Search This Blog

Wednesday, December 9, 2020

Biology and sexual orientation

From Wikipedia, the free encyclopedia

The relationship between biology and sexual orientation is a subject of research. While scientists do not know the exact cause of sexual orientation, they theorize that it is caused by a complex interplay of genetic, hormonal, and environmental influences. Hypotheses for the impact of the post-natal social environment on sexual orientation, however, are weak, especially for males.

Biological theories for explaining the causes of sexual orientation are favored by scientists. These factors, which may be related to the development of a sexual orientation, include genes, the early uterine environment (such as prenatal hormones), and brain structure.

Scientific research and studies

Fetal development and hormones

The influence of hormones on the developing foetus has been the most influential causal hypothesis of the development of sexual orientation. In simple terms, the developing fetal brain begins in a "female" typical state. The presence of the Y-chromosome in males prompts the development of testes, which release testosterone, the primary androgen receptor-activating hormone, to masculinize the fetus and fetal brain. This masculinising effect pushes males towards male typical brain structures, and most of the time, attraction to females. It has been hypothesized that gay men may have been exposed to little testosterone in key regions of the brain, or had different levels of receptivity to its masculinizing effects, or experienced fluctuations at critical times. In women, it is hypothesized that high levels of exposure to testosterone in key regions may increase likelihood of same sex attraction. Supporting this are studies of the finger digit ratio of the right hand, which is a robust marker of prenatal testosterone exposure. Lesbians on average, have significantly more masculine digit ratios, a finding which has been replicated numerous times in studies cross-culturally. While direct effects are hard to measure for ethical reasons, animal experiments where scientists manipulate exposure to sex hormones during gestation can also induce life long male-typical behavior and mounting in female animals, and female-typical behavior in male animals.

Maternal immune responses during fetal development are strongly demonstrated as causing male homosexuality and bisexuality. Research since the 1990s has demonstrated that the more male sons a woman has, there is a higher chance of later born sons being gay. During pregnancy, male cells enter a mother's bloodstream, which are foreign to her immune system. In response, she develops antibodies to neutralize them. These antibodies are then released on future male foetuses and may neutralize Y-linked antigens, which play a role in brain masculinization, leaving areas of the brain responsible for sexual attraction in the female-typical position, or attracted to men. The more sons a mother has will increase the levels of these antibodies, thus creating the observed fraternal birth order effect. Biochemical evidence to support this effect was confirmed in a lab study in 2017, finding that mothers with a gay son, particularly those with older brothers, had heightened levels of antibodies to the NLGN4Y Y-protein than mothers with heterosexual sons. J. Michael Bailey has described maternal immune responses as "causal" of male homosexuality. This effect is estimated to account for between 15-29% of gay men, while other gay and bisexual men are thought to owe sexual orientation to genetic and hormonal interactions.

Socialization theories, which were dominant in the 1900s, favored the idea that children were born "undifferentiated" and were socialized into gender roles and sexual orientation. This led to medical experiments in which newborn and infant boys were surgically reassigned into girls after accidents such as botched circumcisions. These males were then reared and raised as females without telling the boys, which, contrary to expectations, did not make them feminine nor attracted to men. All published cases providing sexual orientation grew up to be strongly attracted to women. The failure of these experiments demonstrate that socialization effects does not induce feminine type behavior in males, nor make them attracted to men, and that the organizational effects of hormones on the fetal brain prior to birth have permanent effects. These are indicative of 'nature', not nurture, at least with regards to male sexual orientation.

The sexually dimorphic nucleus of the preoptic area (SDN-POA) is a key region of the brain which differs between males and females in humans and a number of mammals (e.g., sheep/rams, mice, rats), and is caused by sex differences in hormone exposure. The INAH-3 region is bigger in males than in females, and is thought to be a critical region in sexual behavior. Dissection studies found that gay men had significantly smaller sized INAH-3 than heterosexual males, which is shifted in the female typical direction, a finding first demonstrated by neuroscientist Simon LeVay, which has been replicated. Dissection studies are rare, however, due to lack of funding and brain samples.

Long-term studies of domesticated sheep lead by Charles Roselli have found that 6-8% of rams have a homosexual preference through their life. Dissection of ram brains also found a similar smaller (feminized) structure in homosexually oriented rams compared to heterosexually oriented rams in the equivalent brain region to the human SDN, the ovine sexually dimorphic nucleus (oSDN). The size of the sheep oSDN has also been demonstrated to be formed in utero, rather than postnatally, underscoring the role of prenatal hormones in masculinization of the brain for sexual attraction.

Other studies in humans have relied on brain imaging technology, such as research lead by Ivanka Savic which compared hemispheres of the brain. This research found that straight men had right hemispheres 2% larger than the left, described as modest but "highly significant difference" by LeVay. In heterosexual women, the two hemispheres were the same size. In gay men, the two hemispheres were also the same size, or sex atypical, while in lesbians, the right hemispheres were slightly larger than the left, indicating a small shift in the male direction.

A model proposed by evolutionary geneticist William R. Rice argues that a misexpressed epigenetic modifier of testosterone sensitivity or insensitivity that affected development of the brain can explain homosexuality, and can best explain twin discordance. Rice et al. propose that these epimarks normally canalize sexual development, preventing intersex conditions in most of the population, but sometimes failing to erase across generations and causing reversed sexual preference. On grounds of evolutionary plausibility, Gavrilets, Friberg and Rice argue that all mechanisms for exclusive homosexual orientations likely trace back to their epigenetic model. Testing this hypothesis is possible with current stem cell technology.

Genetic influences

Multiple genes have been found to play a role in sexual orientation. Scientists caution that many people misconstrue the meanings of genetic and environmental. Environmental influence does not automatically imply that the social environment influences or contributes to the development of sexual orientation. Hypotheses for the impact of the post-natal social environment on sexual orientation are weak, especially for males. There is, however, a vast non-social environment that is non-genetic yet still biological, such as prenatal development, that likely helps shape sexual orientation.

Twin studies

Identical twins are more likely to have the same sexual orientation than non-identical twins. This indicates that genes have some influence on sexual orientation; however, scientists have found evidence that other events in the womb play a role. Twins may have separate amniotic sacs and placentas, resulting in different exposure and timing of hormones.

A number of twin studies have attempted to compare the relative importance of genetics and environment in the determination of sexual orientation. In a 1991 study, Bailey and Pillard conducted a study of male twins recruited from "homophile publications", and found that 52% of monozygotic (MZ) brothers (of whom 59 were questioned) and 22% of the dizygotic (DZ) twins were concordant for homosexuality. 'MZ' indicates identical twins with the same sets of genes and 'DZ' indicates fraternal twins where genes are mixed to an extent similar to that of non-twin siblings. In a study of 61 pairs of twins, researchers found among their mostly male subjects a concordance rate for homosexuality of 66% among monozygotic twins and a 30% one among dizygotic twins. In 2000, Bailey, Dunne and Martin studied a larger sample of 4,901 Australian twins but reported less than half the level of concordance. They found 20% concordance in the male identical or MZ twins and 24% concordance for the female identical or MZ twins. Self reported zygosity, sexual attraction, fantasy and behaviours were assessed by questionnaire and zygosity was serologically checked when in doubt. Other researchers support biological causes for both men and women's sexual orientation.

A 2008 study of all adult twins in Sweden (more than 7,600 twins) found that same-sex behaviour was explained by both heritable genetic factors and unique environmental factors (which can include the prenatal environment during gestation, exposure to illness in early life, peer groups not shared with a twin, etc.), although a twin study cannot identify which factor is at play. Influences of the shared environment (influences including the family environment, rearing, shared peer groups, culture and societal views, and sharing the same school and community) had no effect for men, and a weak effect for women. This is consistent with the common finding that parenting and culture appears to play no role in male sexual orientation, but may play some small role in women. The study concludes that genetic influences on any lifetime same-sex partner were stronger for men than women, and that "it has been suggested individual differences in heterosexual and homosexual behavior result from unique environmental factors such as prenatal exposure to sex hormones, progressive maternal immunization to sex-specific proteins, or neurodevelopmental factors", although does not rule out other variables. The use of all adult twins in Sweden was designed to address the criticism of volunteer studies, in which a potential bias towards participation by gay twins may influence the results:

Biometric modeling revealed that, in men, genetic effects explained .34–.39 of the variance [of sexual orientation], the shared environment .00, and the individual-specific environment .61–.66 of the variance. Corresponding estimates among women were .18–.19 for genetic factors, .16–.17 for shared environmental, and .64–.66 for unique environmental factors. Although wide confidence intervals suggest cautious interpretation, the results are consistent with moderate, primarily genetic, familial effects, and moderate to large effects of the nonshared environment (social and biological) on same-sex sexual behavior.

