Search This Blog

Thursday, May 16, 2019

Sustainable fishery

From Wikipedia, the free encyclopedia

SeaWiFS map showing the levels of primary production in the world's oceans
 
Primary production required (PPR) to sustain global marine fisheries landings expressed as percentage of local primary production (PP).Estimates of PPR, PP and PPR/PP computed per 0.5° latitude/longitude ocean cells. PPR estimates based on the [www.seaaroundus.org Sea Around Us] catch database and PP estimates derived from SeaWiFS's global ocean colour satellite data. The maps represent total annual landings for 1950 (top) and 2005 (bottom). Note that PP estimates are static and derived from the synoptic observation for 1998.
 
A conventional idea of a sustainable fishery is that it is one that is harvested at a sustainable rate, where the fish population does not decline over time because of fishing practices. Sustainability in fisheries combines theoretical disciplines, such as the population dynamics of fisheries, with practical strategies, such as avoiding overfishing through techniques such as individual fishing quotas, curtailing destructive and illegal fishing practices by lobbying for appropriate law and policy, setting up protected areas, restoring collapsed fisheries, incorporating all externalities involved in harvesting marine ecosystems into fishery economics, educating stakeholders and the wider public, and developing independent certification programs. 

Some primary concerns around sustainability are that heavy fishing pressures, such as overexploitation and growth or recruitment overfishing, will result in the loss of significant potential yield; that stock structure will erode to the point where it loses diversity and resilience to environmental fluctuations; that ecosystems and their economic infrastructures will cycle between collapse and recovery; with each cycle less productive than its predecessor; and that changes will occur in the trophic balance (fishing down marine food webs).

Overview

Sustainable management of fisheries cannot be achieved without an acceptance that the long-term goals of fisheries management are the same as those of environmental conservation Daniel Pauly and Dave Preikshot, 
Global wild fisheries are believed to have peaked and begun a decline, with valuable habitats, such as estuaries and coral reefs, in critical condition. Current aquaculture or farming of piscivorous fish, such as salmon, does not solve the problem because farmed piscivores are fed products from wild fish, such as forage fish. Salmon farming also has major negative impacts on wild salmon. Fish that occupy the higher trophic levels are less efficient sources of food energy. 

Fishery ecosystems are an important subset of the wider marine environment. This article documents the views of fisheries scientists and marine conservationists about innovative approaches towards sustainable fisheries.

History

In the end, we will conserve only what we love; we will love only what we understand; and we will understand only what we are taught Senegalese conservationist Baba Dioum
In his 1883 inaugural address to the International Fisheries Exhibition in London, Thomas Huxley asserted that overfishing or "permanent exhaustion" was scientifically impossible, and stated that probably "all the great sea fisheries are inexhaustible". In reality, by 1883 marine fisheries were already collapsing. The United States Fish Commission was established 12 years earlier for the purpose of finding why fisheries in New England were declining. At the time of Huxley's address, the Atlantic halibut fishery had already collapsed (and has never recovered).

Traditional management of fisheries

Traditionally, fisheries management and the science underpinning it was distorted by its "narrow focus on target populations and the corresponding failure to account for ecosystem effects leading to declines of species abundance and diversity" and by perceiving the fishing industry as "the sole legitimate user, in effect the owner, of marine living resources." Historically, stock assessment scientists usually worked in government laboratories and considered their work to be providing services to the fishing industry. These scientists dismissed conservation issues and distanced themselves from the scientists and the science that raised the issues. This happened even as commercial fish stocks deteriorated, and even though many governments were signatories to binding conservation agreements.

Defining sustainability

Ray Hilborn, of the University of Washington, distinguishes three ways of defining a sustainable fishery:
  • Long term constant yield is the idea that undisturbed nature establishes a steady state that changes little over time. Properly done, fishing at up to maximum sustainable yield allows nature to adjust to a new steady state, without compromising future harvests. However, this view is naive, because constancy is not an attribute of marine ecosystems, which dooms this approach. Stock abundance fluctuates naturally, changing the potential yield over short and long term periods.
  • Preserving intergenerational equity acknowledges natural fluctuations and regards as unsustainable only practices which damage the genetic structure destroy habitat, or deplete stock levels to the point where rebuilding requires more than a single generation. Providing rebuilding takes only one generation, overfishing may be economically foolish, but it is not unsustainable. This definition is widely accepted.
  • Maintaining a biological, social and economic system considers the health of the human ecosystem as well as the marine ecosystem. A fishery which rotates among multiple species can deplete individual stocks and still be sustainable so long as the ecosystem retains its intrinsic integrity. Such a definition might consider as sustainable fishing practices that lead to the reduction and possible extinction of some species.

Social sustainability

Fisheries and aquaculture are, directly or indirectly, a source of livelihood for over 500 million people, mostly in developing countries.

Social sustainability can conflict with biodiversity. A fishery is socially sustainable if the fishery ecosystem maintains the ability to deliver products the society can use. Major species shifts within the ecosystem could be acceptable as long as the flow of such products continues. Humans have been operating such regimes for thousands of years, transforming many ecosystems, depleting or driving to extinction many species.

According to Hilborn, the "loss of some species, and indeed transformation of the ecosystem is not incompatible with sustainable harvests." For example, in recent years, barndoor skates have been caught as bycatch in the western Atlantic. Their numbers have severely declined and they will probably go extinct if these catch rates continue. Even if the barndoor skate goes extinct, changing the ecosystem, there could still be sustainable fishing of other commercial species.

Reconciling fisheries with conservation

Management goals might consider the impact of salmon on bear and river ecosystems
 
At the Fourth World Fisheries Congress in 2004, Daniel Pauly asked, "How can fisheries science and conservation biology achieve a reconciliation?", then answered his own question, "By accepting each other’s essentials: that fishing should remain a viable occupation; and that aquatic ecosystems and their biodiversity are allowed to persist."

A relatively new concept is relationship farming. This is a way of operating farms so they restore the food chain in their area. Re-establishing a healthy food chain can result in the farm automatically filtering out impurities from feed water and air, feeding its own food chain, and additionally producing high net yields for harvesting. An example is the large cattle ranch Veta La Palma in southern Spain. Relationship farming was first made popular by Joel Salatin who created a 220 hectare relationship farm featured prominently in Michael Pollan's book The Omnivore's Dilemma (2006) and the documentary films, Food, Inc. and Fresh. The basic concept of relationship farming is to put effort into building a healthy food chain, and then the food chain does the hard work.

Obstacles

  Large areas of the global continental shelf, highlighted in cyan, have had heavy bottom trawls repeatedly dragged over them

Overfishing

Overfishing can be sustainable. According to Hilborn, overfishing can be "a misallocation of societies' resources", but it does not necessarily threaten conservation or sustainability".

