Search This Blog

Saturday, August 15, 2020

Multi-drug-resistant tuberculosis

From Wikipedia, the free encyclopedia
 
Multi-drug-resistance tuberculosis
Mycobacterium tuberculosis Ziehl-Neelsen stain 02.jpg
Mycobacterium tuberculosis bacteria seen by microscope
SpecialtyInfectious disease

Multi-drug-resistant tuberculosis (MDR-TB) is a form of tuberculosis (TB) infection caused by bacteria that are resistant to treatment with at least two of the most powerful first-line anti-TB medications (drugs), isoniazid and rifampin. Some forms of TB are also resistant to second-line medications, and are called extensively drug-resistant TB (XDR-TB).

Tuberculosis is caused by infection with the bacteria Mycobacterium tuberculosis. Almost one in four people in the world are infected with TB bacteria. Only when the bacteria become active do people become ill with TB. Bacteria become active as a result of anything that can reduce the person's immunity, such as HIV, advancing age, diabetes or other immunocompromising illnesses. TB can usually be treated with a course of four standard, or first-line, anti-TB drugs (i.e., isoniazid, rifampin and any fluoroquinolone).

However, beginning with the first antibiotic treatment for TB in 1943, some strains of the TB bacteria developed resistance to the standard drugs through genetic changes (see mechanisms.) Currently the majority of multidrug-resistant cases of TB are due to one strain of TB bacteria called the Beijing lineage. This process accelerates if incorrect or inadequate treatments are used, leading to the development and spread of multidrug-resistant TB (MDR-TB). Incorrect or inadequate treatment may be due to use of the wrong medications, use of only one medication (standard treatment is at least two drugs), not taking medication consistently or for the full treatment period (treatment is required for several months). Treatment of MDR-TB requires second-line drugs (i.e., fluoroquinolones, aminoglycosides, and others), which in general are less effective, more toxic and much more expensive than first-line drugs. Treatment schedules for MDR-TB involving fluoroquinolones and aminoglycosides can run for 2 years, compared to the 6 months of first-line drug treatment, and cost over US$100,000. If these second-line drugs are prescribed or taken incorrectly, further resistance can develop leading to XDR-TB.

Resistant strains of TB are already present in the population, so MDR-TB can be directly transmitted from an infected person to an uninfected person. In this case a previously untreated person develops a new case of MDR-TB. This is known as primary MDR-TB, and is responsible for up to 75% of cases. Acquired MDR-TB develops when a person with a non-resistant strain of TB is treated inadequately, resulting in the development of antibiotic resistance in the TB bacteria infecting them. These people can in turn infect other people with MDR-TB.

MDR-TB caused an estimated 600,000 new TB cases and 240,000 deaths in 2016 and MDR-TB accounts for 4.1% of all new TB cases and 19% of previously treated cases worldwide.[12] Globally, most MDR-TB cases occur in South America, Southern Africa, India, China, and the former Soviet Union.

Treatment of MDR-TB requires treatment with second-line drugs, usually four or more anti-TB drugs for a minimum of 6 months, and possibly extending for 18–24 months if rifampin resistance has been identified in the specific strain of TB with which the patient has been infected. Under ideal program conditions, MDR-TB cure rates can approach 70%.

Mechanism of drug resistance

The TB bacteria has natural defenses against some drugs, and can acquire drug resistance through genetic mutations. The bacteria does not have the ability to transfer genes for resistance between organisms through plasmids (see horizontal transfer). Some mechanisms of drug resistance include:
  1. Cell wall: The cell wall of M. tuberculosis (TB) contains complex lipid molecules which act as a barrier to stop drugs from entering the cell.
  2. Drug modifying & inactivating enzymes: The TB genome codes for enzymes (proteins) that inactivate drug molecules. These enzymes are usually phosphorylate, acetylate, or adenylate drug compounds.
  3. Drug efflux systems: The TB cell contains molecular systems that actively pump drug molecules out of the cell.
  4. Mutations: Spontaneous mutations in the TB genome can alter proteins which are the target of drugs, making the bacteria drug resistant.
One example is a mutation in the rpoB gene, which encodes the beta subunit of the bacteria's RNA polymerase. In non-resistant TB, rifampin binds the beta subunit of RNA polymerase and disrupt transcription elongation. Mutation in the rpoB gene changes the sequence of amino acids and eventual conformation of the beta subunit. In this case rifampin can no longer bind or prevent transcription, and the bacteria is resistant.

Other mutations make the bacterium resistant to other drugs. For example, there are many mutations that confer resistance to isoniazid (INH), including in the genes katG, inhA, ahpC and others. Amino acid replacements in the NADH binding site of InhA apparently result in INH resistance by preventing the inhibition of mycolic acid biosynthesis, which the bacterium uses in its cell wall. Mutations in the katG gene make the enzyme catalase peroxidase unable to convert INH to its biologically active form. Hence, INH is ineffective and the bacteria is resistant. The discovery of new molecular targets is essential to overcome drug resistant problems.

In some TB bacteria, the acquisition of these mutations can be explained other mutations in the DNA recombination, recognition and repair machinery. Mutations in these genes allow the bacteria to have a higher overall mutation rate and to accumulate mutations that cause drug resistance more quickly.

Extensively drug-resistant TB

MDR-TB can become resistant to the major second-line TB drug groups: fluoroquinolones (moxifloxacin, ofloxacin) and injectable aminoglycoside or polypeptide drugs (amikacin, capreomycin, kanamycin). When MDR-TB is resistant to at least one drug from each group, it is classified as extensively drug-resistant tuberculosis (XDR-TB).

In a study of MDR-TB patients from 2005 to 2008 in various countries, 43.7% had resistance to at least one second-line drug. About 9% of MDR-TB cases are resistant to a drug from both classes and classified as XDR-TB.

In the past 10 years TB strains have emerged in Italy, Iran, India, and South Africa which are resistant to all available first and second line TB drugs, classified as totally drug-resistant tuberculosis, though there is some controversy over this term. Increasing levels of resistance in TB strains threaten to complicate the current global public health approaches to TB control. New drugs are being developed to treat extensively resistant forms but major improvements in detection, diagnosis, and treatment will be needed.

Prevention

There are several ways that drug resistance to TB, and drug resistance in general, can be prevented:
  1. Rapid diagnosis & treatment of TB: One of the greatest risk factors for drug resistant TB is problems in treatment and diagnosis, especially in developing countries. If TB is identified and treated soon, drug resistance can be avoided.
  2. Completion of treatment: Previous treatment of TB is an indicator of MDR TB. If the patient does not complete his/her antibiotic treatment, or if the physician does not prescribe the proper antibiotic regimen, resistance can develop. Also, drugs that are of poor quality or less in quantity, especially in developing countries, contribute to MDR TB.
  3. Patients with HIV/AIDS should be identified and diagnosed as soon as possible. They lack the immunity to fight the TB infection and are at great risk of developing drug resistance.
  4. Identify contacts who could have contracted TB: i.e. family members, people in close contact, etc.
  5. Research: Much research and funding is needed in the diagnosis, prevention and treatment of TB and MDR TB.
"Opponents of a universal tuberculosis treatment, reasoning from misguided notions of cost-effectiveness, fail to acknowledge that MDRTB is not a disease of poor people in distant places. The disease is infectious and airborne. Treating only one group of patients looks inexpensive in the short run, but will prove disastrous for all in the long run."— Paul Farmer 

DOTS-Plus

Community-based treatment programs such as DOTS-Plus, a MDR-TB-specialized treatment using the popular Directly Observed Therapy – Short Course (DOTS) initiative, have shown considerable success in the world. In these locales, these programs have proven to be a good option for proper treatment of MDR-TB in poor, rural areas. A successful example has been in Lima, Peru, where the program has seen cure rates of over 80%.

