Search This Blog

Saturday, February 2, 2019

Carbon sink

From Wikipedia, the free encyclopedia

This diagram of the fast carbon cycle shows the movement of carbon between land, atmosphere, soil and oceans in billions of tons of carbon per year. Yellow numbers are natural fluxes, red are human contributions in billions of tons of carbon per year. White numbers indicate stored carbon.
 
Air-sea exchange of CO2
 
A carbon sink is a natural or artificial reservoir that accumulates and stores some carbon-containing chemical compound for an indefinite period. The process by which carbon sinks remove carbon dioxide (CO2) from the atmosphere is known as carbon sequestration. Public awareness of the significance of CO2 sinks has grown since passage of the Kyoto Protocol, which promotes their use as a form of carbon offset. There are also different strategies used to enhance this process.

General

Increase in atmospheric carbon dioxide means increase in global temperature. The amount of carbon dioxide varies naturally. The natural sinks are:
Whilst the creation of artificial sinks has been discussed, no major artificial systems remove carbon from the atmosphere on a material scale. 

Carbon sources include:
  • Combustion of fossil fuels (coal, natural gas, and oil) by humans for energy and transportation
  • Farmland (by animal respiration); there are proposals for improvements in farming practices to reverse this.

Kyoto Protocol

Because growing vegetation takes in carbon dioxide, the Kyoto Protocol allows Annex I countries with large areas of growing forests to issue Removal Units to recognize the sequestration of carbon. The additional units make it easier for them to achieve their target emission levels. It is estimated that forests absorb between 10 and 20 tons of carbon dioxide per hectare each year, through photosynthetic conversion into starch, cellulose, lignin, and wooden biomass. While this has been well documented for temperate forests and plantations, the fauna of the tropical forests place some limitations for such global estimates.

Some countries seek to trade emission rights in carbon emission markets, purchasing the unused carbon emission allowances of other countries. If overall limits on greenhouse gas emission are put into place, cap and trade market mechanisms are purported to find cost-effective ways to reduce emissions. There is as yet no carbon audit regime for all such markets globally, and none is specified in the Kyoto Protocol. National carbon emissions are self-declared.

In the Clean Development Mechanism, only afforestation and reforestation are eligible to produce certified emission reductions (CERs) in the first commitment period of the Kyoto Protocol (2008–2012). Forest conservation activities or activities avoiding deforestation, which would result in emission reduction through the conservation of existing carbon stocks, are not eligible at this time. Also, agricultural carbon sequestration is not possible yet.

Storage in terrestrial and marine environments

Soils

Soils represent a short to long-term carbon storage medium, and contain more carbon than all terrestrial vegetation and the atmosphere combined. Plant litter and other biomass including charcoal accumulates as organic matter in soils, and is degraded by chemical weathering and biological degradation. More recalcitrant organic carbon polymers such as cellulose, hemi-cellulose, lignin, aliphatic compounds, waxes and terpenoids are collectively retained as humus. Organic matter tends to accumulate in litter and soils of colder regions such as the boreal forests of North America and the Taiga of Russia. Leaf litter and humus are rapidly oxidized and poorly retained in sub-tropical and tropical climate conditions due to high temperatures and extensive leaching by rainfall. Areas where shifting cultivation or slash and burn agriculture are practiced are generally only fertile for 2–3 years before they are abandoned. These tropical jungles are similar to coral reefs in that they are highly efficient at conserving and circulating necessary nutrients, which explains their lushness in a nutrient desert. Much organic carbon retained in many agricultural areas worldwide has been severely depleted due to intensive farming practices.

Grasslands contribute to soil organic matter, stored mainly in their extensive fibrous root mats. Due in part to the climatic conditions of these regions (e.g. cooler temperatures and semi-arid to arid conditions), these soils can accumulate significant quantities of organic matter. This can vary based on rainfall, the length of the winter season, and the frequency of naturally occurring lightning-induced grass-fires. While these fires release carbon dioxide, they improve the quality of the grasslands overall, in turn increasing the amount of carbon retained in the humic material. They also deposit carbon directly to the soil in the form of char that does not significantly degrade back to carbon dioxide.

Forest fires release absorbed carbon back into the atmosphere, as does deforestation due to rapidly increased oxidation of soil organic matter.

Organic matter in peat bogs undergoes slow anaerobic decomposition below the surface. This process is slow enough that in many cases the bog grows rapidly and fixes more carbon from the atmosphere than is released. Over time, the peat grows deeper. Peat bogs hold approximately one-quarter of the carbon stored in land plants and soils.

Under some conditions, forests and peat bogs may become sources of CO2, such as when a forest is flooded by the construction of a hydroelectric dam. Unless the forests and peat are harvested before flooding, the rotting vegetation is a source of CO2 and methane comparable in magnitude to the amount of carbon released by a fossil-fuel powered plant of equivalent power.

Regenerative agriculture

Current agricultural practices lead to carbon loss from soils. It has been suggested that improved farming practices could return the soils to being a carbon sink. Present worldwide practices of overgrazing are substantially reducing many grasslands' performance as carbon sinks. The Rodale Institute says that regenerative agriculture, if practiced on the planet’s 3.6 billion tillable acres, could sequester up to 40% of current CO2 emissions. They claim that agricultural carbon sequestration has the potential to mitigate global warming. When using biologically based regenerative practices, this dramatic benefit can be accomplished with no decrease in yields or farmer profits. Organically managed soils can convert carbon dioxide from a greenhouse gas into a food-producing asset (DJS:  As organically grown food requires more land I dispute this claim.)

In 2006, U.S. carbon dioxide emissions, largely from fossil fuel combustion, were estimated at nearly 6.5 billion tons. If a 2,000 (lb/ac)/year sequestration rate was achieved on all 434,000,000 acres (1,760,000 km2) of cropland in the United States, nearly 1.6 billion tons of carbon dioxide would be sequestered per year, mitigating close to one quarter of the country's total fossil fuel emissions.