Chromosome linkage studies

Chromosome Location Associated genes Sex Study1 Origin Note
X chromosome Xq28 male only Hamer et al. 1993

Sanders et al. 2015

genetic
Chromosome 1 1p36 both sexes Ellis et al. 2008 potential genetic linkage2
Chromosome 4 4p14
female only Ganna et al. 2019
Chromosome 7 7q31
both sexes Ganna et al. 2019
Chromosome 8 8p12 Unknown male only Mustanski et al. 2005

Sanders et al. 2015


Chromosome 9 9q34 ABO both sexes Ellis et al. 2008 potential genetic linkage2
Chromosome 11 11q12 OR51A7 (speculative) male only Ganna et al. 2019 Olfactory system in mating preferences
Chromosome 12 12q21
both sexes Ganna et al. 2019
Chromosome 13 13q31 SLITRK6 male only Sanders et al. 2017 Diencephalon-associated gene
Chromosome 14 14q31 TSHR male only Sanders et al. 2017
Chromosome 15 15q21 TCF12 male only Ganna et al. 2019
1Reported primary studies are not conclusive evidence of any relationship.
2Not believed to be causal.

Chromosome linkage studies of sexual orientation have indicated the presence of multiple contributing genetic factors throughout the genome. In 1993, Dean Hamer and colleagues published findings from a linkage analysis of a sample of 76 gay brothers and their families. Hamer et al. found that the gay men had more gay male uncles and cousins on the maternal side of the family than on the paternal side. Gay brothers who showed this maternal pedigree were then tested for X chromosome linkage, using twenty-two markers on the X chromosome to test for similar alleles. In another finding, thirty-three of the forty sibling pairs tested were found to have similar alleles in the distal region of Xq28, which was significantly higher than the expected rates of 50% for fraternal brothers. This was popularly dubbed the "gay gene" in the media, causing significant controversy. Sanders et al. in 1998 reported on their similar study, in which they found that 13% of uncles of gay brothers on the maternal side were homosexual, compared with 6% on the paternal side.

A later analysis by Hu et al. replicated and refined the earlier findings. This study revealed that 67% of gay brothers in a new saturated sample shared a marker on the X chromosome at Xq28. Two other studies (Bailey et al., 1999; McKnight and Malcolm, 2000) failed to find a preponderance of gay relatives in the maternal line of homosexual men. One study by Rice et al. in 1999 failed to replicate the Xq28 linkage results. Meta-analysis of all available linkage data indicates a significant link to Xq28, but also indicates that additional genes must be present to account for the full heritability of sexual orientation.

Mustanski et al. (2005) performed a full-genome scan (instead of just an X chromosome scan) on individuals and families previously reported on in Hamer et al. (1993) and Hu et al. (1995), as well as additional new subjects. In the full sample they did not find linkage to Xq28.

Results from the first large, comprehensive multi-center genetic linkage study of male sexual orientation were reported by an independent group of researchers at the American Society of Human Genetics in 2012. The study population included 409 independent pairs of gay brothers, who were analyzed with over 300,000 single-nucleotide polymorphism markers. The data strongly replicated Hamer's Xq28 findings as determined by both two-point and multipoint (MERLIN) LOD score mapping. Significant linkage was also detected in the pericentromeric region of chromosome 8, overlapping with one of the regions detected in the Hamer lab's previous genomewide study. The authors concluded that "our findings, taken in context with previous work, suggest that genetic variation in each of these regions contributes to development of the important psychological trait of male sexual orientation". Female sexual orientation does not seem to be linked to Xq28, though it does appear moderately heritable.

In addition to sex chromosomal contribution, a potential autosomal genetic contribution to the development of homosexual orientation has also been suggested. In a study population composed of more than 7000 participants, Ellis et al. (2008) found a statistically significant difference in the frequency of blood type A between homosexuals and heterosexuals. They also found that "unusually high" proportions of homosexual males and homosexual females were Rh negative in comparison to heterosexuals. As both blood type and Rh factor are genetically inherited traits controlled by alleles located on chromosome 9 and chromosome 1 respectively, the study indicates a potential link between genes on autosomes and homosexuality.

The biology of sexual orientation has been studied in detail in several animal model systems. In the common fruit fly Drosophila melanogaster, the complete pathway of sexual differentiation of the brain and the behaviors it controls is well established in both males and females, providing a concise model of biologically controlled courtship. In mammals, a group of geneticists at the Korea Advanced Institute of Science and Technology bred a female mice specifically lacking a particular gene related to sexual behavior. Without the gene, the mice exhibited masculine sexual behavior and attraction toward urine of other female mice. Those mice who retained the gene fucose mutarotase (FucM) were attracted to male mice.

In interviews to the press, researchers have pointed that the evidence of genetic influences should not be equated with genetic determinism. According to Dean Hamer and Michael Bailey, genetic aspects are only one of the multiple causes of homosexuality.

In 2017, Scientific Reports published an article with a genome wide association study on male sexual orientation. The research consisted of 1,077 homosexual men and 1,231 heterosexual men. A gene named SLITRK6 on chromosome 13 was identified. The research supports another study which had been done by the neuroscientist Simon LeVay. LeVay's research suggested that the hypothalamus of gay men is different from straight men. The SLITRK6 is active in the mid-brain where the hypothalamus is. The researchers found that the thyroid stimulating hormone receptor (TSHR) on chromosome 14 shows sequence differences between gay and straight men. Graves' disease is associated with TSHR abnormalities, with previous research indicating that Graves' disease is more common in gay men than in straight men. Research indicated that gay people have lower body weight than straight people. It had been suggested that the overactive TSHR hormone lowered body weight in gay people, though this remains unproven.

In 2018, Ganna et al. performed another genome wide association study on sexual orientation of men and women with data from 26,890 people who had at least one same-sex partner and 450,939 controls. The data in the study was meta-analyzed and obtained from the UK Biobank study and 23andMe. The researchers identified four variants more common in people who reported at least one same-sex experience on chromosomes 7, 11, 12, and 15. The variants on chromosomes 11 and 15 were specific to men, with the variant on chromosome 11 located in an olfactory gene and the variant on chromosome 15 having previously been linked to male-pattern baldness. The four variants were also correlated with mood and mental health disorders; major depressive disorder and schizophrenia in men and women, and bipolar disorder in women. However, none of the four variants could reliably predict sexual orientation.

In August 2019, a genome-wide association study of 493,001 individuals concluded that hundreds or thousands of genetic variants underlie homosexual behavior in both sexes, with 5 variants in particular being significantly associated. Some of these variants had sex-specific effects, and two of these variants suggested links to biological pathways that involve sex hormone regulation and olfaction. All the variants together captured between 8 and 25% of the variation in individual differences in homosexual behavior. These genes partly overlap with those for several other traits, including openness to experience and risk-taking behavior. Additional analyses suggested that sexual behavior, attraction, identity, and fantasies are influenced by a similar set of genetic variants. They also found that the genetic effects that differentiate heterosexual from homosexual behavior are not the same as those that differ among nonheterosexuals with lower versus higher proportions of same-sex partners, which suggests that there is no single continuum from heterosexual to homosexual preference, as suggested by the Kinsey scale.

Epigenetics studies

A study suggests linkage between a mother's genetic make-up and homosexuality of her sons. Women have two X chromosomes, one of which is "switched off". The inactivation of the X chromosome occurs randomly throughout the embryo, resulting in cells that are mosaic with respect to which chromosome is active. In some cases though, it appears that this switching off can occur in a non-random fashion. Bocklandt et al. (2006) reported that, in mothers of homosexual men, the number of women with extreme skewing of X chromosome inactivation is significantly higher than in mothers without gay sons. 13% of mothers with one gay son, and 23% of mothers with two gay sons, showed extreme skewing, compared to 4% of mothers without gay sons.