Overfishing is traditionally defined as harvesting so many fish that the yield is less than it would be if fishing were reduced. For example, Pacific salmon are usually managed by trying to determine how many spawning salmon, called the "escapement", are needed each generation to produce the maximum harvestable surplus. The optimum escapement is that needed to reach that surplus. If the escapement is half the optimum, then normal fishing looks like overfishing. But this is still sustainable fishing, which could continue indefinitely at its reduced stock numbers and yield. There is a wide range of escapement sizes that present no threat that the stock might collapse or that the stock structure might erode.

On the other hand, overfishing can precede severe stock depletion and fishery collapse. Hilborn points out that continuing to exert fishing pressure while production decreases, stock collapses and the fishery fails, is largely "the product of institutional failure."

Today over 70% of fish species are either fully exploited, overexploited, depleted, or recovering from depletion. If overfishing does not decrease, it is predicted that stocks of all species currently commercially fished for will collapse by 2048.

A Hubbert linearization (Hubbert curve) has been applied to the whaling industry, as well as charting the price of caviar, which depends on sturgeon stocks. Another example is North Sea cod. Comparing fisheries and mineral extraction tells us that human pressure on the environment is causing a wide range of resources to go through a Hubbert depletion cycle.

Fishing down the food web
 
Coastal fishing communities in Bangladesh are vulnerable to flooding from sea-level rises.
 
Island with fringing reef in the Maldives. Coral reefs are dying around the world.
 
Shrinking of the Aral Sea

Habitat modification

Nearly all the world’s continental shelves, and large areas of continental slopes, underwater ridges, and seamounts, have had heavy bottom trawls and dredges repeatedly dragged over their surfaces. For fifty years, governments and organizations, such as the Asian Development Bank, have encouraged the fishing industry to develop trawler fleets. Repeated bottom trawling and dredging literally flattens diversity in the benthic habitat, radically changing the associated communities.

Changing the ecosystem balance

Since 1950, 90 percent of 25 species of big predator fish have gone.

Climate change

Rising ocean temperatures and ocean acidification are radically [DJS -- radically?] altering aquatic ecosystems. Climate change is modifying fish distribution and the productivity of marine and freshwater species. This reduces sustainable catch levels across many habitats, puts pressure on resources needed for aquaculture, on the communities that depend on fisheries, and on the oceans' ability to capture and store carbon (biological pump). Sea level rise puts coastal fishing communities at risk, while changing rainfall patterns and water use impact on inland (freshwater) fisheries and aquaculture.

Ocean pollution

A recent survey of global ocean health concluded that all parts of the ocean have been impacted by human development and that 41 percent has been fouled with human polluted runoff, overfishing, and other abuses. Pollution is not easy to fix, because pollution sources are so dispersed, and are built into the economic systems we depend on. 

The United Nations Environment Programme (UNEP) mapped the impacts of stressors such as climate change, pollution, exotic species, and over-exploitation of resources on the oceans. The report shows at least 75 percent of the world's key fishing grounds may be affected.

Diseases and toxins

Large predator fish can contain significant amounts of mercury, a neurotoxin which can affect fetal development, memory, mental focus, and produce tremors.

Irrigation

Abandoned ship near Aral, Kazakhstan.
 
Lakes are dependent on the inflow of water from its drainage basin. In some areas, aggressive irrigation has caused this inflow to decrease significantly, causing water depletion and a shrinking of the lake. The most notable example is the Aral Sea, formerly among the four largest lakes in the world, now only a tenth of its former surface area.

Remediation

Fisheries management

Fisheries management draws on fisheries science to enable sustainable exploitation. Modern fisheries management is often defined as mandatory rules based on concrete objectives and a mix of management techniques, enforced by a monitoring control and surveillance system.
  • Ideas and rules: Economist Paul Romer believes sustainable growth is possible providing the right ideas (technology) are combined with the right rules, rather than simply hectoring fishers. There has been no lack of innovative ideas about how to harvest fish. He characterizes failures as primarily failures to apply appropriate rules.
  • Fishing subsidies: Government subsidies influence many of the world fisheries. Operating cost subsidies allow European and Asian fishing fleets to fish in distant waters, such as West Africa. Many experts reject fishing subsidies and advocate restructuring incentives globally to help struggling fisheries recover.
  • Economics: Another focus of conservationists is on curtailing detrimental human activities by improving fisheries' market structure with techniques such as salable fishing quotas, like those set up by the Northwest Atlantic Fisheries Organization, or laws such as those listed below.
  • Valorization of by-catch: helping to avoid discards (and their associated adverse ecological impacts) by valorizing by-catch products, as they are good sources for protein hydrolizates, peptones, enzymatic mixtures or fish oil being these products of interest different industrial sectors.
  • Payment for Ecosystem Services: Environmental Economist, Essam Y Mohammed, argues that by creating direct economic incentives, whereby people are able to receive payment for the services their property provides, will help to establish sustainable fisheries around the world as well as inspire conservation where it otherwise would not.
  • Sustainable fisheries certification: A promising direction is the independent certification programs for sustainable fisheries conducted by organizations such as the Marine Stewardship Council and Friend of the Sea. These programs work at raising consumer awareness and insight into the nature of their seafood purchases.
  • Ecosystem based fisheries: See next section

Ecosystem based fisheries

We propose that rebuilding ecosystems, and not sustainability per se, should be the goal of fishery management. Sustainability is a deceptive goal because human harvesting of fish leads to a progressive simplification of ecosystems in favour of smaller, high turnover, lower trophic level fish species that are adapted to withstand disturbance and habitat degradation. Tony Pitcher and Daniel Pauly
According to marine ecologist Chris Frid, the fishing industry points to marine pollution and global warming as the causes of recent, unprecedented declines in fish populations. Frid counters that overfishing has also altered the way the ecosystem works. "Everybody would like to see the rebuilding of fish stocks and this can only be achieved if we understand all of the influences, human and natural, on fish dynamics.” He adds: “fish communities can be altered in a number of ways, for example they can decrease if particular-sized individuals of a species are targeted, as this affects predator and prey dynamics. Fishing, however, is not the sole cause of changes to marine life—pollution is another example....No one factor operates in isolation and components of the ecosystem respond differently to each individual factor."

The traditional approach to fisheries science and management has been to focus on a single species. This can be contrasted with the ecosystem-based approach. Ecosystem-based fishery concepts have been implemented in some regions. In a 2007 effort to "stimulate much needed discussion" and "clarify the essential components" of ecosystem-based fisheries science, a group of scientists offered the following ten commandments for ecosystem-based fisheries scientists:
  • Keep a perspective that is holistic, risk-adverse and adaptive.
  • Maintain an “old growth” structure in fish populations, since big, old and fat female fish have been shown to be the best spawners, but are also susceptible to overfishing.
  • Characterize and maintain the natural spatial structure of fish stocks, so that management boundaries match natural boundaries in the sea.
  • Monitor and maintain seafloor habitats to make sure fish have food and shelter.
  • Maintain resilient ecosystems that are able to withstand occasional shocks.
  • Identify and maintain critical food-web connections, including predators and forage species.
  • Adapt to ecosystem changes through time, both short-term and on longer cycles of decades or centuries, including global climate change.
  • Account for evolutionary changes caused by fishing, which tends to remove large, older fish.
  • Include the actions of humans and their social and economic systems in all ecological equations.