However, TB clinicians have expressed concern in the DOTS program administered in the Republic of Georgia because it is anchored in a passive case finding. This means that the system depends on patients coming to health care providers, without conducting compulsory screenings. As medical anthropologists like Erin Koch have shown, this form of implementation does not suit all cultural structures. They urge that the DOTS protocol be constantly reformed in the context of local practices, forms of knowledge and everyday life.

Erin Koch has used Paul Farmer's concept of "structural" violence as a perspective for understanding how "institutions, environment, poverty, and power reproduce, solidify, and naturalize the uneven distribution of disease and access to resources". She has also studied the effectiveness of the DOTS protocol in the widespread disease of tuberculosis in the Georgian prison system. Unlike the DOTS passive case finding used for the general Georgian public, the multiple-level surveillance in the prison system has proven more successful in reducing the spread of tuberculosis while increasing rates of cure.

Koch critically notes that because the DOTS protocol aims to change the individual's behavior without addressing the need to change the institutional, political, and economic contexts, certain limitations arise, such as MDR tuberculosis.

Treatment

Usually, multidrug-resistant tuberculosis can be cured with long treatments of second-line drugs, but these are more expensive than first-line drugs and have more adverse effects. The treatment and prognosis of MDR-TB are much more akin to those for cancer than to those for infection. MDR-TB has a mortality rate of up to 80%, which depends on a number of factors, including:
  1. How many drugs the organism is resistant to (the fewer the better)
  2. How many drugs the patient is given (patients treated with five or more drugs do better)
  3. The expertise and experience of the physician responsible
  4. How co-operative the patient is with treatment (treatment is arduous and long, and requires persistence and determination on the part of the patient)
  5. Whether the patient is HIV-positive or not (HIV co-infection is associated with an increased mortality).
The majority of patients suffering from multi-drug-resistant tuberculosis do not receive treatment, as they are found in underdeveloped countries or in poverty. Denial of treatment remains a difficult human rights issue, as the high cost of second-line medications often precludes those who cannot afford therapy.

A study of cost-effective strategies for tuberculosis control supported three major policies. First, the treatment of smear-positive cases in DOTS programs must be the foundation of any tuberculosis control approach, and should be a basic practice for all control programs. Second, there is a powerful economic case for treating smear-negative and extra-pulmonary cases in DOTS programs along with treating smear-negative and extra-pulmonary cases in DOTS programs as a new WHO "STOP TB" approach and the second global plan for tuberculosis control. Last, but not least, the study shows that significant scaling up of all interventions is needed in the next 10 years if the millennium development goal and related goals for tuberculosis control are to be achieved. If the case detection rate can be improved, this will guarantee that people who gain access to treatment facilities are covered and that coverage is widely distributed to people who do not now have access.

In general, treatment courses are measured in months to years; MDR-TB may require surgery, and death rates remain high despite optimal treatment. However, good outcomes for patients are still possible.

The treatment of MDR-TB must be undertaken by physicians experienced in the treatment of MDR-TB. Mortality and morbidity in patients treated in non-specialist centers are significantly higher to those of patients treated in specialist centers. Treatment of MDR-TB must be done on the basis of sensitivity testing: it is impossible to treat such patients without this information. When treating a patient with suspected MDR-TB, pending the result of laboratory sensitivity testing, the patient could be started on SHREZ (Streptomycin+ isonicotinyl Hydrazine+ Rifampicin+Ethambutol+ pyraZinamide) and moxifloxacin with cycloserine. There is evidence that previous therapy with a drug for more than a month is associated with diminished efficacy of that drug regardless of in vitro tests indicating susceptibility. Hence, a detailed knowledge of the treatment history of each patient is essential. In addition to the obvious risks (i.e., known exposure to a patient with MDR-TB), risk factors for MDR-TB include HIV infection, previous incarceration, failed TB treatment, failure to respond to standard TB treatment, and relapse following standard TB treatment.

A gene probe for rpoB is available in some countries. This serves as a useful marker for MDR-TB, because isolated RMP resistance is rare (except when patients have a history of being treated with rifampicin alone). If the results of a gene probe (rpoB) are known to be positive, then it is reasonable to omit RMP and to use SHEZ+MXF+cycloserine. The reason for maintaining the patient on INH is that INH is so potent in treating TB that it is foolish to omit it until there is microbiological proof that it is ineffective (even though isoniazid resistance so commonly occurs with rifampicin resistance).

For treatment of RR- and MDT-TB, WHO treatment guidelines are as follows: "a regimen with at least five effective TB medicines during the intensive phase is recommended, including pyrazinamide and four core second-line TB medicines – one chosen from Group A, one from Group B, and at least two from Group C3 (conditional recommendation, very low certainty in the evidence). If the minimum number of effective TB medicines cannot be composed as given above, an agent from Group D2 and other agents from Group D3 may be added to bring the total to five. It is recommended that the regimen be further strengthened with high-dose isoniazid and/or ethambutol (conditional recommendation, very low certainty in the evidence)."  Medicines recommended are the following:
  • Group A: Fluoroquinolones (levofloxacinm moxifloxicin, gatifloxacin), linezolid, bedaquiline
  • Group B: clofazimine, cycloserine/terizidone
  • Group C: Other core second-line agents (ethambutol, delamanid, pyrazinamide, imipenem-cilastatin/meropenem, amikacin/streptomycin, ethionamide/prothionamide, p-aminosalicylic acid)
For patients with RR-TB or MDR-TB, "not previously treated with second-line drugs and in whom resistance to fluoroquinolones and second-line injectable agents was excluded or is considered highly unlikely, a shorter MDR-TB regimen of 9–12 months may be used instead of the longer regimens (conditional recommendation, very low certainty in the evidence)." 

In general, resistance to one drug within a class means resistance to all drugs within that class, but a notable exception is rifabutin: Rifampicin-resistance does not always mean rifabutin-resistance, and the laboratory should be asked to test for it. It is possible to use only one drug within each drug class. If it is difficult finding five drugs to treat then the clinician can request that high-level INH-resistance be looked for. If the strain has only low-level INH-resistance (resistance at 0.2 mg/l INH, but sensitive at 1.0 mg/l INH), then high dose INH can be used as part of the regimen. When counting drugs, PZA and interferon count as zero; that is to say, when adding PZA to a four-drug regimen, another drug must be chosen to make five. It is not possible to use more than one injectable (STM, capreomycin or amikacin), because the toxic effect of these drugs is additive: If possible, the aminoglycoside should be given daily for a minimum of three months (and perhaps thrice weekly thereafter). Ciprofloxacin should not be used in the treatment of tuberculosis if other fluoroquinolones are available. As of 2008, Cochrane reports that trials of other fluoroquinolones are ongoing.

There is no intermittent regimen validated for use in MDR-TB, but clinical experience is that giving injectable drugs for five days a week (because there is no-one available to give the drug at weekends) does not seem to result in inferior results. Directly observed therapy helps to improve outcomes in MDR-TB and should be considered an integral part of the treatment of MDR-TB.

Response to treatment must be obtained by repeated sputum cultures (monthly if possible). Treatment for MDR-TB must be given for a minimum of 18 months and cannot be stopped until the patient has been culture-negative for a minimum of nine months. It is not unusual for patients with MDR-TB to be on treatment for two years or more.

Patients with MDR-TB should be isolated in negative-pressure rooms, if possible. Patients with MDR-TB should not be accommodated on the same ward as immunosuppressed patients (HIV-infected patients, or patients on immunosuppressive drugs). Careful monitoring of compliance with treatment is crucial to the management of MDR-TB (and some physicians insist on hospitalisation if only for this reason). Some physicians will insist that these patients remain isolated until their sputum is smear-negative, or even culture-negative (which may take many months, or even years). Keeping these patients in hospital for weeks (or months) on end may be a practical or physical impossibility, and the final decision depends on the clinical judgement of the physician treating that patient. The attending physician should make full use of therapeutic drug monitoring (in particular, of the aminoglycosides) both to monitor compliance and to avoid toxic effects.

