magnetic fields generated during large impacts through the expansion of an impact-generated plasma cloud in an ambient magnetic field. This is supported by the apparent location of the largest crustal magnetizations near the antipodes of the giant impact basins.

Atmosphere

Sketch by the Apollo 17 astronauts. The lunar atmosphere was later studied by LADEE.

The Moon has an atmosphere so tenuous as to be nearly vacuum, with a total mass of less than 10 metric tons (9.8 long tons; 11 short tons). The surface pressure of this small mass is around 3 × 10−15 atm (0.3 nPa); it varies with the lunar day. Its sources include outgassing and sputtering, a product of the bombardment of lunar soil by solar wind ions. Elements that have been detected include sodium and potassium, produced by sputtering (also found in the atmospheres of Mercury and Io); helium-4 and neon from the solar wind; and argon-40, radon-222, and polonium-210, outgassed after their creation by radioactive decay within the crust and mantle. The absence of such neutral species (atoms or molecules) as oxygen, nitrogen, carbon, hydrogen and magnesium, which are present in the regolith, is not understood. Water vapour has been detected by Chandrayaan-1 and found to vary with latitude, with a maximum at ~60–70 degrees; it is possibly generated from the sublimation of water ice in the regolith. These gases either return into the regolith because of the Moon's gravity or are lost to space, either through solar radiation pressure or, if they are ionized, by being swept away by the solar wind's magnetic field.

Dust

A permanent asymmetric moon dust cloud exists around the Moon, created by small particles from comets. Estimates are 5 tons of comet particles strike the Moon's surface each 24 hours. The particles strike the Moon's surface ejecting moon dust above the Moon. The dust stays above the Moon approximately 10 minutes, taking 5 minutes to rise, and 5 minutes to fall. On average, 120 kilograms of dust are present above the Moon, rising to 100 kilometers above the surface. The dust measurements were made by LADEE's Lunar Dust EXperiment (LDEX), between 20 and 100 kilometers above the surface, during a six-month period. LDEX detected an average of one 0.3 micrometer moon dust particle each minute. Dust particle counts peaked during the Geminid, Quadrantid, Northern Taurid, and Omicron Centaurid meteor showers, when the Earth, and Moon, pass through comet debris. The cloud is asymmetric, more dense near the boundary between the Moon's dayside and nightside.

Past thicker atmosphere

In October 2017, NASA scientists at the Marshall Space Flight Center and the Lunar and Planetary Institute in Houston announced their finding, based on studies of Moon magma samples retrieved by the Apollo missions, that the Moon had once possessed a relatively thick atmosphere for a period of 70 million years between 3 and 4 billion years ago. This atmosphere, sourced from gases ejected from lunar volcanic eruptions, was twice the thickness of that of present-day Mars. The ancient lunar atmosphere was eventually stripped away by solar winds and dissipated into space.

Seasons

The Moon's axial tilt with respect to the ecliptic is only 1.5424°, much less than the 23.44° of Earth. Because of this, the Moon's solar illumination varies much less with season, and topographical details play a crucial role in seasonal effects. From images taken by Clementine in 1994, it appears that four mountainous regions on the rim of Peary Crater at the Moon's north pole may remain illuminated for the entire lunar day, creating peaks of eternal light. No such regions exist at the south pole. Similarly, there are places that remain in permanent shadow at the bottoms of many polar craters, and these "craters of eternal darkness" are extremely cold: Lunar Reconnaissance Orbiter measured the lowest summer temperatures in craters at the southern pole at 35 K (−238 °C; −397 °F) and just 26 K (−247 °C; −413 °F) close to the winter solstice in north polar Hermite Crater. This is the coldest temperature in the Solar System ever measured by a spacecraft, colder even than the surface of Pluto. Average temperatures of the Moon's surface are reported, but temperatures of different areas will vary greatly depending upon whether they are in sunlight or shadow.

Earth-Moon system

Orbit

Animation of Moon's orbit around Earth from 2018 to 2027
  Moon ·   Earth


Earth has a pronounced axial tilt; the Moon's orbit is not perpendicular to Earth's axis, but lies close to Earth's orbital plane.
Earth–Moon system (schematic)
DSCOVR satellite sees the Moon passing in front of Earth

The Moon makes a complete orbit around Earth with respect to the fixed stars about once every 27.3 days (its sidereal period). However, because Earth is moving in its orbit around the Sun at the same time, it takes slightly longer for the Moon to show the same phase to Earth, which is about 29.5 days (its synodic period). Unlike most satellites of other planets, the Moon orbits closer to the ecliptic plane than to the planet's equatorial plane. The Moon's orbit is subtly perturbed by the Sun and Earth in many small, complex and interacting ways. For example, the plane of the Moon's orbit gradually rotates once every 18.61 years, which affects other aspects of lunar motion. These follow-on effects are mathematically described by Cassini's laws.

Relative size

The Moon is exceptionally large relative to Earth: Its diameter is more than a quarter and its mass is 1/81 of Earth's. It is the largest moon in the Solar System relative to the size of its planet, though Charon is larger relative to the dwarf planet Pluto, at 1/9 Pluto's mass. The Earth and the Moon's barycentre, their common centre of mass, is located 1,700 km (1,100 mi) (about a quarter of Earth's radius) beneath Earth's surface. 

The Earth revolves around the Earth-Moon barycentre once a sidereal month, with 1/81 the speed of the Moon, or about 12.5 metres (41 ft) per second. This motion is superimposed on the much larger revolution of the Earth around the Sun at a speed of about 30 kilometres (19 mi) per second.

Appearance from Earth

Moon setting in western sky over the High Desert in California

The Moon is in synchronous rotation as it orbits Earth; it rotates about its axis in about the same time it takes to orbit Earth. This results in it always keeping nearly the same face turned towards Earth. However, because of the effect of libration, about 59% of the Moon's surface can actually be seen from Earth. The side of the Moon that faces Earth is called the near side, and the opposite the far side. The far side is often inaccurately called the "dark side", but it is in fact illuminated as often as the near side: once every 29.5 Earth days. During new moon, the near side is dark.

The Moon had once rotated at a faster rate, but early in its history, its rotation slowed and became tidally locked in this orientation as a result of frictional effects associated with tidal deformations caused by Earth. With time, the energy of rotation of the Moon on its axis was dissipated as heat, until there was no rotation of the Moon relative to Earth. In 2016, planetary scientists, using data collected on the much earlier NASA Lunar Prospector mission, found two hydrogen-rich areas on opposite sides of the Moon, probably in the form of water ice. It is speculated that these patches were the poles of the Moon billions of years ago, before it was tidally locked to Earth.

The Moon is prominently featured in Vincent van Gogh's 1889 painting, The Starry Night

The Moon has an exceptionally low albedo, giving it a reflectance that is slightly brighter than that of worn asphalt. Despite this, it is the brightest object in the sky after the Sun. This is due partly to the brightness enhancement of the opposition surge; the Moon at quarter phase is only one-tenth as bright, rather than half as bright, as at full moon. Additionally, color constancy in the visual system recalibrates the relations between the colors of an object and its surroundings, and because the surrounding sky is comparatively dark, the sunlit Moon is perceived as a bright object. The edges of the full moon seem as bright as the centre, without limb darkening, because of the reflective properties of lunar soil, which retroreflects light more towards the Sun than in other directions. The Moon does appear larger when close to the horizon, but this is a purely psychological effect, known as the moon illusion, first described in the 7th century BC. The full Moon's angular diameter is about 0.52° (on average) in the sky, roughly the same apparent size as the Sun. 