Birth order

Blanchard and Klassen (1997) reported that each additional older brother increases the odds of a man being gay by 33%. This is now "one of the most reliable epidemiological variables ever identified in the study of sexual orientation". To explain this finding, it has been proposed that male fetuses provoke a maternal immune reaction that becomes stronger with each successive male fetus. This maternal immunization hypothesis (MIH) begins when cells from a male fetus enter the mother's circulation during pregnancy or while giving birth. Male fetuses produce H-Y antigens which are "almost certainly involved in the sexual differentiation of vertebrates". These Y-linked proteins would not be recognized in the mother's immune system because she is female, causing her to develop antibodies which would travel through the placental barrier into the fetal compartment. From here, the anti-male bodies would then cross the blood/brain barrier (BBB) of the developing fetal brain, altering sex-dimorphic brain structures relative to sexual orientation, increasing the likelihood that the exposed son will be more attracted to men than women. It is this antigen which maternal H-Y antibodies are proposed to both react to and 'remember'. Successive male fetuses are then attacked by H-Y antibodies which somehow decrease the ability of H-Y antigens to perform their usual function in brain masculinization.

In 2017, researchers discovered a biological mechanism of gay people who tend to have older brothers. They think Neuroligin 4 Y-linked protein is responsible for a later son being gay. They found that women had significantly higher anti-NLGN4Y levels than men. In addition, mothers of gay sons, particularly those with older brothers, had significantly higher anti-NLGN4Y levels than did the control samples of women, including mothers of heterosexual sons. The results suggest an association between a maternal immune response to NLGN4Y and subsequent sexual orientation in male offspring.

The fraternal birth order effect, however, does not apply to instances where a firstborn is homosexual.

Female fertility

In 2004, Italian researchers conducted a study of about 4,600 people who were the relatives of 98 homosexual and 100 heterosexual men. Female relatives of the homosexual men tended to have more offspring than those of the heterosexual men. Female relatives of the homosexual men on their mother's side tended to have more offspring than those on the father's side. The researchers concluded that there was genetic material being passed down on the X chromosome which both promotes fertility in the mother and homosexuality in her male offspring. The connections discovered would explain about 20% of the cases studied, indicating that this is a highly significant but not the sole genetic factor determining sexual orientation.

Pheromone studies

Research conducted in Sweden has suggested that gay and straight men respond differently to two odors that are believed to be involved in sexual arousal. The research showed that when both heterosexual women and gay men are exposed to a testosterone derivative found in men's sweat, a region in the hypothalamus is activated. Heterosexual men, on the other hand, have a similar response to an estrogen-like compound found in women's urine. The conclusion is that sexual attraction, whether same-sex or opposite-sex oriented, operates similarly on a biological level. Researchers have suggested that this possibility could be further explored by studying young subjects to see if similar responses in the hypothalamus are found and then correlating these data with adult sexual orientation.

Studies of brain structure

A number of sections of the brain have been reported to be sexually dimorphic; that is, they vary between men and women. There have also been reports of variations in brain structure corresponding to sexual orientation. In 1990, Dick Swaab and Michel A. Hofman reported a difference in the size of the suprachiasmatic nucleus between homosexual and heterosexual men. In 1992, Allen and Gorski reported a difference related to sexual orientation in the size of the anterior commissure, but this research was refuted by numerous studies, one of which found that the entirety of the variation was caused by a single outlier.

Research on the physiologic differences between male and female brains are based on the idea that people have male or a female brain, and this mirrors the behavioral differences between the two sexes. Some researchers state that solid scientific support for this is lacking. Although consistent differences have been identified, including the size of the brain and of specific brain regions, male and female brains are very similar.

Sexually dimorphic nuclei in the anterior hypothalamus

LeVay also conducted some of these early researches. He studied four groups of neurons in the hypothalamus called INAH1, INAH2, INAH3 and INAH4. This was a relevant area of the brain to study, because of evidence that it played a role in the regulation of sexual behaviour in animals, and because INAH2 and INAH3 had previously been reported to differ in size between men and women.

He obtained brains from 41 deceased hospital patients. The subjects were classified into three groups. The first group comprised 19 gay men who had died of AIDS-related illnesses. The second group comprised 16 men whose sexual orientation was unknown, but whom the researchers presumed to be heterosexual. Six of these men had died of AIDS-related illnesses. The third group was of six women whom the researchers presumed to be heterosexual. One of the women had died of an AIDS-related illness.

The HIV-positive people in the presumably heterosexual patient groups were all identified from medical records as either intravenous drug abusers or recipients of blood transfusions. Two of the men who identified as heterosexual specifically denied ever engaging in a homosexual sex act. The records of the remaining heterosexual subjects contained no information about their sexual orientation; they were assumed to have been primarily or exclusively heterosexual "on the basis of the numerical preponderance of heterosexual men in the population".

LeVay found no evidence for a difference between the groups in the size of INAH1, INAH2 or INAH4. However, the INAH3 group appeared to be twice as big in the heterosexual male group as in the gay male group; the difference was highly significant, and remained significant when only the six AIDS patients were included in the heterosexual group. The size of INAH3 in the homosexual men's brains was comparable to the size of INAH3 in the heterosexual women's brains.

William Byne and colleagues attempted to identify the size differences reported in INAH 1–4 by replicating the experiment using brain sample from other subjects: 14 HIV-positive homosexual males, 34 presumed heterosexual males (10 HIV-positive), and 34 presumed heterosexual females (9 HIV-positive). The researchers found a significant difference in INAH3 size between heterosexual men and heterosexual women. The INAH3 size of the homosexual men was apparently smaller than that of the heterosexual men, and larger than that of the heterosexual women, though neither difference quite reached statistical significance.

Byne and colleagues also weighed and counted numbers of neurons in INAH3 tests not carried out by LeVay. The results for INAH3 weight were similar to those for INAH3 size; that is, the INAH3 weight for the heterosexual male brains was significantly larger than for the heterosexual female brains, while the results for the gay male group were between those of the other two groups but not quite significantly different from either. The neuron count also found a male-female difference in INAH3, but found no trend related to sexual orientation.

LeVay has said that Byne replicated his work, but that he employed a two-tailed statistical analysis, which is typically reserved for when no previous findings had employed the difference. LeVay has said that "given that my study had already reported a INAH3 to be smaller in gay men, a one tailed approach would have been more appropriate, and it would have yielded a significant difference [between heterosexual and homosexual men]".

J. Michael Bailey has criticized LeVay's critics – describing the claim that the INAH-3 difference could be attributable to AIDS as "aggravating", since the "INAH-3 did not differ between the brains of straight men who died of AIDS and those who did not have the disease". Bailey has further criticized the second objection that was raised, that being gay might have somehow caused the difference in INAH-3, and not vice-versa, saying "the problem with this idea is that the hypothalamus appears to develop early. Not a single expert I have ever asked about LeVay’s study thought it was plausible that sexual behavior caused the INAH-3 differences."

The SCN of homosexual males has been demonstrated to be larger (both the volume and the number of neurons are twice as many as in heterosexual males). These areas of the hypothalamus have not yet been explored in homosexual females nor bisexual males nor females. Although the functional implications of such findings still have not been examined in detail, they cast serious doubt over the widely accepted Dörner hypothesis that homosexual males have a "female hypothalamus" and that the key mechanism of differentiating the "male brain from originally female brain" is the epigenetic influence of testosterone during prenatal development.

A 2010 study by Garcia-Falgueras and Swaab stated that "the fetal brain develops during the intrauterine period in the male direction through a direct action of testosterone on the developing nerve cells, or in the female direction through the absence of this hormone surge. In this way, our gender identity (the conviction of belonging to the male or female gender) and sexual orientation are programmed or organized into our brain structures when we are still in the womb. There is no indication that social environment after birth has an effect on gender identity or sexual orientation."

Ovine model

The domestic ram is used as an experimental model to study early programming of the neural mechanisms which underlie homosexuality, developing from the observation that approximately 8% of domestic rams are sexually attracted to other rams (male-oriented) when compared to the majority of rams which are female-oriented. In many species, a prominent feature of sexual differentiation is the presence of a sexually dimorphic nucleus (SDN) in the preoptic hypothalamus, which is larger in males than in females.