Some supplements may be useful as adjuncts in the treatment of tuberculosis, but, for the purposes of counting drugs for MDR-TB, they count as zero (if four drugs are already in the regimen, it may be beneficial to add arginine or vitamin D or both, but another drug will be needed to make five). Supplements are: arginine (peanuts are a good source), vitamin D, Dzherelo, V5 Immunitor.

The drugs listed below have been used in desperation, and it is uncertain as to whether they are effective at all. They are used when it is not possible to find five drugs from the list above. imipenem, co-amoxiclav clofazimine, prochlorperazine, metronidazole.

On 28 December 2012, the U.S. Food and Drug Administration (FDA) approved bedaquiline (marketed as Sirturo by Johnson & Johnson) to treat multi-drug resistant tuberculosis, the first new treatment in 40 years. Sirturo is to be used in a combination therapy for patients who have failed standard treatment and have no other options. Sirturo is an adenosine triphosphate synthase (ATP synthase) inhibitor.

The following drugs are experimental compounds that are not commercially available, but may be obtained from the manufacturer as part of a clinical trial or on a compassionate basis. Their efficacy and safety are unknown: pretomanid (manufactured by Novartis, developed in partnership with TB Alliance), and delamanid.

In cases of extremely resistant disease, surgery to remove infection portions of the lung is, in general, the final option. The center with the largest experience in this is the National Jewish Medical and Research Center in Denver, Colorado. In 17 years of experience, they have performed 180 operations; of these, 98 were lobectomies and 82 were pneumonectomies. There is a 3.3% operative mortality, with an additional 6.8% dying following the operation; 12% experienced significant morbidity (in particular, extreme breathlessness). Of 91 patients who were culture-positive before surgery, only 4 were culture-positive after surgery.

The resurgence of tuberculosis in the United States, the advent of HIV-related tuberculosis, and the development of strains of TB resistant to the first-line therapies developed in recent decades—serve to reinforce the thesis that Mycobacterium tuberculosis, the causative organism, makes its own preferential option for the poor. The simple truth is that almost all tuberculosis deaths result from a lack of access to existing effective therapy.

Treatment success rates remain unacceptably low globally with variation between regions. 2016 data published by the WHO reported treatment success rates of Multi-drug resistant TB globally. For those started on treatment for multi-drug resistant TB 56% successfully completed treatment, either treatment course completion or eradication of disease; 15% of those died while in treatment; 15% were lost to follow-up; 8% had treatment failure and there was no data on the remaining 6%. Treatment success rate was highest in the World Health Organization Mediterranean region at 65%. Treatment success rates were lower than 50% in the Ukraine, Mozambique, Indonesia and India. Areas with poor TB surveillance infrastructure had higher rates of loss to follow-up of treatment.

57 countries reported outcomes for patients started on extreme-drug resistant Tuberculosis, this included 9258 patients. 39% completed treatment successfully, 26% of patients died and treatment failed for 18%. 84% of the extreme Drug resistant Cohort was made up of only three countries; India, Russian Federation and Ukraine. Shorter treatment regimes for MDR-TB have been found to be beneficial having higher treatment success rates.

Epidemiology

Cases of MDR tuberculosis have been reported in every country surveyed. MDR-TB most commonly develops in the course of TB treatment, and is most commonly due to doctors giving inappropriate treatment, or patients missing doses or failing to complete their treatment. Because MDR tuberculosis is an airborne pathogen, persons with active, pulmonary tuberculosis caused by a multidrug-resistant strain can transmit the disease if they are alive and coughing. TB strains are often less fit and less transmissible, and outbreaks occur more readily in people with weakened immune systems (e.g., patients with HIV). Outbreaks among non immunocompromised healthy people do occur, but are less common.

As of 2013, 3.7% of new tuberculosis cases have MDR-TB. Levels are much higher in those previously treated for tuberculosis - about 20%. WHO estimates that there were about 0.5 million new MDR-TB cases in the world in 2011. About 60% of these cases occurred in Brazil, China, India, the Russian Federation and South Africa alone. In Moldova, the crumbling health system has led to the rise of MDR-TB. In 2013, the Mexico–United States border was noted to be "a very hot region for drug resistant TB", though the number of cases remained small.

It has been known for many years that INH-resistant TB is less virulent in guinea pigs, and the epidemiological evidence is that MDR strains of TB do not dominate naturally. A study in Los Angeles, California, found that only 6% of cases of MDR-TB were clustered. Likewise, the appearance of high rates of MDR-TB in New York City in the early 1990s was associated with the explosion of AIDS in that area. In New York City, a report issued by city health authorities states that fully 80 percent of all MDR-TB cases could be traced back to prisons and homeless shelters. When patients have MDR-TB, they require longer periods of treatment—about two years of multidrug regimen. Several of the less powerful second-line drugs, which are required to treat MDR-TB, are also more toxic, with side effects such as nausea, abdominal pain, and even psychosis. The Partners in Health team had treated patients in Peru who were sick with strains that were resistant to ten and even twelve drugs. Most such patients require adjuvant surgery for any hope of a cure.

Somalia

MDR-TB is widespread in Somalia, where 8.7% of newly discovered TB cases are restistant to Rifampicin and Isoniazid, in patients which were treated previously the share was 47%.

Refugees from Somalia brought an until then unknown variant of MDR tuberculosis with them to Europe. A few number of cases in four different countries were considered by the European Centre for Disease Prevention and Control to pose no risk to the native population.

Russian prisons

One of the so-called "hot-spots" of drug-resistant tuberculosis is within the Russian prison system. Infectious disease researchers Nachega & Chaisson report that 10% of the one million prisoners within the system have active TB. One of their studies found that 75% of newly diagnosed inmates with TB are resistant to at least one drug; 40% of new cases are multi-drug resistant. In 1997, TB accounted for almost half of all Russian prison deaths, and as Bobrik et al. point out in their public health study, the 90% reduction in TB incidence contributed to a consequential fall in the prisoner death rate in the years following 1997. Baussano et al. articulate that concerning statistics like these are especially worrisome because spikes in TB incidence in prisons are linked to corresponding outbreaks in surrounding communities. Additionally, rising rates of incarceration, especially in Central Asian and Eastern European countries like Russia, have been correlated with higher TB rates in civilian populations. Even as the DOTS program is expanded throughout Russian prisons, researchers such as Shin et al. have noted that wide-scale interventions have not had their desired effect, especially with regard to the spread of drug-resistant strains of TB.

Contributing factors

There are several elements of the Russian prison system that enable the spread of MDR-TB and heighten its severity. Overcrowding in prisons is especially conducive to the spread of tuberculosis; an inmate in a prison hospital has (on average) 3 meters of personal space, and an inmate in a correctional colony has 2 meters. Specialized hospitals and treatment facilities within the prison system, known as TB colonies, are intended to isolate infected prisoners to prevent transmission; however, as Ruddy et al. demonstrate, there are not enough of these colonies to sufficiently protect staff and other inmates. Additionally, many cells lack adequate ventilation, which increases likelihood of transmission. Bobrik et al. have also noted food shortages within prisons, which deprive inmates of the nutrition necessary for healthy functioning.

Comorbidity of HIV within prison populations has also been shown to worsen health outcomes. Nachega & Chaisson articulate that while HIV-infected prisoners are not more susceptible MDR-TB infection, they are more likely to progress to serious clinical illness if infected. According to Stern, HIV infection is 75 times more prevalent in Russian prison populations than in the civilian population. Therefore, prison inmates are both more likely to become infected with MDR-TB initially and to experience severe symptoms because of previous exposure to HIV.

