Search This Blog

Monday, July 29, 2019

Relational frame theory

From Wikipedia, the free encyclopedia
Relational frame theory (RFT) is a psychological theory of human language. It was developed originally by Steven C. Hayes of University of Nevada, Reno and has been extended in research notably by Dermot Barnes-Holmes of Ghent University beginning in 2015.

Relational frame theory argues that the building block of human language and higher cognition is relating, i.e. the human ability to create bidirectional links between things. It can be contrasted with associative learning, which discusses how animals form links between stimuli in the form of the strength of associations in memory. However, relational frame theory argues that natural human language typically specifies not just the strength of a link between stimuli but also the type of relation as well as the dimension along which they are to be related. For example, a tennis ball is not just associated with an orange, but can be said to be the same shape, but a different colour and not edible. In the preceding sentence, 'same', 'different' and 'not' are cues in the environment that specify the type of relation between the stimuli, and 'shape', 'colour' and 'edible' specify the dimension along which each relation is to be made. Relational frame theory argues that while there are an arbitrary number of types of relations and number of dimensions along which stimuli can be related, the core unit of relating is an essential building block for much of what is commonly referred to as human language or higher cognition.

Several hundred studies have explored many testable aspects and implications of the theory such as the emergence of specific frames in childhood, how individual frames can be combined to create verbally complex phenomena such as metaphors and analogies, and how the rigidity or automaticity of relating within certain domains is related to psychopathology. In attempting to describe a fundamental building block of human language and higher cognition, RFT explicitly states that its goal is to provide a general theory of psychology that can provide a bedrock for multiple domains and levels of analysis.

Relational frame theory focuses on how humans learn language (i.e., communication) through interactions with the environment and is based on a philosophical approach referred to as functional contextualism.

Overview

Introduction

Relational frame theory (RFT) is a behavioral theory of human language. It is rooted in functional contextualism and focused on predicting and influencing verbal behavior with precision, scope and depth.

Relational framing is relational responding based on arbitrarily applicable relations and arbitrary stimulus functions. The relational responding is subject to mutual entailment, combinatorial mutual entailment and transformation of stimulus functions. The relations and stimulus functions are controlled by contextual cues.

Contextual cues and stimulus functions

In human language a word, sentence or a symbol (e.g. stimulus) can have a different meaning (e.g. functions), depending on context. 

In terms of RFT, it is said that in human language a stimulus can have different stimulus functions depending on contextual cues.

Take these two sentences for example:
  1. This task is piece of cake.
  2. Yes, I would like a piece of that delicious cake you've made.
In the sentences above the stimulus "cake" has two different functions. The stimulus "cake" has a figurative function in the presence of the contextual cues "this task; is; piece of". Whereas in the presence of the contextual cues "I; would like; delicious; you've made" the stimulus "cake" has a more literal function. The functions of stimuli are called stimulus functions, Cfunc for short.

When stimulus function refer to physical properties of the stimulus, such as quantity, colour, shape, etc., they are called nonarbitrary stimulus functions. When a stimulus function refers to non-physical properties of the stimulus, such as value, they are called arbitrary stimulus functions. For example, a one dollar bill. The value of the one dollar bill is an arbitrary stimulus function, but the colour green is a nonarbitrary stimulus function of the one dollar bill.

Arbitrarily applicable relational responding

Arbitrarily applicable relational responding (AARRing) is a form of relational responding.

Relational responding

Relational responding is a response to one stimulus in relation to other available stimuli. For example, a lion who picks the largest piece of meat. The deer who picks the strongest male of the pack. In contrast if an animal would always pick the same drinking spot, it's not relational responding (it's not related to other stimuli in the sense of best/worst/larger/smaller, etc.). These examples of relational responding are based on the physical properties of the stimuli. When relational responding is based on the physical properties of the stimuli,such as shape, size, quantity, etc., it's called nonarbitrarily relational responding (NARR).

Arbitrarily applicable relational responding

Arbitrarily applicable relational responding refers to responding based on relations that are arbitrarily applied between the stimuli. That is to say the relations applied between the stimuli are not supported by the physical properties of said stimuli, but for example based on social convention or social whim. For example, the sound "cow" refers to the animal in the English language. But in another language the same animal is referred by a totally different sound. For example, in Dutch is called "koe" (pronounced as coo). The word "cow" or "koe" has nothing to do with the physical properties of the animal itself. It's by social convention that the animal is named this way. In terms of RFT it's said that the relation between the word cow and the actual animal is arbitrarily applied. We can even change these arbitrarily applied relations: Just look at the history of any language, where meanings of words, symbols and complete sentence can change over time and place. 

AARRing is responding based on arbitrarily applied relations.

Mutual entailment

Mutual entailment refers to deriving a relation between two stimuli based on a given relation between those same two stimuli: Given the relation A to B, the relation B to A can be derived.

For example, Joyce is standing in front of Peter. The relation trained is stimulus A in front of stimulus B. One can derive that Peter is behind Joyce. The derived relation is stimulus B is behind stimulus A.
Another example: Fluodiwe (a made up name) is more valuable then Carviwing (another made up name). One could derive that Carviwing is less valuable then Fluodiwe. Relation trained: stimulus A is more valuable then stimulus B. Relation derived: stimulus B is less valuable then stimulus A.

Combinatorial mutual entailment

Combinatorial mutual entailment refers to deriving relations between two stimuli, given the relations of those two stimuli with a third stimulus: Given the relation A to B and B to C, the relations A to C and C to A can be derived.

To go on with the examples above: 

Joyce is standing in front of Peter and Peter is standing in front of Lucy. The relations trained in this example are: stimulus A in front of B and stimulus B in front of C. With this it can be derived that Joyce is standing in front of Lucy and Lucy is standing behind Joyce. The derived relations are A is in front of C and C is behind A.

Fluodiwe is more valuable then Carviwing and Carviwing is more valuable then Sioklad. Stimulus A is more valuable then stimulus B and stimulus B is more valuable then stimulus C. It can be derived that Fluodiwe is more valuable then Sioklad and Sioklad is less valuable then Fluowide. The derived relations become: stimulus A is more valuable then stimulus C en stimulus C is less valuable then stimulus A.

Notice that the relations between A and C where never given. They can be derived by the other relations.

Transfer and transformation of stimulus function

As said earlier a stimulus can have different functions depending on contextual cues. However a stimulus function can change based on the arbitrary relations with that stimulus.

For example, this relational frame: A is more than B and B is more than C. 

For now the stimulus functions of these letters are rather neutral. But as soon as C would be labeled 'as very valuable' and 'nice to have', then A would become more attractive then C, based on the relations. Before there was stated anything about C being valuable, A had a rather neutral stimulus function. After giving C a attractive stimulus function, A has become attractive. The attractive stimulus function has been transferred from C to A through the relations between A, B and C. And A has had a transformation of stimulus function from neutral to attractive.

