Search This Blog

Monday, October 28, 2019

History of diabetes

From Wikipedia, the free encyclopedia
 
Frederick Banting (right) joined by Charles Best in office, 1924
 
The condition known today as diabetes (usually referring to diabetes mellitus) is thought to have been described in the Ebers Papyrus (c. 1550 BCE). Ayurvedic physicians (5th/6th century BCE) first noted the sweet taste of diabetic urine, and called the condition madhumeha ("honey urine"). The term "diabetes" traces back to Demetrius of Apamea (1st century BCE). For a long time, the condition was described and treated in traditional Chinese medicine as xiāo kě (消渴; "wasting-thirst"). Physicians of the medieval Islamic world, including Avicenna, have also written on diabetes. Early accounts often referred to diabetes as a disease of the kidneys. In 1674, Thomas Willis suggested that diabetes may be a disease of the blood. Johann Peter Frank is credited with distinguishing diabetes mellitus and diabetes insipidus in 1794.

In regard to diabetes mellitus, Joseph von Mering and Oskar Minkowski are commonly credited with the formal discovery (1889) of a role for the pancreas in causing the condition. In 1893, Édouard Laguesse suggested that the islet cells of the pancreas, described as "little heaps of cells" by Paul Langerhans in 1869, might play a regulatory role in digestion. These cells were named Islets of Langerhans after the original discoverer. In the beginning of the 20th century, physicians hypothesized that the islets secrete a substance (named "insulin") that metabolises carbohydrates. The discovery and purification of insulin for clinical use between 1921-1922 by a group of researchers in Toronto—Frederick Banting, J.J.R. Macleod, Charles Best, and James Collip—paved the way for treatment. The patent for insulin was assigned to the University of Toronto in 1923 for a symbolic dollar to keep treatment accessible.

In regard to diabetes insipidus, treatment became available before the causes of the disease were clarified. The discovery of an anti-diuretic substance extracted from the pituitary gland by researchers in Italy (A. Farini and B. Ceccaroni) and Germany (R. Von den Velden) in 1913 paved the way for treatment. By the 1920s, accumulated findings defined diabetes insipidus as a disorder of the pituitary. The main question now became whether the cause of diabetes insipidus lay in the pituitary gland or the hypothalamus, given their intimate connection. In 1954, Berta and Ernst Scharrer concluded that the hormones were produced by the nuclei of cells in the hypothalamus.

Early accounts

Ancient Egypt (c. 1550 BCE)

Ebers Papyrus
 
The Ebers Papyrus is among the oldest and most important medical papyri of Ancient Egypt. Written circa 1550 BCE, it was likely copied from a series of much earlier texts, and contains a passage from the First Dynasty (c. 3400 BCE). The document is named after Georg Ebers, who purchased the document in 1872 in the city of Luxor, the site of Thebes (known to Ancient Egyptians as Waset). Thebes was the most venerated city of Ancient Egypt in its heyday during the Middle Kingdom and New Kingdom

The Ebers Papyrus is thought to contain the first known medical reference to diabetes, by the phrase: "...to eliminate urine which is too asha". The crucial word asha can mean both "plentiful" and "often". It is unclear whether the condition described was excessive urine (polyuria), which may have been symptomatic of diabetes, or increased frequency of urine, very often due to urinary tract infection.

The following mixture was prescribed for treatment: "A measuring glass filled with Water from the Bird pond, Elderberry, Fibres of the asit plant, Fresh Milk, Beer-Swill, Flower of the Cucumber, and Green Dates". Urinary troubles in the adult were also corrected with "rectal injections of olive oil, honey, sweet beer, sea salt, and seeds of the wonderfruit".

Charaka (c. 500 BCE)

Ayurveda (5th/6th century BCE)

Ayurveda is a Hindu system of medicine with historic roots in the Indian subcontinent. Some of its conceptual origins trace back to the Indus Valley Civilisation. It developed significantly through the Vedic period

Polyuria in diabetes was associated with a sweet taste in Sanskrit texts of the 5th/6th century BCE, at the time of two notable physicians Sushruta and Charaka. They described several diseases of polyuric nature collectively called Prameha ("to flow"). Included in this group of ailments was the equivalent of diabetes mellitus, madhumeha ("honey urine"), named as such because the sweet urine of patients would attract ants and flies. These patients are said to have suffered from extreme thirst and foul breath.

Ayurvedic texts provided dietary prescriptions for the condition. They constitute the earliest known references to the presence of sugar in the urine (glycosuria) and to dietary remedies, at least a thousand years before modern European descriptions began to more comprehensively conceptualize the disease. Sushruta and Charaka also identified the two types of diabetes mellitus, later dubbed Type I and Type II diabetes.

Ancient China

A Qing-era drawing of the lungs and heart nexus. Illustrates the Huangdi Neijing (The Yellow Emperor's Classic of Internal Medicine)
 
Modern-day diabetes is associated with two terms in the Chinese language. The traditional term, xiāo kě (消渴), means "wasting-thirst" and correlates closely with diabetes in most instances of historical description. The more modern term, táng niǎo bìng (糖尿病), means "sugar urine disease", and is equivalent to diabetes mellitus. It has been suggested that the modern term is derived from exchanges with Ayurvedic practitioners who called the condition madhumeha ("honey urine"). Within the Sinosphere (regions of East and Southeast Asia historically influenced by the linguistic and literary traditions of the Chinese empire), this etymology has also been borrowed into Korean (tang nyo byeong [당뇨병]) and Japanese (tou nyo byou [とうにょうびょう]).

Reviews of diabetology history in Traditional Chinese medicine have classified the diagnosis and treatment of xiāo kě (消渴) into four periods, summarized below. Classic texts provided a typology of the condition and outlined various recommendations on diagnosis, development, treatment, and prevention. Knowledge of wasting-thirst was integrated with knowledge of diabetes during the Qing dynasty.

The Yellow Emperor's Classic of Internal Medicine (475 BCE-8 CE)

Huángdì Nèijīng (黃帝內經), or The Yellow Emperor's Classic of Internal Medicine, is a fundamental ancient text in Chinese medicine and a major book of Daoist philosophy and lifestyle. It is generally dated to the late Warring States period (475-221 BCE) and the Western Han dynasty (206 BCE-8 CE). 

The text named the condition xiāo kě (消渴; "wasting-thirst") and elaborated on it through 25 clauses. It recorded such symptoms as "three increases [excess] and one decrease [loss]": excessive thirst (polydypsia), excessive hunger (polyphagia), excessive urine (polyuria), and weight loss. Three sub-phases of xiāo kě were given, characterized by their dominant symptoms. These roughly correspond to the progressive stages of diabetes in modern-day Western medicine.

The Treatise on Cold Damage and Miscellaneous Diseases (9-280 CE)

Woodcut of Zhang Zhongjing. Engraved during the reign of Wanli of the Ming dynasty.
 
Shānghán Zábìng Lùn (傷寒雜病論), or The Treatise on Cold Damage and Miscellaneous Diseases [ZH], is the first Chinese monograph on diseases by Zhang Zhongjing. The original work is lost, but most of its contents are preserved in two extant works called Shānghán Lùn (傷寒論; "The Treatise on Cold Damage") and Jīnguì Yàolüè (金匱要略; "Essential Prescriptions from the Golden Chamber"). The first work primarily addresses externally triggered conditions while the latter work describes internally generated conditions. 

Zhang's specialized chapter on xiāo kě is found in Shānghán Lùn and Jīnguì Yàolüè. Nine subsections and nine formulae (herbal remedies) on wasting-thirst were recorded. The text proposed a theory of "three wasting-thirsts": upper- (associated with the lungs), middle- (associated with the stomach), and lower- (associated with the kidneys), all three of which shared excessive urine and thirst as symptoms. This theory was later expanded through the works of Liu Wansu (1120-1200 CE) and Wang Kentang (1549-1613 CE). According to Liu, "lower wasting-thirst" attributed to "kidney-yin deficiency" was associated with sweet urine (glycosuria). This may indicate differentiation akin to modern-day differentiation of diabetes mellitus and diabetes insipidus.

Extensive development of "wasting-thirst" (265-1368)

The diagnosis and treatment of xiāo kě was expanded significantly through the Sui (581-618) and Tang (618-907) dynasties. Zeng Liyan (545-649) expounded on the diagnosis of modern-day diabetes mellitus through the presence of sugar in the urine (glycosuria). This characterization was echoed by other physicians in the centuries that followed. Notably, in Wàitái Mìyào (外臺秘要; "Medical Secrets of an Official") written in 752, Wang Tao (fl. 8th century CE) included a detailed case report of sweet urine and a summary of diabetology history before the Tang dynasty.

Sun Simiao (581-682 CE) further developed approaches to treatment, prevention, regulation, nursing, and convalescence. The formulae for wasting-thirst grew from one in The Yellow Emperor's Classic of Internal Medicine, to nine in Zhang Zhongjing's works, to 73 in Sun Simiao's. The selection of herbs grew from one (Eupatorium Fortunei), to dozens used by Zhang, to over one hundred used by Sun.

Integration of Chinese and Western medicine (1368-1949)

During the Ming (1368-1644) and Qing (1644-1912) dynasties, medical discoveries slowed but practitioners achieved significant knowledge integration across cultures. Over one hundred comprehensive medical monographs were cultivated, many synthesizing developments in the study of wasting-thirst and of diabetes.

Zhang Xichun (1860-1933), a renowned integrator of medical knowledge, produced (among other works) Yīxué zhōng zhōng cānxī lù (医学衷中参西录; "The Integration of Traditional Chinese and Western Medicine"). In a dedicated chapter named "Xiāo-kě therapies", he discussed the following aspects synthesizing wasting-thirst and diabetes: nomenclature, theories (pathologies), primary formulae, medications (herbology and pharmacology), nursing (diet and maintenance), medical cases, and integrated analysis (protein and essence; qi and fluids). 