Marine protected areas

Strategies and techniques for marine conservation tend to combine theoretical disciplines, such as population biology, with practical conservation strategies, such as setting up protected areas, as with Marine Protected Areas (MPAs) or Voluntary Marine Conservation Areas. Each nation defines MPAs independently, but they commonly involve increased protection for the area from fishing and other threats.

Marine life is not evenly distributed in the oceans. Most of the really valuable ecosystems are in relatively shallow coastal waters, above or near the continental shelf, where the sunlit waters are often nutrient rich from land runoff or upwellings at the continental edge, allowing photosynthesis, which energizes the lowest trophic levels. In the 1970s, for reasons more to do with oil drilling than with fishing, the U.S. extended its jurisdiction, then 12 miles from the coast, to 200 miles. This made huge shelf areas part of its territory. Other nations followed, extending national control to what became known as the exclusive economic zone (EEZ). This move has had many implications for fisheries conservation, since it means that most of the most productive maritime ecosystems are now under national jurisdictions, opening possibilities for protecting these ecosystems by passing appropriate laws. 

Daniel Pauly characterises marine protected areas as "a conservation tool of revolutionary importance that is being incorporated into the fisheries mainstream." The Pew Charitable Trusts have funded various initiatives aimed at encouraging the development of MPAs and other ocean conservation measures.

Fish farming

There exists concerns that farmed fish cannot produce necessary yields efficiently. For example, farmed salmon eat three pounds of wild fish to produce one pound of salmon.

Laws and treaties

Awareness campaigns

Introducing the results of long term monitoring to a local fishermen in Kihnu, Estonia.
 
Various organizations promote sustainable fishing strategies, educate the public and stakeholders, and lobby for conservation law and policy. The list includes the Marine Conservation Biology Institute and Blue Frontier Campaign in the U.S., The U.K.'s Frontier (the Society for Environmental Exploration) and Marine Conservation Society, Australian Marine Conservation Society, International Council for the Exploration of the Sea (ICES), Langkawi Declaration, Oceana, PROFISH, and the Sea Around Us Project, International Collective in Support of Fishworkers, World Forum of Fish Harvesters and Fish Workers, Frozen at Sea Fillets Association and CEDO

The United Nations Millennium Development Goals include, as goal #7: target 2, the intention to "reduce biodiversity loss, achieving, by 2010, a significant reduction in the rate of loss", including improving fisheries management to reduce depletion of fish stocks.

Some organizations certify fishing industry players for sustainable or good practices, such as the Marine Stewardship Council and Friend of the Sea

Other organizations offer advice to members of the public who eat with an eye to sustainability. According to the marine conservation biologist Callum Roberts, four criteria apply when choosing seafood:
  • Is the species in trouble in the wild where the animals were caught?
  • Does fishing for the species damage ocean habitats?
  • Is there a large amount of bycatch taken with the target species?
  • Does the fishery have a problem with discards—generally, undersized animals caught and thrown away because their market value is low?
The following organizations have download links for wallet-sized cards, listing good and bad choices:

Data issues

Data quality

One of the major impediments to the rational control of marine resources is inadequate data. According to fisheries scientist Milo Adkison (2007), the primary limitation in fisheries management decisions is poor data. Fisheries management decisions are often based on population models, but the models need quality data to be accurate. Scientists and fishery managers would be better served with simpler models and improved data.

Unreported fishing

Estimates of illegal catch losses range between $10 billion and $23 billion annually, representing between 11 and 26 million tonnes.

Shifting baselines

Shifting baselines is the way significant changes to a system are measured against previous baselines, which themselves may represent significant changes from the original state of the system. The term was first used by the fisheries scientist Daniel Pauly in his paper "Anecdotes and the shifting baseline syndrome of fisheries". Pauly developed the term in reference to fisheries management where fisheries scientists sometimes fail to identify the correct "baseline" population size (e.g. how abundant a fish species population was before human exploitation) and thus work with a shifted baseline. He describes the way that radically depleted fisheries were evaluated by experts who used the state of the fishery at the start of their careers as the baseline, rather than the fishery in its untouched state. Areas that swarmed with a particular species hundreds of years ago, may have experienced long term decline, but it is the level of decades previously that is considered the appropriate reference point for current populations. In this way large declines in ecosystems or species over long periods of time were, and are, masked. There is a loss of perception of change that occurs when each generation redefines what is "natural".

Looting the seas

Looting the seas is the name given by the International Consortium of Investigative Journalists to a series of journalistic investigations into areas directly affecting the sustainability of fisheries. So far they have investigated three areas involving fraud, negligence and overfishing:

Other factors

The focus of sustainable fishing is often on the fish. Other factors are sometimes included in the broader question of sustainability. The use of non-renewable resources is not fully sustainable. This might include diesel fuel for the fishing ships and boats: there is even a debate about the long term sustainability of biofuels. Modern fishing nets are usually made of artificial polyamides like nylon. Synthetic braided ropes are generally made from nylon, polyester, polypropylene or high performance fibers such as high modulus polyethylene (HMPE) and aramid. 

Energy and resources are employed in fish processing, refrigeration, packaging, logistics, etc. The methodologies of Life-cycle assessment are useful to evaluate the sustainability of components and systems. These are part of the broad question of sustainability.

Overfishing

From Wikipedia, the free encyclopedia

Overfishing is the removal of a species of fish from a body of water at a rate that the species cannot replenish in time, resulting in those species either becoming depleted or very underpopulated in that given area. Overfishing has spread all over the globe and has been present for centuries.
 
400 tons of jack mackerel caught by a Chilean purse seiner
 
Overfishing can occur in water bodies of any sizes, such as ponds, rivers, lakes or oceans, and can result in resource depletion, reduced biological growth rates and low biomass levels. Sustained overfishing can lead to critical depensation, where the fish population is no longer able to sustain itself. Some forms of overfishing, such as the overfishing of sharks, has led to the upset of entire marine ecosystems.

The ability of a fishery to recover from overfishing depends on whether the ecosystem's conditions are suitable for the recovery. Dramatic changes in species composition can result in an ecosystem shift, where other equilibrium energy flows involve species compositions different from those that had been present before the depletion of the original fish stock. For example, once trout have been overfished, carp might take over in a way that makes it impossible for the trout to re-establish a breeding population.

Global scale

Overfishing has stripped many fisheries around the world of their stocks. The United Nations Food and Agriculture Organization estimated in a 2018 report that 33.1% of world fish stocks are subject to overfishing. Significant overfishing has been observed in pre-industrial times. In particular, the overfishing of the western Atlantic Ocean from the earliest days of European colonisation of the Americas has been well documented.