Oceans

Presently, oceans are CO2 sinks, and represent the largest active carbon sink on Earth, absorbing more than a quarter of the carbon dioxide that humans put into the air. The solubility pump is the primary mechanism responsible for the CO2 absorption by the oceans. 

The biological pump plays a negligible role, because of the limitation to pump by ambient light and nutrients required by the phytoplankton that ultimately drive it. Total inorganic carbon is not believed to limit primary production in the oceans, so its increasing availability in the ocean does not directly affect production (the situation on land is different, since enhanced atmospheric levels of CO2 essentially "fertilize" land plant growth to some threshold). However, ocean acidification by invading anthropogenic CO2 may affect the biological pump by negatively impacting calcifying organisms such as coccolithophores, foraminiferans and pteropods. Climate change may also affect the biological pump in the future by warming and stratifying the surface ocean, thus reducing the supply of limiting nutrients to surface waters.

A 2008 study found that CO2 could potentially increase primary productivity, particularly in eel grasses in coastal and estuarine habitats.

In January 2009, the Monterey Bay Aquarium Research Institute and the National Oceanic and Atmospheric Administration announced a joint study to determine whether the ocean off the California coast was serving as a carbon source or a carbon sink. Principal instrumentation for the study will be self-contained CO2 monitors placed on buoys in the ocean. They will measure the partial pressure of CO2 in the ocean and the atmosphere just above the water surface.

In February 2009, Science Daily reported that the Southern Indian Ocean is becoming less effective at absorbing carbon dioxide due to changes to the region's climate which include higher wind speeds.

On longer timescales, oceans may be both sources and sinks – during ice ages CO2 levels decrease to ≈180 ppmv, and much of this is believed to be stored in the oceans. As ice ages end, CO2 is released from the oceans and CO2 levels during previous interglacials have been around ≈280 ppmv. This role as a sink for CO2 is driven by two processes, the solubility pump and the biological pump. The former is primarily a function of differential CO2 solubility in seawater and the thermohaline circulation, while the latter is the sum of a series of biological processes that transport carbon (in organic and inorganic forms) from the surface euphotic zone to the ocean's interior. A small fraction of the organic carbon transported by the biological pump to the seafloor is buried in anoxic conditions under sediments and ultimately forms fossil fuels such as oil and natural gas. 

At the end of glacials with sea level rapidly rising, corals tend to grow slower due to increased ocean temperature as seen on the Showtime series "Years of Living Dangerously". The calcium carbonate from which coral skeletons are made is just over 60% carbon dioxide. If we postulate that coral reefs were eroded down to the glacial sea level, then coral reefs have grown 120m upward since the end of the recent glacial.

Enhancing natural sequestration

Forests

Forests can be carbon stores, and they are carbon dioxide sinks when they are increasing in density or area. In Canada's boreal forests as much as 80% of the total carbon is stored in the soils as dead organic matter. A 40-year study of African, Asian, and South American tropical forests by the University of Leeds, shows tropical forests absorb about 18% of all carbon dioxide added by fossil fuels. Truly mature tropical forests, by definition, grow rapidly as each tree produces at least 10 new trees each year. Based on studies of the FAO and UNEP it has been estimated that Asian forests absorb about 5 tonnes of carbon dioxide per hectare each year. The global cooling effect of carbon sequestration by forests is partially counterbalanced in that reforestation can decrease the reflection of sunlight (albedo). Mid-to-high latitude forests have a much lower albedo during snow seasons than flat ground, thus contributing to warming. Modeling that compares the effects of albedo differences between forests and grasslands suggests that expanding the land area of forests in temperate zones offers only a temporary cooling benefit.

In the United States in 2004 (the most recent year for which EPA statistics are available), forests sequestered 10.6% (637 MegaTonnes) of the carbon dioxide released in the United States by the combustion of fossil fuels (coal, oil and natural gas; 5657 MegaTonnes). Urban trees sequestered another 1.5% (88 MegaTonnes). To further reduce U.S. carbon dioxide emissions by 7%, as stipulated by the Kyoto Protocol, would require the planting of "an area the size of Texas [8% of the area of Brazil] every 30 years". Carbon offset programs are planting millions of fast-growing trees per year to reforest tropical lands, for as little as $0.10 per tree; over their typical 40-year lifetime, one million of these trees will fix 1 to 2 MegaTonnes of carbon dioxide. In Canada, reducing timber harvesting would have very little impact on carbon dioxide emissions because of the combination of harvest and stored carbon in manufactured wood products along with the regrowth of the harvested forests. Additionally, the amount of carbon released from harvesting is small compared to the amount of carbon lost each year to forest fires and other natural disturbances.

The Intergovernmental Panel on Climate Change concluded that "a sustainable forest management strategy aimed at maintaining or increasing forest carbon stocks, while producing an annual sustained yield of timber fiber or energy from the forest, will generate the largest sustained mitigation benefit". Sustainable management practices keep forests growing at a higher rate over a potentially longer period of time, thus providing net sequestration benefits in addition to those of unmanaged forests.

Life expectancy of forests varies throughout the world, influenced by tree species, site conditions and natural disturbance patterns. In some forests carbon may be stored for centuries, while in other forests carbon is released with frequent stand replacing fires. Forests that are harvested prior to stand replacing events allow for the retention of carbon in manufactured forest products such as lumber. However, only a portion of the carbon removed from logged forests ends up as durable goods and buildings. The remainder ends up as sawmill by-products such as pulp, paper and pallets, which often end with incineration (resulting in carbon release into the atmosphere) at the end of their lifecycle. For instance, of the 1,692 MegaTonnes of carbon harvested from forests in Oregon and Washington (U.S) from 1900 to 1992, only 23% is in long-term storage in forest products.