The Moon's highest altitude at culmination varies by its phase and time of year. The full moon is highest in the sky during winter (for each hemisphere). The 18.61-year nodal cycle has an influence on lunar standstill. When the ascending node of the lunar orbit is in the vernal equinox, the lunar declination can reach up to plus or minus 28° each month. This means the Moon can pass overhead if viewed from latitudes up to 28° north or south (of the Equator), instead of only 18°. The orientation of the Moon's crescent also depends on the latitude of the viewing location; an observer in the tropics can see a smile-shaped crescent Moon. The Moon is visible for two weeks every 27.3 days at the North and South Poles. Zooplankton in the Arctic use moonlight when the Sun is below the horizon for months on end.

14 November 2016 supermoon was 356,511 kilometres (221,526 mi) away from the center of Earth, the closest occurrence since 26 January 1948. It will not be closer until 25 November 2034.

The distance between the Moon and Earth varies from around 356,400 km (221,500 mi) to 406,700 km (252,700 mi) at perigee (closest) and apogee (farthest), respectively. On 14 November 2016, it was closer to Earth when at full phase than it has been since 1948, 14% closer than its farthest position in apogee. Reported as a "supermoon", this closest point coincided within an hour of a full moon, and it was 30% more luminous than when at its greatest distance because its angular diameter is 14% greater and . At lower levels, the human perception of reduced brightness as a percentage is provided by the following formula:


When the actual reduction is 1.00 / 1.30, or about 0.770, the perceived reduction is about 0.877, or 1.00 / 1.14. This gives a maximum perceived increase of 14% between apogee and perigee moons of the same phase.

There has been historical controversy over whether features on the Moon's surface change over time. Today, many of these claims are thought to be illusory, resulting from observation under different lighting conditions, poor astronomical seeing, or inadequate drawings. However, outgassing does occasionally occur and could be responsible for a minor percentage of the reported lunar transient phenomena. Recently, it has been suggested that a roughly 3 km (1.9 mi) diameter region of the lunar surface was modified by a gas release event about a million years ago.

The Moon's appearance, like the Sun's, can be affected by Earth's atmosphere. Common optical effects are the 22° halo ring, formed when the Moon's light is refracted through the ice crystals of high cirrostratus clouds, and smaller coronal rings when the Moon is seen through thin clouds.
The monthly changes in the angle between the direction of sunlight and view from Earth, and the phases of the Moon that result, as viewed from the Northern Hemisphere. The Earth–Moon distance is not to scale.

The illuminated area of the visible sphere (degree of illumination) is given by , where is the elongation (i.e., the angle between Moon, the observer (on Earth) and the Sun).

Tidal effects

Over one lunar month more than half of the Moon's surface can be seen from Earth's surface.
The libration of the Moon over a single lunar month. Also visible is the slight variation in the Moon's visual size from Earth.

The gravitational attraction that masses have for one another decreases inversely with the square of the distance of those masses from each other. As a result, the slightly greater attraction that the Moon has for the side of Earth closest to the Moon, as compared to the part of the Earth opposite the Moon, results in tidal forces. Tidal forces affect both the Earth's crust and oceans.

The most obvious effect of tidal forces is to cause two bulges in the Earth's oceans, one on the side facing the Moon and the other on the side opposite. This results in elevated sea levels called ocean tides. As the Earth spins on its axis, one of the ocean bulges (high tide) is held in place "under" the Moon, while another such tide is opposite. As a result, there are two high tides, and two low tides in about 24 hours. Since the Moon is orbiting the Earth in the same direction of the Earth's rotation, the high tides occur about every 12 hours and 25 minutes; the 25 minutes is due to the Moon's time to orbit the Earth. The Sun has the same tidal effect on the Earth, but its forces of attraction are only 40% that of the Moon's; the Sun's and Moon's interplay is responsible for spring and neap tides. If the Earth were a water world (one with no continents) it would produce a tide of only one meter, and that tide would be very predictable, but the ocean tides are greatly modified by other effects: the frictional coupling of water to Earth's rotation through the ocean floors, the inertia of water's movement, ocean basins that grow shallower near land, the sloshing of water between different ocean basins. As a result, the timing of the tides at most points on the Earth is a product of observations that are explained, incidentally, by theory.

While gravitation causes acceleration and movement of the Earth's fluid oceans, gravitational coupling between the Moon and Earth's solid body is mostly elastic and plastic. The result is a further tidal effect of the Moon on the Earth that causes a bulge of the solid portion of the Earth nearest the Moon that acts as a torque in opposition to the Earth's rotation. This "drains" angular momentum and rotational kinetic energy from Earth's spin, slowing the Earth's rotation. That angular momentum, lost from the Earth, is transferred to the Moon in a process (confusingly known as tidal acceleration), which lifts the Moon into a higher orbit and results in its lower orbital speed about the Earth. Thus the distance between Earth and Moon is increasing, and the Earth's spin is slowing in reaction. Measurements from laser reflectors left during the Apollo missions (lunar ranging experiments) have found that the Moon's distance increases by 38 mm (1.5 in) per year (roughly the rate at which human fingernails grow). Atomic clocks also show that Earth's day lengthens by about 15 microseconds every year, slowly increasing the rate at which UTC is adjusted by leap seconds. Left to run its course, this tidal drag would continue until the spin of Earth and the orbital period of the Moon matched, creating mutual tidal locking between the two. As a result, the Moon would be suspended in the sky over one meridian, as is already currently the case with Pluto and its moon Charon. However, the Sun will become a red giant engulfing the Earth-Moon system long before this occurrence.

In a like manner, the lunar surface experiences tides of around 10 cm (4 in) amplitude over 27 days, with two components: a fixed one due to Earth, because they are in synchronous rotation, and a varying component from the Sun. The Earth-induced component arises from libration, a result of the Moon's orbital eccentricity (if the Moon's orbit were perfectly circular, there would only be solar tides). Libration also changes the angle from which the Moon is seen, allowing a total of about 59% of its surface to be seen from Earth over time. The cumulative effects of stress built up by these tidal forces produces moonquakes. Moonquakes are much less common and weaker than are earthquakes, although moonquakes can last for up to an hour—significantly longer than terrestrial quakes—because of the absence of water to damp out the seismic vibrations. The existence of moonquakes was an unexpected discovery from seismometers placed on the Moon by Apollo astronauts from 1969 through 1972.

Eclipses

The fiercely bright disk of the Sun is completely obscured by the exact fit of the disk of the dark, non-illuminated Moon, leaving only the radial, fuzzy, glowing coronal filaments of the Sun around the edge.