The fraction of fish stocks that are within biologically sustainable levels has exhibited a decreasing trend, from 90.0 percent in 1974 to 66.9 percent in 2015. In contrast, the percentage of stocks fished at biologically unsustainable levels increased from 10 percent in 1974 to 33.1 percent in 2015, with the largest increases in the late 1970s and 1980s.

In 2015, maximally sustainably fished stocks (formerly termed fully fished stocks) accounted for 59.9 percent and underfished stocks for 7.0 percent of the total assessed stocks. While the proportion of underfished stocks decreased continuously from 1974 to 2015, the maximally sustainably fished stocks decreased from 1974 to 1989, and then increased to 59.9 percent in 2015.

In 2015, among the 16 major statistical areas, the Mediterranean and Black Sea had the highest percentage (62.2 percent) of unsustainable stocks, closely followed by the Southeast Pacific 61.5 percent and Southwest Atlantic 58.8 percent. In contrast, the Eastern Central Pacific, Northeast Pacific (Area 67), Northwest Pacific (Area 61), Western Central Pacific and Southwest Pacific had the lowest proportion (13 to 17 percent) of fish stocks at biologically unsustainable levels.

Daniel Pauly, a fisheries scientist known for pioneering work on the human impacts on global fisheries, has commented:
It is almost as though we use our military to fight the animals in the ocean. We are gradually winning this war to exterminate them. And to see this destruction happen, for nothing really – for no reason – that is a bit frustrating. Strangely enough, these effects are all reversible, all the animals that have disappeared would reappear, all the animals that were small would grow, all the relationships that you can't see any more would re-establish themselves, and the system would re-emerge.

Examples

Examples of overfishing exist in areas such as the North Sea, the Grand Banks of Newfoundland and the East China Sea. In these locations, overfishing has not only proved disastrous to fish stocks but also to the fishing communities relying on the harvest. Like other extractive industries such as forestry and hunting, fisheries are susceptible to economic interaction between ownership or stewardship and sustainability, otherwise known as the tragedy of the commons

Overfished US stocks, 2015
  • The Peruvian coastal anchovy fisheries crashed in the 1970s after overfishing and an El Niño season largely depleted anchovies from its waters. Anchovies were a major natural resource in Peru; indeed, 1971 alone yielded 10.2 million metric tons of anchovies. However, the following five years saw the Peruvian fleet's catch amount to only about 4 million tons. This was a major loss to Peru's economy.
  • The sole fisheries in the Irish Sea, the west English Channel, and other locations have become overfished to the point of virtual collapse, according to the UK government's official Biodiversity Action Plan. The United Kingdom has created elements within this plan to attempt to restore this fishery, but the expanding global human population and the expanding demand for fish has reached a point where demand for food threatens the stability of these fisheries, if not the species' survival.
  • Many deep sea fish are at risk, such as orange roughy and sablefish. The deep sea is almost completely dark, near freezing and has little food. Deep sea fish grow slowly because of limited food, have slow metabolisms, low reproductive rates, and many don't reach breeding maturity for 30 to 40 years. A fillet of orange roughy at the store is probably at least 50 years old. Most deep sea fish are in international waters, where there are no legal protections. Most of these fish are caught by deep trawlers near seamounts, where they congregate because of food. Flash freezing allows the trawlers to work for days at a time, and modern fishfinders target the fish with ease.
  • Blue walleye became extinct in the Great Lakes in the 1980s. Until the middle of the 20th century, it was a commercially valuable fish, with about a half million tonnes being landed during the period from about 1880 to the late 1950s, when the populations collapsed, apparently through a combination of overfishing, anthropogenic eutrophication, and competition with the introduced rainbow smelt.
  • The World Wide Fund for Nature and the Zoological Society of London jointly issued their "Living Blue Planet Report" on 16 September 2015 which states that there was a dramatic fall of 74% in worldwide stocks of the important scombridae fish such as mackerel, tuna and bonitos between 1970 and 2010, and the global overall "population sizes of mammals, birds, reptiles, amphibians and fish fell by half on average in just 40 years."

In management

Several countries are now effectively managing their fisheries. Examples include Iceland and New Zealand. The United States has turned many of its fisheries around from being in a highly depleted state.

Consequences

Atlantic cod stocks were severely overfished in the 1970s and 1980s, leading to their abrupt collapse in 1992
 
According to a 2008 UN report, the world's fishing fleets are losing US$50 billion each year through depleted stocks and poor fisheries management. The report, produced jointly by the World Bank and the UN Food and Agriculture Organization (FAO), asserts that half the world's fishing fleet could be scrapped with no change in catch. In addition, the biomass of global fish stocks have been allowed to run down to the point where it is no longer possible to catch the amount of fish that could be caught. Increased incidence of schistosomiasis in Africa has been linked to declines of fish species that eat the snails carrying the disease-causing parasites. Massive growth of jellyfish populations threaten fish stocks, as they compete with fish for food, eat fish eggs, and poison or swarm fish, and can survive in oxygen depleted environments where fish cannot; they wreak massive havoc on commercial fisheries. Overfishing eliminates a major jellyfish competitor and predator exacerbating the jellyfish population explosion. Both climate change and a restructuring of the ecosystem have been found to be major roles in an increase in jellyfish population in the Irish Sea in the 1990s.

Types

There are three recognized types of biological overfishing: growth overfishing, recruit overfishing and ecosystem overfishing.

Growth

Growth overfishing occurs when fish are harvested at an average size that is smaller than the size that would produce the maximum yield per recruit. A recruit is an individual that makes it to maturity, or into the limits specified by a fishery, which are usually size or age. This makes the total yield less than it would be if the fish were allowed to grow to an appropriate size. It can be countered by reducing fishing mortality to lower levels and increasing the average size of harvested fish to a size that will allow maximum yield per recruit.

Recruitment

Recruitment overfishing occurs when the mature adult population (spawning biomass) is depleted to a level where it no longer has the reproductive capacity to replenish itself—there are not enough adults to produce offspring. Increasing the spawning stock biomass to a target level is the approach taken by managers to restore an overfished population to sustainable levels. This is generally accomplished by placing moratoriums, quotas and minimum size limits on a fish population.

Ecosystem

Ecosystem overfishing occurs when the balance of the ecosystem is altered by overfishing. With declines in the abundance of large predatory species, the abundance of small forage type increases causing a shift in the balance of the ecosystem towards smaller fish species.

Acceptable levels

The notion of overfishing hinges on what is meant by an acceptable level of fishing. More precise biological and bioeconomic terms define acceptable level as follows:
  • Biological overfishing occurs when fishing mortality has reached a level where the stock biomass has negative marginal growth (reduced rate of biomass growth), as indicated by the red area in the figure. (Fish are being taken out of the water so quickly that the replenishment of stock by breeding slows down. If the replenishment continues to diminish for long enough, replenishment will go into reverse and the population will decrease.)
  • Economic or bioeconomic overfishing additionally considers the cost of fishing when determining acceptable catches. Under this framework, a fishery is considered to be overfished when catches exceed maximum economic yield where resource rent is at its maximum. Fish are being removed from the fishery so quickly that the profitability of the fishery is sub-optimal. A more dynamic definition of economic overfishing also considers the present value of the fishery using a relevant discount rate to maximise the flow of resource rent over all future catches.
The Traffic Light colour convention, showing the concept of Harvest Control Rule (HCR), specifying when a rebuilding plan is mandatory in terms of precautionary and limit reference points for spawning biomass and fishing mortality rate.