Shin et al. emphasize another factor in MDR-TB prevalence in Russian prisons: alcohol and substance use. Ruddy et al. showed that risk for MDR-TB is three times higher among recreational drug users than non-users. Shin et al.'s study demonstrated that alcohol usage was linked to poorer outcomes in MDR-TB treatment; they also noted that a majority of subjects within their study (many of whom regularly used alcohol) were nevertheless cured by their aggressive treatment regimen.

Non-compliance with treatment plans is often cited as a contributor to MDR-TB transmission and mortality. Indeed, of the 80 newly-released TB-infected inmates in Fry et al.'s study, 73.8% did not report visiting a community dispensary for further treatment. Ruddy et al. cite release from facilities as one of the main causes of interruption in prisoner's TB treatment, in addition to non-compliance within the prison and upon reintegration into civilian life. Fry et al.'s study also listed side effects of TB treatment medications (especially in HIV positive individuals), financial worries, housing insecurities, family problems, and fear of arrest as factors that prevented some prisoners from properly adhering to TB treatment. They also note that some researchers have argued that the short-term gains TB-positive prisoners receive, such as better food or work exclusion, may dis-incentivize becoming cured. In their World Health Organization article, Gelmanova et al. posit that non-adherence to TB treatment indirectly contributes to bacterial resistance. Although ineffective or inconsistent treatment does not "create" resistant strains, mutations within the high bacterial load in non-adherent prisoners can cause resistance.

Nachega & Chaisson argue that inadequate TB control programs are the strongest driver of MDR-TB incidence. They note that prevalence of MDR-TB is 2.5 times higher in areas of poorly controlled TB. Russian-based therapy (i.e., not DOTS) has been criticized by Kimerling et al. as "inadequate" in properly controlling TB incidence and transmission. Bobrik et al. note that treatment for MDR-TB is equally inconsistent; the second-line drugs used to treat the prisoners lack specific treatment guidelines, infrastructure, training, or follow-up protocols for prisoners reentering civilian life.

Policy impacts

As Ruddy et al. note in their scholarly article, Russia's recent penal reforms will greatly reduce the number of inmates inside prison facilities and thus increase the number of ex-convicts integrated into civilian populations. Because the incidence of MDR-TB is strongly predicted by past imprisonment, the health of Russian society will be greatly impacted by this change. Formerly incarcerated Russians will re-enter civilian life and remain within that sphere; as they live as civilians, they will infect others with the contagions they were exposed to in prison. Researcher Vivian Stern argues that the risk of transmission from prison populations to the general public calls for an integration of prison healthcare and national health services to better control both TB and MDR-TB. While second-line drugs necessary for treating MDR-TB are arguably more expensive than a typical regimen of DOTS therapy, infectious disease specialist Paul Farmer posits that the outcome of leaving infected prisoners untreated could cause a massive outbreak of MDR-TB in civilian populations, thereby inflicting a heavy toll on society. Additionally, as MDR-TB spreads, the threat of the emergence of totally-drug-resistant TB becomes increasingly apparent.

Tuberculosis

From Wikipedia, the free encyclopedia

Tuberculosis
Other namesPhthisis, phthisis pulmonalis, consumption
Tuberculosis-x-ray-1.jpg
Chest X-ray of a person with advanced tuberculosis: Infection in both lungs is marked by white arrow-heads, and the formation of a cavity is marked by black arrows.
SpecialtyInfectious disease, pulmonology
SymptomsChronic cough, fever, cough with bloody mucus, weight loss
CausesMycobacterium tuberculosis
Risk factorsSmoking, HIV/AIDS
Diagnostic methodCXR, culture, tuberculin skin test
Differential diagnosisPneumonia, histoplasmosis, sarcoidosis, coccidioidomycosis
PreventionScreening those at high risk, treatment of those infected, vaccination with bacillus Calmette-Guérin (BCG)
TreatmentAntibiotics
Frequency25% of people (latent TB)
Deaths1.5 million (2018)

Tuberculosis (TB) is an infectious disease usually caused by Mycobacterium tuberculosis (MTB) bacteria. Tuberculosis generally affects the lungs, but can also affect other parts of the body. Most infections show no symptoms, in which case it is known as latent tuberculosis. About 10% of latent infections progress to active disease which, if left untreated, kills about half of those affected. The classic symptoms of active TB are a chronic cough with blood-containing mucus, fever, night sweats, and weight loss. It was historically called "consumption" due to the weight loss. Infection of other organs can cause a wide range of symptoms.

Tuberculosis is spread from one person to the next through the air when people who have active TB in their lungs cough, spit, speak, or sneeze.  People with latent TB do not spread the disease. Active infection occurs more often in people with HIV/AIDS and in those who smoke. Diagnosis of active TB is based on chest X-rays, as well as microscopic examination and culture of body fluids. Diagnosis of latent TB relies on the tuberculin skin test (TST) or blood tests.

Prevention of TB involves screening those at high risk, early detection and treatment of cases, and vaccination with the bacillus Calmette-Guérin (BCG) vaccine. Those at high risk include household, workplace, and social contacts of people with active TB. Treatment requires the use of multiple antibiotics over a long period of time. Antibiotic resistance is a growing problem with increasing rates of multiple drug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB).

As of 2018 one quarter of the world's population is thought to have latent infection with TB. New infections occur in about 1% of the population each year. In 2018, there were more than 10 million cases of active TB which resulted in 1.5 million deaths. This makes it the number one cause of death from an infectious disease. As of 2018, most TB cases occurred in the regions of South-East Asia (44%), Africa (24%) and the Western Pacific (18%), with more than 50% of cases being diagnosed in eight countries: India (27%), China (9%), Indonesia (8%), the Philippines (6%), Pakistan (6%), Nigeria (4%) and Bangladesh (4%). The number of new cases each year has decreased since 2000. About 80% of people in many Asian and African countries test positive while 5–10% of people in the United States population test positive by the tuberculin test. Tuberculosis has been present in humans since ancient times.

Signs and symptoms

The main symptoms of variants and stages of tuberculosis are given, with many symptoms overlapping with other variants, while others are more (but not entirely) specific for certain variants. Multiple variants may be present simultaneously.

Tuberculosis may infect any part of the body, but most commonly occurs in the lungs (known as pulmonary tuberculosis). Extrapulmonary TB occurs when tuberculosis develops outside of the lungs, although extrapulmonary TB may coexist with pulmonary TB.

General signs and symptoms include fever, chills, night sweats, loss of appetite, weight loss, and fatigue. Significant nail clubbing may also occur.

Pulmonary

If a tuberculosis infection does become active, it most commonly involves the lungs (in about 90% of cases). Symptoms may include chest pain and a prolonged cough producing sputum. About 25% of people may not have any symptoms (i.e. they remain "asymptomatic"). Occasionally, people may cough up blood in small amounts, and in very rare cases, the infection may erode into the pulmonary artery or a Rasmussen's aneurysm, resulting in massive bleeding. Tuberculosis may become a chronic illness and cause extensive scarring in the upper lobes of the lungs. The upper lung lobes are more frequently affected by tuberculosis than the lower ones. The reason for this difference is not clear. It may be due to either better air flow, or poor lymph drainage within the upper lungs.

Extrapulmonary

In 15–20% of active cases, the infection spreads outside the lungs, causing other kinds of TB. These are collectively denoted as "extrapulmonary tuberculosis". Extrapulmonary TB occurs more commonly in people with a weakened immune system and young children. In those with HIV, this occurs in more than 50% of cases. Notable extrapulmonary infection sites include the pleura (in tuberculous pleurisy), the central nervous system (in tuberculous meningitis), the lymphatic system (in scrofula of the neck), the genitourinary system (in urogenital tuberculosis), and the bones and joints (in Pott disease of the spine), among others. A potentially more serious, widespread form of TB is called "disseminated tuberculosis", it is also known as miliary tuberculosis. Miliary TB currently makes up about 10% of extrapulmonary cases.