The same can be done with aversive stimulus function as danger instead of valuable, in saying that C is dangerous, A becomes more dangerous than C based on the relations.

Development

RFT is a behavioral account of language and higher cognition. In his 1957 book Verbal Behavior, B.F. Skinner presented an interpretation of language. However, this account was intended to be an interpretation as opposed to an experimental research program, and researchers commonly acknowledge that the research products are somewhat limited in scope. For example, Skinner's behavioral interpretation of language has been useful in some aspects of language training in developmentally disabled children, but it has not led to a robust research program in the range of areas relevant to language and cognition, such as problem-solving, reasoning, metaphor, logic, and so on. RFT advocates are fairly bold in stating that their goal is an experimental behavioral research program in all such areas, and RFT research has indeed emerged in a large number of these areas, including grammar.

In a review of Skinner's book, linguist Noam Chomsky argued that the generativity of language shows that it cannot simply be learned, that there must be some innate "language acquisition device". Many have seen this review as a turning point, when cognitivism took the place of behaviorism as the mainstream in psychology. Behavior analysts generally viewed the criticism as somewhat off point, but it is undeniable that psychology turned its attention elsewhere and the review was very influential in helping to produce the rise of cognitive psychology. 

Despite the lack of attention from the mainstream, behavior analysis is alive and growing. Its application has been extended to areas such as language and cognitive training. Behavior analysis has long been extended as well to animal training, business and school settings, as well as hospitals and areas of research. 

RFT distinguishes itself from Skinner's work by identifying and defining a particular type of operant conditioning known as arbitrarily applicable derived relational responding (AADRR). In essence the theory argues that language is not associative but is learned and relational. For example, young children learn relations of coordination between names and objects; followed by relations of difference, opposition, before and after, so on. These are "frames" in the sense that once relating of that kind is learned, any event can be related in that way mutually and in combination with other relations, given a cue to do so. This is a learning process that to date appears to occur only in humans possessing a capacity for language: to date relational framing has not yet been shown unambiguously in non-human animals despite many attempts to do so. AADRR is theorized to be a pervasive influence on almost all aspects of human behavior. The theory represents an attempt to provide a more empirically progressive account of complex human behavior while preserving the naturalistic approach of behavior analysis.

Evidence

Approximately 300 studies have tested RFT ideas. Supportive data exists in the areas needed to show that an action is "operant" such as the importance of multiple examples in training derived relational responding, the role of context, and the importance of consequences. Derived relational responding has also been shown to alter other behavioral processes such as classical conditioning, an empirical result that RFT theorists point to in explaining why relational operants modify existing behavioristic interpretations of complex human behavior. Empirical advances have also been made by RFT researchers in the analysis and understanding of such topics as metaphor, perspective taking, and reasoning.

Proponents of RFT often indicate the failure to establish a vigorous experimental program in language and cognition as the key reason why behavior analysis fell out of the mainstream of psychology despite its many contributions, and argue that RFT might provide a way forward. The theory is still somewhat controversial within behavioral psychology, however. At the current time the controversy is not primarily empirical since RFT studies publish regularly in mainstream behavioral journals and few empirical studies have yet claimed to contradict RFT findings. Rather the controversy seems to revolve around whether RFT is a positive step forward, especially given that its implications seem to go beyond many existing interpretations and extensions from within this intellectual tradition.

Applications

Acceptance and commitment therapy

RFT has been argued to be central to the development of the psychotherapeutic tradition known as acceptance and commitment therapy and clinical behavior analysis more generally. Indeed, the psychologist Steven C Hayes was involved with the creation of both acceptance and commitment therapy and RFT, and has credited them as inspirations for one another. However, the extent and exact nature of the interaction between RFT as basic behavioral science and applications such as ACT has been an ongoing point of discussion within the field.

Autism spectrum disorder

RFT provides conceptual and procedural guidance for enhancing the cognitive and language development capability (through its detailed treatment and analysis of derived relational responding and the transformation of function) of early intensive behavior intervention (EIBI) programs for young children with autism and related disorders. The Promoting the Emergence of Advanced Knowledge (PEAK) Relational Training System is heavily influenced by RFT.

Evolution science

More recently, RFT has also been proposed as a way to guide discussion of language processes within evolution science, whether within evolutionary biology or evolutionary psychology, toward a more informed understanding of the role of language in shaping human social behavior. The effort at integrating RFT into evolution science has been led by, among others, Steven C. Hayes, a co-developer of RFT, and David Sloan Wilson, an evolutionary biologist at Binghamton University. For example, in 2011, Hayes presented at a seminar at Binghamton, on the topic of "Symbolic Behavior, Behavioral Psychology, and the Clinical Importance of Evolution Science", while Wilson likewise presented at a symposium at the annual conference in Parma, Italy, of the Association for Contextual Behavioral Science, the parent organization sponsoring RFT research, on the topic of "Evolution for Everyone, Including Contextual Psychology". Hayes, Wilson, and colleagues have recently linked RFT to the concept of a symbotype and an evolutionarily sensible way that relational framing could have developed has been described.

Theory of mind

From Wikipedia, the free encyclopedia
 
Theory of mind is the ability to attribute mental states — beliefs, intents, desires, emotions, knowledge, etc. — to oneself, and to others, and to understand that others have beliefs, desires, intentions, and perspectives that are different from one's own. Theory of mind is crucial for everyday human social interactions and is used when analyzing, judging, and inferring others' behaviors. Deficits can occur in people with autism spectrum disorders, schizophrenia, attention deficit hyperactivity disorder, cocaine addiction, and brain damage suffered from alcohol's neurotoxicity. Although philosophical approaches to this exist, the theory of mind as such is distinct from the philosophy of mind.

Definition

Theory of mind is a theory insofar as the mind is the only thing being directly observed. The presumption that others have a mind is termed a theory of mind because each human can only intuit the existence of their own mind through introspection, and no one has direct access to the mind of another. It is typically assumed that others have minds analogous to one's own, and this assumption is based on the reciprocal, social interaction, as observed in joint attention, the functional use of language, and the understanding of others' emotions and actions. Having theory of mind allows one to attribute thoughts, desires, and intentions to others, to predict or explain their actions, and to posit their intentions. As originally defined, it enables one to understand that mental states can be the cause of—and thus be used to explain and predict—the behavior of others. Being able to attribute mental states to others and understanding them as causes of behavior implies, in part, that one must be able to conceive of the mind as a "generator of representations". If a person does not have a complete theory of mind, it may be a sign of cognitive or developmental impairment. 

Theory of mind appears to be an innate potential ability in humans that requires social and other experience over many years for its full development. Different people may develop more, or less, effective theory of mind. Neo-Piagetian theories of cognitive development maintain that theory of mind is a byproduct of a broader hypercognitive ability of the human mind to register, monitor, and represent its own functioning.