Oceans

One way to increase the carbon sequestration efficiency of the oceans is to add micrometre-sized iron particles in the form of either hematite (iron oxide) or melanterite (iron sulfate) to certain regions of the ocean. This has the effect of stimulating growth of plankton. Iron is an important nutrient for phytoplankton, usually made available via upwelling along the continental shelves, inflows from rivers and streams, as well as deposition of dust suspended in the atmosphere. Natural sources of ocean iron have been declining in recent decades, contributing to an overall decline in ocean productivity (NASA, 2003). Yet in the presence of iron nutrients plankton populations quickly grow, or 'bloom', expanding the base of biomass productivity throughout the region and removing significant quantities of CO2 from the atmosphere via photosynthesis. A test in 2002 in the Southern Ocean around Antarctica suggests that between 10,000 and 100,000 carbon atoms are sunk for each iron atom added to the water. More recent work in Germany (2005) suggests that any biomass carbon in the oceans, whether exported to depth or recycled in the euphotic zone, represents long-term storage of carbon. This means that application of iron nutrients in select parts of the oceans, at appropriate scales, could have the combined effect of restoring ocean productivity while at the same time mitigating the effects of human caused emissions of carbon dioxide to the atmosphere.

Because the effect of periodic small scale phytoplankton blooms on ocean ecosystems is unclear, more studies would be helpful. Phytoplankton have a complex effect on cloud formation via the release of substances such as dimethyl sulfide (DMS) that are converted to sulfate aerosols in the atmosphere, providing cloud condensation nuclei, or CCN. But the effect of small scale plankton blooms on overall DMS production is unknown. 

Other nutrients such as nitrates, phosphates, and silica as well as iron may cause ocean fertilization. There has been some speculation that using pulses of fertilization (around 20 days in length) may be more effective at getting carbon to ocean floor than sustained fertilization.

There is some controversy over seeding the oceans with iron however, due to the potential for increased toxic phytoplankton growth (e.g. "red tide"), declining water quality due to overgrowth, and increasing anoxia in areas harming other sea-life such as zooplankton, fish, coral, etc.

Soils

Since the 1850s, a large proportion of the world's grasslands have been tilled and converted to croplands, allowing the rapid oxidation of large quantities of soil organic carbon. However, in the United States in 2004 (the most recent year for which EPA statistics are available), agricultural soils including pasture land sequestered 0.8% (46 teragrams) as much carbon as was released in the United States by the combustion of fossil fuels (5988 teragrams). The annual amount of this sequestration has been gradually increasing since 1998.

Methods that significantly enhance carbon sequestration in soil include no-till farming, residue mulching, cover cropping, and crop rotation, all of which are more widely used in organic farming than in conventional farming. Because only 5% of US farmland currently uses no-till and residue mulching, there is a large potential for carbon sequestration. Conversion to pastureland, particularly with good management of grazing, can sequester even more carbon in the soil.

Terra preta, an anthropogenic, high-carbon soil, is also being investigated as a sequestration mechanism. By pyrolysing biomass, about half of its carbon can be reduced to charcoal, which can persist in the soil for centuries, and makes a useful soil amendment, especially in tropical soils (biochar or agrichar).

Savanna

Controlled burns on far north Australian savannas can result in an overall carbon sink. One working example is the West Arnhem Fire Management Agreement, started to bring "strategic fire management across 28,000 km² of Western Arnhem Land". Deliberately starting controlled burns early in the dry season results in a mosaic of burnt and unburnt country which reduces the area of burning compared with stronger, late dry season fires. In the early dry season there are higher moisture levels, cooler temperatures, and lighter wind than later in the dry season; fires tend to go out overnight. Early controlled burns also results in a smaller proportion of the grass and tree biomass being burnt. Emission reductions of 256,000 tonnes of CO2 have been made as of 2007.

Artificial sequestration

For carbon to be sequestered artificially (i.e. not using the natural processes of the carbon cycle) it must first be captured, or it must be significantly delayed or prevented from being re-released into the atmosphere (by combustion, decay, etc.) from an existing carbon-rich material, by being incorporated into an enduring usage (such as in construction). Thereafter it can be passively stored or remain productively utilized over time in a variety of ways. 

For example, upon harvesting, wood (as a carbon-rich material) can be immediately burned or otherwise serve as a fuel, returning its carbon to the atmosphere, or it can be incorporated into construction or a range of other durable products, thus sequestering its carbon over years or even centuries.

Indeed, a very carefully designed and durable, energy-efficient and energy-capturing building has the potential to sequester (in its carbon-rich construction materials), as much as or more carbon than was released by the acquisition and incorporation of all its materials and than will be released by building-function "energy-imports" during the structure's (potentially multi-century) existence. Such a structure might be termed "carbon neutral" or even "carbon negative". Building construction and operation (electricity usage, heating, etc.) are estimated to contribute nearly half of the annual human-caused carbon additions to the atmosphere.

Natural-gas purification plants often already have to remove carbon dioxide, either to avoid dry ice clogging gas tankers or to prevent carbon-dioxide concentrations exceeding the 3% maximum permitted on the natural-gas distribution grid.

Beyond this, one of the most likely early applications of carbon capture is the capture of carbon dioxide from flue gases at power stations (in the case of coal, this coal pollution mitigation is sometimes known as "clean coal"). A typical new 1000 MW coal-fired power station produces around 6 million tons of carbon dioxide annually. Adding carbon capture to existing plants can add significantly to the costs of energy production; scrubbing costs aside, a 1000 MW coal plant will require the storage of about 50 million barrels (7,900,000 m3) of carbon dioxide a year. However, scrubbing is relatively affordable when added to new plants based on coal gasification technology, where it is estimated to raise energy costs for households in the United States using only coal-fired electricity sources from 10 cents per kW·h to 12 cents.