Causes

Mycobacteria

Scanning electron micrograph of M. tuberculosis

The main cause of TB is Mycobacterium tuberculosis (MTB), a small, aerobic, nonmotile bacillus. The high lipid content of this pathogen accounts for many of its unique clinical characteristics. It divides every 16 to 20 hours, which is an extremely slow rate compared with other bacteria, which usually divide in less than an hour. Mycobacteria have an outer membrane lipid bilayer. If a Gram stain is performed, MTB either stains very weakly "Gram-positive" or does not retain dye as a result of the high lipid and mycolic acid content of its cell wall. MTB can withstand weak disinfectants and survive in a dry state for weeks. In nature, the bacterium can grow only within the cells of a host organism, but M. tuberculosis can be cultured in the laboratory.

Using histological stains on expectorated samples from phlegm (also called "sputum"), scientists can identify MTB under a microscope. Since MTB retains certain stains even after being treated with acidic solution, it is classified as an acid-fast bacillus. The most common acid-fast staining techniques are the Ziehl–Neelsen stain and the Kinyoun stain, which dye acid-fast bacilli a bright red that stands out against a blue background. Auramine-rhodamine staining and fluorescence microscopy are also used.

The M. tuberculosis complex (MTBC) includes four other TB-causing mycobacteria: M. bovis, M. africanum, M. canetti, and M. microti. M. africanum is not widespread, but it is a significant cause of tuberculosis in parts of Africa. M. bovis was once a common cause of tuberculosis, but the introduction of pasteurized milk has almost completely eliminated this as a public health problem in developed countries. M. canetti is rare and seems to be limited to the Horn of Africa, although a few cases have been seen in African emigrants. M. microti is also rare and is seen almost only in immunodeficient people, although its prevalence may be significantly underestimated.

Other known pathogenic mycobacteria include M. leprae, M. avium, and M. kansasii. The latter two species are classified as "nontuberculous mycobacteria" (NTM). NTM cause neither TB nor leprosy, but they do cause lung diseases that resemble TB.

Risk factors

A number of factors make people more susceptible to TB infections. The most important risk factor globally is HIV; 13% of all people with TB are infected by the virus. This is a particular problem in sub-Saharan Africa, where rates of HIV are high. Of people without HIV who are infected with tuberculosis, about 5–10% develop active disease during their lifetimes; in contrast, 30% of those coinfected with HIV develop the active disease.

Tuberculosis is closely linked to both overcrowding and malnutrition, making it one of the principal diseases of poverty. Those at high risk thus include: people who inject illicit drugs, inhabitants and employees of locales where vulnerable people gather (e.g. prisons and homeless shelters), medically underprivileged and resource-poor communities, high-risk ethnic minorities, children in close contact with high-risk category patients, and health-care providers serving these patients.

Chronic lung disease is another significant risk factor. Silicosis increases the risk about 30-fold. Those who smoke cigarettes have nearly twice the risk of TB compared to nonsmokers.

Other disease states can also increase the risk of developing tuberculosis. These include alcoholism and diabetes mellitus (three-fold increase).

Certain medications, such as corticosteroids and infliximab (an anti-αTNF monoclonal antibody), are other important risk factors, especially in the developed world.

Genetic susceptibility also exists, for which the overall importance remains undefined.

Mechanism

Public health campaigns in the 1920s tried to halt the spread of TB.

Transmission

When people with active pulmonary TB cough, sneeze, speak, sing, or spit, they expel infectious aerosol droplets 0.5 to 5.0 µm in diameter. A single sneeze can release up to 40,000 droplets. Each one of these droplets may transmit the disease, since the infectious dose of tuberculosis is very small (the inhalation of fewer than 10 bacteria may cause an infection).

People with prolonged, frequent, or close contact with people with TB are at particularly high risk of becoming infected, with an estimated 22% infection rate. A person with active but untreated tuberculosis may infect 10–15 (or more) other people per year. Transmission should occur from only people with active TB – those with latent infection are not thought to be contagious. The probability of transmission from one person to another depends upon several factors, including the number of infectious droplets expelled by the carrier, the effectiveness of ventilation, the duration of exposure, the virulence of the M. tuberculosis strain, the level of immunity in the uninfected person, and others. The cascade of person-to-person spread can be circumvented by segregating those with active ("overt") TB and putting them on anti-TB drug regimens. After about two weeks of effective treatment, subjects with nonresistant active infections generally do not remain contagious to others. If someone does become infected, it typically takes three to four weeks before the newly infected person becomes infectious enough to transmit the disease to others.

Pathogenesis

Microscopy of tuberculous epididymitis. H&E stain

About 90% of those infected with M. tuberculosis have asymptomatic, latent TB infections (sometimes called LTBI), with only a 10% lifetime chance that the latent infection will progress to overt, active tuberculous disease. In those with HIV, the risk of developing active TB increases to nearly 10% a year. If effective treatment is not given, the death rate for active TB cases is up to 66%.

TB infection begins when the mycobacteria reach the alveolar air sacs of the lungs, where they invade and replicate within endosomes of alveolar macrophages. Macrophages identify the bacterium as foreign and attempt to eliminate it by phagocytosis. During this process, the bacterium is enveloped by the macrophage and stored temporarily in a membrane-bound vesicle called a phagosome. The phagosome then combines with a lysosome to create a phagolysosome. In the phagolysosome, the cell attempts to use reactive oxygen species and acid to kill the bacterium. However, M. tuberculosis has a thick, waxy mycolic acid capsule that protects it from these toxic substances. M. tuberculosis is able to reproduce inside the macrophage and will eventually kill the immune cell.

The primary site of infection in the lungs, known as the "Ghon focus", is generally located in either the upper part of the lower lobe, or the lower part of the upper lobe. Tuberculosis of the lungs may also occur via infection from the blood stream. This is known as a Simon focus and is typically found in the top of the lung. This hematogenous transmission can also spread infection to more distant sites, such as peripheral lymph nodes, the kidneys, the brain, and the bones. All parts of the body can be affected by the disease, though for unknown reasons it rarely affects the heart, skeletal muscles, pancreas, or thyroid.

Robert Carswell's illustration of tubercle
 
Tuberculosis is classified as one of the granulomatous inflammatory diseases. Macrophages, epithelioid cells, T lymphocytes, B lymphocytes, and fibroblasts aggregate to form granulomas, with lymphocytes surrounding the infected macrophages. When other macrophages attack the infected macrophage, they fuse together to form a giant multinucleated cell in the alveolar lumen. The granuloma may prevent dissemination of the mycobacteria and provide a local environment for interaction of cells of the immune system. However, more recent evidence suggests that the bacteria use the granulomas to avoid destruction by the host's immune system. Macrophages and dendritic cells in the granulomas are unable to present antigen to lymphocytes; thus the immune response is suppressed. Bacteria inside the granuloma can become dormant, resulting in latent infection. Another feature of the granulomas is the development of abnormal cell death (necrosis) in the center of tubercles. To the naked eye, this has the texture of soft, white cheese and is termed caseous necrosis.

If TB bacteria gain entry to the blood stream from an area of damaged tissue, they can spread throughout the body and set up many foci of infection, all appearing as tiny, white tubercles in the tissues. This severe form of TB disease, most common in young children and those with HIV, is called miliary tuberculosis. People with this disseminated TB have a high fatality rate even with treatment (about 30%).