Yu Yunxiu (1879-1954), a Japanese-educated practitioner of Western medicine aligned with the modernizer camp of the Chinese Ministry of Health, attempted to forbid the practice of Chinese medicine in 1929. In 1939, he wrote on the rough equivalence of wasting-thirst and diabetes.

Classical antiquity

Greco-Roman accounts of what we now know as diabetes primarily describe excessive urination (polyuria). There is no known account of sweetness in early Greco-Roman concepts of the disease. Given the lasting legacy of classical medicine, these descriptions remained highly influential into the Middle Ages in Europe.

Greek writers

It is assumed that the Hippocratic Corpus bears no direct mention of what we now know as diabetes. However, a number of indirect statements referring to excessive and "watery urine" suggest that Hippocratic writers may have been familiar with the condition.

The term "diabetes" is derived from the Ionic for "siphon", meaning "to pass or run through". It reflects the dominant notion at the time that fluids consumed by the diabetic patient passed through the body unchanged, as if flowing through a tube or siphon. A number of conflicting accounts exist as to the first use of this term, placing the originator as either Apollonius of Memphis (fl. 3rd century BCE), Demetrius of Apamea (fl. 100 BCE), or Aretaeus of Cappadocia (fl. early 2nd century CE). In-depth probes of Greek etymology agree that the term came from Demetrius of Apamea. C.L. Gemmill (1972) states:
Caelius Aurelianus prepared a Latin version of the works of Soranus. In the index of the Drabkin edition there is a subject heading "Diabetes," but on examination of the text this section could not be found (footnote 3, p. 776) except for a short paragraph. In this paragraph Caelius quotes Apollonius of Memphis as separating two forms of dropsy, one marked by retention of fluid and the other by the inability to retain fluid; the patient discharges whatever he drinks as if it were passed through a pipe. Apollonius lived in the second half of the third century B.C. Caelius Aurelianus continues by stating that Demetrius of Apamea distinguishes this disease from dropsy in which any fluid that is drunk is discharged as urine. Demetrius calls this condition diabetes. The time of Demetrius of Apamea is given as the first century B.C. None of his works have come down to us; we have only quotations in later authors. Caelius Aurelianus apparently assigned a special chapter for the discussion of diabetes but this chapter seems to have been lost. I have looked for it in the 1529 edition edited by Johnnes Sichart without success. I have attempted to reconstruct this passage on diabetes from later authors noted for their ability to copy, but have not been able to find it. The early printers discarded the manuscripts after their publications were printed; therefore it is unlikely that this missing section will be found. The chief fact is that the concept of diabetes goes back to Demetrius, who lived in the first century B.C.
Engraved portrait of Aretaeus by Ioannes Sambucus (1574)
 
In his classic description of diabetes, Aretaeus of Cappadocia (fl. early 2nd century CE) noted the excessive amount of urine that passed through the kidney. He also noted its rarity ("Diabetes is a wonderful affection, not very frequent among men..."). He described the disease as "a melting down of the flesh and limbs into urine" and attributed it to the bladder and kidneys, commenting that "life (with diabetes) is short, disgusting and painful."

Aretaeus's contemporary Galen (129-200 CE) stressed that diabetes was a disease of the kidneys and affirmed its rarity, having observed it "only twice" at the time he wrote On the affected parts.

Aretaeus and the others authors under discussion did not differentiate between diabetes mellitus and diabetes insipidus. It is assumed that they were referring to diabetes mellitus, although Swedish physician F. Henschen has suggested that Aretaeus and Galen may have instead been referring to diabetes insipidus. For all practical purposes, however, diabetes insipidus remained unrecognized well into the 17th century.

Roman writers

Aulus Cornelius Celsus (fl. 30 BCE-50 CE), who interpreted Greek works in Latin, provided an early clinical description of diabetes in his eight-volume work titled De Medicina. He wrote that "urine exceeds in quantity the fluid taken even if it is passed painlessly." This concept of an imbalance between the ingested and excreted amounts of fluid was repeated by many authors into the Middle Ages.

Rufus of Ephesus (fl. 98-117 CE), a physician famous for his work on the variations of the pulse, described the symptoms of diabetes as "incessant thirst" and immediate urination after drinking, which he called "urinary diarrhea".

Byzantine writers

The Byzantine Empire was a continuation of the Roman Empire in its eastern provinces after the Fall of the Western Roman Empire. The capital was Constantinople (modern Istanbul, former Byzantium). It was conquered by the Ottomans in 1453.

Physician Oribasius (c. 320-403), personal physician of the emperor and philosopher Julian, compiled all known ancient medical texts of his time by theme into medical encyclopedia. He quotes Galen and Rufus on diabetes, considering it to be a polyuric disease of the kidneys. Various descriptive names are given for the condition, including: chamber-pot dropsy, diarrhea of the urine (diarrhea urinosa), and the thirsty disease.

These descriptions, along with a number of other names for the condition ("liuria", "extreme thirst or dipsacus"), were echoed by later Byzantine writers in key encyclopedic texts.

Medieval Islamic world

During the Islamic Golden Age under the Abbasid Caliphate, prominent Muslim physicians preserved, systematized and developed ancient medical knowledge from across the Eurasian continent. They synthesized concepts from classical antiquity (see: Ancient Greece, Ancient Rome), Persia, Ayurveda, and China. This work laid the foundations for later advances in medieval European medicine as European physicians came into contact with Islamic authors through the Renaissance of the 12th century

Rhazes (c. 854-925), or Muhammad ibn Zakariya al-Razi, included writings about diabetes in the more than 230 books he produced in his lifetime.

Avicenna (980–1037), or Ibn Sina, was a court physician to the caliphs of Baghdad and a key figure in medicine who compiled an exhaustive medical encyclopedia titled The Canon of Medicine. His account detailed the clinical features of diabetes, and termed the disease albulab ("water wheel") and zalkh el kuliah ("diarrhea of the kidneys"). He documented "the abnormal appetite and the collapse of sexual functions" and the sweet taste of diabetic urine, and further differentiated diabetes associated with emaciation from other causes of polyuria. He also elaborated on diabetic gangrene and treated diabetes using a mixture of lupine, trigonella (fenugreek), and zedoary seed. The treatment, prescribed at the recommendation of the French director of Tunis, was reportedly effective in 5 cases.

It has been noted that references to diabetes expanded in the medical texts of this period. Eknoyan and Nagy (2005) speculate that this indicates the increasing prevalence of the disease. Other interpretations are also possible, including that the increasing references are the result of more systematic knowledge sharing practices.

Maimonides (c. 1135-1204), a renowned philosopher and polymath of the era in both the Jewish and Islamic worlds, claimed to have seen more than 20 cases (in contrast to Galen's two cases).

Abd al-Latif al-Baghdadi (1162-1231), also a philosopher and polymath, produced a treatise dedicated to diabetes (On Diabetes, Fols. 140v-149r).

Modern Europe

Thomas Willis's Pharmaceutice rationalis (from 1679)
 
In the 16th century, Paracelsus (1493-1541) described diabetes as a constitutional disease that "irritates the kidneys" and provokes excessive urination. He reported that evaporating urine from a diabetic patient left an excessive residue, which he called "salts". It has, however, been noted that he advised tasting the urine for sweetness in other contexts.

In 1674, Thomas Willis made reference to the sweet taste of diabetic urine in Pharmaceutice rationalis. While this reiterated ancient observations from across the Eurasian continent, it is generally understood to be the first explicit reference to sugary diabetic fluids in the modern European context. However, contrary to some claims that the term mellitus was added by Thomas Willis to specify the condition by its glycosuria, the word appears nowhere in his chapter on diabetes. The verifiable statement that may be derived from relevant sources is that Willis elaborated on glycosuria but did not distinguish between different types of diabetes. Notably, Willis disagreed with the common idea that the disorder originated in the kidneys ("Reins"), suggesting instead that it was a "Distemper of the Blood than of the Reins [Kidneys]". He also noted the connection between the condition and certain dietary habits, "chiefly an assiduous and immoderate drinking of Cider, Beer, or sharp Wines".

The presence of sugar in the urine (glycosuria) and in the blood (hyperglycemia) was demonstrated through the work of a number of physicians in the late 18th century, including Robert Wyatt (1774) and Matthew Dobson (1776).

In 1769, William Cullen called attention to diabetic urine that was "insipid" in taste:
I myself, indeed, think I have met with one instance of diabetes in which the urine was perfectly insipid; and it would seem that a like observation had occurred to Dr. Martin Lister. I am persuaded, however, that such instances are very rare; and that the other is much more common and perhaps the almost universal occurrence. I judge therefore, that the presence of such a saccharine matter may be considered as the principal circumstance in idiopathic diabetes.
In 1788, Thomas Cawley published a case study in the London Medical Journal based on an autopsy of a diabetic patient. He suggested a link between the pancreas and diabetes after observing stones and signs of tissue damage in the patient's pancreas. The significance of this discovery went unappreciated for another hundred years. 

In 1794, Johann Peter Frank of the University of Pavia found that his patients were characterized by "long continued abnormally increased secretion of non-saccharine urine which is not caused by a diseased condition of the kidneys". He introduced the term insipidus, derived from the Latin ("tasteless"). Frank is often credited as the first physician to describe clinical differences between diabetes mellitus and diabetes insipidus. This claim, however, warrants further examination given prior instances of comparable description (e.g. those by William Cullen). It has been noted that 1792 seems to be the year when "unequivocal" diabetes insipidus was first described in the medical literature.