Empathy is a related concept, meaning the recognition and understanding of the states of mind of others, including their beliefs, desires and particularly emotions. This is often characterized as the ability to "put oneself into another's shoes". Recent neuro-ethological studies of animal behaviour suggest that even rodents may exhibit ethical or empathetic abilities. While empathy is known as emotional perspective-taking, theory of mind is defined as cognitive perspective-taking.

Research on theory of mind, in humans and animals, adults and children, normally and atypically developing, has grown rapidly in the 35 years since Premack and Guy Woodruff's paper, "Does the chimpanzee have a theory of mind?" The emerging field of social neuroscience has also begun to address this debate, by imaging the brains of humans while they perform tasks demanding the understanding of an intention, belief or other mental state in others. 

An alternative account of theory of mind is given within operant psychology and provides significant empirical evidence for a functional account of both perspective-taking and empathy. The most developed operant approach is founded on research on derived relational responding and is subsumed within what is called relational frame theory. According to this view, empathy and perspective-taking comprise a complex set of derived relational abilities based on learning to discriminate and respond verbally to ever more complex relations between self, others, place, and time, and through established relations.

Philosophical and psychological roots

Contemporary discussions of Theory of Mind have their roots in philosophical debate—most broadly, from the time of Descartes' Second Meditation, which set the groundwork for considering the science of the mind. Most prominent recently are two contrasting approaches in the philosophical literature, to theory of mind: theory-theory and simulation theory. The theory-theorist imagines a veritable theory—"folk psychology"—used to reason about others' minds. The theory is developed automatically and innately, though instantiated through social interactions. It is also closely related to person perception and attribution theory from social psychology. 

The intuitive assumption that others are minded is an apparent tendency we all share. We anthropomorphize non-human animals, inanimate objects, and even natural phenomena. Daniel Dennett referred to this tendency as taking an "intentional stance" toward things: we assume they have intentions, to help predict future behavior. However, there is an important distinction between taking an "intentional stance" toward something and entering a "shared world" with it. The intentional stance is a detached and functional theory we resort to during interpersonal interactions. A shared world is directly perceived and its existence structures reality itself for the perceiver. It is not just automatically applied to perception; it in many ways constitutes perception.

The philosophical roots of the relational frame theory (RFT) account of Theory of Mind arise from contextual psychology and refer to the study of organisms (both human and non-human) interacting in and with a historical and current situational context. It is an approach based on contextualism, a philosophy in which any event is interpreted as an ongoing act inseparable from its current and historical context and in which a radically functional approach to truth and meaning is adopted. As a variant of contextualism, RFT focuses on the construction of practical, scientific knowledge. This scientific form of contextual psychology is virtually synonymous with the philosophy of operant psychology.

Development

The study of which animals are capable of attributing knowledge and mental states to others, as well as the development of this ability in human ontogeny and phylogeny, has identified several behavioral precursors to theory of mind. Understanding attention, understanding of others' intentions, and imitative experience with other people are hallmarks of a theory of mind that may be observed early in the development of what later becomes a full-fledged theory. In studies with non-human animals and pre-verbal humans, in particular, researchers look to these behaviors preferentially in making inferences about mind. 

Simon Baron-Cohen identified the infant's understanding of attention in others, a social skill found by 7 to 9 months of age, as a "critical precursor" to the development of theory of mind. Understanding attention involves understanding that seeing can be directed selectively as attention, that the looker assesses the seen object as "of interest", and that seeing can induce beliefs. Attention can be directed and shared by the act of pointing, a joint attention behavior that requires taking into account another person's mental state, particularly whether the person notices an object or finds it of interest. Baron-Cohen speculates that the inclination to spontaneously reference an object in the world as of interest ("protodeclarative pointing") and to likewise appreciate the directed attention and interests of another may be the underlying motive behind all human communication.

Understanding of others' intentions is another critical precursor to understanding other minds because intentionality, or "aboutness", is a fundamental feature of mental states and events. The "intentional stance" has been defined by Daniel Dennett as an understanding that others' actions are goal-directed and arise from particular beliefs or desires. Both 2- and 3-year-old children could discriminate when an experimenter intentionally vs. accidentally marked a box with stickers as baited. Even earlier in ontogeny, Andrew N. Meltzoff found that 18-month-old infants could perform target manipulations that adult experimenters attempted and failed, suggesting the infants could represent the object-manipulating behavior of adults as involving goals and intentions. While attribution of intention (the box-marking) and knowledge (false-belief tasks) is investigated in young humans and nonhuman animals to detect precursors to a theory of mind, Gagliardi et al. have pointed out that even adult humans do not always act in a way consistent with an attributional perspective. In the experiment, adult human subjects made choices about baited containers when guided by confederates who could not see (and therefore, not know) which container was baited. 

Recent research in developmental psychology suggests that the infant's ability to imitate others lies at the origins of both theory of mind and other social-cognitive achievements like perspective-taking and empathy. According to Meltzoff, the infant's innate understanding that others are "like me" allows it to recognize the equivalence between the physical and mental states apparent in others and those felt by the self. For example, the infant uses his own experiences, orienting his head/eyes toward an object of interest to understand the movements of others who turn toward an object, that is, that they will generally attend to objects of interest or significance. Some researchers in comparative disciplines have hesitated to put a too-ponderous weight on imitation as a critical precursor to advanced human social-cognitive skills like mentalizing and empathizing, especially if true imitation is no longer employed by adults. A test of imitation by Alexandra Horowitz found that adult subjects imitated an experimenter demonstrating a novel task far less closely than children did. Horowitz points out that the precise psychological state underlying imitation is unclear and cannot, by itself, be used to draw conclusions about the mental states of humans. 

While much research has been done on infants, theory of mind develops continuously throughout childhood and into late adolescence as the synapses (neuronal connections) in the prefrontal cortex develop. The prefrontal cortex is thought to be involved in planning and decision-making. Children seem to develop theory of mind skills sequentially. The first skill to develop is the ability to recognize that others have diverse desires. Children are able to recognize that others have diverse beliefs soon after. The next skill to develop is recognizing that others have access to different knowledge bases. Finally, children are able to understand that others may have false beliefs and that others are capable of hiding emotions. While this sequence represents the general trend in skill acquisition, it seems that more emphasis is placed on some skills in certain cultures, leading to more valued skills to develop before those that are considered not as important. For example, in individualistic cultures such as the United States, a greater emphasis is placed on the ability to recognize that others have different opinions and beliefs. In a collectivistic culture, such as China, this skill may not be as important and therefore may not develop until later.

Language

There is evidence to believe that the development of theory of mind is closely intertwined with language development in humans. One meta-analysis showed a moderate to strong correlation (r = 0.43) between performance on theory of mind and language tasks. One might argue that this relationship is due solely to the fact that both language and theory of mind seem to begin to develop substantially around the same time in children (between ages 2–5). However, many other abilities develop during this same time period as well, and do not produce such high correlations with one another nor with theory of mind. There must be something else going on to explain the relationship between theory of mind and language. 