In many people, the infection waxes and wanes. Tissue destruction and necrosis are often balanced by healing and fibrosis. Affected tissue is replaced by scarring and cavities filled with caseous necrotic material. During active disease, some of these cavities are joined to the air passages (bronchi) and this material can be coughed up. It contains living bacteria, and thus can spread the infection. Treatment with appropriate antibiotics kills bacteria and allows healing to take place. Upon cure, affected areas are eventually replaced by scar tissue.

Diagnosis

M. tuberculosis (stained red) in sputum

Active tuberculosis

Diagnosing active tuberculosis based only on signs and symptoms is difficult, as is diagnosing the disease in those who have a weakened immune system. A diagnosis of TB should, however, be considered in those with signs of lung disease or constitutional symptoms lasting longer than two weeks. A chest X-ray and multiple sputum cultures for acid-fast bacilli are typically part of the initial evaluation. Interferon-γ release assays and tuberculin skin tests are of little use in most of the developing world. Interferon gamma release assays (IGRA) have similar limitations in those with HIV.

A definitive diagnosis of TB is made by identifying M. tuberculosis in a clinical sample (e.g., sputum, pus, or a tissue biopsy). However, the difficult culture process for this slow-growing organism can take two to six weeks for blood or sputum culture. Thus, treatment is often begun before cultures are confirmed.

Nucleic acid amplification tests and adenosine deaminase testing may allow rapid diagnosis of TB. These tests, however, are not routinely recommended, as they rarely alter how a person is treated. Blood tests to detect antibodies are not specific or sensitive, so they are not recommended.

Latent tuberculosis


The Mantoux tuberculin skin test is often used to screen people at high risk for TB. Those who have been previously immunized with the Bacille Calmette-Guerin vaccine may have a false-positive test result. The test may be falsely negative in those with sarcoidosis, Hodgkin's lymphoma, malnutrition, and most notably, active tuberculosis. Interferon gamma release assays, on a blood sample, are recommended in those who are positive to the Mantoux test. These are not affected by immunization or most environmental mycobacteria, so they generate fewer false-positive results. However, they are affected by M. szulgai, M. marinum, and M. kansasii. IGRAs may increase sensitivity when used in addition to the skin test, but may be less sensitive than the skin test when used alone.

The US Preventive Services Task Force (USPSTF) has recommended screening people who are at high risk for latent tuberculosis with either tuberculin skin tests or interferon-gamma release assays. While some have recommend testing health care workers, evidence of benefit for this is poor as of 2019. The Centers for Disease Control and Prevention (CDC) stopped recommending yearly testing of health care workers without known exposure in 2019.

Prevention

Tuberculosis prevention poster from the United States, c. 1940

Tuberculosis prevention and control efforts rely primarily on the vaccination of infants and the detection and appropriate treatment of active cases. The World Health Organization (WHO) has achieved some success with improved treatment regimens, and a small decrease in case numbers.

Vaccines

The only available vaccine as of 2011 is Bacillus Calmette-Guérin (BCG). In children it decreases the risk of getting the infection by 20% and the risk of infection turning into active disease by nearly 60%.

It is the most widely used vaccine worldwide, with more than 90% of all children being vaccinated. The immunity it induces decreases after about ten years. As tuberculosis is uncommon in most of Canada, Western Europe, and the United States, BCG is administered to only those people at high risk. Part of the reasoning against the use of the vaccine is that it makes the tuberculin skin test falsely positive, reducing the test's usefulness as a screening tool. Several vaccines are being developed.

Intradermal MVA85A Vaccine in addition to BCG injection is not effective in preventing tuberculosis.

Public health

The World Health Organization (WHO) declared TB a "global health emergency" in 1993, and in 2006, the Stop TB Partnership developed a Global Plan to Stop Tuberculosis that aimed to save 14 million lives between its launch and 2015. A number of targets they set were not achieved by 2015, mostly due to the increase in HIV-associated tuberculosis and the emergence of multiple drug-resistant tuberculosis. A tuberculosis classification system developed by the American Thoracic Society is used primarily in public health programs.

The benefits and risks of giving anti-tubercular drugs in those exposed to MDR-TB is unclear.

Treatment

Treatment of TB uses antibiotics to kill the bacteria. Effective TB treatment is difficult, due to the unusual structure and chemical composition of the mycobacterial cell wall, which hinders the entry of drugs and makes many antibiotics ineffective.

Active TB is best treated with combinations of several antibiotics to reduce the risk of the bacteria developing antibiotic resistance. The routine use of rifabutin instead of rifampicin in HIV-positive people with tuberculosis is of unclear benefit as of 2007.

Latent

Latent TB is treated with either isoniazid or rifampin alone, or a combination of isoniazid with either rifampicin or rifapentine.

The treatment takes three to nine months depending on the medications used [People with latent infections are treated to prevent them from progressing to active TB disease later in life.
Education or counselling may improve the latent tuberculosis treatment completion rates.

New onset

The recommended treatment of new-onset pulmonary tuberculosis, as of 2010, is six months of a combination of antibiotics containing rifampicin, isoniazid, pyrazinamide, and ethambutol for the first two months, and only rifampicin and isoniazid for the last four months. Where resistance to isoniazid is high, ethambutol may be added for the last four months as an alternative. Treatment with anti-TB drugs for at least 6 months results in higher success rates when compared with treatment less than 6 months; even though the difference is small. Shorter treatment regimen may be recommended for those with compliance issues. There is also no evidence to support shorter anti-tubeculosis treatment regimen when compared to 6 months treatment regimen.

Recurrent disease

If tuberculosis recurs, testing to determine which antibiotics it is sensitive to is important before determining treatment. If multiple drug-resistant TB (MDR-TB) is detected, treatment with at least four effective antibiotics for 18 to 24 months is recommended.

Medication administration

Directly observed therapy, i.e., having a health care provider watch the person take their medications, is recommended by the World Health Organization (WHO) in an effort to reduce the number of people not appropriately taking antibiotics. The evidence to support this practice over people simply taking their medications independently is of poor quality. There is no strong evidence indicating that directly observed therapy improves the number of people who were cured or the number of people who complete their medicine. Moderate quality evidence suggests that there is also no difference if people are observed at home versus at a clinic, or by a family member versus a health care worker. Methods to remind people of the importance of treatment and appointments may result in a small but important improvement. There is also not enough evidence to support intermittent rifampicin-containing therapy given two to three times a week has equal effectiveness as daily dose regimen on improving cure rates and reducing relapsing rates. There is also not enough evidence on effectiveness of giving intermittent twice or thrice weekly short course regimen compared to daily dosing regimen in treating children with tuberculosis.

Medication resistance

Primary resistance occurs when a person becomes infected with a resistant strain of TB. A person with fully susceptible MTB may develop secondary (acquired) resistance during therapy because of inadequate treatment, not taking the prescribed regimen appropriately (lack of compliance), or using low-quality medication. Drug-resistant TB is a serious public health issue in many developing countries, as its treatment is longer and requires more expensive drugs. MDR-TB is defined as resistance to the two most effective first-line TB drugs: rifampicin and isoniazid. Extensively drug-resistant TB is also resistant to three or more of the six classes of second-line drugs. Totally drug-resistant TB is resistant to all currently used drugs. It was first observed in 2003 in Italy, but not widely reported until 2012, and has also been found in Iran and India. Bedaquiline is tentatively supported for use in multiple drug-resistant TB.

XDR-TB is a term sometimes used to define extensively resistant TB, and constitutes one in ten cases of MDR-TB. Cases of XDR TB have been identified in more than 90% of countries. There is some efficacy for linezolid to treat those with XDR-TB but side effects and discontinuation of medications were common.

For those with known rifampicin or MDR-TB, Genotype® MTBDRsl Assay performed on culture isolates or smear positive specimens may be useful to detect second-line anti-tubercular drug resistance.