One may observe the lingering ambiguity in the general notion of "diabetes", especially as it manifests very differently in diabetes mellitus and in diabetes insipidus. In 1843, William Prout aptly summarized the general notion of diabetes of the time as follows:
The term diabetes, implying simply an increased flow of urine, is applicable to any disease in which that symptom is present in a remarkable degree. This general use of the term, however, has caused a great deal of confusion; as a variety of diseases differing altogether in their nature, except in the accidental circumstances of being accompanied by diuresis, or a large flow of urine, have in consequence been confounded with one another. To prevent this confusion in future, I would recommend that the term be restricted to those affections in which the urine is saccharine. Hence I define Diabetes to be a disease in which a saccharine state of the urine is the characteristic symptom.

Pathophysiology

Pathophysiology refers to the physiological processes associated with a disease or injury. In the history of medicine, diseases became better understood as human anatomy became better understood. The development of autopsy in the 15th and 16th centuries was key to this learning. As anatomists detailed the complex structures of the human body, they began to pay more attention to the pathological structures associated with diseases, their causes and effects, and mechanisms of progress. By the 18th century, many such pathologic observations were being published in textbooks and journals. This work lay important foundations for advances in medical treatment and intervention. 

Historically, various notions of present-day "diabetes" have described some general mix of excessive urine (polyuria), excessive thirst (polydipsia), and weight loss. Over the past few centuries, these symptoms have been linked to updated understandings of how the disease works, and how it manifests differently across cases. This section outlines these developments as various diabetic conditions have become better understood.

Diabetes mellitus

Today, the term "diabetes" most commonly refers to diabetes mellitus. Diabetes mellitus is itself an umbrella term for a number of different diseases involving problems processing sugars that have been consumed (glucose metabolism). Historically, this is the "diabetes" which has been associated with sugary urine (glycosuria).

Role of the pancreas

In 1683, a surgical experiment by Johann Conrad Brunner almost led to a medical breakthrough. He excised the pancreas of a neighbour's hunting dog, causing polyuria and polydipsia. Brunner very clearly described these classic symptoms in pancreatectomized dogs, but made no association with diabetes.

In 1788, Thomas Cawley published a case study in the London Medical Journal based on an autopsy of a diabetic patient. He observed stones and signs of tissue damage in the patient's pancreas, noting that the "right extremity of the pancreas was very hard, and appeared to be scirrhous." Considering the idea that diabetes "be not a disease of the kidneys", he suggested that "a cure may have been effected... provided the stomach and organs subservient to digestion had retained their digestive power". In the decades that followed, Richard Bright (1831) and Von Recklinhausen (1864) also reported gross changes in the pancreas of diabetic patients. Claude Bernard demonstrated the function of pancreatic juice in digestion between 1849 and 1856, clarifying an important link in the pathophysiology of diabetes.

Plaque in Strasbourg commemorating the 1889 discovery by Minkowski and Von Mering
 
In 1889, Joseph von Mering and Oskar Minkowski excised the pancreas of a dog, which soon developed the symptoms of diabetes. According to some accounts, Minkowski was taught by his supervisor, Bernhard Naunyn, to test for sugar in urine whenever he noticed polyuria. According to some other accounts, a laboratory attendant pointed out that only the urine of the pancreatectomized dogs attracted flies, prompting the researchers to test for sugar. Ultimately, the pair tested for sugar in the urine and confirmed the connection with diabetes mellitus. This event is commonly credited as the formal discovery of a role for the pancreas in diabetes. While the researchers continued to work on obtaining a pancreatic extract, they were unable to obtain the presumed anti-diabetic substance.

In 1893, Edouard Hédon in Montpellier conducted a pancreatectomy in two stages. In the first, he took out almost all of the pancreas, cutting off the supply of pancreatic juice entirely. He then left a small remnant of pancreas grafted under the dog's skin. The dog did not become diabetic until the remaining graft was also excised, leading Hédon to the conclusion that the pancreas must have two functions: digestion via an external secretion, and carbohydrate metabolism via some internal secretion that was released directly into the bloodstream. J.J.R. MacLeod, among the Toronto group that later isolated and purified insulin for clinical use, cited this finding as the most convincing proof of an internal secretion in his 1913 book, Diabetes: Its Pathological Physiology.

Also in 1893, Édouard Laguesse suggested that the islet cells of the pancreas, described as "little heaps of cells" by Paul Langerhans in 1869, might play a regulatory role in digestion. These cells were named Islets of Langerhans after the original discoverer. Soon after, it was established that the role of the pancreas in carbohydrate metabolism could be localized to the islets; Eugene Lindsay Opie (1901) confirmed this connection in relation to diabetes mellitus. In 1909, Belgian physician Jean de Mayer hypothesized that the islets secrete a substance that plays this metabolic role, and termed it "insulin", from the Latin insula ("island"). Sir Edward Albert Sharpey-Schafer independently proposed the same in 1916, not knowing at the time that de Meyer had made the same suggestion a few years prior.

The endocrine role of the pancreas in metabolism, and indeed the existence of insulin, was further clarified between 1921-1922 when a group of researchers in Toronto, including Frederick Grant Banting, Charles Herbert Best, J.J.R. MacLeod, and James Collip, were able to isolate and purify the extract.

Types of diabetes mellitus

Between 1850 and 1875, French researchers Apollinaire Bouchardat and E. Lancereux acknowledged a need for a classification. They distinguished between those diabetics that were lean, had severe symptoms, poor outcomes, and pancreatic lesions at autopsy (diabetes maigre), and those that were overweight, presented later in life with a milder form of the disease and had a better prognosis if put on a low calorie diet (diabetes gras). These descriptions are comparable to the two types identified by Ayurvedic physicians Sushruta and Charaka (400–500 CE), with one type being associated with youth and the other with being overweight.

Harold Percival Himsworth established a clearer distinction in 1936, differentiating two types of diabetes based on sensitivity to insulin (both injected and pancreatic). In 1950, R. D. Lawrence observed that some diabetics were deficient in insulin and that some were not. Philip Hugh-Jones, while working in Jamaica in 1955, clarified Lawrence’s classification and coined the terms "type 1" and "type 2" diabetes. He also noted a rarer variety observed in insulin-resistant youth (whose condition could not be placed into the two types). He called this third group "type J", where J stood for Jamaica.

The terms type 1 and 2 were for some time forgotten. In 1976, they were revived and popularized by Andrew Cudworth after he discovered the link between type 1 diabetes and a specific genetic marker.

Diabetes insipidus

Location of hypothalamus, pituitary gland and olfactory bulb. .gif

In 1794, Johann Peter Frank gave a relatively clear description of diabetes insipidus, as a "long continued abnormally increased secretion of non-saccharine urine which is not caused by a diseased condition of the kidneys". This remained the general state of knowledge for another century. William Osler, in the first edition of his textbook (1892), summarized the pathophysiology of the condition as follows: "The nature of the disease is unknown. It is doubtless of nervous origin. The most reasonable view is that it results from a vasomotor disturbance of the renal vessels... giving rise to continuous renal congestion."

Anterior and posterior pituitary.jpg

In 1912, Alfred Eric Frank, then working on diabetes mellitus in the department of Oskar Minkowski in Breslau, reported a specific link to the pituitary gland upon observing a case of a man who had survived after shooting himself in the temple. Morris Simmonds drew the same connection in 1913. Thereafter, numerous reports documented cases of diabetes insipidus associated with pituitary lesions, steadily accumulating evidence favouring the hypothesized connection.

George Oliver and Edward Albert Schafer were among the first researchers to document its endocrine functions. In the first two decades of the 20th century, however, a number of conflicting reports on the diuretic versus anti-diuretic properties of the pituitary extract caused confusion in the field. A general agreement was reached that some of the results that reported diuresis was due to increased pressure and blood flow to the kidney, while the posterior pituitary extract had an antidiurectic effect. By the 1920s, accumulated findings defined diabetes insipidus as a disorder of the pituitary.

The main question now became whether the cause of diabetes insipidus lay in the pituitary gland or the hypothalamus, given their intimate connection. In 1920, Jean Camus and Gustave Roussy summarized a number of years of research, reporting that they had produced polyuria in dogs by puncturing the hypothalamus while leaving the pituitary intact. These results were later replicated by many others. Over the next few decades, various competing hypotheses arose as to where and how the "posterior lobe hormones" were produced, transported, and stored. Finally in 1954, Berta and Ernst Scharrer concluded that the hormones were produced by the nuclei of cells in the hypothalamus.

Types of diabetes insipidus

Since about 1850 it had been known that diabetes insipidus might be a hereditary disorder. In 1945, it was noted that vasopressin had no effect on treating some patients with familial diabetes. Based on this clue, it soon came to light that there exist two types of hereditary diabetes insipidus. In 1947, the anti-diuretic hormone (ADH)-insensitive variety was termed nephrogenic diabetes insipidus (NDI), and attributed to a defect in the loop of Henle and the distal convoluted tubule. Since then, acquired forms of NDI have also been identified and associated with a broad range of causes. 

Gestational diabetes insipidus has also been identified as a rare variety of disease that manifests in the third trimester of pregnancy and the early postpartum period.