Roselli et al. discovered an ovine SDN (oSDN) in the preoptic hypothalamus that is smaller in male-oriented rams than in female-oriented rams, but similar in size to the oSDN of females. Neurons of the oSDN show aromatase expression which is also smaller in male-oriented rams versus female-oriented rams, suggesting that sexual orientation is neurologically hard-wired and may be influenced by hormones. However, results failed to associate the role of neural aromatase in the sexual differentiation of brain and behavior in the sheep, due to the lack of defeminization of adult sexual partner preference or oSDN volume as a result of aromatase activity in the brain of the fetuses during the critical period. Having said this, it is more likely that oSDN morphology and homosexuality may be programmed through an androgen receptor that does not involve aromatisation. Most of the data suggests that homosexual rams, like female-oriented rams, are masculinized and defeminized with respect to mounting, receptivity, and gonadotrophin secretion, but are not defeminized for sexual partner preferences, also suggesting that such behaviors may be programmed differently. Although the exact function of the oSDN is not fully known, its volume, length, and cell number seem to correlate with sexual orientation, and a dimorphism in its volume and of cells could bias the processing cues involved in partner selection. More research is needed in order to understand the requirements and timing of the development of the oSDN and how prenatal programming effects the expression of mate choice in adulthood.

Childhood gender nonconformity

Childhood gender nonconformity, or behaving like the other sex, is a strong predictor of adult sexual orientation that has been consistently replicated in research, and is thought to be strong evidence of a biological difference between heterosexual and non-heterosexuals. A review authored by J. Michael Bailey states: "childhood gender nonconformity comprises the following phenomena among boys: cross-dressing, desiring to have long hair, playing with dolls, disliking competitive sports and rough play, preferring girls as playmates, exhibiting elevated separation anxiety, and desiring to be—or believing that one is—a girl. In girls, gender nonconformity comprises dressing like and playing with boys, showing interest in competitive sports and rough play, lacking interest in conventionally female toys such as dolls and makeup, and desiring to be a boy". This gender nonconformist behavior typically emerges at preschool age, although is often evident as early as age 2. Children are only considered gender nonconforming if they persistently engage in a variety of these behaviors, as opposed to engaging in a behavior on a few times or on occasion. It is also not a one-dimensional trait, but rather has varying degrees.

Children who grow up to be non-heterosexual were, on average, substantially more gender nonconforming in childhood. This is confirmed in both retrospective studies where homosexuals, bisexuals and heterosexuals are asked about their gender typical behavior in childhood, and in prospective studies, where highly gender nonconforming children are followed from childhood into adulthood to find out their sexual orientation. A review of retrospective studies that measured gender nonconforming traits estimated that 89% of homosexual men exceeded heteroseuxal males level of gender nonconformity, whereas just 2% of heterosexual men exceeded the homosexual median. For female sexual orientation, the figures were 81% and 12% respectively. A variety of other assessments such as childhood home videos, photos and reports of parents also confirm this finding. Critics of this research see this as confirming stereotypes; however, no study has ever demonstrated that this research has exaggerated childhood gender nonconformity. J. Michael Bailey argues that gay men often deny that they were gender nonconforming in childhood because they may have been bullied or maltreated by peers and parents for it, and because they often do not find femininity attractive in other gay males and thus would not want to acknowledge it in themselves. Additional research in Western cultures and non-Western cultures including Latin America, Asia, Polynesia, and the Middle East supports the validity of childhood gender nonconformity as a predictor of adult non-heterosexuality.

This research does not mean that all non-heterosexuals were gender nonconforming, but rather indicates that long before sexual attraction is known, non-heterosexuals, on average, are noticeably different from other children. There is little evidence that gender nonconforming children have been encouraged or taught to behave that way; rather, childhood gender nonconformity typically emerges despite conventional socialization. Medical experiments in which infant boys were sex reassigned and reared as girls did not make them feminine nor attracted to males.

Boys who were surgically reassigned female

Between the 1960s and 2000, many newborn and infant boys were surgically reassigned as females if they were born with malformed penises, or if they lost their penises in accidents. Many surgeons believed such males would be happier being socially and surgically reassigned female. In all seven published cases that have provided sexual orientation information, the subjects grew up to be attracted to females. Six cases were exclusively attracted to females, with one case 'predominantly' attracted to females. In a review article in the journal Psychological Science in the Public Interest, six researchers including J. Michael Bailey state this establishes a strong case that male sexual orientation is partly established before birth:

"This is the result we would expect if male sexual orientation were entirely due to nature, and it is opposite of the result expected if it were due to nurture, in which case we would expect that none of these individuals would be predominantly attracted to women. They show how difficult it is to derail the development of male sexual orientation by psychosocial means."

They further argue that this raises questions about the significance of the social environment on sexual orientation, stating, "If one cannot reliably make a male human become attracted to other males by cutting off his penis in infancy and rearing him as a girl, then what other psychosocial intervention could plausibly have that effect?" It is further stated that neither cloacal exstrophy (resulting in a malformed penis), nor surgical accidents, are associated with abnormalities of prenatal androgens, thus, the brains of these individuals were male-organized at birth. Six of the seven identified as heterosexual males at follow up, despite being surgically altered and reared as females, with researchers adding: "available evidence indicates that in such instances, parents are deeply committed to raising these children as girls and in as gender-typical a manner as possible." Bailey et al. describe these sex reassignments as 'the near-perfect quasi-experiment' in measuring the impact of 'nature' versus 'nurture' with regards to male homosexuality.

'Exotic becomes erotic' theory

Daryl Bem, a social psychologist at Cornell University, has theorized that the influence of biological factors on sexual orientation may be mediated by experiences in childhood. A child's temperament predisposes the child to prefer certain activities over others. Because of their temperament, which is influenced by biological variables such as genetic factors, some children will be attracted to activities that are commonly enjoyed by other children of the same gender. Others will prefer activities that are typical of another gender. This will make a gender-conforming child feel different from opposite-gender children, while gender-nonconforming children will feel different from children of their own gender. According to Bem, this feeling of difference will evoke psychological arousal when the child is near members of the gender which it considers as being 'different'. Bem theorizes that this psychological arousal will later be transformed into sexual arousal: children will become sexually attracted to the gender which they see as different ("exotic"). This proposal is known as the "exotic becomes erotic" theory. Wetherell et al. state that Bem "does not intend his model as an absolute prescription for all individuals, but rather as a modal or average explanation."

Two critiques of Bem's theory in the journal Psychological Review concluded that "studies cited by Bem and additional research show that [the] Exotic Becomes Erotic theory is not supported by scientific evidence." Bem was criticized for relying on a non-random sample of gay men from the 1970s (rather than collecting new data) and for drawing conclusions that appear to contradict the original data. An "examination of the original data showed virtually all respondents were familiar with children of both sexes", and that only 9% of gay men said that "none or only a few" of their friends were male, and most gay men (74%) reported having "an especially close friend of the same sex" during grade school. Further, "71% of gay men reported feeling different from other boys, but so did 38% of heterosexual men. The difference for gay men is larger, but still indicates that feeling different from same-sex peers was common for heterosexual men." Bem also acknowledged that gay men were more likely to have older brothers (the fraternal birth order effect), which appeared to contradict an unfamiliarity with males. Bem cited cross-cultural studies which also "appear to contradict the EBE theory assertion", such as the Sambia tribe in Papua New Guinea, which ritually enforced homosexual acts among teenagers; yet once these boys reached adulthood, only a small proportion of men continued to engage in homosexual behaviour - similar to levels observed in the United States. Additionally, Bem's model could be interpreted as implying that if one could change a child's behavior, one could change their sexual orientation, but most psychologists doubt this would be possible.

Neuroscientist Simon LeVay said that while Bem's theory was arranged in a "believable temporal order", that it ultimately "lacks empirical support". Social psychologist Justin Lehmiller stated that Bem's theory has received praise "for the way it seamlessly links biological and environmental influences" and that there "is also some support for the model in the sense that childhood gender nonconformity is indeed one of the strongest predicators of adult homosexuality", but that the validity of the model "has been questioned on numerous grounds and scientists have largely rejected it."[72]

Sexual orientation and evolution

General

Sexual practices that significantly reduce the frequency of heterosexual intercourse also significantly decrease the chances of successful reproduction, and for this reason, they would appear to be maladaptive in an evolutionary context following a simple Darwinian model (competition amongst individuals) of natural selection—on the assumption that homosexuality would reduce this frequency. Several theories have been advanced to explain this contradiction, and new experimental evidence has demonstrated their feasibility.