The bright disk of the Sun, showing many coronal filaments, flares and grainy patches in the wavelength of this image, is partly obscured by a small dark disk: here, the Moon covers less than a fifteenth of the Sun.
From Earth, the Moon and the Sun appear the same size, as seen in the 1999 solar eclipse (left), whereas from the STEREO-B (bottom) spacecraft in an Earth-trailing orbit, the Moon appears much smaller than the Sun (right).

Eclipses only occur when the Sun, Earth, and Moon are all in a straight line (termed "syzygy"). Solar eclipses occur at new moon, when the Moon is between the Sun and Earth. In contrast, lunar eclipses occur at full moon, when Earth is between the Sun and Moon. The apparent size of the Moon is roughly the same as that of the Sun, with both being viewed at close to one-half a degree wide. The Sun is much larger than the Moon but it is the vastly greater distance that gives it the same apparent size as the much closer and much smaller Moon from the perspective of Earth. The variations in apparent size, due to the non-circular orbits, are nearly the same as well, though occurring in different cycles. This makes possible both total (with the Moon appearing larger than the Sun) and annular (with the Moon appearing smaller than the Sun) solar eclipses. In a total eclipse, the Moon completely covers the disc of the Sun and the solar corona becomes visible to the naked eye. Because the distance between the Moon and Earth is very slowly increasing over time, the angular diameter of the Moon is decreasing. Also, as it evolves toward becoming a red giant, the size of the Sun, and its apparent diameter in the sky, are slowly increasing. The combination of these two changes means that hundreds of millions of years ago, the Moon would always completely cover the Sun on solar eclipses, and no annular eclipses were possible. Likewise, hundreds of millions of years in the future, the Moon will no longer cover the Sun completely, and total solar eclipses will not occur.

Because the Moon's orbit around Earth is inclined by about 5.145° (5° 9') to the orbit of Earth around the Sun, eclipses do not occur at every full and new moon. For an eclipse to occur, the Moon must be near the intersection of the two orbital planes. The periodicity and recurrence of eclipses of the Sun by the Moon, and of the Moon by Earth, is described by the saros, which has a period of approximately 18 years.

Because the Moon is continuously blocking our view of a half-degree-wide circular area of the sky, the related phenomenon of occultation occurs when a bright star or planet passes behind the Moon and is occulted: hidden from view. In this way, a solar eclipse is an occultation of the Sun. Because the Moon is comparatively close to Earth, occultations of individual stars are not visible everywhere on the planet, nor at the same time. Because of the precession of the lunar orbit, each year different stars are occulted.

Observation and exploration

Ancient and medieval studies

On an open folio page is a carefully drawn disk of the full moon. In the upper corners of the page are waving banners held aloft by pairs of winged cherubs. In the lower left page corner a cherub assists another to measure distances with a pair of compasses; in the lower right corner a cherub views the main map through a handheld telescope, whereas another, kneeling, peers at the map from over a low cloth-draped table.
Map of the Moon by Johannes Hevelius from his Selenographia (1647), the first map to include the libration zones
A study of the Moon in Robert Hooke's Micrographia, 1665

Understanding of the Moon's cycles was an early development of astronomy: by the 5th century BC, Babylonian astronomers had recorded the 18-year Saros cycle of lunar eclipses, and Indian astronomers had described the Moon's monthly elongation. The Chinese astronomer Shi Shen (fl. 4th century BC) gave instructions for predicting solar and lunar eclipses. Later, the physical form of the Moon and the cause of moonlight became understood. The ancient Greek philosopher Anaxagoras (d. 428 BC) reasoned that the Sun and Moon were both giant spherical rocks, and that the latter reflected the light of the former. Although the Chinese of the Han Dynasty believed the Moon to be energy equated to qi, their 'radiating influence' theory also recognized that the light of the Moon was merely a reflection of the Sun, and Jing Fang (78–37 BC) noted the sphericity of the Moon. In the 2nd century AD, Lucian wrote the novel A True Story, in which the heroes travel to the Moon and meet its inhabitants. In 499 AD, the Indian astronomer Aryabhata mentioned in his Aryabhatiya that reflected sunlight is the cause of the shining of the Moon. The astronomer and physicist Alhazen (965–1039) found that sunlight was not reflected from the Moon like a mirror, but that light was emitted from every part of the Moon's sunlit surface in all directions. Shen Kuo (1031–1095) of the Song dynasty created an allegory equating the waxing and waning of the Moon to a round ball of reflective silver that, when doused with white powder and viewed from the side, would appear to be a crescent.
Galileo's sketches of the Moon from Sidereus Nuncius

In Aristotle's (384–322 BC) description of the universe, the Moon marked the boundary between the spheres of the mutable elements (earth, water, air and fire), and the imperishable stars of aether, an influential philosophy that would dominate for centuries. However, in the 2nd century BC, Seleucus of Seleucia correctly theorized that tides were due to the attraction of the Moon, and that their height depends on the Moon's position relative to the Sun. In the same century, Aristarchus computed the size and distance of the Moon from Earth, obtaining a value of about twenty times the radius of Earth for the distance. These figures were greatly improved by Ptolemy (90–168 AD): his values of a mean distance of 59 times Earth's radius and a diameter of 0.292 Earth diameters were close to the correct values of about 60 and 0.273 respectively.[180] Archimedes (287–212 BC) designed a planetarium that could calculate the motions of the Moon and other objects in the Solar System.

During the Middle Ages, before the invention of the telescope, the Moon was increasingly recognised as a sphere, though many believed that it was "perfectly smooth".

In 1609, Galileo Galilei drew one of the first telescopic drawings of the Moon in his book Sidereus Nuncius and noted that it was not smooth but had mountains and craters. Telescopic mapping of the Moon followed: later in the 17th century, the efforts of Giovanni Battista Riccioli and Francesco Maria Grimaldi led to the system of naming of lunar features in use today. The more exact 1834–36 Mappa Selenographica of Wilhelm Beer and Johann Heinrich Mädler, and their associated 1837 book Der Mond, the first trigonometrically accurate study of lunar features, included the heights of more than a thousand mountains, and introduced the study of the Moon at accuracies possible in earthly geography. Lunar craters, first noted by Galileo, were thought to be volcanic until the 1870s proposal of Richard Proctor that they were formed by collisions. This view gained support in 1892 from the experimentation of geologist Grove Karl Gilbert, and from comparative studies from 1920 to the 1940s, leading to the development of lunar stratigraphy, which by the 1950s was becoming a new and growing branch of astrogeology.

By spacecraft

20th century

Soviet missions
Luna 2, the first human-made object to reach the surface of the Moon (left) and Soviet Moon rover Lunokhod 1

The Cold War-inspired Space Race between the Soviet Union and the U.S. led to an acceleration of interest in exploration of the Moon. Once launchers had the necessary capabilities, these nations sent unmanned probes on both flyby and impact/lander missions. Spacecraft from the Soviet Union's Luna program were the first to accomplish a number of goals: following three unnamed, failed missions in 1958, the first human-made object to escape Earth's gravity and pass near the Moon was Luna 1; the first human-made object to impact the lunar surface was Luna 2, and the first photographs of the normally occluded far side of the Moon were made by Luna 3, all in 1959.