Treatment and Intervention

Diabetes mellitus

Dietary intervention

Remedies for diabetes before the mid-1800s often consisted of blends of ingredients, bleeding, and opium (which was still being mentioned by William Osler in 1915). Another treatment that prevailed into the 20th century was to provide the patient with extra nourishment to compensate for the loss of nutrients to urine. Patients under this regimen were advised to eat as much as possible; sometimes, to eat extra large quantities of sugar. This was misguided advice that resulted in early deaths. Meanwhile, greater success at controlling diabetes was found as physicians began to notice that fasting, not overfeeding, seemed to improve the symptoms of diabetes. Dietary restriction was reported successful by John Rollo (1706) and by Apollinaire Bouchardat, who observed the disappearance of glycosuria in his patients during the rationing while Paris was besieged by the Germans in 1870. A variety of sugar-free, low-carbohydrate diets (occasionally involving physical restraint of patients lacking self-discipline) became increasingly popular.

Among others, Frederick Madison Allen's "starvation diet" was notoriously spartan, but was shown to extend life expectancy. Elizabeth Hughes Gossett, later among the first people to be treated with insulin, was among Allen's patients.

Pancreatic extracts before insulin

The limit to early diabetes control was partly due to the common-sense assumption that the stomach was wholly responsible for nutrient metabolism. As physiologists came to better understand the metabolic role of other organs, they began to hypothesize alternative causes for the disease. Through accumulating evidence, it was established that the "cause" of diabetes could be localized to the pancreas, then to its internal secretion. These findings fueled attempts to treat diabetes in animals and humans with direct extracts from the pancreas, by no less than 400 researchers according to historian Michael Bliss.

In the early 1900s, Georg Ludwig Zuelzer experimented extensively with pancreatic extracts. After initial tests on rabbits, he injected his extracts (which he called "acomatol") on humans to clear but inconsistent success and severe side-effects. He nonetheless took out an American patent on his yet-problematic extracts. Unfortunately, Zuelzer was ultimately unable to purify the extract due to difficulty obtaining pancreases, a lack of funding, and interruption by World War I. Ernest Lyman Scott, studying at the University of Chicago between 1911–12, also obtained some promising results but was discouraged from continuing.

In 1913, John James Rickard MacLeod, at the time several years into research in the area of carbohydrate metabolism and blood sugar behaviour, synthesized the state of research in Diabetes: Its Pathological Physiology. He concluded that there was an internal secretion of the pancreas, but suggested several reasons why it may never be captured in a pancreatic extract. Between 1910 and 1920, techniques for measuring blood sugar (glucose test) were rapidly improved, allowing experiments to be conducted with greater efficiency and precision. These developments also helped establish the notion that high blood sugar levels (hyperglycemia), rather than glycosuria, was the important condition to be relieved. 

Working at the Rockefeller Institute for Medical Research between 1915-1919, Israel Kleiner reported convincing results on the effect of ground pancreas solutions on blood sugar levels, using rigorous experimental controls which "theoretically... support[ed] the internal secretion hypothesis of the origin of diabetes" and "practically... suggest[ed] a possible therapeutic application." He discontinued this work upon leaving Rockefeller institute in 1919, for reasons not clearly known. Romanian scientist Nicolae Paulescu, another notable figure in the search for the anti-diabetic factor, began experimenting in 1916 using a slightly saline pancreatic solution like Kleiner's. After being interrupted by the Battle of Bucharest and the postwar turmoil, he published his first results in French in 1920 and 1921. His extracts resulted in clear reduction of blood and urinary sugar in the tested dogs, but had no immediate effect in his human patients (through rectal injection) that could not be duplicated by doses of saline alone. Paulescu took out a Romanian patent on his solution (which he called "pancréine") and method of production, but during the next year, made no further progress with his work due to a lack of funding.

Insulin

In October 1920, Frederick Banting took interest in carbohydrate metabolism while preparing a talk he was to give his physiology students at Western University in London, Ontario. He encountered an article by Moses Barron which reported an autopsy of a patient whose pancreatic stone had obstructed the main pancreatic duct, but most of the islet cells had survived intact. From this encounter, Banting had the idea to: "Ligate pancreatic ducts of dog. Keep dogs alive till acini degenerate leaving Islets. Try to isolate the internal secretion of these to relieve glycosurea [sic]" On November 8, 1920, Banting met with J.J.R. Macleod, a senior professor of physiology at the University of Toronto, to ask if he might mount a research project on the internal secretion of the pancreas. Banting lacked experience in physiological research and had superficial knowledge of the subject. Nonetheless, Macleod took some interest and accepted Banting's request to work in his lab. On account of what may have interested Macleod, Michael Bliss considers the following:
Speculation is in order here and is permissible because we have some idea of Macleod's knowledge of the literature. Whether he and Banting were discussing grafting or extracting, what must have appealed to Macleod as "never having been tried before" was the idea of somebody experimenting with degenerated or atrophied pancreas. Now there was nothing new in the idea of producing degeneration or atrophy of the acinar tissues by ligating the pancreatic ducts—all sorts of researchers had done this. Their interest, however, had been almost entirely in measuring the relative amounts of degeneration that took place in the various components of the pancreas, particularly the relative changes in the acinar and islet cells... Nobody had either tried to prepare a graft or administer an extract using a fully degenerated pancreas. And yet, theoretically, if there was an internal secretion, and if it did come from the islets of Langerhans, and if it was the acinar cells but not the islets that degenerated after the ducts were ligated, and if two or three other conditions held good, then perhaps some interesting results would follow. Even if the results were negative, it was the kind of experiment that ought to have been tried long ago, if only for completeness's sake.
Chart for Elizabeth Hughes (1922)
 
Banting, Macleod, and student assistant Charles Best began the first experiment on May 17, 1921. On June 14, Macleod left for Scotland and advised remotely through the summer, returning on September 21. During this time, Banting and Best obtained mixed but encouraging results. Since they began with the hypothesis (months later falsified through their own work) that it was necessary to avoid the external secretion in order to obtain the internal secretion, they first used degenerated pancreas, then used foetal pancreas obtained from slaughterhouses. Progress accelerated through December 1921 as it was clarified that pancreatic extracts could be used without removing the external (digestive) secretion.

As the group prepared for clinical trials, biochemist James B. Collip joined the team at Banting's request to help purify the extract for human injection. On January 23, 1922, Leonard Thompson was successfully treated with Collip's extract at Toronto General Hospital. Six more patients were treated by February 1922 and quickly experienced an improved standard of life. Other notable early recipients of insulin included Elizabeth Hughes, Constance Collier, James D. Havens, and Ted Ryder. In April 1922, the Toronto group jointly authored a paper summarizing all work thus far, and formally proposed to name the extract "insulin". In October 1923, Banting and Macleod were awarded the Nobel Prize in Physiology based on a nomination by August Krogh for "the discovery of insulin and their exploration of its clinical and physiological characteristics". Banting and Macleod publicly shared the prize with Best and Collip, respectively.

A diabetes clinic was established at Toronto General Hospital that summer to increase capacity for treatment by Banting and collaborating physicians. The non-commercial Connaught Laboratories collaborated with researchers to scale production. Once limits were reached, Toronto contracted with Eli Lilly and Company beginning May 1922 with some caution regarding the commercial nature of the firm.
Nobel Prize Controversy
The 1923 Nobel Prize in Physiology awarded to Frederick Banting and J.J.R. Macleod—publicly shared with Charles Best and James Collip, respectively⁠—sparked controversy as to who was due credit "for the discovery of insulin". Early mass-reproduced accounts of the discovery often emphasized the role of Banting and Best's work, sidelining Macleod and Collip's contributions. This lopsided narrative persisted due to limited availability of documentary evidence and sustained differences in researchers' attitudes toward claiming recognition. During their lifetime, Banting (d. 1941) and Best (d. 1978) were more active—and in some ways, more obviously placed—than Macleod (d. 1935) and Collip (d. 1965) in emphasizing their contributions to the work. However, the criteria advanced to prioritize the pair's early work alone (before the extract was purified) would itself run into challenges in the 1960s and 1970s as attention was drawn to successes in the same year (Nicolae Paulescu) or earlier (George Ludwig Zuelzer, Israel Kleiner).

As tends to be true of any scientific line of inquiry, "the discovery of a preparation of insulin that could be used in treatment" was made possible through the joint effort of team members, and built on the insight of researchers who came before them. In 1954, American doctor Joseph H. Pratt, whose lifelong interest in diabetes and the pancreas went back well before the Toronto discovery, published a "reappraisal" of Macleod and Collip's contributions in refining Banting and Best's flawed experiments and crude extract. After Charles Best passed in 1978 and complete documentation (including Banting's papers and Macleod's account of events) became available through the Thomas Fisher Rare Book Library, historian Michael Bliss compiled a comprehensive account of the events surrounding the discovery of insulin. Notably, Bliss's account reviews the nominations and Nobel Prize committee's own investigations that culminated in the 1923 decision.

Metformin

In 1922, metformin was developed for the treatment of type 2 diabetes mellitus.

Further developments

Other notable discoveries since the early development of insulin and metformin include:
  • Development of the long acting insulin NPH in the 1940s by Novo Nordisk
  • Identification of the first of the sulfonylureas in 1942
  • Reintroduction of the use of biguanides for Type 2 diabetes in the late 1950s. The initial phenformin was withdrawn worldwide (in the U.S. in 1977) due to its potential for sometimes fatal lactic acidosis and metformin was first marketed in France in 1979, but not until 1994 in the US.
  • The determination of the amino acid sequence of insulin (by Sir Frederick Sanger, for which he received a Nobel Prize). Insulin was the first protein that the amino acid structure was determined.
  • The radioimmunoassay for insulin, as discovered by Rosalyn Yalow and Solomon Berson (gaining Yalow the 1977 Nobel Prize in Physiology or Medicine)
  • The three-dimensional structure of insulin (PDB: 2INS​)
  • Dr Gerald Reaven's identification of the constellation of symptoms now called metabolic syndrome in 1988
  • Demonstration that intensive glycemic control in type 1 diabetes reduces chronic side effects more as glucose levels approach 'normal' in a large longitudinal study, and also in type 2 diabetics in other large studies
  • Identification of the first thiazolidinedione as an effective insulin sensitizer during the 1990s
In 1980, U.S. biotech company Genentech developed biosynthetic human insulin. The insulin was isolated from genetically altered bacteria (the bacteria contain the human gene for synthesizing synthetic human insulin), which produce large quantities of insulin. The purified insulin is distributed to pharmacies for use by diabetes patients. Initially, this development was not regarded by the medical profession as a clinically meaningful development. However, by 1996, the advent of insulin analogues which had vastly improved absorption, distribution, metabolism, and excretion (ADME) characteristics which were clinically meaningful based on this early biotechnology development.