Some scholars have suggested that homosexuality is indirectly adaptive, by conferring a reproductive advantage in a non-obvious way on heterosexual siblings or their children, a hypothesised instance of kin selection. By way of analogy, the allele (a particular version of a gene) which causes sickle-cell anemia when two copies are present, also confers resistance to malaria with a lesser form of anemia when one copy is present (this is called heterozygous advantage).

Brendan Zietsch of the Queensland Institute of Medical Research proposes the alternative theory that men exhibiting female traits become more attractive to females and are thus more likely to mate, provided the genes involved do not drive them to complete rejection of heterosexuality.

In a 2008 study, its authors stated that "There is considerable evidence that human sexual orientation is genetically influenced, so it is not known how homosexuality, which tends to lower reproductive success, is maintained in the population at a relatively high frequency." They hypothesized that "while genes predisposing to homosexuality reduce homosexuals' reproductive success, they may confer some advantage in heterosexuals who carry them". Their results suggested that "genes predisposing to homosexuality may confer a mating advantage in heterosexuals, which could help explain the evolution and maintenance of homosexuality in the population". However, in the same study, the authors noted that "nongenetic alternative explanations cannot be ruled out" as a reason for the heterosexual in the homosexual-heterosexual twin pair having more partners, specifically citing "social pressure on the other twin to act in a more heterosexual way" (and thus seek out a greater number of sexual partners) as an example of one alternative explanation. The study acknowledges that a large number of sexual partners may not lead to greater reproductive success, specifically noting there is an "absence of evidence relating the number of sexual partners and actual reproductive success, either in the present or in our evolutionary past".

The heterosexual advantage hypothesis was given strong support by the 2004 Italian study demonstrating increased fecundity in the female matrilineal relatives of gay men. As originally pointed out by Hamer, even a modest increase in reproductive capacity in females carrying a "gay gene" could easily account for its maintenance at high levels in the population.

Gay uncle hypothesis

The "gay uncle hypothesis" posits that people who themselves do not have children may nonetheless increase the prevalence of their family's genes in future generations by providing resources (e.g., food, supervision, defense, shelter) to the offspring of their closest relatives.

This hypothesis is an extension of the theory of kin selection, which was originally developed to explain apparent altruistic acts which seemed to be maladaptive. The initial concept was suggested by J. B. S. Haldane in 1932 and later elaborated by many others including John Maynard Smith, W. D. Hamilton and Mary Jane West-Eberhard. This concept was also used to explain the patterns of certain social insects where most of the members are non-reproductive.

Vasey and VanderLaan (2010) tested the theory on the Pacific island of Samoa, where they studied women, straight men, and the fa'afafine, men who prefer other men as sexual partners and are accepted within the culture as a distinct third gender category. Vasey and VanderLaan found that the fa'afafine said they were significantly more willing to help kin, yet much less interested in helping children who are not family, providing the first evidence to support the kin selection hypothesis.

The hypothesis is consistent with other studies on homosexuality, which show that it is more prevalent amongst both siblings and twins.

Vasey and VanderLaan (2011) provides evidence that if an adaptively designed avuncular male androphilic phenotype exists and its development is contingent on a particular social environment, then a collectivistic cultural context is insufficient, in and of itself, for the expression of such a phenotype.

Biological differences in gay men and lesbian women

Anatomical

Some studies have found correlations between physiology of people and their sexuality; these studies provide evidence which suggests that:

  • Gay men and straight women have, on average, equally proportioned brain hemispheres. Lesbian women and straight men have, on average, slightly larger right brain hemispheres.
  • The suprachiasmatic nucleus of the hypothalamus was found by Swaab and Hopffman to be larger in gay men than in non-gay men, the suprachiasmatic nucleus is also known to be larger in men than in women.
  • Gay men report, on average, slightly longer and thicker penises than non-gay men.
  • The average size of the INAH 3 in the brains of gay men is approximately the same size as INAH 3 in women, which is significantly smaller, and the cells more densely packed, than in heterosexual men's brains.
  • The anterior commissure is larger in women than men and was reported to be larger in gay men than in non-gay men, but a subsequent study found no such difference.
  • The functioning of the inner ear and the central auditory system in lesbians and bisexual women are more like the functional properties found in men than in non-gay women (the researchers argued this finding was consistent with the prenatal hormonal theory of sexual orientation).
  • The startle response (eyeblink following a loud sound) is similarly masculinized in lesbians and bisexual women.
  • Gay and non-gay people's brains respond differently to two putative sex pheromones (AND, found in male armpit secretions, and EST, found in female urine).
  • The amygdala, a region of the brain, is more active in gay men than non-gay men when exposed to sexually arousing material.
  • Finger length ratios between the index and ring fingers have been reported to differ, on average, between non-gay and lesbian women.
  • Gay men and lesbians are significantly more likely to be left-handed or ambidextrous than non-gay men and women; Simon LeVay argues that because "[h]and preference is observable before birth... [t]he observation of increased non-right-handness in gay people is therefore consistent with the idea that sexual orientation is influenced by prenatal processes," perhaps heredity.
  • A study of over 50 gay men found that about 23% had counterclockwise hair whorl, as opposed to 8% in the general population. This may correlate with left-handedness.
  • Gay men have increased ridge density in the fingerprints on their left thumbs and little fingers.
  • Length of limbs and hands of gay men is smaller compared to height than the general population, but only among white men.

J. Michael Bailey has argued that the early childhood gender nonconforming behavior of homosexuals, as opposed to biological markers, are better evidence of homosexuality being an inborn trait. He argues that gay men are "punished much more than rewarded" for their childhood gender nonconformity, and that such behavior "emerges with no encouragement, and despite opposition", making it "the sine qua non of innateness".

Political aspects

Whether genetic or other physiological determinants form the basis of sexual orientation is a highly politicized issue. The Advocate, a U.S. gay and lesbian newsmagazine, reported in 1996 that 61% of its readers believed that "it would mostly help gay and lesbian rights if homosexuality were found to be biologically determined". A cross-national study in the United States, the Philippines, and Sweden found that those who believed that "homosexuals are born that way" held significantly more positive attitudes toward homosexuality than those who believed that "homosexuals choose to be that way" or "learn to be that way".

Equal protection analysis in U.S. law determines when government requirements create a “suspect classification" of groups and therefore eligible for heightened scrutiny based on several factors, one of which is immutability.

Evidence that sexual orientation is biologically determined (and therefore perhaps immutable in the legal sense) would strengthen the legal case for heightened scrutiny of laws discriminating on that basis.

The perceived causes of sexual orientation have a significant bearing on the status of sexual minorities in the eyes of social conservatives. The Family Research Council, a conservative Christian think tank in Washington, D.C., argues in the book Getting It Straight that finding people are born gay "would advance the idea that sexual orientation is an innate characteristic, like race; that homosexuals, like African-Americans, should be legally protected against 'discrimination;' and that disapproval of homosexuality should be as socially stigmatized as racism. However, it is not true." On the other hand, some social conservatives such as Reverend Robert Schenck have argued that people can accept any scientific evidence while still morally opposing homosexuality. National Organization for Marriage board member and fiction writer Orson Scott Card has supported biological research on homosexuality, writing that "our scientific efforts in regard to homosexuality should be to identify genetic and uterine causes... so that the incidence of this dysfunction can be minimized.... [However, this should not be seen] as an attack on homosexuals, a desire to 'commit genocide' against the homosexual community... There is no 'cure' for homosexuality because it is not a disease. There are, however, different ways of living with homosexual desires."

Some advocates for the rights of sexual minorities resist what they perceive as attempts to pathologise or medicalise 'deviant' sexuality, and choose to fight for acceptance in a moral or social realm. The journalist Chandler Burr has stated that "[s]ome, recalling earlier psychiatric "treatments" for homosexuality, discern in the biological quest the seeds of genocide. They conjure up the specter of the surgical or chemical "rewiring" of gay people, or of abortions of fetal homosexuals who have been hunted down in the womb." LeVay has said in response to letters from gays and lesbians making such criticisms that the research "has contributed to the status of gay people in society".

Sex differences in psychology

From Wikipedia, the free encyclopedia

Sex differences in psychology are differences in the mental functions and behaviors of the sexes, and are due to a complex interplay of biological, developmental, and cultural factors. Differences have been found in a variety of fields such as mental health, cognitive abilities, personality, emotion, sexuality, and tendency towards aggression. Such variation may be innate or learned and is often very difficult to distinguish. Modern research attempts to distinguish between these causes, and to analyze any ethical concerns raised. Since behavior is a result of interactions between nature and nurture researchers are interested in investigating how biology and environment interact to produce such differences, although this is often not possible.