Harvest control rule

A model proposed in 2010 for predicting acceptable levels of fishing is the Harvest Control Rule (HCR), which is a set of tools and protocols with which management has some direct control of harvest rates and strategies in relation to predicting stock status, and long-term maximum sustainable yields. Constant catch and constant fishing mortality are two types of simple harvest control rules.

Input and output orientations

Fishing capacity can also be defined using an input or output orientation.
  • An input-oriented fishing capacity is defined as the maximum available capital stock in a fishery that is fully utilized at the maximum technical efficiency in a given time period, given resource and market conditions.
  • An output-oriented fishing capacity is defined as the maximum catch a vessel (fleet) can produce if inputs are fully utilized given the biomass, the fixed inputs, the age structure of the fish stock, and the present stage of technology.
Technical efficiency of each vessel of the fleet is assumed necessary to attain this maximum catch. The degree of capacity utilization results from the comparison of the actual level of output (input) and the capacity output (input) of a vessel or a fleet.

Mitigation

In order to meet the problems of overfishing, a precautionary approach and Harvest Control Rule (HCR) management principles have been introduced in the main fisheries around the world. The Traffic Light color convention introduces sets of rules based on predefined critical values, which could be adjusted as more information is gained.

The United Nations Convention on the Law of the Sea treaty deals with aspects of over fishing in articles 61, 62, and 65.
  • Article 61 requires all coastal states to ensure that the maintenance of living resources in their exclusive economic zones is not endangered by over-exploitation. The same article addresses the maintenance or restoration of populations of species above levels at which their reproduction may become seriously threatened.
  • Article 62 provides that coastal states: "shall promote the objective of optimum utilization of the living resources in the exclusive economic zone without prejudice to Article 61"
  • Article 65 provides generally for the rights of, inter alia, coastal states to prohibit, limit, or regulate the exploitation of marine mammals.
According to some observers, overfishing can be viewed as an example of the tragedy of the commons; appropriate solutions would therefore promote property rights through, for instance, privatization and fish farming. Daniel K. Benjamin, in Fisheries are Classic Example of the "Tragedy of the Commons", cites research by Grafton, Squires and Fox to support the idea that privatization can solve the overfishing problem:
According to recent research on the British Columbia halibut fishery, where the commons has been at least partly privatized, substantial ecological and economic benefits have resulted. There is less damage to fish stocks, the fishing is safer, and fewer resources are needed to achieve a given harvest.
Another possible solution, at least for some areas, is quotas, so fishermen can only legally take a certain amount of fish. A more radical possibility is declaring certain areas of the sea "no-go zones" and make fishing there strictly illegal, so the fish in that area have time to recover and repopulate. 

In order to maximise resources some countries (e.g. Bangladesh and Thailand) have improved the availability of family planning services. The resulting smaller populations have a decreased environmental footprint and less food needs to provided.

Controlling consumer behavior and demand is critical in mitigating action. Worldwide, a number of initiatives emerged to provide consumers with information regarding the conservation status of the seafood available to them. The Guide to Good Fish Guides lists a number of these.

Government regulation

Many regulatory measures are available for controlling overfishing. These measures include fishing quotas, bag limits, licensing, closed seasons, size limits and the creation of marine reserves and other marine protected areas

A model of the interaction between fish and fishers showed that when an area is closed to fishers, but there are no catch regulations such as individual transferable quotas, fish catches are temporarily increased but overall fish biomass is reduced, resulting in the opposite outcome from the one desired for fisheries. Thus, a displacement of the fleet from one locality to another will generally have little effect if the same quota is taken. As a result, management measures such as temporary closures or establishing a marine protected area of fishing areas are ineffective when not combined with individual fishing quotas. An inherent problem with quotas is that fish populations vary from year to year. A study has found that fish populations rise dramatically after stormy years due to more nutrients reaching the surface and therefore greater primary production. To fish sustainably, quotas need to be changed each year to account for fish population. 

Individual transferable quotas (ITQs) are fishery rationalization instruments defined under the Magnuson-Stevens Fishery Conservation and Management Act as limited access permits to harvest quantities of fish. Fisheries scientists decide the optimal amount of fish (total allowable catch) to be harvested in a certain fishery. The decision considers carrying capacity, regeneration rates and future values. Under ITQs, members of a fishery are granted rights to a percentage of the total allowable catch that can be harvested each year. These quotas can be fished, bought, sold, or leased allowing for the least cost vessels to be used. ITQs are used in New Zealand, Australia, Iceland, Canada, and the United States

In 2008, a large-scale study of fisheries that used ITQs compared to ones that didn't provided strong evidence that ITQs can help to prevent collapses and restore fisheries that appear to be in decline.

China bans fishing in the South China Sea for a period each year.

Removal of subsidies

Several scientists have called for an end to subsidies paid to deep sea fisheries. In international waters beyond the 200 nautical mile exclusive economic zones of coastal countries, many fisheries are unregulated, and fishing fleets plunder the depths with state-of-the-art technology. In a few hours, massive nets weighing up to 15 tons, dragged along the bottom by deep-water trawlers, can destroy deep-sea corals and sponge beds that have taken centuries or millennia to grow. The trawlers can target orange roughy, grenadiers, or sharks. These fish are usually long-lived and late maturing, and their populations take decades, even centuries to recover.

Fisheries scientist Daniel Pauly and economist Ussif Rashid Sumaila have examined subsidies paid to bottom trawl fleets around the world. They found that US$152 million per year are paid to deep-sea fisheries. Without these subsidies, global deep-sea fisheries would operate at a loss of $50 million a year. A great deal of the subsidies paid to deep-sea trawlers is to subsidize the large amount of fuel required to travel beyond the 200-mile limit and drag weighted nets.
"There is surely a better way for governments to spend money than by paying subsidies to a fleet that burns 1.1 billion litres of fuel annually to maintain paltry catches of old growth fish from highly vulnerable stocks, while destroying their habitat in the process" – Pauly.

"Eliminating global subsidies would render these fleets economically unviable and would relieve tremendous pressure on over-fishing and vulnerable deep-sea ecosystems" – Sumaila.

Minimizing fishing impact

Fishing techniques may be altered to minimize bycatch and reduce impacts on marine habitats. These techniques include using varied gear types depending on target species and habitat type. For example, a net with larger holes will allow undersized fish to avoid capture. A turtle excluder device (TED) allows sea turtles and other megafauna to escape from shrimp trawls. Avoiding fishing in spawning grounds may allow fish stocks to rebuild by giving adults a chance to reproduce.