In 2005, a new drug to treat type 2 diabetes, derived from the Gila monster was approved by the Food and Drug Administration. The venom of the lizard contains exendin 4, which triggers one of the insulin-releasing pathways.

Diabetes insipidus

In 1913, researchers in Italy (A. Farini and B. Ceccaroni) and Germany (R. Von den Velden) reported the anti-diuretic effect of the substance extracted from the posterior lobe of the pituitary gland. The hormone responsible for this effect was later isolated and named vasopressin. Even while the pathophysiology of diabetes insipidus was being further clarified, these findings made possible a relatively simple and effective treatment such that physicians could begin to control the disease. Various preparations of the extract were produced and made commercially available by the pharmaceutical industry through the 20th century.

In 1928, Oliver Kamm and his colleagues posited two active principles in the pituitary extract: one with antidiuretic and pressor properties (vasopressin), and another with uterotonic properties (oxytocin). In a series of landmark achievements between 1947 and 1954 which culminated in a Nobel Prize in Chemistry (1955), Vincent du Vigneaud isolated, sequenced, and synthesized oxytocin and vasopressin. Today, synthesized and modified vasopressin is used to treat the condition.

Sunday, October 27, 2019

Type 2 diabetes

From Wikipedia, the free encyclopedia
 
Type 2 diabetes
Other namesDiabetes mellitus type 2;
adult-onset diabetes;
noninsulin-dependent diabetes mellitus (NIDDM)
Blue circle for diabetes.svg
Universal blue circle symbol for diabetes
Pronunciation
SpecialtyEndocrinology
SymptomsIncreased thirst, frequent urination, unexplained weight loss, increased hunger
ComplicationsHyperosmolar hyperglycemic state, diabetic ketoacidosis, heart disease, strokes, diabetic retinopathy, kidney failure, amputations
Usual onsetMiddle or older age
DurationLong term
CausesObesity, lack of exercise, genetics
Diagnostic methodBlood test
PreventionMaintaining normal weight, exercising, eating properly
TreatmentDietary changes, metformin, insulin, bariatric surgery
Prognosis10 year shorter life expectancy
Frequency392 million (2015)

Type 2 diabetes (T2D), formerly known as adult-onset diabetes, is a form of diabetes that is characterized by high blood sugar, insulin resistance, and relative lack of insulin. Common symptoms include increased thirst, frequent urination, and unexplained weight loss. Symptoms may also include increased hunger, feeling tired, and sores that do not heal. Often symptoms come on slowly. Long-term complications from high blood sugar include heart disease, strokes, diabetic retinopathy which can result in blindness, kidney failure, and poor blood flow in the limbs which may lead to amputations. The sudden onset of hyperosmolar hyperglycemic state may occur; however, ketoacidosis is uncommon.

Type 2 diabetes primarily occurs as a result of obesity and lack of exercise. Some people are more genetically at risk than others. Type 2 diabetes makes up about 90% of cases of diabetes, with the other 10% due primarily to type 1 diabetes and gestational diabetes. In type 1 diabetes there is a lower total level of insulin to control blood glucose, due to an autoimmune induced loss of insulin-producing beta cells in the pancreas. Diagnosis of diabetes is by blood tests such as fasting plasma glucose, oral glucose tolerance test, or glycated hemoglobin (A1C).

Type 2 diabetes is largely preventable by staying a normal weight, exercising regularly, and eating properly. Treatment involves exercise and dietary changes. If blood sugar levels are not adequately lowered, the medication metformin is typically recommended. Many people may eventually also require insulin injections. In those on insulin, routinely checking blood sugar levels is advised; however, this may not be needed in those taking pills. Bariatric surgery often improves diabetes in those who are obese.

Rates of type 2 diabetes have increased markedly since 1960 in parallel with obesity. As of 2015 there were approximately 392 million people diagnosed with the disease compared to around 30 million in 1985. Typically it begins in middle or older age, although rates of type 2 diabetes are increasing in young people. Type 2 diabetes is associated with a ten-year-shorter life expectancy. Diabetes was one of the first diseases described. The importance of insulin in the disease was determined in the 1920s.

Signs and symptoms

Overview of the most significant symptoms of diabetes.
 
The classic symptoms of diabetes are polyuria (frequent urination), polydipsia (increased thirst), polyphagia (increased hunger), and weight loss. Other symptoms that are commonly present at diagnosis include a history of blurred vision, itchiness, peripheral neuropathy, recurrent vaginal infections, and fatigue. Many people, however, have no symptoms during the first few years and are diagnosed on routine testing. A small number of people with type 2 diabetes can develop a hyperosmolar hyperglycemic state (a condition of very high blood sugar associated with a decreased level of consciousness and low blood pressure).

Complications

Type 2 diabetes is typically a chronic disease associated with a ten-year-shorter life expectancy. This is partly due to a number of complications with which it is associated, including: two to four times the risk of cardiovascular disease, including ischemic heart disease and stroke; a 20-fold increase in lower limb amputations, and increased rates of hospitalizations. In the developed world, and increasingly elsewhere, type 2 diabetes is the largest cause of nontraumatic blindness and kidney failure. It has also been associated with an increased risk of cognitive dysfunction and dementia through disease processes such as Alzheimer's disease and vascular dementia. Other complications include acanthosis nigricans, sexual dysfunction, and frequent infections. There is also an association between type 2 diabetes and mild hearing loss.

Cause

The development of type 2 diabetes is caused by a combination of lifestyle and genetic factors. While some of these factors are under personal control, such as diet and obesity, other factors are not, such as increasing age, female gender, and genetics. Obesity is more common in women than men in many parts of Africa. A lack of sleep has been linked to type 2 diabetes. This is believed to act through its effect on metabolism. The nutritional status of a mother during fetal development may also play a role, with one proposed mechanism being that of DNA methylation. The intestinal bacteria Prevotella copri and Bacteroides vulgatus have been connected with type 2 diabetes.

Lifestyle

Lifestyle factors are important to the development of type 2 diabetes, including obesity and being overweight (defined by a body mass index of greater than 25), lack of physical activity, poor diet, stress, and urbanization. Excess body fat is associated with 30% of cases in those of Chinese and Japanese descent, 60–80% of cases in those of European and African descent, and 100% of cases in Pima Indians and Pacific Islanders. Among those who are not obese, a high waist–hip ratio is often present. Smoking appears to increase the risk of type 2 diabetes.

Dietary factors also influence the risk of developing type 2 diabetes. Consumption of sugar-sweetened drinks in excess is associated with an increased risk. The type of fats in the diet are important, with saturated fats and trans fatty acids increasing the risk, and polyunsaturated and monounsaturated fat decreasing the risk. Eating a lot of white rice appears to play a role in increasing risk. A lack of exercise is believed to cause 7% of cases. Persistent organic pollutants may play a role.

Genetics

Most cases of diabetes involve many genes, with each being a small contributor to an increased probability of becoming a type 2 diabetic. If one identical twin has diabetes, the chance of the other developing diabetes within his lifetime is greater than 90%, while the rate for nonidentical siblings is 25–50%. As of 2011, more than 36 genes had been found that contribute to the risk of type 2 diabetes. All of these genes together still only account for 10% of the total heritable component of the disease. The TCF7L2 allele, for example, increases the risk of developing diabetes by 1.5 times and is the greatest risk of the common genetic variants. Most of the genes linked to diabetes are involved in beta cell functions.

There are a number of rare cases of diabetes that arise due to an abnormality in a single gene (known as monogenic forms of diabetes or "other specific types of diabetes"). These include maturity onset diabetes of the young (MODY), Donohue syndrome, and Rabson–Mendenhall syndrome, among others. Maturity onset diabetes of the young constitute 1–5% of all cases of diabetes in young people.

Medical conditions

There are a number of medications and other health problems that can predispose to diabetes. Some of the medications include: glucocorticoids, thiazides, beta blockers, atypical antipsychotics, and statins. Those who have previously had gestational diabetes are at a higher risk of developing type 2 diabetes. Other health problems that are associated include: acromegaly, Cushing's syndrome, hyperthyroidism, pheochromocytoma, and certain cancers such as glucagonomas. Testosterone deficiency is also associated with type 2 diabetes.

Pathophysiology

Insulin resistance (right side) contributes to high glucose levels in the blood.
 
Type 2 diabetes is due to insufficient insulin production from beta cells in the setting of insulin resistance. Insulin resistance, which is the inability of cells to respond adequately to normal levels of insulin, occurs primarily within the muscles, liver, and fat tissue. In the liver, insulin normally suppresses glucose release. However, in the setting of insulin resistance, the liver inappropriately releases glucose into the blood. The proportion of insulin resistance versus beta cell dysfunction differs among individuals, with some having primarily insulin resistance and only a minor defect in insulin secretion and others with slight insulin resistance and primarily a lack of insulin secretion.