A number of factors combine to influence the development of sex differences, including genetics and epigenetics; differences in brain structure and function; hormones, and socialization.

Definition

Psychological sex differences refer to emotional, motivational or cognitive differences between the sexes. Examples include a greater male tendencies toward violence, or that the female brain appears to have a strong affinity for empathy.

The terms "sex differences" and "gender differences" are at times used interchangeably, sometimes to refer to differences in male and female behaviors as either biological ("sex differences") or environmental/cultural ("gender differences"). This distinction is difficult to make owing to failures of parsing one from the other.

History

Beliefs about sex differences have likely existed throughout history. In his 1859 book On the Origin of Species Charles Darwin proposed that, like physical traits, psychological traits evolve through the process of sexual selection:

In the distant future I see open fields for far more important researches. Psychology will be based on a new foundation, that of the necessary acquirement of each mental power and capacity by gradation.

— Charles Darwin, The Origin of Species, 1859, p. 449.

Two of his later books, The Descent of Man, and Selection in Relation to Sex (1871) and The Expression of the Emotions in Man and Animals (1872) explore the subject of psychological differences between the sexes. The Descent of Man and Selection in Relation to Sex includes 70 pages on sexual selection in human evolution, some of which concerns psychological traits.

Psychological traits

Development of gender identity

Individuals who are sex reassigned at birth offer an opportunity to see what happens when a child who is genetically one sex is raised as the other. An infamous sexual reassignment case was that of David Reimer. Reimer was born biologically as a male but was raised as a female following medical advice after an operation that destroyed his genitalia. The reassignment was considered to be an especially valid test of the social learning concept of gender identity for several of the unique circumstances of the case. Despite the hormone therapies and surgeries, Reimer failed to identify as a female. According to his and his parents' accounts, the gender reassignment has caused severe mental problems throughout his life. At the age of 38, Reimer committed suicide.

Some individuals hold a different gender identity than that assigned at birth according to their sex, and are referred to as transgender. These cases often involve significant gender dysphoria. How these identities are formed is unknown, although some studies have suggested that male-to-female transgenderism is related to androgen levels during fetal development.

Childhood play

Many different studies have been conducted on sex differences in the play behavior of young children, often yielding conflicting results. One study conducted on nineteen-month-old children revealed a male preference for stereotypically "masculine" toys, and a female preference for stereotypically "feminine" toys, with males showing more variance in play behavior. A study of thirteen-month-old children supported the theory that males and females typically prefer toys typed to their gender, but instead found females showing more variance instead of males. An additional study found that a gendered divide in regards to toys may express itself as early as nine-months of age. Despite these apparent differences, a study of toddlers showed that both boys and girls were equally active when playing, and both sexes preferred toys that allowed them to express this.

The specific cause of this sex difference has also been investigated. A study with 112 boys and 100 girls found that the difference in play behavior appeared to be semi-correlated with fetal testosterone. Girls with congenital adrenal hyperplasia and thus exposed to high androgen levels during pregnancy tend to play more with male-typical toys and less with female-typical ones. However, some have argued that the characteristics of the condition itself could also result in those girls preferring different types of toys.

One study also claimed that one-day-old girls gaze longer at a face, whereas suspended mechanical mobiles, rather than a face, keep boys' attention for longer, though this study has been criticized as having methodological flaws. Research has shown that when male-typical toys are labeled as female-appropriate, young girls become significantly more likely to play with them. Certain studies have concluded that many end up treating infants and toddlers differently based on their assumed gender, even if boys and girls express the same behavior. Children raised by lesbian mothers were reported by the parents to be more androgynous in personality, suggesting that, if the reporting is accurate, upbringing could influence certain gendered traits.

Human-like play preferences have also been observed in guenon and rhesus macaques, though the co-author of the latter study warned about over-interpreting the data.

Sexual behavior

Psychological theories exist regarding the development and expression of gender differences in human sexuality. A number of these theories are consistent in predicting that men should be more approving of casual sex (sex happening outside a stable, committed relationship such as marriage) and should also be more promiscuous (have a higher number of sexual partners) than women:

A sociobiological approach applies evolutionary biology to human sexuality, emphasizing reproductive success in shaping patterns of sexual behavior. According to sociobiologists, since women's parental investment in reproduction is greater than men's, owing to human sperm being much more plentiful than eggs, and the fact that women must devote considerable energy to gestating their offspring, women will tend to be much more selective in their choice of mates than men. It may not be possible to accurately test sociobiological theories in relation to promiscuity and casual sex in contemporary (U.S.) society, which is quite different from the ancestral human societies in which most natural selection for sexual traits has occurred.

Neoanalytic theories are based on the observation that mothers, as opposed to fathers, bear the major responsibility for childcare in most families and cultures; both male and female infants therefore form an intense emotional attachment to their mother, a woman. According to feminist psychoanalytic theorist Nancy Chodorow, girls tend to preserve this attachment throughout life and define their identities in relational terms, whereas boys must reject this maternal attachment in order to develop a masculine identity. In addition, this theory predicts that women's economic dependence on men in a male-dominated society will tend to cause women to approve of sex more in committed relationships providing economic security, and less so in casual relationships.

The Sexual Strategies Theory by David Buss and David P. Schmitt is an evolutionary psychology theory regarding female and male short-term and long-term mating strategies which they argued are dependent on several different goals and vary depending on the environment.

According to social learning theory, sexuality is influenced by people's social environment. This theory suggests that sexual attitudes and behaviors are learned through observation of role models such as parents and media figures, as well as through positive or negative reinforcements for behaviors that match or defy established gender roles. It predicts that gender differences in sexuality can change over time as a function of changing social norms, and also that a societal double standard in punishing women more severely than men (who may in fact be rewarded) for engaging in promiscuous or casual sex will lead to significant gender differences in attitudes and behaviors regarding sexuality.

Such a societal double standard also figures in social role theory, which suggests that sexual attitudes and behaviors are shaped by the roles that men and women are expected to fill in society, and script theory, which focuses on the symbolic meaning of behaviors; this theory suggests that social conventions influence the meaning of specific acts, such as male sexuality being tied more to individual pleasure and macho stereotypes (therefore predicting a high number of casual sexual encounters) and female sexuality being tied more to the quality of a committed relationship.

Intelligence

With the advent of the concept of g, or general intelligence, some form of empirically measuring differences in intelligence, was possible, but results have been inconsistent. Studies have shown either no differences, or advantages for either sex. One study did find some advantage for women in later life, while another found that male advantages on some cognitive tests are minimized when controlling for socioeconomic factors. The differences in average IQ between women and men are small in magnitude and inconsistent in direction, although the variability of male scores has been found to be greater than that of females, resulting in more males than females in the top and bottom of the IQ distribution.

According to the 1995 report Intelligence: Knowns and Unknowns by the American Psychological Association, "Most standard tests of intelligence have been constructed so that there are no overall score differences between females and males." Arthur Jensen in 1998 conducted studies on sex differences in intelligence through tests that were "loaded heavily on g" but were not normed to eliminate sex differences. His conclusions he quoted were "No evidence was found for sex differences in the mean level of g. Males, on average, excel on some factors; females on others". Jensen's results that no overall sex differences existed for g has been strengthened by researchers who assessed this issue with a battery of 42 mental ability tests and found no overall sex difference.

Although most of the tests showed no difference, there were some that did. For example, they found females performed better on verbal abilities while males performed better on visuospatial abilities. One female advantage is in verbal fluency where they have been found to perform better in vocabulary, reading comprehension, speech production and essay writing. Males have been specifically found to perform better on spatial visualization, spatial perception, and mental rotation. Researchers had then recommended that general models such as fluid and crystallized intelligence be divided into verbal, perceptual and visuospatial domains of g, because when this model is applied then females excel at verbal and perceptual tasks while males on visuospatial tasks.

There are however also differences in the capacity of males and females in performing certain tasks, such as rotation of objects in space, often categorized as spatial ability. Other traditionally male advantages, such as in the field of mathematics are less clear. Although females have lesser performance in spatial abilities, they have better performance in processing speed involving letters, digits and rapid naming tasks, object location memory, verbal memory, and also verbal learning.