Prognosis

Age-standardized disability-adjusted life years caused by tuberculosis per 100,000 inhabitants in 2004.

Progression from TB infection to overt TB disease occurs when the bacilli overcome the immune system defenses and begin to multiply. In primary TB disease (some 1–5% of cases), this occurs soon after the initial infection. However, in the majority of cases, a latent infection occurs with no obvious symptoms. These dormant bacilli produce active tuberculosis in 5–10% of these latent cases, often many years after infection.

The risk of reactivation increases with immunosuppression, such as that caused by infection with HIV. In people coinfected with M. tuberculosis and HIV, the risk of reactivation increases to 10% per year. Studies using DNA fingerprinting of M. tuberculosis strains have shown reinfection contributes more substantially to recurrent TB than previously thought, with estimates that it might account for more than 50% of reactivated cases in areas where TB is common. The chance of death from a case of tuberculosis is about 4% as of 2008, down from 8% in 1995.

Epidemiology

Roughly one-quarter of the world's population has been infected with M. tuberculosis, with new infections occurring in about 1% of the population each year. However, most infections with M. tuberculosis do not cause TB disease, and 90–95% of infections remain asymptomatic. In 2012, an estimated 8.6 million chronic cases were active. In 2010, 8.8 million new cases of TB were diagnosed, and 1.20–1.45 million deaths occurred, most of these occurring in developing countries. Of these 1.45 million deaths, about 0.35 million occur in those also infected with HIV.

In 2018, tuberculosis was the leading cause of death worldwide from a single infectious agent. The total number of tuberculosis cases has been decreasing since 2005, while new cases have decreased since 2002. China has achieved particularly dramatic progress, with about an 80% reduction in its TB mortality rate between 1990 and 2010. The number of new cases has declined by 17% between 2004 and 2014. Tuberculosis is more common in developing countries; about 80% of the population in many Asian and African countries test positive in tuberculin tests, while only 5–10% of the US population test positive. Hopes of totally controlling the disease have been dramatically dampened because of a number of factors, including the difficulty of developing an effective vaccine, the expensive and time-consuming diagnostic process, the necessity of many months of treatment, the increase in HIV-associated tuberculosis, and the emergence of drug-resistant cases in the 1980s.

In 2007, the country with the highest estimated incidence rate of TB was Swaziland, with 1,200 cases per 100,000 people. India had the largest total incidence, with an estimated 2.0 million new cases. In developed countries, tuberculosis is less common and is found mainly in urban areas. Rates per 100,000 people in different areas of the world were: globally 178, Africa 332, the Americas 36, Eastern Mediterranean 173, Europe 63, Southeast Asia 278, and Western Pacific 139 in 2010. In Canada and Australia, tuberculosis is many times more common among the aboriginal peoples, especially in remote areas. In the United States Native Americans have a fivefold greater mortality from TB, and racial and ethnic minorities accounted for 84% of all reported TB cases.

The rate of TB varies with age. In Africa, it primarily affects adolescents and young adults. However, in countries where incidence rates have declined dramatically (such as the United States), TB is mainly a disease of older people and the immunocompromised (risk factors are listed above). Worldwide, 22 "high-burden" states or countries together experience 80% of cases as well as 83% of deaths.

History

Egyptian mummy in the British Museum – tubercular decay has been found in the spine.
Tuberculosis has existed since antiquity. The oldest unambiguously detected M. tuberculosis gives evidence of the disease in the remains of bison in Wyoming dated to around 17,000 years ago. However, whether tuberculosis originated in bovines, then transferred to humans, or whether both bovine and human tuberculosis diverged from a common ancestor, remains unclear. A comparison of the genes of M. tuberculosis complex (MTBC) in humans to MTBC in animals suggests humans did not acquire MTBC from animals during animal domestication, as researchers previously believed. Both strains of the tuberculosis bacteria share a common ancestor, which could have infected humans even before the Neolithic Revolution. Skeletal remains show some prehistoric humans (4000 BC) had TB, and researchers have found tubercular decay in the spines of Egyptian mummies dating from 3000 to 2400 BC. Genetic studies suggest the presence of TB in the Americas from about 100 AD.

Before the Industrial Revolution, folklore often associated tuberculosis with vampires. When one member of a family died from the disease, the other infected members would lose their health slowly. People believed this was caused by the original person with TB draining the life from the other family members.

Although Richard Morton established the pulmonary form associated with tubercles as a pathology in 1689, due to the variety of its symptoms, TB was not identified as a single disease until the 1820s. J. L. Schönlein coined the name "tuberculosis" in 1839. Between 1838 and 1845, Dr. John Croghan, the owner of Mammoth Cave in Kentucky from 1839 onwards, brought a number of people with tuberculosis into the cave in the hope of curing the disease with the constant temperature and purity of the cave air; each died within a year. Hermann Brehmer opened the first TB sanatorium in 1859 in Görbersdorf (now Sokołowsko) in Silesia.

Robert Koch discovered the tuberculosis bacillus.

Robert Koch identified and described the bacillus causing tuberculosis, M. tuberculosis, on 24 March 1882. He received the Nobel Prize in physiology or medicine in 1905 for this discovery. Koch did not believe the cattle and human tuberculosis diseases were similar, which delayed the recognition of infected milk as a source of infection. During the first half of the 1900s the risk of transmission from this source was dramatically reduced after the application of the pasteurization process. Koch announced a glycerine extract of the tubercle bacilli as a "remedy" for tuberculosis in 1890, calling it "tuberculin". Although it was not effective, it was later successfully adapted as a screening test for the presence of pre-symptomatic tuberculosis. World Tuberculosis Day is marked on 24 March each year, the anniversary of Koch's original scientific announcement.

Albert Calmette and Camille Guérin achieved the first genuine success in immunization against tuberculosis in 1906, using attenuated bovine-strain tuberculosis. It was called bacille Calmette–Guérin (BCG). The BCG vaccine was first used on humans in 1921 in France, but achieved widespread acceptance in the US, Great Britain, and Germany only after World War II.

Tuberculosis caused widespread public concern in the 19th and early 20th centuries as the disease became common among the urban poor. In 1815 one in four deaths in England was due to "consumption". By 1918, TB still caused one in six deaths in France. After TB was determined to be contagious, in the 1880s, it was put on a notifiable-disease list in Britain; campaigns started to stop people from spitting in public places, and the infected poor were "encouraged" to enter sanatoria that resembled prisons (the sanatoria for the middle and upper classes offered excellent care and constant medical attention). Whatever the benefits of the "fresh air" and labor in the sanatoria, even under the best conditions, 50% of those who entered died within five years (c. 1916). When the Medical Research Council formed in Britain in 1913, it initially focused on tuberculosis research.

In Europe, rates of tuberculosis began to rise in the early 1600s to a peak level in the 1800s, when it caused nearly 25% of all deaths. By the 1950s mortality in Europe had decreased about 90%. Improvements in sanitation, vaccination, and other public-health measures began significantly reducing rates of tuberculosis even before the arrival of streptomycin and other antibiotics, although the disease remained a significant threat. In 1946 the development of the antibiotic streptomycin made effective treatment and cure of TB a reality. Prior to the introduction of this medication, the only treatment was surgical intervention, including the "pneumothorax technique", which involved collapsing an infected lung to "rest" it and to allow tuberculous lesions to heal.

Because of the emergence of MDR-TB, surgery has been re-introduced for certain cases of TB infections. It involves the removal of infected chest cavities ("bullae") in the lungs to reduce the number of bacteria and to increase exposure of the remaining bacteria to antibiotics in the bloodstream. Hopes of completely eliminating TB ended with the rise of drug-resistant strains in the 1980s. The subsequent resurgence of tuberculosis resulted in the declaration of a global health emergency by the World Health Organization (WHO) in 1993.