Other potentially important mechanisms associated with type 2 diabetes and insulin resistance include: increased breakdown of lipids within fat cells, resistance to and lack of incretin, high glucagon levels in the blood, increased retention of salt and water by the kidneys, and inappropriate regulation of metabolism by the central nervous system. However, not all people with insulin resistance develop diabetes, since an impairment of insulin secretion by pancreatic beta cells is also required.

Diagnosis

WHO diabetes diagnostic criteria
Condition 2-hour glucose Fasting glucose HbA1c
Unit mmol/l(mg/dl) mmol/l(mg/dl) mmol/mol DCCT %
Normal <7 .8="" font=""> <6 .1="" font=""> <42 font=""> <6 .0="" font="">
Impaired fasting glycaemia <7 .8="" font=""> ≥6.1(≥110) & <7 .0="" font=""> 42-46 6.0–6.4
Impaired glucose tolerance ≥7.8 (≥140) <7 .0="" font=""> 42-46 6.0–6.4
Diabetes mellitus ≥11.1 (≥200) ≥7.0 (≥126) ≥48 ≥6.5

The World Health Organization definition of diabetes (both type 1 and type 2) is for a single raised glucose reading with symptoms, otherwise raised values on two occasions, of either:
  • fasting plasma glucose ≥ 7.0 mmol/l (126 mg/dl)
or
A random blood sugar of greater than 11.1 mmol/l (200 mg/dl) in association with typical symptoms or a glycated hemoglobin (HbA1c) of ≥ 48 mmol/mol (≥ 6.5 DCCT %) is another method of diagnosing diabetes. In 2009 an International Expert Committee that included representatives of the American Diabetes Association (ADA), the International Diabetes Federation (IDF), and the European Association for the Study of Diabetes (EASD) recommended that a threshold of ≥ 48 mmol/mol (≥ 6.5 DCCT %) should be used to diagnose diabetes. This recommendation was adopted by the American Diabetes Association in 2010. Positive tests should be repeated unless the person presents with typical symptoms and blood sugars >11.1 mmol/l (>200 mg/dl).

Threshold for diagnosis of diabetes is based on the relationship between results of glucose tolerance tests, fasting glucose or HbA1c and complications such as retinal problems. A fasting or random blood sugar is preferred over the glucose tolerance test, as they are more convenient for people. HbA1c has the advantages that fasting is not required and results are more stable but has the disadvantage that the test is more costly than measurement of blood glucose. It is estimated that 20% of people with diabetes in the United States do not realize that they have the disease.

Type 2 diabetes is characterized by high blood glucose in the context of insulin resistance and relative insulin deficiency. This is in contrast to type 1 diabetes in which there is an absolute insulin deficiency due to destruction of islet cells in the pancreas and gestational diabetes that is a new onset of high blood sugars associated with pregnancy. Type 1 and type 2 diabetes can typically be distinguished based on the presenting circumstances. If the diagnosis is in doubt antibody testing may be useful to confirm type 1 diabetes and C-peptide levels may be useful to confirm type 2 diabetes, with C-peptide levels normal or high in type 2 diabetes, but low in type 1 diabetes.

Screening

No major organization recommends universal screening for diabetes as there is no evidence that such a program improve outcomes. Screening is recommended by the United States Preventive Services Task Force (USPSTF) in adults without symptoms whose blood pressure is greater than 135/80 mmHg. For those whose blood pressure is less, the evidence is insufficient to recommend for or against screening. There is no evidence that it changes the risk of death in this group of people. They also recommend screening among those who are overweight and between the ages of 40 and 70.

The World Health Organization recommends testing those groups at high risk and in 2014 the USPSTF is considering a similar recommendation. High-risk groups in the United States include: those over 45 years old; those with a first degree relative with diabetes; some ethnic groups, including Hispanics, African-Americans, and Native-Americans; a history of gestational diabetes; polycystic ovary syndrome; excess weight; and conditions associated with metabolic syndrome. The American Diabetes Association recommends screening those who have a BMI over 25 (in people of Asian descent screening is recommended for a BMI over 23).

Prevention

Onset of type 2 diabetes can be delayed or prevented through proper nutrition and regular exercise. Intensive lifestyle measures may reduce the risk by over half. The benefit of exercise occurs regardless of the person's initial weight or subsequent weight loss. High levels of physical activity reduce the risk of diabetes by about 28%. Evidence for the benefit of dietary changes alone, however, is limited, with some evidence for a diet high in green leafy vegetables and some for limiting the intake of sugary drinks. There is an association between higher intake of sugar-sweetened fruit juice and diabetes, but no evidence of an association with 100% fruit juice. A 2019 review found evidence of benefit from dietary fiber.

In those with impaired glucose tolerance, diet and exercise either alone or in combination with metformin or acarbose may decrease the risk of developing diabetes. Lifestyle interventions are more effective than metformin. A 2017 review found that, long term, lifestyle changes decreased the risk by 28%, while medication does not reduce risk after withdrawal. While low vitamin D levels are associated with an increased risk of diabetes, correcting the levels by supplementing vitamin D3 does not improve that risk.

Management

Management of type 2 diabetes focuses on lifestyle interventions, lowering other cardiovascular risk factors, and maintaining blood glucose levels in the normal range. Self-monitoring of blood glucose for people with newly diagnosed type 2 diabetes may be used in combination with education, although the benefit of self-monitoring in those not using multi-dose insulin is questionable. In those who do not want to measure blood levels, measuring urine levels may be done. Managing other cardiovascular risk factors, such as hypertension, high cholesterol, and microalbuminuria, improves a person's life expectancy. Decreasing the systolic blood pressure to less than 140 mmHg is associated with a lower risk of death and better outcomes. Intensive blood pressure management (less than 130/80 mmHg) as opposed to standard blood pressure management (less than 140-160 mmHg systolic to 85–100 mmHg diastolic) results in a slight decrease in stroke risk but no effect on overall risk of death.

Intensive blood sugar lowering (HbA1c<6 as="" ba="" blood="" lowering="" opposed="" standard="" sub="" sugar="" to="">1c
of 7–7.9%) does not appear to change mortality. The goal of treatment is typically an HbA1c of 7 to 8% or a fasting glucose of less than 7.2 mmol/L (130 mg/dl); however these goals may be changed after professional clinical consultation, taking into account particular risks of hypoglycemia and life expectancy. Despite guidelines recommending that intensive blood sugar control be based on balancing immediate harms with long-term benefits, many people – for example people with a life expectancy of less than nine years who will not benefit, are over-treated.

It is recommended that all people with type 2 diabetes get regular eye examinations. There is weak evidence suggesting that treating gum disease by scaling and root planing may result in a small short-term improvement in blood sugar levels for people with diabetes. There is no evidence to suggest that this improvement in blood sugar levels is maintained longer than 4 months. There is also not enough evidence to determine if medications to treat gum disease are effective at lowering blood sugar levels.

Lifestyle

A proper diet and exercise are the foundations of diabetic care, with a greater amount of exercise yielding better results. Exercise improves blood sugar control, decreases body fat content and decreases blood lipid levels, and these effects are evident even without weight loss. Aerobic exercise leads to a decrease in HbA1c and improved insulin sensitivity. Resistance training is also useful and the combination of both types of exercise may be most effective.

A diabetic diet that promotes weight loss is important. While the best diet type to achieve this is controversial, a low glycemic index diet or low carbohydrate diet has been found to improve blood sugar control. A very low calorie diet, begun shortly after the onset of type 2 diabetes, can result in remission of the condition. Viscous fiber supplements may be useful in those with diabetes.

Vegetarian diets in general have been related to lower diabetes risk, but do not offer advantages compared with diets which allow moderate amounts of animal products. There is not enough evidence to suggest that cinnamon improves blood sugar levels in people with type 2 diabetes.

Culturally appropriate education may help people with type 2 diabetes control their blood sugar levels, for up to 24 months. If changes in lifestyle in those with mild diabetes has not resulted in improved blood sugars within six weeks, medications should then be considered. There is not enough evidence to determine if lifestyle interventions affect mortality in those who already have DM2.

Medications

Metformin 500mg tablets.
 
There are several classes of anti-diabetic medications available. Metformin is generally recommended as a first line treatment as there is some evidence that it decreases mortality; however, this conclusion is questioned. Metformin should not be used in those with severe kidney or liver problems.

A second oral agent of another class or insulin may be added if metformin is not sufficient after three months. Other classes of medications include: sulfonylureas, thiazolidinediones, dipeptidyl peptidase-4 inhibitors, SGLT2 inhibitors, and glucagon-like peptide-1 analogs. As of 2015 there was no significant difference between these agents. A 2018 review found that SGLT2 inhibitors may be better than glucagon-like peptide-1 analogs or dipeptidyl peptidase-4 inhibitors.

Rosiglitazone, a thiazolidinedione, has not been found to improve long-term outcomes even though it improves blood sugar levels. Additionally it is associated with increased rates of heart disease and death. Angiotensin-converting enzyme inhibitors (ACEIs) prevent kidney disease and improve outcomes in those with diabetes. The similar medications angiotensin receptor blockers (ARBs) do not. A 2016 review recommended treating to a systolic blood pressure of 140 to 150 mmHg.

Injections of insulin may either be added to oral medication or used alone. Most people do not initially need insulin. When it is used, a long-acting formulation is typically added at night, with oral medications being continued. Doses are then increased to effect (blood sugar levels being well controlled). When nightly insulin is insufficient, twice daily insulin may achieve better control. The long acting insulins glargine and detemir are equally safe and effective, and do not appear much better than neutral protamine Hagedorn (NPH) insulin, but as they are significantly more expensive, they are not cost effective as of 2010. In those who are pregnant, insulin is generally the treatment of choice.