Pragmatic theories of communication assume that infants must possess an understanding of beliefs and mental states of others to infer the communicative content that proficient language users intend to convey. Since a verbal utterance is often underdetermined, and therefore, it can have different meanings depending on the actual context theory of mind abilities can play a crucial role in understanding the communicative and informative intentions of others and inferring the meaning of words. Some empirical results suggest that even 13-month-old infants have an early capacity for communicative mind-reading that enables them to infer what relevant information is transferred between communicative partners, which implies that human language relies at least partially on theory of mind skills.

Carol A. Miller posed further possible explanations for this relationship. One idea was that the extent of verbal communication and conversation involving children in a family could explain theory of mind development. The belief is that this type of language exposure could help introduce a child to the different mental states and perspectives of others. This has been suggested empirically by findings indicating that participation in family discussion predict scores on theory of mind tasks, as well as findings showing that deaf children who have hearing parents and may not be able to communicate with their parents much during early years of development tend to score lower on theory of mind tasks.

Another explanation of the relationship between language and theory of mind development has to do with a child's understanding of mental state words such as "think" and "believe". Since a mental state is not something that one can observe from behavior, children must learn the meanings of words denoting mental states from verbal explanations alone, requiring knowledge of the syntactic rules, semantic systems, and pragmatics of a language. Studies have shown that understanding of these mental state words predicts theory of mind in four-year-olds.

A third hypothesis is that the ability to distinguish a whole sentence ("Jimmy thinks the world is flat") from its embedded complement ("the world is flat") and understand that one can be true while the other can be false is related to theory of mind development. Recognizing these sentential complements as being independent of one another is a relatively complex syntactic skill and has been shown to be related to increased scores on theory of mind tasks in children.

In addition to these hypotheses, there is also evidence that the neural networks between the areas of the brain responsible for language and theory of mind are closely connected. The temporoparietal junction has been shown to be involved in the ability to acquire new vocabulary, as well as perceive and reproduce words. The temporoparietal junction also contains areas that specialize in recognizing faces, voices, and biological motion, in addition to theory of mind. Since all of these areas are located so closely together, it is reasonable to conclude that they work together. Moreover, studies have reported an increase in activity in the TPJ when patients are absorbing information through reading or images regarding other peoples' beliefs but not while observing information about physical control stimuli.

Theory of mind in adults

Neurotypical adults have the theory of mind concepts that they developed as children (concepts such as belief, desire, knowledge and intention). A focal question is how they use these concepts to meet the diverse demands of social life, ranging from snap decisions about how to trick an opponent in a competitive game, to keeping up with who knows what in a fast-moving conversation, to judging the guilt or innocence of the accused in a court of law.

Boaz Keysar, Dale Barr and colleagues found that adults often failed to use their theory of mind abilities to interpret a speaker’s message, even though they were perfectly well aware that the speaker lacked critical knowledge. Other studies converge in showing that adults are prone to “egocentric biases”, whereby they are influenced by their own beliefs, knowledge or preferences when judging those of other people, or else neglect other people’s perspectives entirely. There is also evidence that adults with greater memory and inhibitory capacity and greater motivation are more likely to use their theory of mind abilities.

In contrast, evidence from tasks looking for indirect effects of thinking about other people’s mental states suggests that adults may sometimes use their theory of mind automatically. Agnes Kovacs and colleagues measured the time it took adults to detect the presence of a ball as it was revealed from behind an occluder. They found that adults’ speed of response was influenced by whether or not an avatar in the scene thought there was a ball behind the occluder, even though adults were not asked to pay attention to what the avatar thought. Dana Samson and colleagues measured the time it took adults to judge the number of dots on the wall of a room. They found that adults responded more slowly when an avatar standing in the room happened to see fewer dots than they did, even when they had never been asked to pay attention to what the avatar could see. It has been questioned whether these “altercentric biases” truly reflect automatic processing of what another person is thinking or seeing, or whether they instead reflect attention and memory effects cued by the avatar, but not involving any representation of what they think or see.

Different theories have sought to explain these patterns of results. The idea that theory of mind is automatic is attractive because it would help explain how people keep up with the theory of mind demands of competitive games and fast-moving conversations. It might also explain evidence that human infants and some non-human species sometimes appear capable of theory of mind, despite their limited resources for memory and cognitive control. The idea that theory of mind is effortful and not automatic is attractive because it feels effortful to decide whether a defendant is guilty or innocent, or whether a negotiator is bluffing, and economy of effort would help explain why people sometimes neglect to use their theory of mind. Ian Apperly and Stephen Butterfill have suggested that people do in fact have “two systems” for theory of mind, in common with “two systems” accounts in many other areas of psychology. On this account, “system 1” is cognitively efficient and enables theory of mind for a limited but useful set of circumstances. “System 2” is cognitively effortful, but enables much more flexible theory of mind abilities. This account has been criticised by Peter Carruthers who suggests that the same core theory of mind abilities can be used in both simple and complex ways. The account has been criticised by Celia Heyes who suggests that “system 1” theory of mind abilities do not require representation of mental states of other people, and so are better thought of as “sub-mentalising”.

Aging

In older age, theory of mind capacities decline, irrespective of how exactly they are tested (e.g. stories, eyes, videos, false belief-video, false belief-other, faux pas). However, the decline in other cognitive functions is even stronger, suggesting that social cognition is somewhat preserved. In contrast to theory of mind, empathy shows no impairments in aging.

There are two kinds of theory of mind representations: cognitive (concerning the mental states, beliefs, thoughts, and intentions of others) and affective (concerning the emotions of others). Cognitive theory of mind is further separated into first order (e.g., I think she thinks that…) and second order (e.g., he thinks that she thinks that…). There is evidence that cognitive and affective theory of mind processes are functionally independent from one another. In studies of Alzheimer’s disease, which typically occurs in older adults, the patients display impairment with second order cognitive theory of mind, but usually not with first order cognitive or affective theory of mind. However, it is difficult to discern a clear pattern of theory of mind variation due to age. There have been many discrepancies in the data collected thus far, likely due to small sample sizes and the use of different tasks that only explore one aspect of theory of mind. Many researchers suggest that the theory of mind impairment is simply due to the normal decline in cognitive function.

Cultural variations

Researchers have proposed that five key aspects of theory of mind develop sequentially for all children between the ages of three to five. This five-step theory of mind scale consists of the development of diverse desires (DD), diverse beliefs (DB), knowledge access (KA), false beliefs (FB), and hidden emotions (HE). Australian, American and European children acquire theory of mind in this exact order, and studies with children in Canada, India, Peru, Samoa, and Thailand indicate that they all pass the false belief task at around the same time, suggesting that the children develop theory of mind consistently around the world.