Society and culture

Names

Tuberculosis has been known by many names from the technical to the familiar. Phthisis (Φθισις) is a Greek word for consumption, an old term for pulmonary tuberculosis; around 460 BCE, Hippocrates described phthisis as a disease of dry seasons. The abbreviation "TB" is short for tubercle bacillus. "Consumption" was the most common nineteenth century English word for the disease. The Latin root "con" meaning "completely" is linked to "sumere" meaning "to take up from under." In The Life and Death of Mr Badman by John Bunyan, the author calls consumption "the captain of all these men of death." "Great white plague" has also been used.

Art and literature

Painting The Sick Child by Edvard Munch, 1885–86, depicts the illness of his sister Sophie, who died of tuberculosis when Edvard was 14; his mother too died of the disease.

Tuberculosis was for centuries associated with poetic and artistic qualities among those infected, and was also known as "the romantic disease". Major artistic figures such as the poets John Keats, Percy Bysshe Shelley, and Edgar Allan Poe, the composer Frédéric Chopin, the playwright Anton Chekhov, the novelists Franz Kafka, Katherine Mansfield, Charlotte Brontë, Fyodor Dostoevsky, Thomas Mann, W. Somerset Maugham, George Orwell, and Robert Louis Stevenson, and the artists Alice Neel, Jean-Antoine Watteau, Elizabeth Siddal, Marie Bashkirtseff, Edvard Munch, Aubrey Beardsley and Amedeo Modigliani either had the disease or were surrounded by people who did. A widespread belief was that tuberculosis assisted artistic talent. Physical mechanisms proposed for this effect included the slight fever and toxaemia that it caused, allegedly helping them to see life more clearly and to act decisively.

Tuberculosis formed an often-reused theme in literature, as in Thomas Mann's The Magic Mountain, set in a sanatorium; in music, as in Van Morrison's song "T.B. Sheets"; in opera, as in Puccini's La bohème and Verdi's La Traviata; in art, as in Monet's painting of his first wife Camille on her deathbed; and in film, such as the 1945 The Bells of St. Mary's starring Ingrid Bergman as a nun with tuberculosis.

Public health efforts

The World Health Organization (WHO), the Bill and Melinda Gates Foundation, and the U.S. government are subsidizing a fast-acting diagnostic tuberculosis test for use in low- and middle-income countries as of 2012. In addition to being fast-acting, the test can determine if there is resistance to the antibiotic rifampicin which may indicate multi-drug resistant tuberculosis and is accurate in those who are also infected with HIV. Many resource-poor places as of 2011 have access to only sputum microscopy.

India had the highest total number of TB cases worldwide in 2010, in part due to poor disease management within the private and public health care sector. Programs such as the Revised National Tuberculosis Control Program are working to reduce TB levels among people receiving public health care.

A 2014 the EIU-healthcare report finds there is a need to address apathy and urges for increased funding. The report cites among others Lucica Ditui "[TB] is like an orphan. It has been neglected even in countries with a high burden and often forgotten by donors and those investing in health interventions."

Slow progress has led to frustration, expressed by the executive director of the Global Fund to Fight AIDS, Tuberculosis and Malaria – Mark Dybul: "we have the tools to end TB as a pandemic and public health threat on the planet, but we are not doing it." Several international organizations are pushing for more transparency in treatment, and more countries are implementing mandatory reporting of cases to the government as of 2014, although adherence is often variable. Commercial treatment providers may at times overprescribe second-line drugs as well as supplementary treatment, promoting demands for further regulations. The government of Brazil provides universal TB-care, which reduces this problem. Conversely, falling rates of TB-infection may not relate to the number of programs directed at reducing infection rates but may be tied to increased level of education, income, and health of the population. Costs of the disease, as calculated by the World Bank in 2009 may exceed US$150 billion per year in "high burden" countries. Lack of progress eradicating the disease may also be due to lack of patient follow-up – as among the 250M rural migrants in China.

There is insufficient data to show that active contact tracing helps to improve case detection rates for tuberculosis. Interventions such as house-to-house visits, educational leaflets, mass media strategies, educational sessions may increase tuberculosis detection rates in short-term. There is no study that compare new method of contact tracing such as social network analysis with existing contact tracing methods.

Stigma

Slow progress in preventing the disease may in part be due to stigma associated with TB. Stigma may be due to the fear of transmission from affected individuals. This stigma may additionally arise due to links between TB and poverty, and in Africa, AIDS. Such stigmatization may be both real and perceived; for example, in Ghana individuals with TB are banned from attending public gatherings.

Stigma towards TB may result in delays in seeking treatment, lower treatment compliance, and family members keeping cause of death secret – allowing the disease to spread further. In contrast, in Russia stigma was associated with increased treatment compliance. TB stigma also affects socially marginalized individuals to a greater degree and varies between regions.

One way to decrease stigma may be through the promotion of "TB clubs", where those infected may share experiences and offer support, or through counseling. Some studies have shown TB education programs to be effective in decreasing stigma, and may thus be effective in increasing treatment adherence. Despite this, studies on the relationship between reduced stigma and mortality are lacking as of 2010, and similar efforts to decrease stigma surrounding AIDS have been minimally effective. Some have claimed the stigma to be worse than the disease, and healthcare providers may unintentionally reinforce stigma, as those with TB are often perceived as difficult or otherwise undesirable. A greater understanding of the social and cultural dimensions of tuberculosis may also help with stigma reduction.

Research

The BCG vaccine has limitations, and research to develop new TB vaccines is ongoing. A number of potential candidates are currently in phase I and II clinical trials. Two main approaches are used to attempt to improve the efficacy of available vaccines. One approach involves adding a subunit vaccine to BCG, while the other strategy is attempting to create new and better live vaccines. MVA85A, an example of a subunit vaccine, is in trials in South Africa as of 2006, is based on a genetically modified vaccinia virus. Vaccines are hoped to play a significant role in treatment of both latent and active disease.

To encourage further discovery, researchers and policymakers are promoting new economic models of vaccine development as of 2006, including prizes, tax incentives, and advance market commitments. A number of groups, including the Stop TB Partnership, the South African Tuberculosis Vaccine Initiative, and the Aeras Global TB Vaccine Foundation, are involved with research. Among these, the Aeras Global TB Vaccine Foundation received a gift of more than $280 million (US) from the Bill and Melinda Gates Foundation to develop and license an improved vaccine against tuberculosis for use in high burden countries.

A number of medications are being studied as of 2012 for multidrug-resistant tuberculosis, including bedaquiline and delamanid. Bedaquiline received U.S. Food and Drug Administration (FDA) approval in late 2012. The safety and effectiveness of these new agents are uncertain as of 2012, because they are based on the results of relatively small studies. However, existing data suggest that patients taking bedaquiline in addition to standard TB therapy are five times more likely to die than those without the new drug, which has resulted in medical journal articles raising health policy questions about why the FDA approved the drug and whether financial ties to the company making bedaquiline influenced physicians' support for its use.

Steroids add-on therapy has not shown any benefits for people with active pulmonary tuberculosis infection.

Other animals

Mycobacteria infect many different animals, including birds, fish, rodents, and reptiles. The subspecies Mycobacterium tuberculosis, though, is rarely present in wild animals. An effort to eradicate bovine tuberculosis caused by Mycobacterium bovis from the cattle and deer herds of New Zealand has been relatively successful. Efforts in Great Britain have been less successful.

As of 2015, tuberculosis appears to be widespread among captive elephants in the US. It is believed that the animals originally acquired the disease from humans, a process called reverse zoonosis. Because the disease can spread through the air to infect both humans and other animals, it is a public health concern affecting circuses and zoos.

United States labor law

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Uni...