Vitamin D supplementation to people with type 2 diabetes may improve markers of insulin resistance and HbA1c.

Surgery

Weight loss surgery in those who are obese is an effective measure to treat diabetes. Many are able to maintain normal blood sugar levels with little or no medication following surgery and long-term mortality is decreased. There however is some short-term mortality risk of less than 1% from the surgery. The body mass index cutoffs for when surgery is appropriate are not yet clear. It is recommended that this option be considered in those who are unable to get both their weight and blood sugar under control.

Epidemiology

Regional rates of diabetes using data from 195 countries in 2014
 
Globally as of 2015 it was estimated that there were 392 million people with type 2 diabetes making up about 90% of diabetes cases. This is equivalent to about 6% of the world's population. Diabetes is common both in the developed and the developing world. It remains uncommon, however, in the least developed countries.

Women seem to be at a greater risk as do certain ethnic groups, such as South Asians, Pacific Islanders, Latinos, and Native Americans. This may be due to enhanced sensitivity to a Western lifestyle in certain ethnic groups. Traditionally considered a disease of adults, type 2 diabetes is increasingly diagnosed in children in parallel with rising obesity rates. Type 2 diabetes is now diagnosed as frequently as type 1 diabetes in teenagers in the United States.

Rates of diabetes in 1985 were estimated at 30 million, increasing to 135 million in 1995 and 217 million in 2005. This increase is believed to be primarily due to the global population aging, a decrease in exercise, and increasing rates of obesity. The five countries with the greatest number of people with diabetes as of 2000 are India having 31.7 million, China 20.8 million, the United States 17.7 million, Indonesia 8.4 million, and Japan 6.8 million. It is recognized as a global epidemic by the World Health Organization.

History

Diabetes is one of the first diseases described with an Egyptian manuscript from c. 1500 BCE mentioning "too great emptying of the urine." The first described cases are believed to be of type 1 diabetes. Indian physicians around the same time identified the disease and classified it as madhumeha or honey urine noting that the urine would attract ants. The term "diabetes" or "to pass through" was first used in 230 BCE by the Greek Apollonius Of Memphis. The disease was rare during the time of the Roman empire with Galen commenting that he had only seen two cases during his career.

Type 1 and type 2 diabetes were identified as separate conditions for the first time by the Indian physicians Sushruta and Charaka in 400–500 AD with type 1 associated with youth and type 2 with being overweight. The term "mellitus" or "from honey" was added by the Briton John Rolle in the late 1700s to separate the condition from diabetes insipidus which is also associated with frequent urination. Effective treatment was not developed until the early part of the 20th century when the Canadians Frederick Banting and Charles Best discovered insulin in 1921 and 1922. This was followed by the development of the long acting NPH insulin in the 1940s.

Epidemiology of metabolic syndrome

From Wikipedia, the free encyclopedia
 
This article provides a global overview of the current trends and distribution of metabolic syndrome. Metabolic syndrome (also known as the cardiometabolic syndrome) refers to a cluster of related risk factors for cardiovascular disease that includes abdominal obesity, diabetes, hypertension, and elevated cholesterol.
 
Data from the World Health Organization suggests 65% of the world's population live in countries where being overweight or obese kills more people than being underweight. The WHO defines “overweight” as a BMI greater than or equal to 25, and “obesity” as a BMI greater than or equal to 30. Both overweight and obesity are major risk factors for cardiovascular diseases, specifically heart disease and stroke, and diabetes.

The International Diabetes Federation reports that as of 2011, 366 million people suffer from diabetes; this number is projected to increase to over half a billion (estimated 552 million) by 2030. 80 percent of people with diabetes live in developing countries and in 2011, diabetes caused 4.6 million deaths and approximately 78,000 children were diagnosed with type 1 diabetes.

Background

Different definitions of the cardiometabolic syndrome have been proposed by different public health organizations, but recently the International Diabetes Federation (IDF), the National Heart, Lung, and Blood Institute (NHLBI), the American Heart Association (AHA), and others proposed a definition for diagnosing the cardiometabolic syndrome that includes the presence of 3 out of the following 5 risk factors:
  • Fasting plasma glucose greater than or equal to 100 mg/dL, or undergoing drug treatment for elevated glucose
  • HDL cholesterol less than 40 mg/dL in men or less than 50 mg/dL in women, or undergoing drug treatment for reduced HDL cholesterol
  • Triglycerides greater than or equal to 150 mg/dL, or undergoing drug treatment for elevated triglycerides
  • Waist circumference greater than or equal to 102 cm in men or 88 cm in women (in the United States)
  • Blood pressure greater than or equal to 130 mm Hg systolic or 85 mm Hg diastolic, or undergoing drug treatment for hypertension
Approximately 20 – 25 percent of the world’s adult population has the cluster of risk factors that is metabolic syndrome. In 2000, approximately 32% of U.S. adults had the metabolic syndrome. In more recent years that figure has climbed to 34%.

People with the cardiometabolic syndrome have twice the likelihood of developing and dying from cardiovascular disease, and more than seven times the risk of developing diabetes, compared to those with no cardiometabolic risk factors.

Africa

Diabetes now affects over 14 million people in the central and southern regions of Africa; this number is expected to increase to 28 million people by 2030, according to the IDF Africa. The NGO Project Hope cites lifestyle changes as the primary cause of the increase of diabetes, specifically type 2 diabetes, which seems to correspond with a growing waist line. Lack of physical activity, increased consumption of processed food and unmanaged portion sizes all contribute to the rise of diabetes – a major component of cardiometabolic risk. In countries where there are food crises, “much of the foods donated from the international community are calorie-dense foods”, according to Project Hope’s Senior Advisor, Paul Madden. Nutrition education is essential to prevent type 2 diabetes from consuming the continent. The NGO also suggests that in some villages, 70 to 80 percent of the people may not even be aware that they are living with the disease.

Studies published in the Indian Journal of Endocrinology and Metabolism focused on the prevalence of metabolic syndrome and its components in different African populations using various criteria. Reports from Lagos, Nigeria, for instance, showed the prevalence rate of metabolic syndrome as high as over 80% among diabetic patients. The current trend of rising metabolic syndrome in African populations is largely and generally attributed to “adoption of western lifestyle which is characterized by reduced physical activity, substitution of the traditional African diet rich in fruits, and vegetables for the more energy-laden foods”.

Europe

Currently, more than 55 million people in Europe have been diagnosed with diabetes, according to the IDF; by 2030 this total will rise to 64 million people. Roughly 8.4% of adults are suffering from the effects of this disease, which caused 622,114 deaths in the region this year.33 IDF studies have also concluded that Europe has the highest number of children with type 1 diabetes.

The European Global Cardiometabolic Risk Profile in Patients with Hypertension Disease (GOOD) survey investigated the cardiometabolic risk profile in adult patients with hypertension across 289 locations in four European regions. Across the Northwest, Mediterranean, Atlantic European Mainland and Central Europe zones, demographic, lifestyle, clinical and laboratory data were collected from eligible patients during one clinic visit. In Central Europe 44% of the participants had type 2 diabetes compared with 33% in the Atlantic European Mainland, and 26% in the Northwest and the Mediterranean regions. The study revealed a prevalence of metabolic syndrome affected 68% of Central Europe, 60% of the Atlantic European Mainland, 52% of the Mediterranean regions and 50% of Northwest Europe. Fasting blood glucose, total cholesterol and triglyceride levels were all highest in Central Europe compared with the other three regions. Roughly 80% of the Atlantic European Mainland patients had uncontrolled blood pressure, whereas the other three regions tallied approximately 70-71%. Compared to the Northwest, Mediterranean, and Central Europe regions, declared alcohol consumption was also recorded the highest in the Atlantic European Mainland; exercise was lowest in Central Europe.

The GOOD survey recorded cases of congestive heart failure, left ventricular hypertrophy, coronary artery disease and stable/unstable angina were highest in Central Europe compared with the other regions. Family history of premature stroke or myocardial infarction, stroke, coronary revascularization and transient ischaemic attacks had the highest prevalence in the Atlantic European Mainland. Statistical conclusions indicate that hypertensive patients across Europe exhibit multiple cardiometabolic risk factors, with greater predominance in Central Europe and the Atlantic European Mainland compared with Northwest and Mediterranean regions.

Middle East and North Africa

The International Diabetes Federation reports more than 34.2 million people in the Middle East and North Africa have diabetes; this number will rise to 59.7 million by the year 2030 unless counteractive measures are introduced. In 2012, diabetes caused 356,586 deaths in this region, a zone with the highest prevalence of diabetes in adults (11%) in the world.

Turkey reported a prevalence of 33.9% for metabolic syndrome (MS), with a higher prevalence in women (39.6%) than in men (28%). The survey included random samples from both urban and rural populations in seven geographical regions of Turkey. More than one-third (35.08%) of the participants were obese. Of those tested, 13.66% had hypertension, while those with diabetes mellitus (DM) and MS were 4.16% and 17.91%, respectively. The frequency of hypertension, MS and obesity were higher in females than males; however, DM was higher in males than females. According to the IDF, metabolic syndrome was prevalent in 16.1% of the Saudi Arabian population. In Tunisia, metabolic syndrome incidence was 45.5% based on the IDF criteria. 37.4% of Iranians aging from 25-64, living in both urban and rural areas of all 30 provinces in Iran, had MS (based on the IDF definition); results based on the Adult Treatment Panel III (ATPIII)/American Heart Association (AHA)/National Heart, Lung, and Blood Institute (NHLBI) standards suggest 41.6% of the same group of Iranians suffer from metabolic syndrome. The affliction of the MS is estimated to affect more than 11 million Iranians.