However, children from Iran and China develop theory of mind in a slightly different order. Although they begin the development of theory of mind around the same time, toddlers from these countries understand knowledge access (KA) before Western children but take longer to understand false beliefs (FB). Researchers believe this swap in the developmental order is related to the culture of collectivism in Iran and China, which emphasizes interdependence and shared knowledge as opposed to the culture of individualism in Western countries, which promotes individuality and conflicting opinions. Because of these different cultural values, Iranian and Chinese children might take longer to understand that other people have different, sometimes false, beliefs. This suggests that the development of theory of mind is not universal and solely determined by innate brain processes but also influenced by social and cultural factors.

Empirical investigation

Whether children younger than 3 or 4 years old may have any theory of mind is a topic of debate among researchers. It is a challenging question, due to the difficulty of assessing what pre-linguistic children understand about others and the world. Tasks used in research into the development of Theory of Mind must take into account the umwelt—(the German word Umwelt means "environment" or "surrounding world")—of the pre-verbal child.

False-belief task

One of the most important milestones in theory of mind development is gaining the ability to attribute false belief: that is, to recognize that others can have beliefs about the world that are diverging. To do this, it is suggested, one must understand how knowledge is formed, that people's beliefs are based on their knowledge, that mental states can differ from reality, and that people's behavior can be predicted by their mental states. Numerous versions of the false-belief task have been developed, based on the initial task done by Wimmer and Perner (1983).

In the most common version of the false-belief task (often called the "'Sally-Anne' test" or "'Sally-Anne' task"), children are told or shown a story involving two characters. For example, the child is shown two dolls, Sally and Anne, who have a basket and a box, respectively. Sally also has a marble, which she places into her basket, and then leaves the room. While she is out of the room, Anne takes the marble from the basket and puts it into the box. Sally returns, and the child is then asked where Sally will look for the marble. The child passes the task if she answers that Sally will look in the basket, where Sally put the marble; the child fails the task if she answers that Sally will look in the box, where the child knows the marble is hidden, even though Sally cannot know this, since she did not see it hidden there. To pass the task, the child must be able to understand that another's mental representation of the situation is different from their own, and the child must be able to predict behavior based on that understanding.

Another example is when a boy leaves chocolate on a shelf and then leaves the room. His mother puts it in the fridge. To pass the task, the child must understand that the boy, upon returning, holds the false belief that his chocolate is still on the shelf.

The results of research using false-belief tasks have been fairly consistent: most normally developing children are able to pass the tasks from around age four. Notably, while most children, including those with Down syndrome, are able to pass this test, in one study, 80% of children diagnosed with autism were unable to do so.

Also adults can experience problems with false beliefs. For instance, when they show hindsight bias, defined as: "the inclination to see events that have already happened as being more predictable than they were before they took place." In an experiment by Fischhoff in 1975, adult subjects who were asked for an independent assessment were unable to disregard information on actual outcome. Also in experiments with complicated situations, when assessing others' thinking, adults can be unable to disregard certain information that they have been given.

Unexpected contents

Other tasks have been developed to try to solve the problems inherent in the false-belief task. In the "Unexpected contents", or "Smarties" task, experimenters ask children what they believe to be the contents of a box that looks as though it holds a candy called "Smarties". After the child guesses (usually) "Smarties", it is shown that the box in fact contained pencils. The experimenter then re-closes the box and asks the child what she thinks another person, who has not been shown the true contents of the box, will think is inside. The child passes the task if he/she responds that another person will think that "Smarties" exist in the box, but fails the task if she responds that another person will think that the box contains pencils. Gopnik & Astington (1988) found that children pass this test at age four or five years.

Other tasks

The "false-photograph" task is another task that serves as a measure of theory of mind development. In this task, children must reason about what is represented in a photograph that differs from the current state of affairs. Within the false-photograph task, either a location or identity change exists. In the location-change task, the examiner puts an object in one location (e.g., chocolate in an open green cupboard), whereupon the child takes a Polaroid photograph of the scene. While the photograph is developing, the examiner moves the object to a different location (e.g., a blue cupboard), allowing the child to view the examiner's action. The examiner asks the child two control questions: "When we first took the picture, where was the object?" and "Where is the object now?". The subject is also asked a "false-photograph" question: "Where is the object in the picture?" The child passes the task if he/she correctly identifies the location of the object in the picture and the actual location of the object at the time of the question. However, the last question might be misinterpreted as: "Where in this room is the object that the picture depicts?" and therefore some examiners use an alternative phrasing.

To make it easier for animals, young children, and individuals with classical (Kanner-type) autism to understand and perform theory of mind tasks, researchers have developed tests in which verbal communication is de-emphasized: some whose administration does not involve verbal communication on the part of the examiner, some whose successful completion does not require verbal communication on the part of the subject, and some that meet both of the foregoing standards. One category of tasks uses a preferential looking paradigm, with looking time as the dependent variable. For instance, 9-month-old infants prefer looking at behaviors performed by a human hand over those made by an inanimate hand-like object. Other paradigms look at rates of imitative behavior, the ability to replicate and complete unfinished goal-directed acts, and rates of pretend play.

Early precursors

Recent research on the early precursors of theory of mind has looked at innovative ways at capturing preverbal infants' understanding of other people's mental states, including perception and beliefs. Using a variety of experimental procedures, studies have shown that infants from their first year of life have an implicit understanding of what other people see and what they know. A popular paradigm used to study infants' theory of mind is the violation of expectation procedure, which predicates on infants' tendency to look longer at unexpected and surprising events compared to familiar and expected events. Therefore, their looking-times measures would give researchers an indication of what infants might be inferring, or their implicit understanding of events. One recent study using this paradigm found that 16-month-olds tend to attribute beliefs to a person whose visual perception was previously witnessed as being "reliable", compared to someone whose visual perception was "unreliable". Specifically, 16-month-olds were trained to expect a person's excited vocalization and gaze into a container to be associated with finding a toy in the reliable-looker condition or an absence of a toy in the unreliable-looker condition. Following this training phase, infants witnessed, in an object-search task, the same persons either searching for a toy in the correct or incorrect location after they both witnessed the location of where the toy was hidden. Infants who experienced the reliable looker were surprised and therefore looked longer when the person searched for the toy in the incorrect location compared to the correct location. In contrast, the looking time for infants who experienced the unreliable looker did not differ for either search locations. These findings suggest that 16-month-old infants can differentially attribute beliefs about a toy's location based on the person's prior record of visual perception.

Deficits

The theory of mind impairment describes a difficulty someone would have with perspective-taking. This is also sometimes referred to as mind-blindness. This means that individuals with a theory of mind impairment would have a difficult time seeing phenomena from any other perspective than their own. Individuals who experience a theory of mind deficit have difficulty determining the intentions of others, lack understanding of how their behavior affects others, and have a difficult time with social reciprocity. Theory of Mind deficits have been observed in people with autism spectrum disorders, people with schizophrenia, people with nonverbal learning disorder, people with attention deficit disorder, persons under the influence of alcohol and narcotics, sleep-deprived persons, and persons who are experiencing severe emotional or physical pain. Theory of mind deficits have also been observed in deaf children who are late signers (i.e., are born to hearing parents), but the deficit is due to the delay in language learning, not any cognitive deficit, and therefore disappears once the child learns sign language.