Aquaculture

Global harvest of aquatic organisms in million tonnes, 1950–2010, as reported by the FAO.
 
Aquaculture involves the farming of fish in captivity. This approach effectively privatizes fish stocks and creates incentives for farmers to conserve their stocks. It also reduces environmental impact. However, farming carnivorous fish, such as salmon, does not always reduce pressure on wild fisheries, since carnivorous farmed fish are usually fed fishmeal and fish oil extracted from wild forage fish

Aquaculture played a minor role in the harvesting of marine organisms until the 1970s. Growth in aquaculture increased rapidly in 1990s when the rate of wild capture plateaued. Aquaculture now provides approximately half of all harvested aquatic organisms. Aquaculture production rates continue to grow while wild harvest remains steady. 

Fish farming can enclose the entire breeding cycle of the fish, with fish being bred in captivity. Some fish prove difficult to breed in captivity and can be caught in the wild as juveniles and brought into captivity to increase their weight. With scientific progress more species are being made to breed in captivity. This was the case with southern bluefin tuna, which were first bred in captivity in 2009.

Consumer awareness

Sustainable seafood is a movement that has gained momentum as more people become aware of overfishing and environmentally destructive fishing methods. Sustainable seafood is seafood from either fished or farmed sources that can maintain or increase production in the future without jeopardizing the ecosystems from which it was acquired. In general, slow-growing fish that reproduce late in life, such as orange roughy, are vulnerable to overfishing. Seafood species that grow quickly and breed young, such as anchovies and sardines, are much more resistant to overfishing. Several organizations, including the Marine Stewardship Council (MSC), and Friend of the Sea, certify seafood fisheries as sustainable.

The Marine Stewardship Council has developed an environmental standard for sustainable and well-managed fisheries. Environmentally responsible fisheries management and practices are rewarded with the use of its blue product ecolabel. Consumers concerned about overfishing and its consequences are increasingly able to choose seafood products that have been independently assessed against the MSC's environmental standard. This enables consumers to play a part in reversing the decline of fish stocks. As of February 2012, over 100 fisheries around the world have been independently assessed and certified as meeting the MSC standard. Their where-to-buy page lists the currently available certified seafood. As of February 2012 over 13,000 MSC-labelled products are available in 74 countries around the world. Fish & Kids is an MSC project to teach schoolchildren about marine environmental issues, including overfishing. 

The Monterey Bay Aquarium's Seafood Watch Program, although not an official certifying body like the MSC, also provides guidance on the sustainability of certain fish species. Some seafood restaurants have begun to offer more sustainable seafood options. The Seafood Choices Alliance is an organization whose members include chefs that serve sustainable seafood at their establishments. In the US, the Sustainable Fisheries Act defines sustainable practices through national standards. Although there is no official certifying body like the MSC, the National Oceanic and Atmospheric Administration has created FishWatch to help guide concerned consumers to sustainable seafood choices. See also a guide to good fish guides

In September 2016, a partnership of Google and Oceana and Skytruth introduced Global Fishing Watch, a website designed to assist citizens of the globe in monitoring fishing activities.

Barriers to effective management

The fishing industry has a strong financial incentive to oppose some measures aimed at improving the sustainability of fish stocks. Recreational fisherman also have an interest in maintaining access to fish stocks. This leads to extensive lobbying that can block or water down government policies intended to prevent overfishing.

Outside of countries' exclusive economic zones, fishing is difficult to control. Large oceangoing fishing boats are free to exploit fish stocks at will.

In waters that are the subject of territorial disputes, countries may actively encourage overfishing. A notable example is the cod wars where Britain used its navy to protect its trawlers fishing in Iceland's exclusive economic zone. Fish are highly transitory. Many species will freely move through different jurisdictions. The conservation efforts of one country can then be exploited by another.

While governments can create regulations to control people's behaviours this can be undermined by illegal fishing activity. Estimates of the size of the illegal catch range from 11 to 26 million tonnes, which represents 14-33% of the world's reported catch. Illegal fishing can take many forms. In some developing countries, large numbers of poor people are dependent on fishing. It can prove difficult to regulate this kind of overfishing, especially for weak governments. Even in regulated environments, illegal fishing may occur. While industrial fishing is often effectively controlled, smaller scale and recreational fishermen can often break regulations such as bag limits and seasonal closures. Fisherman can also easily fish illegally by doing things such as underreporting the amount of fish they caught or reporting that they caught one type of fish while actually catching another. There is also a large problem with surveillance of illegal fishing activity. In 2001, the UN Food and Agriculture Organization (FAO), passed the International Plan of Action to Prevent, Deter and Eliminate Illegal, Unreported and Unregulated Fishing (IPOA-IUU). This is an agreement with the intention to stop port states from allowing boats to dock that participated in illegal, unreported or unregulated fishing. It also gives details for port states on effective measures of inspecting and reporting illegal fishing. Some illegal fishing takes place on an industrial scale with financed commercial operations.

The fishing capacity problem is not only related to the conservation of fish stocks but also to the sustainability of fishing activity. Causes of the fishing problem can be found in the property rights regime of fishing resources. Overexploitation and rent dissipation of fishermen arise in open-access fisheries as was shown in Gordon.

In open-access resources like fish stocks, in the absence of a system like individual transferable quotas, the impossibility of excluding others provokes the fishermen who want to increase catch to do so effectively by taking someone else' share, intensifying competition. This tragedy of the commons provokes a capitalization process that leads them to increase their costs until they are equal to their revenue, dissipating their rent completely.

Resistance from fishermen

There is always disagreement between fishermen and government scientists... Imagine an overfished area of the sea in the shape of a hockey field with nets at either end. The few fish left therein would gather around the goals because fish like structured habitats. Scientists would survey the entire field, make lots of unsuccessful hauls, and conclude that it contains few fish. The fishermen would make a beeline to the goals, catch the fish around them, and say the scientists do not know what they are talking about. The subjective impression the fishermen get is always that there's lots of fish - because they only go to places that still have them... fisheries scientists survey and compare entire areas, not only the productive fishing spots. – Fisheries scientist Daniel Pauly

Ecological resilience

From Wikipedia, the free encyclopedia

Temperate lake and Mulga woodland
Lake and Mulga ecosystems with alternative stable states
 
In ecology, resilience is the capacity of an ecosystem to respond to a perturbation or disturbance by resisting damage and recovering quickly. Such perturbations and disturbances can include stochastic events such as fires, flooding, windstorms, insect population explosions, and human activities such as deforestation, fracking of the ground for oil extraction, pesticide sprayed in soil, and the introduction of exotic plant or animal species. Disturbances of sufficient magnitude or duration can profoundly affect an ecosystem and may force an ecosystem to reach a threshold beyond which a different regime of processes and structures predominates. Human activities that adversely affect ecosystem resilience such as reduction of biodiversity, exploitation of natural resources, pollution, land use, and anthropogenic climate change are increasingly causing regime shifts in ecosystems, often to less desirable and degraded conditions. Interdisciplinary discourse on resilience now includes consideration of the interactions of humans and ecosystems via socio-ecological systems, and the need for shift from the maximum sustainable yield paradigm to environmental resource management which aims to build ecological resilience through "resilience analysis, adaptive resource management, and adaptive governance".