Carbon capture

Currently, capture of carbon dioxide is performed on a large scale by absorption of carbon dioxide onto various amine-based solvents. Other techniques are currently being investigated, such as pressure swing adsorption, temperature swing adsorption, gas separation membranes, cryogenics and flue capture

In coal-fired power stations, the main alternatives to retrofitting amine-based absorbers to existing power stations are two new technologies: coal gasification combined-cycle and oxy-fuel combustion. Gasification first produces a "syngas" primarily of hydrogen and carbon monoxide, which is burned, with carbon dioxide filtered from the flue gas. Oxy-fuel combustion burns the coal in oxygen instead of air, producing only carbon dioxide and water vapour, which are relatively easily separated. Some of the combustion products must be returned to the combustion chamber, either before or after separation, otherwise the temperatures would be too high for the turbine.

Another long-term option is carbon capture directly from the air using hydroxides. The air would literally be scrubbed of its CO2 content. This idea offers an alternative to non-carbon-based fuels for the transportation sector.

Examples of carbon sequestration at coal plants include converting carbon from smokestacks into baking soda, and algae-based carbon capture, circumventing storage by converting algae into fuel or feed.

Oceans

Another proposed form of carbon sequestration in the ocean is direct injection. In this method, carbon dioxide is pumped directly into the water at depth, and expected to form "lakes" of liquid CO2 at the bottom. Experiments carried out in moderate to deep waters (350–3600 m) indicate that the liquid CO2 reacts to form solid CO2 clathrate hydrates, which gradually dissolve in the surrounding waters.

This method, too, has potentially dangerous environmental consequences. The carbon dioxide does react with the water to form carbonic acid, H2CO3; however, most (as much as 99%) remains as dissolved molecular CO2. The equilibrium would no doubt be quite different under the high pressure conditions in the deep ocean. In addition, if deep-sea bacterial methanogens that reduce carbon dioxide were to encounter the carbon dioxide sinks, levels of methane gas may increase, leading to the generation of an even worse greenhouse gas. The resulting environmental effects on benthic life forms of the bathypelagic, abyssopelagic and hadopelagic zones are unknown. Even though life appears to be rather sparse in the deep ocean basins, energy and chemical effects in these deep basins could have far-reaching implications. Much more work is needed here to define the extent of the potential problems. 

Carbon storage in or under oceans may not be compatible with the Convention on the Prevention of Marine Pollution by Dumping of Wastes and Other Matter.

An additional method of long-term ocean-based sequestration is to gather crop residue such as corn stalks or excess hay into large weighted bales of biomass and deposit it in the alluvial fan areas of the deep ocean basin. Dropping these residues in alluvial fans would cause the residues to be quickly buried in silt on the sea floor, sequestering the biomass for very long time spans. Alluvial fans exist in all of the world's oceans and seas where river deltas fall off the edge of the continental shelf such as the Mississippi alluvial fan in the gulf of Mexico and the Nile alluvial fan in the Mediterranean Sea. A downside, however, would be an increase in aerobic bacteria growth due to the introduction of biomass, leading to more competition for oxygen resources in the deep sea, similar to the oxygen minimum zone.

Geological sequestration

The method of geo-sequestration or geological storage involves injecting carbon dioxide directly into underground geological formations. Declining oil fields, saline aquifers, and unminable coal seams have been suggested as storage sites. Caverns and old mines that are commonly used to store natural gas are not considered, because of a lack of storage safety.

CO2 has been injected into declining oil fields for more than 40 years, to increase oil recovery. This option is attractive because the storage costs are offset by the sale of additional oil that is recovered. Typically, 10–15% additional recovery of the original oil in place is possible. Further benefits are the existing infrastructure and the geophysical and geological information about the oil field that is available from the oil exploration. Another benefit of injecting CO2 into Oil fields is that CO2 is soluble in oil. Dissolving CO2 in oil lowers the viscosity of the oil and reduces its interfacial tension which increases the oils mobility. All oil fields have a geological barrier preventing upward migration of oil. As most oil and gas has been in place for millions to tens of millions of years, depleted oil and gas reservoirs can contain carbon dioxide for millennia. Identified possible problems are the many 'leak' opportunities provided by old oil wells, the need for high injection pressures and acidification which can damage the geological barrier. Other disadvantages of old oil fields are their limited geographic distribution and depths, which require high injection pressures for sequestration. Below a depth of about 1000 m, carbon dioxide is injected as a supercritical fluid, a material with the density of a liquid, but the viscosity and diffusivity of a gas. Unminable coal seams can be used to store CO2, because CO2 absorbs to the coal surface, ensuring safe long-term storage. In the process it releases methane that was previously adsorbed to the coal surface and that may be recovered. Again the sale of the methane can be used to offset the cost of the CO2 storage. Release or burning of methane would of course at least partially offset the obtained sequestration result – except when the gas is allowed to escape into the atmosphere in significant quantities: methane has a higher global warming potential than CO2

Saline aquifers contain highly mineralized brines and have so far been considered of no benefit to humans except in a few cases where they have been used for the storage of chemical waste. Their advantages include a large potential storage volume and relatively common occurrence reducing the distance over which CO2 has to be transported. The major disadvantage of saline aquifers is that relatively little is known about them compared to oil fields. Another disadvantage of saline aquifers is that as the salinity of the water increases, less CO2 can be dissolved into aqueous solution. To keep the cost of storage acceptable the geophysical exploration may be limited, resulting in larger uncertainty about the structure of a given aquifer. Unlike storage in oil fields or coal beds, no side product will offset the storage cost. Leakage of CO2 back into the atmosphere may be a problem in saline-aquifer storage. However, current research shows that several trapping mechanisms immobilize the CO2 underground, reducing the risk of leakage.