Autism

In 1985 Simon Baron-Cohen, Alan M. Leslie and Uta Frith suggested that children with autism do not employ theory of mind and suggested that autistic children have particular difficulties with tasks requiring the child to understand another person's beliefs. These difficulties persist when children are matched for verbal skills and have been taken as a key feature of autism. 

Many individuals classified as autistic have severe difficulty assigning mental states to others, and they seem to lack theory of mind capabilities. Researchers who study the relationship between autism and theory of mind attempt to explain the connection in a variety of ways. One account assumes that theory of mind plays a role in the attribution of mental states to others and in childhood pretend play. According to Leslie, theory of mind is the capacity to mentally represent thoughts, beliefs, and desires, regardless of whether or not the circumstances involved are real. This might explain why some autistic individuals show extreme deficits in both theory of mind and pretend play. However, Hobson proposes a social-affective justification, which suggests that with an autistic person, deficits in theory of mind result from a distortion in understanding and responding to emotions. He suggests that typically developing human beings, unlike autistic individuals, are born with a set of skills (such as social referencing ability) that later lets them comprehend and react to other people's feelings. Other scholars emphasize that autism involves a specific developmental delay, so that autistic children vary in their deficiencies, because they experience difficulty in different stages of growth. Very early setbacks can alter proper advancement of joint-attention behaviors, which may lead to a failure to form a full theory of mind.

It has been speculated that Theory of Mind exists on a continuum as opposed to the traditional view of a discrete presence or absence. While some research has suggested that some autistic populations are unable to attribute mental states to others, recent evidence points to the possibility of coping mechanisms that facilitate a spectrum of mindful behavior. Tine et al. suggest that autistic children score substantially lower on measures of social theory of mind in comparison to children diagnosed with Asperger syndrome.

Generally, children with more advanced theory of mind abilities display more advanced social skills, greater adaptability to new situations, and greater cooperation with others. As a result, these children are typically well-liked. However, “children may use their mind-reading abilities to manipulate, outwit, tease, or trick their peers”. Individuals possessing inferior theory of mind skills, such as children with autism spectrum disorder, may be socially rejected by their peers since they are unable to communicate effectively. Social rejection has been proven to negatively impact a child’s development and can put the child at greater risk of developing depressive symptoms.

Peer-mediated interventions (PMI) are a school-based treatment approach for children and adolescents with autism spectrum disorder in which peers are trained to be role models in order to promote social behavior. Laghi et al. studied if analysis of prosocial (nice) and antisocial (nasty) theory of mind behaviors could be used, in addition to teacher recommendations, to select appropriate candidates for PMI programs. Selecting children with advanced theory of mind skills who use them in prosocial ways will theoretically make the program more effective. While the results indicated that analyzing the social uses of theory of mind of possible candidates for a PMI program is invaluable, it may not be a good predictor of a candidate's performance as a role model.

Schizophrenia

Individuals with the diagnosis of schizophrenia can show deficits in theory of mind. Mirjam Sprong and colleagues investigated the impairment by examining 29 different studies, with a total of over 1500 participants. This meta-analysis showed significant and stable deficit of theory of mind in people with schizophrenia. They performed poorly on false-belief tasks, which test the ability to understand that others can hold false beliefs about events in the world, and also on intention-inference tasks, which assess the ability to infer a character's intention from reading a short story. Schizophrenia patients with negative symptoms, such as lack of emotion, motivation, or speech, have the most impairment in theory of mind and are unable to represent the mental states of themselves and of others. Paranoid schizophrenic patients also perform poorly because they have difficulty accurately interpreting others' intentions. The meta-analysis additionally showed that IQ, gender, and age of the participants does not significantly affect the performance of theory of mind tasks.

Current research suggests that impairment in theory of mind negatively affects clinical insight, the patient's awareness of their mental illness. Insight requires theory of mind—a patient must be able to adopt a third-person perspective and see the self as others do. A patient with good insight would be able to accurately self-represent, by comparing oneself with others and by viewing oneself from the perspective of others. Insight allows a patient to recognize and react appropriately to his symptoms; however, a patient who lacks insight would not realize that he has a mental illness, because of his inability to accurately self-represent. Therapies that teach patients perspective-taking and self-reflection skills can improve abilities in reading social cues and taking the perspective of another person.

The majority of the current literature supports the argument that the theory of mind deficit is a stable trait-characteristic rather than a state-characteristic of schizophrenia. The meta-analysis conducted by Sprong et al. showed that patients in remission still had impairment in theory of mind. The results indicate that the deficit is not merely a consequence of the active phase of schizophrenia.

Schizophrenic patients' deficit in theory of mind impairs their daily interactions with others. An example of a disrupted interaction is one between a schizophrenic parent and a child. Theory of mind is particularly important for parents, who must understand the thoughts and behaviors of their children and react accordingly. Dysfunctional parenting is associated with deficits in the first-order theory of mind, the ability to understand another person's thoughts, and the second-order theory of mind, the ability to infer what one person thinks about another person's thoughts. Compared with healthy mothers, mothers with schizophrenia are found to be more remote, quiet, self-absorbed, insensitive, unresponsive, and to have fewer satisfying interactions with their children. They also tend to misinterpret their children's emotional cues, and often misunderstand neutral faces as negative. Activities such as role-playing and individual or group-based sessions are effective interventions that help the parents improve on perspective-taking and theory of mind. Although there is a strong association between theory of mind deficit and parental role dysfunction, future studies could strengthen the relationship by possibly establishing a causal role of theory of mind on parenting abilities.

Alcohol use disorders

Impairments in theory of mind, as well as other social-cognitive deficits are commonly found in people suffering from alcoholism, due to the neurotoxic effects of alcohol on the brain, particularly the prefrontal cortex.

Depression and dysphoria

Individuals in a current major depressive episode, a disorder characterized by social impairment, show deficits in theory of mind decoding. Theory of mind decoding is the ability to use information available in the immediate environment (e.g., facial expression, tone of voice, body posture) to accurately label the mental states of others. The opposite pattern, enhanced theory of mind, is observed in individuals vulnerable to depression, including those individuals with past major depressive disorder (MDD), dysphoric individuals, and individuals with a maternal history of MDD.

Developmental language disorder

Children diagnosed with developmental language disorder (DLD) exhibit much lower scores on reading and writing sections of standardized tests, yet have a normal nonverbal IQ. These language deficits can be any specific deficits in lexical semantics, syntax, or pragmatics, or a combination of multiple problems. They often exhibit poorer social skills than normally developing children, and seem to have problems decoding beliefs in others. A recent meta-analysis confirmed that children with DLD have substantially lower scores on theory of mind tasks compared to typically developing children.  This strengthens the claim that language development is related to theory of mind.