Memory

The results from research on sex differences in memory are mixed and inconsistent, as some studies show no difference, others show a female or male advantage. Most studies have found no sex differences in short-term memory, the rate of memory decline due to aging, or memory of visual stimuli. Females have been found to have an advantage in recalling auditory and olfactory stimuli, experiences, faces, names, and the location of objects in space. However, males show an advantage in recalling "masculine" events. A study examining sex differences in performance on the California Verbal Learning Test found that males performed better on Digit Span Backwards and on reaction time, while females were better on short-term memory recall and Symbol-Digit Modalities Test. Females have also demonstrated to have better verbal memory.

A study was conducted to explore regions within the brain that are activated during working memory tasks in males versus females. Four different tasks of increasing difficulty were given to 9 males and 8 females. Functional magnetic resonance imaging was used to measure brain activity. The lateral prefrontal cortices, the parietal cortices and caudates were activated in both genders. With more difficult tasks, more brain tissue was activated. The left hemisphere was predominantly activated in females' brains, whereas there was bilateral activation in males' brains.

Aggression

Although research on sex differences in aggression show that males are generally more likely to display aggression than females, how much of this is due to social factors and gender expectations is unclear. Aggression is closely linked with cultural definitions of "masculine" and "feminine". In some situations, women show equal or more aggression than men, although less physical; for example, women are more likely to use direct aggression in private, where other people cannot see them, and are more likely to use indirect aggression in public. Men are more likely to be the targets of displays of aggression and provocation than females. Studies by Bettencourt and Miller show that when provocation is controlled for, sex differences in aggression are greatly reduced. They argue that this shows that gender-role norms play a large part in the differences in aggressive behavior between men and women. Psychologist Anne Campbell argues that females are more likely to use indirect aggression, and that "cultural interpretations have 'enhanced' evolutionarily based sex differences by a process of imposition which stigmatises the expression of aggression by females and causes women to offer exculpatory (rather than justificatory) accounts of their own aggression".

According to the 2015 International encyclopedia of the social and behavioral sciences, sex differences in aggression is one of the most robust and oldest findings in psychology. Past meta-analyses in the encyclopedia found males regardless of age engaged in more physical and verbal aggression while small effect for females engaging in more indirect aggression such as rumor spreading or gossiping. It also found males tend to engage in more unprovoked aggression at higher frequency than females. This replicated another 2007 meta-analysis of 148 studies in the journal of Child Development which found greater male aggression in childhood and adolescence. This analysis also conforms with the Oxford Handbook of Evolutionary Psychology which reviewed past analysis and found greater male use in verbal and physical aggression with the difference being greater in the physical type. A meta-analysis of 122 studies published in the journal of Aggressive Behavior found males are more likely to cyber-bully than females. Difference also showed that females reported more cyber bullying behaviour during mid-adolescence while males showed more cyber bullying behaviour at late adolescence.

The relationship between testosterone and aggression is unclear, and a causal link has not been conclusively shown. Some studies indicate that testosterone levels may be affected by environmental and social influences. The relationship is difficult to study since the only reliable measure of brain testosterone is from a lumbar puncture which is not done for research purposes and many studies have instead used less reliable measures such as blood testosterone. In humans, males engage in crime and especially violent crime more than females. The involvement in crime usually rises in the early teens to mid teens which happen at the same time as testosterone levels rise. Most studies support a link between adult criminality and testosterone although the relationship is modest if examined separately for each sex. However, nearly all studies of juvenile delinquency and testosterone are not significant. Most studies have also found testosterone to be associated with behaviors or personality traits linked with criminality such as antisocial behavior and alcoholism. Nevertheless, researchers such as Lee Ellis have created the evolutionary neuroandrogenic theory to try to explain increased criminality in young men as being the result of sexual selection by females, pointing to testosterone as the mechanism by which this increased criminality occurs.

In species that have high levels of male physical competition and aggression over females, males tend to be larger and stronger than females. Humans have modest general body sexual dimorphism on characteristics such as height and body mass. However, this may understate the sexual dimorphism regarding characteristics related to aggression since females have large fat stores. The sex differences are greater for muscle mass and especially for upper body muscle mass. Men's skeleton, especially in the vulnerable face, is more robust. Another possible explanation, instead of intra-species aggression, for this sexual dimorphism may be that it is an adaption for a sexual division of labor with males doing the hunting. However, the hunting theory may have difficulty explaining differences regarding features such as stronger protective skeleton, beards (not helpful in hunting, but they increase the perceived size of the jaws and perceived dominance, which may be helpful in intra-species male competition), and greater male ability at interception (greater targeting ability can be explained by hunting).

There are evolutionary theories regarding male aggression in specific areas such as sociobiological theories of rape and theories regarding the high degree of abuse against stepchildren (the Cinderella effect). Another evolutionary theory explaining gender differences in aggression is the male warrior hypothesis, which explains that males have psychologically evolved for intergroup aggression in order to gain access to mates, resources, territory and status.

Personality traits

Cross-cultural research has shown population-level gender differences on the tests measuring sociability and emotionality. For example, on the scales measured by the Big Five personality traits women consistently report higher neuroticism, agreeableness, warmth (an extraversion facet) and openness to feelings, and men often report higher assertiveness (a facet of extraversion) and openness to ideas as assessed by the NEO-PI-R. Nevertheless, there is significant overlap in all these traits, so an individual woman may, for example, have lower neuroticism than the majority of men.

Gender differences in personality traits are largest in prosperous, healthy, and egalitarian cultures in which women have more opportunities that are equal to those of men. Differences in the magnitude of sex differences between more or less developed world regions were due to differences between men, not women, in these respective regions. That is, men in highly developed world regions were less neurotic, extroverted, conscientious and agreeable compared to men in less developed world regions. Women, on the other hand tended not to differ in personality traits across regions. Researchers have speculated that resource poor environments (that is, countries with low levels of development) may inhibit the development of gender differences, whereas resource rich environments facilitate them. This may be because males require more resources than females in order to reach their full developmental potential. The authors argued that due to different evolutionary pressures, men may have evolved to be more risk-taking and socially dominant, whereas women evolved to be more cautious and nurturant. Hunter-gatherer societies in which humans originally evolved may have been more egalitarian than later agriculturally oriented societies. Hence, the development of gender inequalities may have acted to constrain the development of gender differences in personality that originally evolved in hunter-gatherer societies. As modern societies have become more egalitarian again it may be that innate sex differences are no longer constrained and hence manifest more fully than in less developed cultures. Currently, this hypothesis remains untested, as gender differences in modern societies have not been compared with those in hunter-gatherer societies.

Normative Personality differences in the Cattell 16PF Domains. (Based on data in Del Giudice, M., Booth, T., & Irwing, P., 2012)

A personality trait directly linked to emotion and empathy where gender differences exist (see below) is scored on the Machiavellianism scale. Individuals who score high on this dimension are emotionally cool; this allows them to detach from others as well as values, and act egoistically rather than driven by affect, empathy or morality. In large samples of US college students males are on average more Machiavellian than females; in particular, males are over-represented among very high Machiavellians, while females are overrepresented among low Machiavellians. A 2014 meta-analysis by researchers Rebecca Friesdorf and Paul Conway found that men score significantly higher on narcissism than women and this finding is robust across past literature. The meta-analysis included 355 studies measuring narcissism across participants from the US, Germany, China, Netherlands, Italy, UK, Hong Kong, Singapore, Switzerland, Norway, Sweden, Australia and Belgium as well as measuring latent factors from 124 additional studies. The researchers noted that gender differences in narcissism is not just a measurement artifact but also represents true differences in the latent personality traits such as men's heightened sense of entitlement and authority.

Meta-analytic studies have also found males on average to be more assertive and having higher self-esteem. Females were on average higher than males in extraversion, anxiety, trust, and, especially, tender-mindedness (e.g., nurturance). Women have also been found to be more punishment sensitive and men higher in sensation seeking and behavioural risk-taking. Deficits in effortful control also showed a very modest effect size in the male direction.

A meta-analysis of scientific studies concluded that men prefer working with things and women prefer working with people. When interests were classified by RIASEC type Holland Codes (Realistic, Investigative, Artistic, Social, Enterprising, Conventional), men showed stronger Realistic and Investigative interests, and women showed stronger Artistic, Social, and Conventional interests. Sex differences favoring men were also found for more specific measures of engineering, science, and mathematics interests.