A major research project examining the geological sequestration of carbon dioxide is currently being performed at an oil field at Weyburn in south-eastern Saskatchewan. In the North Sea, Norway's Equinor natural-gas platform Sleipner strips carbon dioxide out of the natural gas with amine solvents and disposes of this carbon dioxide by geological sequestration. Sleipner reduces emissions of carbon dioxide by approximately one million tonnes a year. The cost of geological sequestration is minor relative to the overall running costs. As of April 2005, BP is considering a trial of large-scale sequestration of carbon dioxide stripped from power plant emissions in the Miller oilfield as its reserves are depleted. 

In October 2007, the Bureau of Economic Geology at The University of Texas at Austin received a 10-year, $38 million subcontract to conduct the first intensively monitored, long-term project in the United States studying the feasibility of injecting a large volume of CO2 for underground storage. The project is a research program of the Southeast Regional Carbon Sequestration Partnership (SECARB), funded by the National Energy Technology Laboratory of the U.S. Department of Energy (DOE). The SECARB partnership will demonstrate CO2 injection rate and storage capacity in the Tuscaloosa-Woodbine geologic system that stretches from Texas to Florida. Beginning in fall 2007, the project will inject CO2 at the rate of one million tons per year, for up to 1.5 years, into brine up to 10,000 feet (3,000 m) below the land surface near the Cranfield oil field about 15 miles (24 km) east of Natchez, Mississippi. Experimental equipment will measure the ability of the subsurface to accept and retain CO2.

Mineral sequestration

Mineral sequestration aims to trap carbon in the form of solid carbonate salts. This process occurs slowly in nature and is responsible for the deposition and accumulation of limestone over geologic time. Carbonic acid in groundwater slowly reacts with complex silicates to dissolve calcium, magnesium, alkalis and silica and leave a residue of clay minerals. The dissolved calcium and magnesium react with bicarbonate to precipitate calcium and magnesium carbonates, a process that organisms use to make shells. When the organisms die, their shells are deposited as sediment and eventually turn into limestone. Limestones have accumulated over billions of years of geologic time and contain much of Earth's carbon. Ongoing research aims to speed up similar reactions involving alkali carbonates.

Several serpentinite deposits are being investigated as potentially large scale CO2 storage sinks such as those found in NSW, Australia, where the first mineral carbonation pilot plant project is underway. Beneficial re-use of magnesium carbonate from this process could provide feedstock for new products developed for the built environment and agriculture without returning the carbon into the atmosphere and so acting as a carbon sink.

One proposed reaction is that of the olivine-rich rock dunite, or its hydrated equivalent serpentinite with carbon dioxide to form the carbonate mineral magnesite, plus silica and iron oxide (magnetite). 

Serpentinite sequestration is favored because of the non-toxic and stable nature of magnesium carbonate. The ideal reactions involve the magnesium endmember components of the olivine (reaction 1) or serpentine (reaction 2), the latter derived from earlier olivine by hydration and silicification (reaction 3). The presence of iron in the olivine or serpentine reduces the efficiency of sequestration, since the iron components of these minerals break down to iron oxide and silica (reaction 4).

Serpentinite reactions

Mg-olivineMg2SiO4 + carbon dioxide2CO2 magnesite 2MgCO3 + silica SiO2 + water H2O
(Reaction 1)
Serpentine Mg3[Si2O5(OH)4] + carbon dioxide3CO2 magnesite 3MgCO3 + silica 2SiO2 + water 2H2O
(Reaction 2)
Mg-olivine3Mg2SiO4 + silica 2SiO2 + water 4H2O serpentine 2Mg3[Si2O5(OH)4]
(Reaction 3)
Fe-olivine3Fe2SiO4 + water 2H2O magnetite 2Fe3O4 + silica 3SiO2 + hydrogen 2H2
(Reaction 4)

Zeolitic imidazolate frameworks

Zeolitic imidazolate frameworks is a metal-organic framework carbon dioxide sink which could be used to keep industrial emissions of carbon dioxide out of the atmosphere.

Trends in sink performance

One study in 2009 found that the fraction of fossil-fuel emissions absorbed by the oceans may have declined by up to 10% since 2000, indicating oceanic sequestration may be sublinear. Another 2009 study found that the fraction of CO2 absorbed by terrestrial ecosystems and the oceans has not changed since 1850, indicating undiminished capacity.

Iron fertilization (updated)

From Wikipedia, the free encyclopedia

An oceanic phytoplankton bloom in the South Atlantic Ocean, off the coast of Argentina covering an area about 300 by 50 miles (500 by 80 km)
 
Iron fertilization is the intentional introduction of iron to iron-poor areas of the ocean surface to stimulate phytoplankton production. This is intended to enhance biological productivity and/or accelerate carbon dioxide (CO2) sequestration from the atmosphere. 

Iron is a trace element necessary for photosynthesis in plants. It is highly insoluble in sea water and in a variety of locations is the limiting nutrient for phytoplankton growth. Large algal blooms can be created by supplying iron to iron-deficient ocean waters. These blooms can nourish other organisms.
Multiple ocean labs, scientists and businesses have explored fertilization. Beginning in 1993, thirteen research teams completed ocean trials demonstrating that phytoplankton blooms can be stimulated by iron augmentation. Controversy remains over the effectiveness of atmospheric CO
2
sequestration and ecological effects. The most recent open ocean trials of ocean iron fertilization were in 2009 (January to March) in the South Atlantic by project Lohafex, and in July 2012 in the North Pacific off the coast of British Columbia, Canada, by the Haida Salmon Restoration Corporation (HSRC).

Fertilization occurs naturally when upwellings bring nutrient-rich water to the surface, as occurs when ocean currents meet an ocean bank or a sea mount. This form of fertilization produces the world's largest marine habitats. Fertilization can also occur when weather carries wind blown dust long distances over the ocean, or iron-rich minerals are carried into the ocean by glaciers, rivers and icebergs.