Brain mechanisms

In typically developing humans

Research on theory of mind in autism led to the view that mentalizing abilities are subserved by dedicated mechanisms that can - in some cases - be impaired while general cognitive function remains largely intact. 

Neuroimaging research has supported this view, demonstrating specific brain regions consistently engaged during theory of mind tasks. PET research on theory of mind, using verbal and pictorial story comprehension tasks, has identified a set of brain regions including the medial prefrontal cortex (mPFC), and area around posterior superior temporal sulcus (pSTS), and sometimes precuneus and amygdala/temporopolar cortex. Subsequently, research on the neural basis of theory of mind has diversified, with separate lines of research focused on the understanding of beliefs, intentions, and more complex properties of minds such as psychological traits.

Studies from Rebecca Saxe's lab at MIT, using a false-belief versus false-photograph task contrast aimed at isolating the mentalizing component of the false-belief task, have very consistently found activation in mPFC, precuneus, and temporo-parietal junction (TPJ), right-lateralized. In particular, it has been proposed that the right TPJ (rTPJ) is selectively involved in representing the beliefs of others. However, some debate exists, as some scientists have noted that the same rTPJ region has been consistently activated during spatial reorienting of visual attention; Jean Decety from the University of Chicago and Jason Mitchell from Harvard have thus proposed that the rTPJ subserves a more general function involved in both false-belief understanding and attentional reorienting, rather than a mechanism specialized for social cognition. However, it is possible that the observation of overlapping regions for representing beliefs and attentional reorienting may simply be due to adjacent, but distinct, neuronal populations that code for each. The resolution of typical fMRI studies may not be good enough to show that distinct/adjacent neuronal populations code for each of these processes. In a study following Decety and Mitchell, Saxe and colleagues used higher-resolution fMRI and showed that the peak of activation for attentional reorienting is approximately 6-10mm above the peak for representing beliefs. Further corroborating that differing populations of neurons may code for each process, they found no similarity in the patterning of fMRI response across space.

Functional imaging has also been used to study the detection of mental state information in Heider-Simmel-esque animations of moving geometric shapes, which typical humans automatically perceive as social interactions laden with intention and emotion. Three studies found remarkably similar patterns of activation during the perception of such animations versus a random or deterministic motion control: mPFC, pSTS, fusiform face area (FFA), and amygdala were selectively engaged during the Theory of Mind condition. Another study presented subjects with an animation of two dots moving with a parameterized degree of intentionality (quantifying the extent to which the dots chased each other), and found that pSTS activation correlated with this parameter.

A separate body of research has implicated the posterior superior temporal sulcus in the perception of intentionality in human action; this area is also involved in perceiving biological motion, including body, eye, mouth, and point-light display motion. One study found increased pSTS activation while watching a human lift his hand versus having his hand pushed up by a piston (intentional versus unintentional action). Several studies have found increased pSTS activation when subjects perceive a human action that is incongruent with the action expected from the actor's context and inferred intention. Examples would be: a human performing a reach-to-grasp motion on empty space next to an object, versus grasping the object; a human shifting eye gaze toward empty space next to a checkerboard target versus shifting gaze toward the target; an unladen human turning on a light with his knee, versus turning on a light with his knee while carrying a pile of books; and a walking human pausing as he passes behind a bookshelf, versus walking at a constant speed. In these studies, actions in the "congruent" case have a straightforward goal, and are easy to explain in terms of the actor's intention. The incongruent actions, on the other hand, require further explanation (why would someone twist empty space next to a gear?), and then apparently would demand more processing in the STS. Note that this region is distinct from the temporo-parietal area activated during false belief tasks. Also note that pSTS activation in most of the above studies was largely right-lateralized, following the general trend in neuroimaging studies of social cognition and perception. Also right-lateralized are the TPJ activation during false belief tasks, the STS response to biological motion, and the FFA response to faces. 

Neuropsychological evidence has provided support for neuroimaging results regarding the neural basis of theory of mind. Studies with patients suffering from a lesion of the frontal lobes and the temporoparietal junction of the brain (between the temporal lobe and parietal lobe) reported that they have difficulty with some theory of mind tasks. This shows that theory of mind abilities are associated with specific parts of the human brain. However, the fact that the medial prefrontal cortex and temporoparietal junction are necessary for theory of mind tasks does not imply that these regions are specific to that function. TPJ and mPFC may subserve more general functions necessary for Theory of Mind. 

Research by Vittorio Gallese, Luciano Fadiga and Giacomo Rizzolatti (reviewed in) has shown that some sensorimotor neurons, which are referred to as mirror neurons, first discovered in the premotor cortex of rhesus monkeys, may be involved in action understanding. Single-electrode recording revealed that these neurons fired when a monkey performed an action, as well as when the monkey viewed another agent carrying out the same task. Similarly, fMRI studies with human participants have shown brain regions (assumed to contain mirror neurons) that are active when one person sees another person's goal-directed action. These data have led some authors to suggest that mirror neurons may provide the basis for theory of mind in the brain, and to support simulation theory of mind reading (see above).

There is also evidence against the link between mirror neurons and theory of mind. First, macaque monkeys have mirror neurons but do not seem to have a 'human-like' capacity to understand theory of mind and belief. Second, fMRI studies of theory of mind typically report activation in the mPFC, temporal poles and TPJ or STS, but these brain areas are not part of the mirror neuron system. Some investigators, like developmental psychologist Andrew Meltzoff and neuroscientist Jean Decety, believe that mirror neurons merely facilitate learning through imitation and may provide a precursor to the development of Theory of Mind. Others, like philosopher Shaun Gallagher, suggest that mirror-neuron activation, on a number of counts, fails to meet the definition of simulation as proposed by the simulation theory of mindreading.

In a recent paper, Keren Haroush and Ziv Williams outlined the case for a group of neurons in primates' brains that uniquely predicted the choice selection of their interacting partner. These primates' neurons, located in the anterior cingulate cortex of rhesus monkeys, were observed using single-unit recording while the monkeys played a variant of the iterative prisoner's dilemma game. By identifying cells that represent the yet unknown intentions of a game partner, Haroush & Williams' study supports the idea that theory of mind may be a fundamental and generalized process, and suggests that anterior cingulate cortex neurons may potentially act to complement the function of mirror neurons during social interchange.

In autism

Several neuroimaging studies have looked at the neural basis theory of mind impairment in subjects with Asperger syndrome and high-functioning autism (HFA). The first PET study of theory of mind in autism (also the first neuroimaging study using a task-induced activation paradigm in autism) replicated a prior study in normal individuals, which employed a story-comprehension task. This study found displaced and diminished mPFC activation in subjects with autism. However, because the study used only six subjects with autism, and because the spatial resolution of PET imaging is relatively poor, these results should be considered preliminary.