North America and the Caribbean

Current IDF data proposes more than 38.4 million people in North American and the Caribbean have diabetes and projects this number will increase to 51.2 million by 2030. In 2012, 11% of (or approximately 4.2 million) adults in the NAC Region endured the disease; this year, diabetes was responsible for 287,020 deaths in North America.

The National Center for Biotechnological Information notes the incidence of the metabolic syndrome among Caribbean-born persons in the U. S. Virgin Islands is comparable to that among the population on the mainland of the United States. The groups involved in the study were Hispanic white, Hispanic black, non-Hispanic black born in the U.S. Virgin Islands, and non-Hispanic black born elsewhere in the Caribbean. Hispanic ethnicity was independently associated with an increased risk of having the metabolic syndrome, high triglycerides, and low high density lipoprotein cholesterol levels. Among Caribbean-born persons living in the U.S. Virgin Islands, those who are Hispanic blacks may have a greater risk of cardiovascular disease than do other groups.

United States

Approximately 27 million Americans, or nearly 11% of the population, have diabetes, according to the American Diabetes Association and the Centers for Disease Control and Prevention. By 2050, the prevalence of diabetes could increase to as much as 33% of the population, largely due to the aging of the population and to people with diabetes living longer. Approximately 1.9 million new cases of diabetes are diagnosed each year. The disease was the seventh leading cause of death in 2007, directly claiming more than 71,000 lives and contributing to approximately 160,000 additional deaths. Patients with diabetes are two to four times more likely than those without it to die from cardiovascular disease, and diabetes is an important cause of blindness, kidney disease, and lower-extremity amputations.

An additional 79 million Americans have prediabetes. Individuals with prediabetes have blood glucose levels that are higher than normal but not high enough to be classified as diabetes. Without intervention, most people with prediabetes will develop diabetes within ten years. In addition, studies have shown that these individuals are at increased risk for cardiovascular disease, including a heart attack or stroke. Individuals with prediabetes are also likely to have additional cardiovascular risk factors such as elevated cholesterol and high blood pressure.

Diabetes and prediabetes are strongly linked to obesity and overweight. Nearly 50% of people with diabetes are obese, and 90% are overweight. 19 A chief risk factor for prediabetes is excess abdominal fat. Obesity increases one’s risk for a variety of other medical problems, including hypertension, stroke, other forms of cardiovascular disease, arthritis, and several forms of cancer. Obese individuals are at twice the risk of dying from any cause than normal-weight individuals. The prevalence of obesity and overweight have risen to epidemic proportions in the United States, where 67% of adults are overweight and, of these, approximately half are obese.

The prevalence of hypertension, another cardiometabolic syndrome component, has been increasing for the last decade. In 1994, 24% of U.S. adults had hypertension. Today, that figure has risen to 29%, according to data from the National Health and Nutrition Examination Survey. In addition, nearly 30% of U.S. adults have prehypertension. Hypertension increases one’s risk of suffering a stroke, developing end-stage renal disease, and dying from cardiovascular disease. In recent years, hypertension has directly claimed more than 61,000 U.S. lives and has contributed to approximately 347,000 deaths each year.

Of the components of the cardiometabolic syndrome, only the prevalence of dyslipidemia has declined in the United States. Between 1999 and 2010, the percentage of U.S. adults with high total cholesterol declined from approximately 18% to 13%. However, according to the American Heart Association, nearly half of U.S. adults today (44%) are still at increased risk for atherosclerotic disease because their levels of total cholesterol are elevated (200 mg/dL or higher). Of these 98.8 million individuals with elevated cholesterol, 33.6 million have high cholesterol (240 mg/dL or above), and 71.3 million have low-density lipoprotein (LDL) cholesterol levels of 130 mg/dL or higher. In addition, approximately 19% of U.S. adults have low levels of high-density lipoprotein (HDL) cholesterol, and one-third have elevated triglycerides. Finally, dyslipidemia affects the vast majority (up to 97%) of individuals with diabetes and contributes to their elevated risk for cardiovascular disease.

United states children

According to estimates from the American Heart Association, more than 9% of U.S. children and adolescents aged 12–19, or nearly three million individuals, have the metabolic syndrome.[31] Among overweight and obese adolescents, this prevalence rate rises to 44%. Two-thirds of adolescents have at least one metabolic abnormality.

Preliminary prospective studies report that children and adolescents with the metabolic syndrome are at high risk of developing cardiovascular disease and diabetes as adults. One 25-year prospective study found that, compared with children without the syndrome, those with the metabolic syndrome are 14 times more likely to suffer from cardiovascular disease and 11 times more likely to develop diabetes when they reach adulthood. Cardiometabolic risk among children and adolescents is fueled by the rising prevalence of obesity in this age group. From 1980 to 2008, rates of obesity have increased from 5% to 10% among preschool children aged 2–5. During the same time period, obesity increased from 6.5% to nearly 20% among 6-11year-olds and from 5% to 18% among adolescents aged 12–19. Hypertension among children and adolescents has increased by 1% since 1999 and is estimated to affect 3.6% of those aged 3–18. This increase is attributed to the rising number of overweight and obese children. The prevalence of lipid abnormalities among children and adolescents is also tied to obesity and overweight. Approximately 14% of normal-weight youths aged 12–19 have lipid abnormalities. That figure rises to 22% of overweight youths and nearly 43% of obese youths.

Obesity is also tied to the rise of type 2 diabetes among U.S. children. Until recently, diabetes in children was typically assumed to be type 1, formerly known as juvenile-onset diabetes. However, according to the Centers for Disease Control and Prevention, recent clinical evidence indicates that the prevalence of type 2 diabetes, formerly known as adult-onset diabetes, is increasing among American children and adolescents. This increase is most notable among Blacks, Asian/Pacific Islanders, Hispanics, and American Indians. Children who develop type 2 diabetes are typically overweight or obese. “Type 2 diabetes in children and adolescents already appears to be a sizable and growing problem,” the CDC says. “Better physician awareness and monitoring of the disease’s magnitude will be necessary.”

Native Americans (American Indians)

The National Cholesterol Education Program compiled and presented data from the Indian Health Service that indicates increasing mortality rates due to cardiovascular disease vary among American Indian communities. The significant independent predictors of CVD in Native American women were diabetes, age, obesity, LDL, albuminuria, triglycerides, and hypertension. In men the significant predictors of CVD were diabetes, age, LDL, albuminuria, and hypertension. Unlike other ethnic groups, Native Americans appear to have an increasing frequency of coronary heart disease, possibly related to the high and increasing prevalence of diabetes in these communities. Although total and LDL-cholesterol levels are lower than the U.S. average, importance of LDL cholesterol as a contributor to CHD in this group should not be underestimated. Moreover, because of the high frequency of type 2 diabetes, many Native Americans will have an even lower LDL goal. The evidence for differences in baseline risk between Native American and white populations is not strong enough to justify separate guidelines for Native American populations.

South and Central America

The IDF reports 9.2% of adults in the South and Central America have diabetes and 12.3% of deaths in adults in the SACA Region can be attributed to the disease. More than 26.4 million people in the SACA Region have diabetes; by 2030 this will rise to 39.9 million. Approximately 236,328 disease related fatalities occurred in the SACA Region in 2012.

The Latin American populations exhibit a high prevalence of abdominal obesity and metabolic syndrome, similar or even higher than developed countries. It is attributed to changes in their lifestyle, migration from rural to urban areas and a higher susceptibility to accumulate abdominal fat and develop more insulin resistance compared to other ethnically different populations. Some genetic factors and metabolic adaptations during fetal life can be claimed as etiological factors of this condition.

Although cardiovascular disease (CVD) is the leading cause of death and disability in the majority of the countries in Latin America, few data about regional differences on this topic has emerged. Developing countries have scarce epidemiological data on cardiovascular (CV) risk factor prevalence, which only allows for limited control and treatment options. The load of the CV risk factors, especially hypertension, remains uncertain.

South-East Asia

A 2012 IDF South-East Asia report states one fifth of all adults living with diabetes live in South East Asia and 8.7% of adults in the region endure the disease, according to the International Diabetes Federation. As of this 2012, 70.3 million people in the SEA Region have diabetes; by 2030 this will rise to 120.9 million diagnoses.

There has been special interest in South Asians because they have been reported to have very high frequency rates of coronary heart disease at younger ages in the absence of traditional risk factors. The higher CHD risk in this population may be related in part to a higher prevalence of insulin resistance, the metabolic syndrome, and diabetes. Lipoprotein levels have also been reported to be elevated, elevating the importance of initiating remedies to reduce cholesterol and other CHD risk factors in this group with South Asian Indian ancestry. A growing body of evidence indicates that South Asians are at high baseline risk for CHD, compared to American whites; they are particularly at risk for the metabolic syndrome and type 2 diabetes. Also, increased emphasis should be given to life habit changes to mitigate the metabolic syndrome in this population. All other data reflects cholesterol management guidelines should remain the same for the SEA population as well as for other population groups.

Western Pacific

The IDF Western pacific reports more people with diabetes live in the Western Pacific than any other region in the world. Approximately 132.2 million people in the WP Region have diabetes; if proper precautions are not utilized, this number is projected to escalate to 187.9 million people by 2030. 44 8% of all Western Pacific adults have diabetes and in 2012, the illness caused 1.7 million deaths in the Western Pacific.

There is limited information on the risks and benefits of lipid management for reduction of coronary heart disease (CHD) and cardiovascular disease (CVD) in this population. In the Honolulu Heart Program report, CHD and CVD mortality rates are lower than in the general U.S. population. However, the evidence for differences between Pacific Islander and general U.S. Populations is not strong enough to justify the creating of separate guidelines.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...