The first spacecraft to perform a successful lunar soft landing was Luna 9 and the first unmanned vehicle to orbit the Moon was Luna 10, both in 1966. Rock and soil samples were brought back to Earth by three Luna sample return missions (Luna 16 in 1970, Luna 20 in 1972, and Luna 24 in 1976), which returned 0.3 kg total. Two pioneering robotic rovers landed on the Moon in 1970 and 1973 as a part of Soviet Lunokhod programme.

Luna 24 was the last Soviet/Russian mission to the Moon.
United States missions

During the late 1950s at the height of the Cold War, the United States Army conducted a classified feasibility study that proposed the construction of a manned military outpost on the Moon called Project Horizon with the potential to conduct a wide range of missions from scientific research to nuclear Earth bombardment. The study included the possibility of conducting a lunar-based nuclear test. The Air Force, which at the time was in competition with the Army for a leading role in the space program, developed its own similar plan called Lunex. However, both these proposals were ultimately passed over as the space program was largely transferred from the military to the civilian agency NASA.

Following President John F. Kennedy's 1961 commitment to a manned moon landing before the end of the decade, the United States, under NASA leadership, launched a series of unmanned probes to develop an understanding of the lunar surface in preparation for manned missions: the Jet Propulsion Laboratory's Ranger program produced the first close-up pictures; the Lunar Orbiter program produced maps of the entire Moon; the Surveyor program landed its first spacecraft four months after Luna 9. The manned Apollo program was developed in parallel; after a series of unmanned and manned tests of the Apollo spacecraft in Earth orbit, and spurred on by a potential Soviet lunar flight, in 1968 Apollo 8 made the first manned mission to lunar orbit. The subsequent landing of the first humans on the Moon in 1969 is seen by many as the culmination of the Space Race.

Neil Armstrong became the first person to walk on the Moon as the commander of the American mission Apollo 11 by first setting foot on the Moon at 02:56 UTC on 21 July 1969. An estimated 500 million people worldwide watched the transmission by the Apollo TV camera, the largest television audience for a live broadcast at that time. The Apollo missions 11 to 17 (except Apollo 13, which aborted its planned lunar landing) returned 380.05 kilograms (837.87 lb) of lunar rock and soil in 2,196 separate samples. The American Moon landing and return was enabled by considerable technological advances in the early 1960s, in domains such as ablation chemistry, software engineering, and atmospheric re-entry technology, and by highly competent management of the enormous technical undertaking.

Scientific instrument packages were installed on the lunar surface during all the Apollo landings. Long-lived instrument stations, including heat flow probes, seismometers, and magnetometers, were installed at the Apollo 12, 14, 15, 16, and 17 landing sites. Direct transmission of data to Earth concluded in late 1977 because of budgetary considerations, but as the stations' lunar laser ranging corner-cube retroreflector arrays are passive instruments, they are still being used. Ranging to the stations is routinely performed from Earth-based stations with an accuracy of a few centimetres, and data from this experiment are being used to place constraints on the size of the lunar core.
1980s–2000
An artificially coloured mosaic constructed from a series of 53 images taken through three spectral filters by Galileo' s imaging system as the spacecraft flew over the northern regions of the Moon on 7 December 1992.

After the first Moon race there were years of near quietude but starting in the 1990s, many more countries have become involved in direct exploration of the Moon. In 1990, Japan became the third country to place a spacecraft into lunar orbit with its Hiten spacecraft. The spacecraft released a smaller probe, Hagoromo, in lunar orbit, but the transmitter failed, preventing further scientific use of the mission. In 1994, the U.S. sent the joint Defense Department/NASA spacecraft Clementine to lunar orbit. This mission obtained the first near-global topographic map of the Moon, and the first global multispectral images of the lunar surface. This was followed in 1998 by the Lunar Prospector mission, whose instruments indicated the presence of excess hydrogen at the lunar poles, which is likely to have been caused by the presence of water ice in the upper few meters of the regolith within permanently shadowed craters.

India, Japan, China, the United States, and the European Space Agency each sent lunar orbiters, and especially ISRO's Chandrayaan-1 has contributed to confirming the discovery of lunar water ice in permanently shadowed craters at the poles and bound into the lunar regolith. The post-Apollo era has also seen two rover missions: the final Soviet Lunokhod mission in 1973, and China's ongoing Chang'e 3 mission, which deployed its Yutu rover on 14 December 2013. The Moon remains, under the Outer Space Treaty, free to all nations to explore for peaceful purposes.

21st century

Artistic representation of a future Moon colony

The European spacecraft SMART-1, the second ion-propelled spacecraft, was in lunar orbit from 15 November 2004 until its lunar impact on 3 September 2006, and made the first detailed survey of chemical elements on the lunar surface.

The ambitious Chinese Lunar Exploration Program began with Chang'e 1, which successfully orbited the Moon from 5 November 2007 until its controlled lunar impact on 1 March 2009. It obtained a full image map of the Moon. Chang'e 2, beginning in October 2010, reached the Moon more quickly, mapped the Moon at a higher resolution over an eight-month period, then left lunar orbit for an extended stay at the Earth–Sun L2 Lagrangian point, before finally performing a flyby of asteroid 4179 Toutatis on 13 December 2012, and then heading off into deep space. On 14 December 2013, Chang'e 3 landed a lunar lander onto the Moon's surface, which in turn deployed a lunar rover, named Yutu (Chinese: 玉兔; literally "Jade Rabbit"). This was the first lunar soft landing since Luna 24 in 1976, and the first lunar rover mission since Lunokhod 2 in 1973. China intends to launch another rover mission (Chang'e 4) before 2020, followed by a sample return mission (Chang'e 5) soon after.

Between 4 October 2007 and 10 June 2009, the Japan Aerospace Exploration Agency's Kaguya (Selene) mission, a lunar orbiter fitted with a high-definition video camera, and two small radio-transmitter satellites, obtained lunar geophysics data and took the first high-definition movies from beyond Earth orbit. India's first lunar mission, Chandrayaan I, orbited from 8 November 2008 until loss of contact on 27 August 2009, creating a high resolution chemical, mineralogical and photo-geological map of the lunar surface, and confirming the presence of water molecules in lunar soil. The Indian Space Research Organisation planned to launch Chandrayaan II in 2013, which would have included a Russian robotic lunar rover. However, the failure of Russia's Fobos-Grunt mission has delayed this project, and is now scheduled to be launched no earlier than January 2019.
Copernicus's central peaks as observed by the LRO, 2012
The Ina formation, 2009

The U.S. co-launched the Lunar Reconnaissance Orbiter (LRO) and the LCROSS impactor and follow-up observation orbiter on 18 June 2009; LCROSS completed its mission by making a planned and widely observed impact in the crater Cabeus on 9 October 2009, whereas LRO is currently in operation, obtaining precise lunar altimetry and high-resolution imagery. In November 2011, the LRO passed over the large and bright Aristarchus crater. NASA released photos of the crater on 25 December 2011.

Two NASA GRAIL spacecraft began orbiting the Moon around 1 January 2012, on a mission to learn more about the Moon's internal structure. NASA's LADEE probe, designed to study the lunar exosphere, achieved orbit on 6 October 2013.