History

Consideration of iron's importance to phytoplankton growth and photosynthesis dates to the 1930s when English biologist Joseph Hart speculated that the ocean's great "desolate zones" (areas apparently rich in nutrients, but lacking in plankton activity or other sea life) might be iron-deficient. Little scientific discussion was recorded until the 1980s, when oceanographer John Martin renewed controversy on the topic with his marine water nutrient analyses. His studies supported Hart's hypothesis. These "desolate" regions came to be called "High Nutrient, Low Chlorophyll" (HNLC) zones.

John Gribbin was the first scientist to publicly suggest that climate change could be reduced by adding large amounts of soluble iron to the oceans. Martin's 1988 quip four months later at Woods Hole Oceanographic Institution, "Give me a half a tanker of iron and I will give you another ice age", drove a decade of research. 

The findings suggested that iron deficiency was limiting ocean productivity and offered an approach to mitigating climate change as well. Perhaps the most dramatic support for Martin's hypothesis came with the 1991 eruption of Mount Pinatubo in the Philippines. Environmental scientist Andrew Watson analyzed global data from that eruption and calculated that it deposited approximately 40,000 tons of iron dust into oceans worldwide. This single fertilization event preceded an easily observed global decline in atmospheric CO
2
and a parallel pulsed increase in oxygen levels.

The parties to the London Dumping Convention adopted a non-binding resolution in 2008 on fertilization (labeled LC-LP.1(2008)). The resolution states that ocean fertilization activities, other than legitimate scientific research, "should be considered as contrary to the aims of the Convention and Protocol and do not currently qualify for any exemption from the definition of dumping". An Assessment Framework for Scientific Research Involving Ocean Fertilization, regulating the dumping of wastes at sea (labeled LC-LP.2(2010)) was adopted by the Contracting Parties to the Convention in October 2010 (LC 32/LP 5).

Experiments

Martin hypothesized that increasing phytoplankton photosynthesis could slow or even reverse global warming by sequestering CO
2
in the sea. He died shortly thereafter during preparations for Ironex I, a proof of concept research voyage, which was successfully carried out near the Galapagos Islands in 1993 by his colleagues at Moss Landing Marine Laboratories. Thereafter 12 international ocean studies examined the phenomenon:
  • Ironex II, 1995
  • SOIREE (Southern Ocean Iron Release Experiment), 1999
  • EisenEx (Iron Experiment), 2000
  • SEEDS (Subarctic Pacific Iron Experiment for Ecosystem Dynamics Study), 2001
  • SOFeX (Southern Ocean Iron Experiments - North & South), 2002
  • SERIES (Subarctic Ecosystem Response to Iron Enrichment Study), 2002
  • SEEDS-II, 2004
  • EIFEX (European Iron Fertilization Experiment), A successful experiment conducted in 2004 in a mesoscale ocean eddy in the South Atlantic resulted in a bloom of diatoms, a large portion of which died and sank to the ocean floor when fertilization ended. In contrast to the LOHAFEX experiment, also conducted in a mesoscale eddy, the ocean in the selected area contained enough dissolved silicon for the diatoms to flourish.
  • CROZEX (CROZet natural iron bloom and Export experiment), 2005.
  • A pilot project planned by Planktos, a U.S. company, was cancelled in 2008 for lack of funding.[26] The company blamed environmental organizations for the failure.
  • LOHAFEX (Indian and German Iron Fertilization Experiment), 2009. Despite widespread opposition to LOHAFEX, on 26 January 2009 the German Federal Ministry of Education and Research (BMBF) gave clearance for this fertilization experiment to commence. The experiment was carried out in waters low in silicic acid which was likely to affect sequestration efficacy. A 900 square kilometers (350 sq mi) portion of the southwest Atlantic was fertilized with iron sulfate. A large phytoplankton bloom was triggered. This bloom did not contain diatoms because the site was depleted in silicic acid, an essential nutrient for diatom growth. In the absence of diatoms, a relatively small amount of carbon was sequestered, because other phytoplankton are vulnerable to predation by zooplankton and do not sink rapidly upon death. These poor sequestration results led to suggestions that fertilization is not an effective carbon mitigation strategy in general. However, prior ocean fertilization experiments in high silica locations revealed much higher carbon sequestration rates because of diatom growth. LOHAFEX confirmed sequestration potential depends strongly upon appropriate siting.
  • Haida Salmon Restoration Corporation (HSRC), 2012 - funded by the Old Massett Haida band and managed by Russ George - dumped 100 tonnes of iron sulphate into the Pacific into an eddy 200 nautical miles west of the islands of Haida Gwaii. This resulted in increased algae growth over 10,000 square miles. Critics alleged George's actions violated the United Nations Convention on Biological Diversity (CBD) and the London convention on the dumping of wastes at sea which prohibited such geoengineering experiments. On 15 July 2014, the resulting scientific data was made available to the public.

Science

The maximum possible result from iron fertilization, assuming the most favourable conditions and disregarding practical considerations, is 0.29W/m2 of globally averaged negative forcing, offsetting 1/6 of current levels of anthropogenic CO
2
emissions. These benefits have been called into question by research suggesting that fertilization with iron may deplete other essential nutrients in the seawater causing reduced phytoplankton growth elsewhere — in other words, that iron concentrations limit growth more locally than they do on a global scale.

Role of iron

About 70% of the world's surface is covered in oceans. The part of these where light can penetrate is inhabited by algae (and other marine life). In some oceans, algae growth and reproduction is limited by the amount of iron. Iron is a vital micronutrient for phytoplankton growth and photosynthesis that has historically been delivered to the pelagic sea by dust storms from arid lands. This Aeolian dust contains 3–5% iron and its deposition has fallen nearly 25% in recent decades.