A subsequent fMRI study scanned normally developing adults and adults with HFA while performing a "reading the mind in the eyes" task: viewing a photo of a human's eyes and choosing which of two adjectives better describes the person's mental state, versus a gender discrimination control. The authors found activity in orbitofrontal cortex, STS, and amygdala in normal subjects, and found no amygdala activation and abnormal STS activation in subjects with autism. 

A more recent PET study looked at brain activity in individuals with HFA and Asperger syndrome while viewing Heider-Simmel animations (see above) versus a random motion control. In contrast to normally developing subjects, those with autism showed no STS or FFA activation, and significantly less mPFC and amygdala activation. Activity in extrastriate regions V3 and LO was identical across the two groups, suggesting intact lower-level visual processing in the subjects with autism. The study also reported significantly less functional connectivity between STS and V3 in the autism group. Note, however, that decreased temporal correlation between activity in STS and V3 would be expected simply from the lack of an evoked response in STS to intent-laden animations in subjects with autism. A more informative analysis would be to compute functional connectivity after regressing out evoked responses from all-time series.

A subsequent study, using the incongruent/congruent gaze-shift paradigm described above, found that in high-functioning adults with autism, posterior STS (pSTS) activation was undifferentiated while they watched a human shift gaze toward a target and then toward adjacent empty space. The lack of additional STS processing in the incongruent state may suggest that these subjects fail to form an expectation of what the actor should do given contextual information, or that feedback about the violation of this expectation doesn't reach STS. Both explanations involve an impairment in the ability to link eye gaze shifts with intentional explanations. This study also found a significant anticorrelation between STS activation in the incongruent-congruent contrast and social subscale score on the Autism Diagnostic Interview-Revised, but not scores on the other subscales. 

In 2011, an fMRI study demonstrated that the right temporoparietal junction (rTPJ) of higher-functioning adults with autism was not more selectively activated for mentalizing judgments when compared to physical judgments about self and other. rTPJ selectivity for mentalizing was also related to individual variation on clinical measures of social impairment: individuals whose rTPJ was increasingly more active for mentalizing compared to physical judgments were less socially impaired, while those who showed little to no difference in response to mentalizing or physical judgments were the most socially impaired. This evidence builds on work in typical development that suggests rTPJ is critical for representing mental state information, irrespective of whether it is about oneself or others. It also points to an explanation at the neural level for the pervasive mind-blindness difficulties in autism that are evident throughout the lifespan.

In schizophrenia

The brain regions associated with theory of mind include the superior temporal gyrus (STS), the temporoparietal junction (TPJ), the medial prefrontal cortex (MPFC), the precuneus, and the amygdala. The reduced activity in the MPFC of individuals with schizophrenia is associated with the Theory of mind deficit and may explain impairments in social function among people with schizophrenia. Increased neural activity in MPFC is related to better perspective-taking, emotion management, and increased social functioning. Disrupted brain activities in areas related to theory of mind may increase social stress or disinterest in social interaction, and contribute to the social dysfunction associated with schizophrenia.

Practical validity

Group member average scores of theory of mind abilities, measured with the Reading the Mind in the Eyes test (RME), are suggested as drivers of successful group performance. In particular, high group average scores on the RME are shown to be correlated with the collective intelligence factor c defined as a group's ability to perform a wide range of mental tasks, a group intelligence measure similar to the g factor for general individual intelligence. RME is a Theory of Mind test for adults that shows sufficient test-retest reliability and constantly differentiates control groups from individuals with functional autism or Asperger syndrome. It is one of the most widely accepted and well-validated tests for Theory of Mind abilities within adults.

Evolution

The evolutionary origin of theory of mind remains obscure. While many theories make claims about its role in the development of human language and social cognition few of them specify in detail any evolutionary neurophysiological precursors. A recent theory claims that Theory of Mind has its roots in two defensive reactions, namely immobilization stress and tonic immobility, which are implicated in the handling of stressful encounters and also figure prominently in mammalian childrearing practices (Tsoukalas, 2018). Their combined effect seems capable of producing many of the hallmarks of theory of mind, e.g., eye-contact, gaze-following, inhibitory control and intentional attributions.

Non-human

An open question is whether other animals besides humans have a genetic endowment and social environment that allows them to acquire a theory of mind in the same way that human children do. This is a contentious issue because of the problem of inferring from animal behavior the existence of thinking or of particular thoughts, or the existence of a concept of self or self-awareness, consciousness and qualia. One difficulty with non-human studies of theory of mind is the lack of sufficient numbers of naturalistic observations, giving insight into what the evolutionary pressures might be on a species' development of theory of mind. 

Non-human research still has a major place in this field, however, and is especially useful in illuminating which nonverbal behaviors signify components of theory of mind, and in pointing to possible stepping points in the evolution of what many claim to be a uniquely human aspect of social cognition. While it is difficult to study human-like theory of mind and mental states in species whose potential mental states we have an incomplete understanding, researchers can focus on simpler components of more complex capabilities. For example, many researchers focus on animals' understanding of intention, gaze, perspective, or knowledge (or rather, what another being has seen). A study that looked at understanding of intention in orangutans, chimpanzees and children showed that all three species understood the difference between accidental and intentional acts. Part of the difficulty in this line of research is that observed phenomena can often be explained as simple stimulus-response learning, as it is in the nature of any theorizers of mind to have to extrapolate internal mental states from observable behavior. Recently, most non-human theory of mind research has focused on monkeys and great apes, who are of most interest in the study of the evolution of human social cognition. Other studies relevant to attributions theory of mind have been conducted using plovers and dogs, and have shown preliminary evidence of understanding attention—one precursor of theory of mind—in others. 

There has been some controversy over the interpretation of evidence purporting to show theory of mind ability—or inability—in animals. Two examples serve as demonstration: first, Povinelli et al. (1990) presented chimpanzees with the choice of two experimenters from whom to request food: one who had seen where food was hidden, and one who, by virtue of one of a variety of mechanisms (having a bucket or bag over his head; a blindfold over his eyes; or being turned away from the baiting) does not know, and can only guess. They found that the animals failed in most cases to differentially request food from the "knower". By contrast, Hare, Call, and Tomasello (2001) found that subordinate chimpanzees were able to use the knowledge state of dominant rival chimpanzees to determine which container of hidden food they approached. William Field and Sue Savage-Rumbaugh believe that bonobos have developed theory of mind, and cite their communications with a captive bonobo, Kanzi, as evidence.

In a 2016 experiment, ravens Corvus corax were shown to take into account visual access of unseen conspecifics. The researchers argued that "ravens can generalize from their own perceptual experience to infer the possibility of being seen".

A 2016 study published by evolutionary anthropologist Christopher Krupenye brings new light to the existence of Theory of Mind, and particularly false beliefs, in non-human primates.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...