Upcoming lunar missions include Russia's Luna-Glob: an unmanned lander with a set of seismometers, and an orbiter based on its failed Martian Fobos-Grunt mission. Privately funded lunar exploration has been promoted by the Google Lunar X Prize, announced 13 September 2007, which offers US$20 million to anyone who can land a robotic rover on the Moon and meet other specified criteria. Shackleton Energy Company is building a program to establish operations on the south pole of the Moon to harvest water and supply their Propellant Depots.

NASA began to plan to resume manned missions following the call by U.S. President George W. Bush on 14 January 2004 for a manned mission to the Moon by 2019 and the construction of a lunar base by 2024. The Constellation program was funded and construction and testing begun on a manned spacecraft and launch vehicle, and design studies for a lunar base. However, that program has been cancelled in favor of a manned asteroid landing by 2025 and a manned Mars orbit by 2035. India has also expressed its hope to send a manned mission to the Moon by 2020.

On 28 February 2018, SpaceX, Vodafone, Nokia and Audi announced a collaboration to install a 4G wireless communication network on the Moon, with the aim of streaming live footage on the surface to Earth.

Planned commercial missions

In 2007, the X Prize Foundation together with Google launched the Google Lunar X Prize to encourage commercial endeavors to the Moon. A prize of $20 million was to be awarded to the first private venture to get to the Moon with a robotic lander by the end of March 2018, with additional prizes worth $10 million for further milestones. As of August 2016, 16 teams were reportedly participating in the competition. In January 2018 the foundation announced that the prize would go unclaimed as none of the finalist teams would be able to make a launch attempt by the deadline.

In August 2016, the US government granted permission to US-based start-up Moon Express to land on the Moon. This marked the first time that a private enterprise was given the right to do so. The decision is regarded as a precedent helping to define regulatory standards for deep-space commercial activity in the future, as thus far companies' operation had been restricted to being on or around Earth.

On November 29, 2018 NASA announced that nine commercial companies would compete to win a contract to send small payloads to the Moon in what is known as Commercial Lunar Payload Services. According to NASA administrator Jim Bridenstine, "We are building a domestic American capability to get back and forth to the surface of the moon."

Astronomy from the Moon

A false-color image of Earth in ultraviolet light taken from the surface of the Moon on the Apollo 16 mission. The day-side reflects a lot of UV light from the Sun, but the night-side shows faint bands of UV emission from the aurora caused by charged particles.

For many years, the Moon has been recognized as an excellent site for telescopes. It is relatively nearby; astronomical seeing is not a concern; certain craters near the poles are permanently dark and cold, and thus especially useful for infrared telescopes; and radio telescopes on the far side would be shielded from the radio chatter of Earth. The lunar soil, although it poses a problem for any moving parts of telescopes, can be mixed with carbon nanotubes and epoxies and employed in the construction of mirrors up to 50 meters in diameter. A lunar zenith telescope can be made cheaply with an ionic liquid.

In April 1972, the Apollo 16 mission recorded various astronomical photos and spectra in ultraviolet with the Far Ultraviolet Camera/Spectrograph.

Legal status

Although Luna landers scattered pennants of the Soviet Union on the Moon, and U.S. flags were symbolically planted at their landing sites by the Apollo astronauts, no nation claims ownership of any part of the Moon's surface. Russia and the U.S. are party to the 1967 Outer Space Treaty, which defines the Moon and all outer space as the "province of all mankind". This treaty also restricts the use of the Moon to peaceful purposes, explicitly banning military installations and weapons of mass destruction. The 1979 Moon Agreement was created to restrict the exploitation of the Moon's resources by any single nation, but as of November 2016, it has been signed and ratified by only 18 nations, none of which engages in self-launched human space exploration or has plans to do so. Although several individuals have made claims to the Moon in whole or in part, none of these are considered credible.

In culture

Luna, the Moon, from a 1550 edition of Guido Bonatti's Liber astronomiae

Mythology

Statue of Chandraprabha (means"as charming as moon")-8th Tirthankara in Jainism with the symbol of crescent moon below it.
Sun and Moon with faces (1493 woodcut)

A 5,000-year-old rock carving at Knowth, Ireland, may represent the Moon, which would be the earliest depiction discovered. The contrast between the brighter highlands and the darker maria creates the patterns seen by different cultures as the Man in the Moon, the rabbit and the buffalo, among others. In many prehistoric and ancient cultures, the Moon was personified as a deity or other supernatural phenomenon, and astrological views of the Moon continue to be propagated today.

In Proto-Indo-European religion, the moon was personified as the male god *Meh1not. The ancient Sumerians believed that the Moon was the god Nanna, who was the father of Inanna, the goddess of the planet Venus, and Utu, the god of the sun. Nanna was later known as Sîn, and was particularly associated with magic and sorcery. In Greco-Roman mythology, the Sun and the Moon are represented as male and female, respectively (Helios/Sol and Selene/Luna); this is a development unique to the eastern Mediterranean and traces of an earlier male moon god in the Greek tradition are preserved in the figure of Menelaus.

In Mesopotamian iconography, the crescent was the primary symbol of Nanna-Sîn. In ancient Greek art, the Moon goddess Selene was represented wearing a crescent on her headgear in an arrangement reminiscent of horns. The star and crescent arrangement also goes back to the Bronze Age, representing either the Sun and Moon, or the Moon and planet Venus, in combination. It came to represent the goddess Artemis or Hecate, and via the patronage of Hecate came to be used as a symbol of Byzantium.

An iconographic tradition of representing Sun and Moon with faces developed in the late medieval period.

The splitting of the moon (Arabic: انشقاق القمر‎) is a miracle attributed to Muhammad.

Calendar

The Moon's regular phases make it a very convenient timepiece, and the periods of its waxing and waning form the basis of many of the oldest calendars. Tally sticks, notched bones dating as far back as 20–30,000 years ago, are believed by some to mark the phases of the Moon. The ~30-day month is an approximation of the lunar cycle. The English noun month and its cognates in other Germanic languages stem from Proto-Germanic *mǣnṓth-, which is connected to the above-mentioned Proto-Germanic *mǣnōn, indicating the usage of a lunar calendar among the Germanic peoples (Germanic calendar) prior to the adoption of a solar calendar. The PIE root of moon, *méh1nōt, derives from the PIE verbal root *meh1-, "to measure", "indicat[ing] a functional conception of the Moon, i.e. marker of the month" (cf. the English words measure and menstrual), and echoing the Moon's importance to many ancient cultures in measuring time (see Latin mensis and Ancient Greek μείς (meis) or μήν (mēn), meaning "month"). Most historical calendars are lunisolar. The 7th-century Islamic calendar is an exceptional example of a purely lunar calendar. Months are traditionally determined by the visual sighting of the hilal, or earliest crescent moon, over the horizon.
Moonrise, 1884, picture by Stanisław Masłowski (National Museum, Kraków, Gallery of Sukiennice Museum)

Lunacy

The Moon has long been associated with insanity and irrationality; the words lunacy and lunatic (popular shortening loony) are derived from the Latin name for the Moon, Luna. Philosophers Aristotle and Pliny the Elder argued that the full moon induced insanity in susceptible individuals, believing that the brain, which is mostly water, must be affected by the Moon and its power over the tides, but the Moon's gravity is too slight to affect any single person. Even today, people who believe in a lunar effect claim that admissions to psychiatric hospitals, traffic accidents, homicides or suicides increase during a full moon, but dozens of studies invalidate these claims.