The Redfield ratio describes the relative atomic concentrations of critical nutrients in plankton biomass and is conventionally written "106 C: 16 N: 1 P." This expresses the fact that one atom of phosphorus and 16 of nitrogen are required to "fix" 106 carbon atoms (or 106 molecules of CO
2
). Research expanded this constant to "106 C: 16 N: 1 P: .001 Fe" signifying that in iron deficient conditions each atom of iron can fix 106,000 atoms of carbon, or on a mass basis, each kilogram of iron can fix 83,000 kg of carbon dioxide. The 2004 EIFEX experiment reported a carbon dioxide to iron export ratio of nearly 3000 to 1. The atomic ratio would be approximately: "3000 C: 58,000 N: 3,600 P: 1 Fe".

Therefore, small amounts of iron (measured by mass parts per trillion) in HNLC zones can trigger large phytoplankton blooms on the order of 100,000 kilograms of plankton per kilogram of iron . The size of the iron particles is critical. Particles of 0.5–1 micrometer or less seem to be ideal both in terms of sink rate and bioavailability. Particles this small are easier for cyanobacteria and other phytoplankton to incorporate and the churning of surface waters keeps them in the euphotic or sunlit biologically active depths without sinking for long periods. 

Atmospheric deposition is an important iron source. Satellite images and data (such as PODLER, MODIS, MSIR) combined with back-trajectory analyses identified natural sources of iron–containing dust. Iron-bearing dusts erode from soil and are transported by wind. Although most dust sources are situated in the Northern Hemisphere, the largest dust sources are located in northern and southern Africa, North America, central Asia and Australia.

Heterogeneous chemical reactions in the atmosphere modify the speciation of iron in dust and may affect the bioavailability of deposited iron. The soluble form of iron is much higher in aerosols than in soil (~0.5%). Several photo-chemical interactions with dissolved organic acids increase iron solubility in aerosols. Among these, photochemical reduction of oxalate-bound Fe(III) from iron-containing minerals is important. The organic ligand forms a surface complex with the Fe (III) metal center of an iron-containing mineral (such as hematite or goethite). On exposure to solar radiation the complex is converted to an excited energy state in which the ligand, acting as bridge and an electron donor, supplies an electron to Fe(III) producing soluble Fe(II). Consistent with this, studies documented a distinct diel variation in the concentrations of Fe (II) and Fe(III) in which daytime Fe(II) concentrations exceed those of Fe(III).

Volcanic ash as an iron source

Volcanic ash has a significant role in supplying the world’s oceans with iron. Volcanic ash is composed of glass shards, pyrogenic minerals, lithic particles and other forms of ash that release nutrients at different rates depending on structure and the type of reaction caused by contact with water.

Increases of biogenic opal in the sediment record are associated with increased iron accumulation over the last million years. In August 2008, an eruption in the Aleutian Islands deposited ash in the nutrient-limited Northeast Pacific. This ash and iron deposition resulted in one of the largest phytoplankton blooms observed in the subarctic.

Carbon sequestration

Air-sea exchange of CO
2

Previous instances of biological carbon sequestration triggered major climatic changes, lowering the temperature of the planet, such as the Azolla event. Plankton that generate calcium or silicon carbonate skeletons, such as diatoms, coccolithophores and foraminifera, account for most direct sequestration. When these organisms die their carbonate skeletons sink relatively quickly and form a major component of the carbon-rich deep sea precipitation known as marine snow. Marine snow also includes fish fecal pellets and other organic detritus, and steadily falls thousands of meters below active plankton blooms.

Of the carbon-rich biomass generated by plankton blooms, half (or more) is generally consumed by grazing organisms (zooplankton, krill, small fish, etc.) but 20 to 30% sinks below 200 meters (660 ft) into the colder water strata below the thermocline. Much of this fixed carbon continues into the abyss, but a substantial percentage is redissolved and remineralized. At this depth, however, this carbon is now suspended in deep currents and effectively isolated from the atmosphere for centuries. (The surface to benthic cycling time for the ocean is approximately 4,000 years.)

Analysis and quantification

Evaluation of the biological effects and verification of the amount of carbon actually sequestered by any particular bloom involves a variety of measurements, combining ship-borne and remote sampling, submarine filtration traps, tracking buoy spectroscopy and satellite telemetry. Unpredictable ocean currents can remove experimental iron patches from the pelagic zone, invalidating the experiment. 

The potential of fertilization to tackle global warming is illustrated by the following figures. If phytoplankton converted all the nitrate and phosphate present in the surface mixed layer across the entire Antarctic circumpolar current into organic carbon, the resulting carbon dioxide deficit could be compensated by uptake from the atmosphere amounting to about 0.8 to 1.4 gigatonnes of carbon per year. This quantity is comparable in magnitude to annual anthropogenic fossil fuels combustion of approximately 6 gigatonnes. The Antarctic circumpolar current region is one of several in which iron fertilization could be conducted—the Galapagos islands area another potentially suitable location.

Dimethyl sulfide and clouds

Schematic diagram of the CLAW hypothesis (Charlson et al., 1987)
 
Some species of plankton produce dimethyl sulfide (DMS), a portion of which enters the atmosphere where it is oxidized by hydroxyl radicals (OH), atomic chlorine (Cl) and bromine monoxide (BrO) to form sulfate particles, and potentially increase cloud cover. This may increase the albedo of the planet and so cause cooling—this proposed mechanism is central to the CLAW hypothesis. This is one of the examples used by James Lovelock to illustrate his Gaia hypothesis.

During SOFeX, DMS concentrations increased by a factor of four inside the fertilized patch. Widescale iron fertilization of the Southern Ocean could lead to significant sulfur-triggered cooling in addition to that due to the CO
2
uptake and that due to the ocean's albedo increase, however the amount of cooling by this particular effect is very uncertain.