Definitions

The concept of resilience in ecological systems was first introduced by the Canadian ecologist C.S. Holling  in order to describe the persistence of natural systems in the face of changes in ecosystem variables due to natural or anthropogenic causes. Resilience has been defined in two ways in ecological literature:
  1. As the time required for an ecosystem to return to an equilibrium or steady-state following a perturbation (which is also defined as stability by some authors). This definition of resilience is used in other fields such as physics and engineering, and hence has been termed ‘engineering resilience’ by Holling.
  2. As "the capacity of a system to absorb disturbance and reorganize while undergoing change so as to still retain essentially the same function, structure, identity, and feedbacks".
The second definition has been termed ‘ecological resilience’, and it presumes the existence of multiple stable states or regimes.

Some shallow temperate lakes can exist within either clear water regime, which provides many ecosystem services, or a turbid water regime, which provides reduced ecosystem services and can produce toxic algae blooms. The regime or state is dependent upon lake phosphorus cycles, and either regime can be resilient dependent upon the lake's ecology and management.

Mulga woodlands of Australia can exist in a grass-rich regime that supports sheep herding, or a shrub-dominated regime of no value for sheep grazing. Regime shifts are driven by the interaction of fire, herbivory, and variable rainfall. Either state can be resilient dependent upon management.

Theory

Ecologists Brian Walker, C S Holling and others describe four critical aspects of resilience: latitude, resistance, precariousness, and panarchy

The first three can apply both to a whole system or the sub-systems that make it up.
  1. Latitude: the maximum amount a system can be changed before losing its ability to recover (before crossing a threshold which, if breached, makes recovery difficult or impossible).
  2. Resistance: the ease or difficulty of changing the system; how “resistant” it is to being changed.
  3. Precariousness: how close the current state of the system is to a limit or “threshold”. Panarchy: the degree to which a certain hierarchical level of an ecosystem is influenced by other levels. For example, organisms living in communities that are in isolation from one another may be organized differently from the same type of organism living in a large continuous population, thus the community-level structure is influenced by population-level interactions.
Closely linked to resilience is adaptive capacity, which is the property of an ecosystem that describes change in stability landscapes and resilience. Adaptive capacity in socio-ecological systems refers to the ability of humans to deal with change in their environment by observation, learning and altering their interactions.

Human impacts

Resilience refers to ecosystem's stability and capability of tolerating disturbance and restoring itself.  If the disturbance is of sufficient magnitude or duration, a threshold may be reached where the ecosystem undergoes a regime shift, possibly permanently. Sustainable use of environmental goods and services requires understanding and consideration of the resilience of the ecosystem and its limits. However, the elements which influence ecosystem resilience are complicated. For example, various elements such as the water cycle, fertility, biodiversity, plant diversity and climate, interact fiercely and affect different systems. 

There are many areas where human activity impacts upon and is also dependent upon the resilience of terrestrial, aquatic and marine ecosystems. These include agriculture, deforestation, pollution, mining, recreation, overfishing, dumping of waste into the sea and climate change.

Agriculture

Agriculture can be seen as a significant example which the resilience of terrestrial ecosystems should be considered. The organic matter (elements carbon and nitrogen) in soil, which is supposed to be recharged by multiple plants, is the main source of nutrients for crop growth. At the same time, intensive agriculture practices in response to global food demand and shortages involves the removal of weeds and the application of fertilisers to increase food production. However, as a result of agricultural intensification and the application of herbicides to control weeds, fertilisers to accelerate and increase crop growth and pesticides to control insects, plant biodiversity is reduced as is the supply of organic matter to replenish soil nutrients and prevent run-off. This leads to a reduction in soil fertility and productivity. More sustainable agricultural practices would take into account and estimate the resilience of the land and monitor and balance the input and output of organic matter.

Deforestation

The term deforestation has a meaning that covers crossing the threshold of forest's resilience and losing its ability to return its originally stable state. To recover itself, a forest ecosystem needs suitable interactions among climate conditions and bio-actions, and enough area. In addition, generally, the resilience of a forest system allows recovery from a relatively small scale of damage (such as lightning or landslide) of up to 10 per cent of its area. The larger the scale of damage, the more difficult it is for the forest ecosystem to restore and maintain its balance.

Deforestation also decreases biodiversity of both plant and animal life and can lead to an alteration of the climatic conditions of an entire area. Deforestation can also lead to species extinction, which can have a domino effect particularly when keystone species are removed or when a significant number of species is removed and their ecological function is lost.

Climate change

Climate resilience is generally defined as the capacity for a socio-ecological system to: (1) absorb stresses and maintain function in the face of external stresses imposed upon it by climate change and (2) adapt, reorganize, and evolve into more desirable configurations that improve the sustainability of the system, leaving it better prepared for future climate change impacts. Increasingly, climate change is threatening human communities around the world in a variety of ways such as rising sea levels, increasingly frequent large storms, tidal surges and flooding damage. One of the main results of climate change is rising sea water temperature which has a serious effect on coral reefs, through thermal-stress related coral bleaching. Between 1997-1998 the most significant worldwide coral bleaching event was recorded which corresponded with the El Nino Southern Oscillation, with significant damage to the coral reefs of the Western Indian Ocean.

Overfishing

It has been estimated by the United Nations Food and Agriculture Organisation that over 70% of the world’s fish stocks are either fully exploited or depleted which means overfishing threatens marine ecosystem resilience and this is mostly by rapid growth of fishing technology. One of the negative effects on marine ecosystems is that over the last half-century the stocks of coastal fish have had a huge reduction as a result of overfishing for its economic benefits. Blue fin tuna is at particular risk of extinction. Depletion of fish stocks results in lowered biodiversity and consequently imbalance in the food chain, and increased vulnerability to disease. 

In addition to overfishing, coastal communities are suffering the impacts of growing numbers of large commercial fishing vessels in causing reductions of small local fishing fleets. Many local lowland rivers which are sources of fresh water have become degraded because of the inflows of pollutants and sediments.

Dumping of waste into the sea

Dumping both depends upon ecosystem resilience whilst threatening it. Dumping of sewage and other contaminants into the ocean is often undertaken for the dispersive nature of the oceans and adaptive nature and ability for marine life to process the marine debris and contaminants. However, waste dumping threatens marine ecosystems by poisoning marine life and eutrophication.