Mars 2020 and Sample Return Mission

From Wikipedia, the free encyclopedia

Mars 2020
Computer-Design Drawing for NASA's 2020 Mars Rover.jpg
Computer-design drawing for NASA's 2020 Mars Rover

Mission typeRover
OperatorNASA / JPL
Websitehttp://mars.jpl.nasa.gov/mars2020/
Mission durationPlanned: 1 Mars year

Spacecraft properties
ManufacturerJet Propulsion Laboratory
Launch massRover: 1,050 kg (2,315 lb)
DimensionsRover: 3 × 2.7 × 2.2 m (9.8 × 8.9 × 7.2 ft)
Power110 watts

Start of mission
Launch dateNET July 2020
RocketAtlas V 541
Launch siteCape Canaveral SLC-41

Mars rover
Spacecraft componentRover

Mars 2020 is a Mars rover mission by NASA's Mars Exploration Program with a planned launch in July or August 2020. It will investigate an astrobiologically relevant ancient environment on Mars, investigate its surface geological processes and history, including the assessment of its past habitability, the possibility of past life on Mars, and the potential for preservation of biosignatures within accessible geological materials. It will cache sample containers along its route for a potential future Mars sample-return mission.

The as-yet unnamed Mars 2020 mission was announced by NASA on 4 December 2012 at the fall meeting of the American Geophysical Union in San Francisco. The rover's design is derived from the Curiosity rover, and will use many components already fabricated and tested, but it will carry different scientific instruments and a core drill.

In November 2018, NASA announced that Jezero crater on Mars will be the landing site for the Mars 2020 rover, which is to launch on 17 July 2020, and touch down on Mars on 18 February 2021.

Mission overview

Artist concept of the Mars 2020 rover

The mission will seek signs of habitable conditions on Mars in the ancient past, and will also search for evidence —or biosignatures— of past microbial life. The rover is planned for launch in 2020 on an Atlas V-541, and the Jet Propulsion Laboratory will manage the mission. The mission is part of NASA's Mars Exploration Program.

The Science Definition Team proposed that the rover collect and package as many as 31 samples of rock cores and surface soil for a later mission to bring back for definitive analysis on Earth. In 2015, however, they expanded the concept, planning to collect even more samples and distribute the tubes in small piles or caches across the surface of Mars.

In September 2013 NASA launched an Announcement of Opportunity for researchers to propose and develop the instruments needed, including the Sample Caching System. The science instruments for the mission were selected in July 2014 after an open competition based on the scientific objectives set one year earlier. The science conducted by the rover's instruments will provide the context needed for detailed analyses of the returned samples. The chairman of the Science Definition Team stated that NASA does not presume that life ever existed on Mars, but given the recent Curiosity rover findings, past Martian life seems possible.

Objectives

The Mars 2020 rover will explore a site likely to have been habitable. It will seek signs of past life, set aside a returnable cache with the most compelling rock core and soil samples, and demonstrate technology needed for the future human and robotic exploration of Mars. 

A key mission requirement is that it must help prepare NASA for its long-term Mars sample-return mission and crewed mission efforts. The rover will make measurements and technology demonstrations to help designers of a future human expedition understand any hazards posed by Martian dust, and will test technology to produce a small amount of pure oxygen (O
2
) from Martian atmospheric carbon dioxide (CO
2
). Improved precision landing technology that enhances the scientific value of robotic missions also will be critical for eventual human exploration on the surface. Based on input from the Science Definition Team, NASA defined the final objectives for the 2020 rover. Those become the basis for soliciting proposals to provide instruments for the rover's science payload in the spring 2014.

The mission will also attempt to identify subsurface water, improve landing techniques, and characterize weather, dust, and other potential environmental conditions that could affect future astronauts living and working on Mars.

Design

Powered Descent Vehicle, part of the sky crane landing system
 
Full-size model of the rover wheels

The three major components of the Mars 2020 spacecraft are the cruise stage for travel between Earth and Mars; the Entry, Descent, and Landing System (EDLS) that includes the aeroshell, parachute, descent vehicle, and sky crane; and the rover. 

The rover is based on the design of Curiosity. While there are differences in scientific instruments and the engineering required to support them, the entire landing system (including the sky crane and heat shield) and rover chassis can essentially be recreated without any additional engineering or research. This reduces overall technical risk for the mission, while saving funds and time on development. One of the upgrades is a guidance and control technique called "Terrain Relative Navigation" to fine-tune steering in the final moments of landing. In October 2016, NASA reported using the Xombie rocket to test the Lander Vision System (LVS), as part of the Autonomous Descent and Ascent Powered-flight Testbed (ADAPT) experimental technologies, for the Mars 2020 mission landing.

A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG), left over as a backup part for Curiosity during its construction, will power the rover. The generator has a mass of 45 kilograms (99 lb) and uses 4.8 kilograms (11 lb) of plutonium dioxide as the source of steady supply of heat that is converted to electricity; the electrical power generated is approximately 110 watts at launch with little decrease over the mission time. Two lithium-ion rechargeable batteries are included to meet peak demands of rover activities when the demand temporarily exceeds the MMRTG's steady electrical output levels. The MMRTG offers a 14-year operational lifetime, and it was provided to NASA by the US Department of Energy. Unlike solar panels, the MMRTG provides engineers with significant flexibility in operating the rover's instruments even at night and during dust storms, and through the winter season.

Engineers redesigned the Mars 2020 rover wheels to be more robust than Curiosity's wheels, which have sustained some damage. The rover will have thicker, more durable aluminium wheels, with reduced width and a greater diameter (52.5 cm, 20.7 in) than Curiosity's 50 cm (20 in) wheels. The aluminium wheels are covered with cleats for traction and curved titanium spokes for springy support. The combination of the larger instrument suite, new Sampling and Caching System, and modified wheels makes Mars 2020 heavier than its predecessor, Curiosity.

The rover mission and launch are estimated to cost about US$2.1 billion. The mission's predecessor, the Mars Science Laboratory, cost US$2.5 billion in total. The availability of spare parts make the new rover somewhat more affordable. Curiosity's engineering team are also involved in the rover's design.