Financial opportunities

Beginning with the Kyoto Protocol, several countries and the European Union established carbon offset markets which trade certified emission reduction credits (CERs) and other types of carbon credit instruments. In 2007 CERs sold for approximately €15–20/ton COe
2
. Iron fertilization is relatively inexpensive compared to scrubbing, direct injection and other industrial approaches, and can theoretically sequester for less than €5/ton CO
2
, creating a substantial return. In August, 2010, Russia established a minimum price of €10/ton for offsets to reduce uncertainty for offset providers. Scientists have reported a 6–12% decline in global plankton production since 1980. A full-scale plankton restoration program could regenerate approximately 3–5 billion tons of sequestration capacity worth €50-100 billion in carbon offset value. However, a 2013 study indicates the cost versus benefits of iron fertilization puts it behind carbon capture and storage and carbon taxes. 

Ocean privatization could additionally create the possibility of profits through increased fish stocks.

Sequestration definitions

Carbon is not considered "sequestered" unless it settles to the ocean floor where it may remain for millions of years. Most of the carbon that sinks beneath plankton blooms is dissolved and remineralized well above the seafloor and eventually (days to centuries) returns to the atmosphere, negating the original benefit.

Advocates argue that modern climate scientists and Kyoto Protocol policy makers define sequestration over much shorter time frames. For example, trees and grasslands are viewed as important carbon sinks. Forest biomass sequesters carbon for decades, but carbon that sinks below the marine thermocline (100–200 meters) is removed from the atmosphere for hundreds of years, whether it is remineralized or not. Since deep ocean currents take so long to resurface, their carbon content is effectively sequestered by the criterion in use today.

Debate

While ocean iron fertilization could represent a potent means to slow global warming current debate raises a variety of concerns.

Precautionary principle

The precautionary principle (PP) states that if an action or policy has a suspected risk of causing harm, in the absence of scientific consensus, the burden of proof that it is not harmful falls on those who would take the action. The side effects of large-scale iron fertilization are not yet quantified. Creating phytoplankton blooms in iron-poor areas is like watering the desert: in effect it changes one type of ecosystem into another. The argument can be applied in reverse, by considering emissions to be the action and remediation an attempt to partially offset the damage.

Fertilization advocates respond that algal blooms have occurred naturally for millions of years with no observed ill effects. The Azolla event occurred around 49 million years ago and accomplished what fertilization is intended to achieve (but on a larger scale).

20th-century phytoplankton decline

While advocates argue that iron addition would help to reverse a supposed decline in phytoplankton, this decline may not be real. One study reported a decline in ocean productivity comparing the 1979–1986 and 1997–2000 periods, but two others found increases in phytoplankton. A 2010 study of oceanic transparency since 1899 and in situ chlorophyll measurements concluded that oceanic phytoplankton medians decreased by ~1% per year over that century.

Ecological issues

Algal blooms

A "red tide" off the coast of La Jolla, San Diego, California.
 
Critics are concerned that fertilization will create harmful algal blooms (HAB). The species that respond most strongly to fertilization vary by location and other factors and could possibly include species that cause red tides and other toxic phenomena. These factors affect only near-shore waters, although they show that increased phytoplankton populations are not universally benign.

Most species of phytoplankton are harmless or beneficial, given that they constitute the base of the marine food chain. Fertilization increases phytoplankton only in the open oceans (far from shore) where iron deficiency is substantial. Most coastal waters are replete with iron and adding more has no useful effect.

A 2010 study of iron fertilization in an oceanic high-nitrate, low-chlorophyll environment, however, found that fertilized Pseudo-nitzschia diatom spp., which are generally nontoxic in the open ocean, began producing toxic levels of domoic acid. Even short-lived blooms containing such toxins could have detrimental effects on marine food webs.

Deep water oxygen levels

When organic bloom detritus sinks into the abyss, a significant fraction is devoured by bacteria, other microorganisms and deep sea animals that also consume oxygen. A large enough bloom could render certain regions beneath it anoxic and threaten other benthic species. However this would entail the removal of oxygen from thousands of cubic km of benthic water beneath a bloom and so seems unlikely. 

The largest plankton replenishment projects under consideration are less than 10% the size of most natural wind-fed blooms. In the wake of major dust storms, natural blooms have been studied since the beginning of the 20th century and no such deep water dieoffs have been reported.

Ecosystem effects

Depending upon the composition and timing of delivery, iron infusions could preferentially favor certain species and alter surface ecosystems to unknown effect. Population explosions of jellyfish, that disturb the food chain impacting whale populations or fisheries is unlikely as iron fertilization experiments that are conducted in high-nutrient, low-chlorophyll waters favor the growth of larger diatoms over small flagellates. This has been shown to lead to increased abundance of fish and whales over jellyfish. A 2010 study showed that iron enrichment stimulates toxic diatom production in high-nitrate, low-chlorophyll areas which, the authors argue, raises "serious concerns over the net benefit and sustainability of large-scale iron fertilizations". Nitrogen released by cetaceans and iron chelate are a significant benefit to the marine food chain in addition to sequestering carbon for long periods of time.

However, CO
2
-induced surface water heating and rising carbonic acidity are shifting population distributions for phytoplankton, zooplankton and many other populations. Optimal fertilization could potentially help restore lost/threatened ecosystem services.

Ocean Acidification

A 2009 study tested the potential of iron fertilization to reduce both atmospheric CO2 and ocean acidity using a global ocean carbon model. The study showed that an optimized regime of micronutrient introduction would reduce the predicted increase of atmospheric CO2 by more than 20 percent. Unfortunately, the impact on ocean acidification would be minimal due to the higher proportions of carbon dioxide taken into the oceans.

Classical radicalism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cla...