Poisoning marine life

According to the International Maritime Organisation oil spills can have serious effects on marine life. The OILPOL Convention recognized that most oil pollution resulted from routine shipboard operations such as the cleaning of cargo tanks.  In the 1950s, the normal practice was simply to wash the tanks out with water and then pump the resulting mixture of oil and water into the sea. OILPOL 54   prohibited the dumping of oily wastes within a certain distance from land and in 'special areas' where the danger to the environment was especially acute. In 1962 the limits were extended by means of an amendment adopted at a conference organized by IMO. Meanwhile, IMO in 1965 set up a Subcommittee on Oil Pollution, under the auspices of its Maritime Safety committee, to address oil pollution issues.

The threat of oil spills to marine life is recognised by those likely to be responsible for the pollution, such as the International Tanker Owners Pollution Federation: 
The marine ecosystem is highly complex and natural fluctuations in species composition, abundance and distribution are a basic feature of its normal function. The extent of damage can therefore be difficult to detect against this background variability. Nevertheless, the key to understanding damage and its importance is whether spill effects result in a downturn in breeding success, productivity, diversity and the overall functioning of the system. Spills are not the only pressure on marine habitats; chronic urban and industrial contamination or the exploitation of the resources they provide are also serious threats.

Eutrophication and algal blooms

The Woods Hole Oceanographic Institution calls nutrient pollution the most widespread, chronic environmental problem in the coastal ocean. The discharges of nitrogen, phosphorus, and other nutrients come from agriculture, waste disposal, coastal development, and fossil fuel use. Once nutrient pollution reaches the coastal zone, it stimulates harmful overgrowths of algae, which can have direct toxic effects and ultimately result in low-oxygen conditions. Certain types of algae are toxic. Overgrowths of these algae result in harmful algal blooms, which are more colloquially referred to as "red tides" or "brown tides". Zooplankton eat the toxic algae and begin passing the toxins up the food chain, affecting edibles like clams, and ultimately working their way up to seabirds, marine mammals, and humans. The result can be illness and sometimes death.

Sustainable development

There is increasing awareness that a greater understanding and emphasis of ecosystem resilience is required to reach the goal of sustainable development. A similar conclusion is drawn by Perman et al. who use resilience to describe one of 6 concepts of sustainability; "A sustainable state is one which satisfies minimum conditions for ecosystem resilience through time". Resilience science has been evolving over the past decade, expanding beyond ecology to reflect systems of thinking in fields such as economics and political science. And, as more and more people move into densely populated cities, using massive amounts of water, energy, and other resources, the need to combine these disciplines to consider the resilience of urban ecosystems and cities is of paramount importance.

Academic perspectives

The interdependence of ecological and social systems has gained renewed recognition since the late 1990s by academics including Berkes and Folke and developed further in 2002 by Folke et al. As the concept of sustainable development has evolved beyond the 3 pillars of sustainable development to place greater political emphasis on economic development. This is a movement which causes wide concern in environmental and social forums and which Clive Hamilton describes as "the growth fetish".

The purpose of ecological resilience that is proposed is ultimately about averting our extinction as Walker cites Holling in his paper: "[..] "resilience is concerned with [measuring] the probabilities of extinction” (1973, p. 20)". Becoming more apparent in academic writing is the significance of the environment and resilience in sustainable development. Folke et al state that the likelihood of sustaining development is raised by "Managing for resilience" whilst Perman et al. propose that safeguarding the environment to "deliver a set of services" should be a "necessary condition for an economy to be sustainable".

The flaw of the free market

The challenge of applying the concept of ecological resilience to the context of sustainable development is that it sits at odds with conventional economic ideology and policy making. Resilience questions the free market model within which global markets operate. Inherent to the successful operation of a free market is specialisation which is required to achieve efficiency and increase productivity. This very act of specialisation weakens resilience by permitting systems to become accustomed to and dependent upon their prevailing conditions. In the event of unanticipated shocks; this dependency reduces the ability of the system to adapt to these changes. Correspondingly; Perman et al. note that; "Some economic activities appear to reduce resilience, so that the level of disturbance to which the ecosystem can be subjected to without parametric change taking place is reduced".

Moving beyond sustainable development

Berkes and Folke table a set of principles to assist with "building resilience and sustainability" which consolidate approaches of adaptive management, local knowledge-based management practices and conditions for institutional learning and self-organisation.

More recently, it has been suggested by Andrea Ross that the concept of sustainable development is no longer adequate in assisting policy development fit for today’s global challenges and objectives. This is because the concept of sustainable development is "based on weak sustainability" which doesn’t take account of the reality of "limits to earth's resilience". Ross draws on the impact of climate change on the global agenda as a fundamental factor in the "shift towards ecological sustainability" as an alternative approach to that of sustainable development.

In environmental policy

Scientific research associated with resilience is beginning to play a role in influencing policy-making and subsequent environmental decision making. 

This occurs in a number of ways:
  • Observed resilience within specific ecosystems drives management practice. When resilience is observed to be low, or impact seems to be reaching the threshold, management response can be to alter human behavior to result in less adverse impact to the ecosystem.
  • Ecosystem resilience impacts upon the way that development is permitted/environmental decision making is undertaken, similar to the way that existing ecosystem health impacts upon what development is permitted. For instance, remnant vegetation in the states of Queensland and New South Wales are classified in terms of ecosystem health and abundance. Any impact that development has upon threatened ecosystems must consider the health and resilience of these ecosystems. This is governed by the Threatened Species Conservation Act 1995 in New South Wales  and the Vegetation Management Act 1999 in Queensland.
  • International level initiatives aim at improving socio-ecological resilience worldwide through the cooperation and contributions of scientific and other experts. An example of such an initiative is the Millennium Ecosystem Assessment whose objective is "to assess the consequences of ecosystem change for human well-being and the scientific basis for action needed to enhance the conservation and sustainable use of those systems and their contribution to human well-being". Similarly, the United Nations Environment Programme  aim is "to provide leadership and encourage partnership in caring for the environment by inspiring, informing, and enabling nations and peoples to improve their quality of life without compromising that of future generations.

Environmental management in legislation

Ecological resilience and the thresholds by which resilience is defined are closely interrelated in the way that they influence environmental policy-making, legislation and subsequently environmental management. The ability of ecosystems to recover from certain levels of environmental impact is not explicitly noted in legislation, however, because of ecosystem resilience, some levels of environmental impact associated with development are made permissible by environmental policy-making and ensuing legislation. 

Some examples of the consideration of ecosystem resilience within legislation include:
  • Environmental Planning and Assessment Act 1979 (NSW) – A key goal of the Environmental Assessment procedure is to determine whether proposed development will have a significant impact upon ecosystems.
  • Protection of the Environment (Operations) Act 1997 (NSW) – Pollution control is dependent upon keeping levels of pollutants emitted by industrial and other human activities below levels which would be harmful to the environment and its ecosystems. Environmental protection licenses are administered to maintain the environmental objectives of the POEO Act and breaches of license conditions can attract heavy penalties and in some cases criminal convictions.
  • Threatened Species Conservation Act 1995 (NSW)  – This Act seeks to protect threatened species while balancing it with development.

Cooperative

From Wikipedia, the free encyclopedia ...