Scientific instruments

Proposed Mars 2020 rover payload

Based on the scientific objectives, nearly 60 proposals for rover instrumentation were evaluated and, on 31 July 2014, NASA announced the payload for the rover:
  • Planetary Instrument for X-Ray Lithochemistry (PIXL), an X-ray fluorescence spectrometer to determine the fine scale elemental composition of Martian surface materials.
  • Radar Imager for Mars' subsurface experiment (RIMFAX), a ground-penetrating radar to image different ground densities, structural layers, buried rocks, meteorites, and detect underground water ice and salty brine at 10 m (33 ft) depth.
  • Mars Environmental Dynamics Analyzer (MEDA), a set of sensors that measure temperature, wind speed and direction, pressure, relative humidity, radiation, and dust size and shape. It will be provided by Spain's Centro de Astrobiología.
  • Mars Oxygen ISRU Experiment (MOXIE), an exploration technology investigation that will produce a small amount of oxygen (O
    2
    ) from Martian atmospheric carbon dioxide (CO
    2
    ). This technology could be scaled up in the future for human life support or to make the rocket fuel for return missions.
  • SuperCam, an instrument suite that can provide imaging, chemical composition analysis and mineralogy in rocks and regolith from a distance. It is an upgraded version of the ChemCam on the Curiosity rover but with two lasers and four spectrometers that will allow it to remotely identify biosignatures and assess the past habitability.
  • Mastcam-Z, a stereoscopic imaging system with the ability to zoom.
  • Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC), an ultraviolet Raman spectrometer that uses fine-scale imaging and an ultraviolet (UV) laser to determine fine-scale mineralogy and detect organic compounds.
  • Mars Helicopter Scout (MHS) is a planned solar powered helicopter drone with a mass of 1.8 kg (4.0 lb) that is expected to help pinpoint interesting targets for study and plan the best driving route for the rover. The small helicopter is expected to fly up to five times during its 30-day testing, and will fly no more than 3 minutes per day. It is a technology demonstrator that will form the foundation on which more capable helicopters can be developed for aerial exploration of Mars and other planetary targets with an atmosphere.
  • Microphones will be used during the landing event, while driving, and when collecting samples.
  • 23 cameras in total are included in the Mars 2020 rover.
Mars 2020 rover instruments
 
 
 
 
23 cameras
 
Solar powered helicopter drone as navigation aid
 
Proposed adaptive caching for sample return

Proposed landing sites

In May 2017, evidence of the earliest known life on land may have been found in 3.48-billion-year-old geyserite, a mineral deposit often found around hot springs and geysers, uncovered in the Pilbara Craton of Western Australia. These findings may be helpful in deciding where best to search for early signs of life on the planet Mars. The following locations are the eight landing sites that were under consideration for Mars 2020:
A workshop was held on 8–10 February 2017 in Pasadena, California, to discuss these sites, with the goal of narrowing down the list to three sites for further consideration. The selected sites are:
Proposed landing site – Jezero crater (18.855°N 77.519°E)
 
Jezero and surrounding region
 
Jezero crater on Mars - ancient rivers (on the left) fed the crater; overflow flooding carved the outlet canyon (on the right).
 
Jezero delta – chemical alteration by water

In November 2018, it was announced that Jezero crater was chosen as the planned landing site for Mars 2020 rover.

Mars sample-return mission

From Wikipedia, the free encyclopedia
 
Sample-return concept

A Mars sample-return mission (MSR) would be a spaceflight mission to collect rock and dust samples on Mars and then return them to Earth. Sample-return would be a very powerful type of exploration, because analysis is freed from the time, budget, and space constraints of spacecraft sensors.

According to Louis Friedman, Executive Director of The Planetary Society, a Mars sample-return mission is often described by the planetary science community as one of the most important robotic space missions, due to its high expected scientific return on investment.

Over time, several concept missions has been studied, but none of them got beyond the study phase. The three latest concepts for a MSR mission are a NASA-ESA proposal, a Russian proposal (Mars-Grunt), and a Chinese proposal.

Scientific value

Mars meteorites in a Museum

The return of Mars samples would be beneficial to science by allowing more extensive analysis to be undertaken of the samples than could be done by instruments painstakingly transferred to Mars. Also, the presence of the samples on Earth would allow scientific equipment to be used on stored samples, even years and decades after the sample-return mission.

In 2006, MEPAG identified 55 important future science investigations related to the exploration of Mars. In 2008, they concluded that about half of the investigations "could be addressed to one degree or another by MSR", making MSR "the single mission that would make the most progress towards the entire list" of investigations. Moreover, it was found that a significant fraction of the investigations cannot be meaningfully advanced without returned samples.

One source of Mars samples is what are thought to be Martian meteorites, which are rocks ejected from Mars that made their way to Earth. Of over 61,000 meteorites that have been found on Earth, 132 were identified as Martian as of 3 March 2014.[5] These meteorites are thought to be from Mars because they have elemental and isotopic compositions that are similar to rocks and atmosphere gases analyzed by spacecraft on Mars.

In 1996 the possibility of life on Mars was questioned again when apparent microfossils might have been found in a Mars meteorite (see ALH84001). This led to a renewed interest in a Mars sample-return, and several different architectures were considered. NASA administrator Goldin laid out three options for MSR: "paced", "accelerated", and "aggressive". It was thought that MSR could be done for less than 100 million USD per year, with something similar to then-current Mars exploration budgets.

History

Artist concept of a Mars sample-return mission, 1993

For at least three decades, Western scientists have advocated the return of geological samples from Mars. One concept was studied with the Sample Collection for Investigation of Mars (SCIM) proposal, which involved sending a spacecraft in a grazing pass through Mars upper atmosphere to collect dust and air samples without landing or orbiting.

The Soviet Union considered a Mars sample-return mission, Mars 5NM, in 1975 but it was cancelled due to the repeated failures of the N1 rocket that would have been used to launch it. A double sample-return mission, Mars 5M (Mars-79) planned for 1979, was cancelled due to complexity and technical problems.

One mission concept (provisionally named simply Mars Sample-Return) was originally considered by NASA's Mars Exploration Program to return samples by 2008, but was cancelled following a review of the program. A NASA-ESA concept mission was aborted in 2012.

The United States' Mars Exploration Program, formed after Mars Observer's failure in September 1992, supported a Mars sample-return. One example of a mission architecture was the Groundbreaking Mars Sample-Return by MacPhereson in the early 2000s.

In early 2011, the National Research Council's Planetary Science Decadal Survey, which laid out mission planning priorities for the period 2013–2022 at the request of NASA and the NSF, declared a MSR campaign its highest priority Flagship Mission for that period. In particular, it endorsed the proposed Mars Astrobiology Explorer-Cacher (MAX-C) mission in a "descoped" (less ambitious) form, although this mission plan was officially cancelled in April 2011.

In September 2012, the United States' Mars Program Planning Group endorsed a sample-return after evaluating long-term Mars' plans.

The key mission requirement for the planned Mars 2020 rover is that it must help prepare NASA for its MSR campaign,. which is needed before any crewed mission takes place. Such effort would require three additional vehicles: an orbiter, a fetch rover, and a Mars ascent vehicle (MAV).

NASA–ESA concept

Ascent vehicle in its protective shroud, 2009 ESA-NASA design.

In mid-2006, the international Mars Architecture for the Return of Samples (iMARS) Working Group was chartered by the International Mars Exploration Working Group (IMEWG) to outline the scientific and engineering requirements of an internationally sponsored and executed Mars sample-return mission in the 2018–2023 time frame.

In October 2009, NASA and ESA established the Mars Exploration Joint Initiative to proceed with the ExoMars mission, whose ultimate aim is "the return of samples from Mars in the 2020s". A first step in this was one particular proposal, a joint project between NASA and ESA called ExoMars, would launch in 2018 with unspecified missions to return the sample itself expected in the 2020–2022 time frame. The cancellation of the caching rover MAX-C and later NASA withdrawal from ExoMars, pushed back a sample-return mission to an undetermined date. 

Due to budget limitations the MAX-C mission, which was the first NASA-ESA mission leading to a MSR, was canceled in 2011 and the overall plan in 2012. The pull-out was described as "traumatic" for the science community. However, in April 2018, a letter of intent was signed by NASA and ESA that may provide a basis for a Mars sample-return mission.

NASA proposals

In September 2012, NASA announced its intention to further study several strategies of bringing a sample of Mars to Earth – including a multiple launch scenario, a single-launch scenario and a multiple-rover scenario – for a mission beginning as early as 2018. Dozens of samples would be collected and cached by the Mars 2020 rover, and would be left on the surface of Mars for possible later retrieval. A "fetch rover" would retrieve the sample caches and deliver them to a Mars ascent vehicle (MAV). In July 2018 NASA contracted Airbus to produce a "fetch rover" concept. The MAV would launch from Mars and enter a 500 km orbit and rendezvous with a new Mars orbiter. The sample container would be transferred to an Earth entry vehicle (EEV) which would bring it to Earth, enter the atmosphere under a parachute and hard-land for retrieval and analyses in specially designed safe laboratories.

Prototype – Returnable Cache of Martian Samples (Mars 2020 Rover, NASA, 9 July 2013)

Two-launches architecture

In this scenario, the sample-return mission would span two launches at an interval of about four years. The first launch would be for the orbiter, the second for the lander. The lander would include the Mars Ascent Vehicle (MAV).

Three-launches architecture

This concept is to have the sample-return mission split into a total of three launches. In this scenario, the sample-collection rover (e.g. Mars 2020 rover) would be launched separately to land on Mars first, and carry out analyses and sample collection over a lifetime of at least 500 Sols (Martian days).

Some years later, a Mars orbiter would be launched, followed by the lander including the Mars Ascent Vehicle (MAV). The lander would bring a small and simple "fetch rover", whose sole function would be to retrieve the sample containers from the caches left on the surface or directly from the Mars 2020 rover, and return them to the lander where it would be loaded onto the MAV for delivery to the orbiter and then be sent to Earth.

This design would ease the schedule of the whole mission, giving controllers time and flexibility to carry out the required operations. Furthermore, the program could rely on the successful landing system developed for the Mars Science Laboratory, avoiding the costs and risks associated with developing and testing yet another landing system from scratch.

SCIM

Artist concept of SCIM passing through the Martian atmosphere

SCIM (Sample Collection for Investigation of Mars) was a low-cost low-risk Mars sample-return mission design, proposed in the Mars Scout Program. SCIM would return dust and air samples without landing or orbiting, by dipping through the atmosphere as it collects Mars material. It uses heritage from the successful Stardust and Genesis sample-return missions.

Additional plans

Russia

A Russian Mars sample-return mission concept is Mars-Grunt. It is meant to use Fobos-Grunt design heritage. Plans as of 2011 envisioned a two-stage architecture with an orbiter and a lander (but no roving capability), with samples gathered from the immediate surroundings of the lander by a robotic arm.

China

China has plans for a Mars sample-return mission by 2030. The mission plan combines elements of remote sensing of the surface, soft landing, using a rover to gather samples, then sample-return.

France

France has worked towards a sample-return for many years. This included the preparation of laboratories for returned samples, and numerous proposals. They worked on the development of a Mars sample-return orbiter, which would capture and return the samples as part of a joint mission with either the United States, or other European countries.

Japan

On 9 June 2015, the Japanese Aerospace Exploration Agency (JAXA) unveiled a plan named Martian Moons Exploration (MMX) to retrieve samples from one of the moons of Mars. This mission will build on the expertise to be gained from the Hayabusa 2 and SLIM missions. Of the two moons, Phobos's orbit is closer to Mars and its surface may have adhered particles blasted from the red planet; thus the Phobos samples collected by MMX may contain material originating from Mars itself. Japan has also shown interest in participating in an international Mars sample-return mission.

Potential for back contamination

the landing capsule as seen on the ground at the Utah Test and Training range
Stardust's returned landing capsule

Since it is currently unknown whether life forms exist on Mars, the mission could potentially transfer viable organisms resulting in back contamination—the introduction of extraterrestrial organisms into Earth's biosphere. The scientific consensus is that the potential for large-scale effects, either through pathogenesis or ecological disruption, is extremely small. Nevertheless, returned samples from Mars will be treated as potentially biohazardous until scientists can determine that the returned samples are safe. The goal is to reduce the probability of release of a Mars particle to less than one in a million. In addition, the proposed NASA Mars Sample-return mission will not be approved by NASA until the National Environmental Policy Act (NEPA) process has been completed. The NEPA process would require a public review of all potential impacts that could result from MSR, including worst case back contamination scenarios. It is likely that a formal Environmental Impact Statement (EIS) would have to be prepared. Furthermore, under the terms of Article VII of the Outer Space Treaty and probably various other legal frameworks, were a release of organisms to occur, the releasing nation or nations would be liable for any resultant damages.

Part of the sample-return mission would be to prevent contact between the Martian environment and the exterior of the sample container. In order to eliminate the risk of parachute failure, the current plan is to use the thermal protection system to cushion the capsule upon impact (at terminal velocity). The sample container will be designed to withstand the force of the impact. To receive the returned samples, NASA proposed a specially designed Biosafety Level 4 containment facility, the Mars Sample-Return Receiving facility (MSRRF). Not knowing what properties (e.g., size) any Martian organisms might exhibit is a complication in design of such a facility.

Other scientists and engineers—notably Robert Zubrin of the Mars Society—argue that contamination risk is functionally zero and there is little need to worry. They cite, among other things, lack of any verifiable incident although trillions of kilograms of material have been exchanged between Mars and Earth due to meteorite impacts.

The International Committee Against Mars Sample Return (ICAMSR) is a small advocacy group led by Barry DiGregorio, who campaigns against a Mars sample-return mission. While ICAMSR acknowledges a low probability for biohazards, it considers the proposed containment measures insufficient, and unsafe at this stage. ICAMSR is demanding more in situ studies on Mars first, and preliminary biohazard testing at the International Space Station before the samples are brought to Earth. DiGregorio also supports the conspiracy theory of a NASA coverup regarding the discovery of microbial life by the 1976 Viking landers. ICAMSR also supports a fringe view that several pathogens -such as common viruses- originate in space and probably caused some of the mass extinctions, and deadly pandemics. Claims connecting terrestrial disease and extraterrestrial pathogens have been rejected by the scientific community.

NASA Sample-Return Robot Challenge

The Sample-Return Robot Challenge, as part of NASA's Centennial Challenges program, offered a total $1.5 million to teams that can build fully autonomous robots that can find, retrieve, and return up to 10 different sample types within a large outdoor environment (80,000 m2). The challenge started in 2012 and ended in 2016. Over 50 teams competed during the 5-year history of the NASA Challenge. A robot named Cataglyphis, developed by Team Mountaineers from West Virginia University completed the final challenge in 2016.

In popular culture

Mars 2020 Mission timeline


Mars 2020 mission timeline (as of July 2013).

Marriage in Islam

From Wikipedia, the free encyclopedia ...