Empathy

Current literature find that women demonstrate more empathy across studies. Women perform better than men in tests involving emotional interpretation, such as understanding facial expressions, and empathy.

Some studies argue that this is related to the subject's perceived gender identity and gender expectations. Additionally, culture impacts gender differences in the expression of emotions. This may be explained by the different social roles women and men have in different cultures, and by the status and power men and women hold in different societies, as well as the different cultural values various societies hold. Some studies have found no differences in empathy between women and men, and suggest that perceived gender differences are the result of motivational differences. Some researchers argue that because differences in empathy disappear on tests where it is not clear that empathy is being studied, men and women do not differ in ability, but instead in how empathetic they would like to appear to themselves and others.

A review published in the journal Neuropsychologia found that women are better at recognizing facial effects, expression processing and emotions in general. Men were only better at recognizing specific behaviour which includes anger, aggression and threatening cues. A 2006 meta-analysis by researcher Rena A Kirkland from the North American Journal of Psychology found significant sex differences favouring females in "Reading of the mind" test. "Reading of the mind" test is an ability measure of theory of mind or cognitive empathy in which Kirkland's analysis involved 259 studies across 10 countries. Another 2014 meta-analysis in the journal of Cognition and Emotion, found overall female advantage in non-verbal emotional recognition across 215 samples.

An analysis from the journal of Neuroscience & Biobehavioral Reviews found that there are sex differences in empathy from birth which remains consistent and stable across lifespan. Females were found to have higher empathy than males while children with higher empathy regardless of gender continue to be higher in empathy throughout development. Further analysis of brain tools such as event related potentials found that females who saw human suffering had higher ERP waveforms than males. Another investigation with similar brain tools such as N400 amplitudes found higher N400 in females in response to social situations which positively correlated with self-reported empathy. Structural fMRI studies found females have larger grey matter volumes in posterior inferior frontal and anterior inferior parietal cortex areas which are correlated with mirror neurons in fMRI literature. Females were also found to have stronger link between emotional and cognitive empathy. The researchers found that the stability of these sex differences in development are unlikely to be explained by any environment influences but rather might have some roots in human evolution and inheritance.

An evolutionary explanation for the difference is that understanding and tracking relationships and reading others' emotional states was particularly important for women in prehistoric societies for tasks such as caring for children and social networking. Throughout prehistory, females nurtured and were the primary caretakers of children so this might have led to an evolved neurological adaptation for women to be more aware and responsive to non-verbal expressions. According to the Primary Caretaker Hypothesis, prehistoric males did not have same selective pressure as primary caretakers so therefore this might explain modern day sex differences in emotion recognition and empathy.

Emotion

When measured with an affect intensity measure, women reported greater intensity of both positive and negative affect than men. Women also reported a more intense and more frequent experience of affect, joy, and love but also experienced more embarrassment, guilt, shame, sadness, anger, fear, and distress. Experiencing pride was more frequent and intense for men than for women. In imagined frightening situations, such as being home alone and witnessing a stranger walking towards your house, women reported greater fear. Women also reported more fear in situations that involved "a male's hostile and aggressive behavior" (281) In anger-eliciting situations, women communicated more intense feelings of anger than men. Women also reported more intense feelings of anger in relation to terrifying situations, especially situations involving a male protagonist. Emotional contagion refers to the phenomenon of a person's emotions becoming similar to those of surrounding people. Women have been reported to be more responsive to this.

Women are stereotypically more emotional and men are stereotypically angrier. When lacking substantial emotion information they can base judgments on, people tend to rely more on gender stereotypes. Results from a study conducted by Robinson and colleagues implied that gender stereotypes are more influential when judging others' emotions in a hypothetical situation.

There are documented differences in socialization that could contribute to sex differences in emotion and to differences in patterns of brain activity. An American Psychological Association article states that, "boys are generally expected to suppress emotions and to express anger through violence, rather than constructively". A child development researcher at Harvard University argues that boys are taught to shut down their feelings, such as empathy, sympathy and other key components of what is deemed to be pro-social behavior. According to this view, differences in emotionality between the sexes are theoretically only socially-constructed, rather than biological.

Context also determines a man or woman's emotional behavior. Context-based emotion norms, such as feeling rules or display rules, "prescribe emotional experience and expressions in specific situations like a wedding or a funeral", independent of the person's gender. In situations like a wedding or a funeral, the activated emotion norms apply to and constrain every person in the situation. Gender differences are more pronounced when situational demands are very small or non-existent as well as in ambiguous situations. During these situations, gender norms "are the default option that prescribes emotional behavior" (290-1).

Scientists in the field distinguish between emotionality and the expression of emotion: Associate Professor of psychology Ann Kring said, "It is incorrect to make a blanket statement that women are more emotional than men, it is correct to say that women show their emotions more than men." In two studies by Kring, women were found to be more facially expressive than men when it came to both positive and negative emotions. These researchers concluded that women and men experience the same amount of emotion, but that women are more likely to express their emotions.

Women are known to have anatomically differently shaped tear glands than men as well as having more of the hormone prolactin, which is present in tear glands, as adults. While girls and boys cry at roughly the same amount at age 12, by age 18, women generally cry four times more than men, which could be explained by higher levels of prolactin.

Women show significantly greater activity in the left amygdala when encoding and remembering emotionally disturbing pictures (such as mutilated bodies). Men and women tend to use different neural pathways to encode stimuli into memory. While highly emotional pictures were remembered best by all participants in one study, as compared to emotionally neutral images, women remembered the pictures better than men. This study also found greater activation of the right amygdala in men and the left amygdala in women. On average, women use more of the left cerebral hemisphere when shown emotionally arousing images, while men use more of their right hemisphere. Women also show more consistency between individuals for the areas of the brain activated by emotionally disturbing images.

A 2003 worldwide survey by the Pew Research Center found that overall women stated that they were somewhat happier than men with their lives. Compared to the previous report five years earlier women more often reported progress with their lives while men were more optimistic about the future. Women were more concerned about home and family issues than men who were more concerned about issues outside the home. Men were happier than women regarding family life and more optimistic regarding the children's future.

Research has shown that women are more likely than men to use emoticons in text messaging.

Ethics and morality

Meta-analysis on sex differences of moral orientation have found that women tend towards a more care based morality while men tend towards a more justice based morality. This is usually based on the fact that men have a more slight utilitarian reasoning while women have more deontological reasoning which is largely because of greater female affective response and rejection of harm-based behaviours. A meta-analysis published in the 2013 journal of Ethics and Behaviour after reviewing 19 primary studies also found women have greater moral sensitivity than men. A more recent large-scale (N = 336,691) analysis of sex differences using five moral principles of care, fairness, loyalty, authority, and purity (based on Moral Foundations Theory) suggested that women consistently score higher on care, fairness, and purity across 67 cultures. On the other hand, sex differences in loyalty and authority were small in size and highly variable across cultural contexts. This research, published in 2020 in Proceedings of the Royal Society B, also examined country-level sex differences in all moral foundations in relation to cultural, socioeconomic, and gender-related indicators revealing that global sex differences in moral foundations are larger in individualistic, Western, and gender-equal cultures. This is the first large-scale cross-cultural study showing that women score higher than men on fairness or justice-based moral intuition across many cultural contexts.

Mental health

Childhood conduct disorder and adult antisocial personality disorder as well as substance use disorders are more common in men. Many mood disorders, anxiety disorders, and eating disorders are more common in women. One explanation is that men tend to externalize stress while women tend to internalize it. Gender differences vary to some degree for different cultures. Women are more likely than men to show unipolar depression. One 1987 study found little empirical support for several proposed explanations, including biological ones, and argued that when depressed women tend to ruminate which may lower the mood further while men tend to distract themselves with activities. This may develop from women and men being raised differently.

Men and women do not differ on their overall rates of psychopathology; however, certain disorders are more prevalent in women, and vice versa. Women have higher rates of anxiety and depression (internalizing disorders) and men have higher rates of substance abuse and antisocial disorders (externalizing disorders). It is believed that divisions of power and the responsibilities set upon each sex are critical to this predisposition. Namely, women earn less money than men do, they tend to have jobs with less power and autonomy, and women are more responsive to problems of people in their social networks. These three differences can contribute to women's predisposition to anxiety and depression. It is suggested that socializing practices that encourage high self-regard and mastery would benefit the mental health of both women and men.

One study interviewed 18,572 respondents, aged 18 and over, about 15 phobic symptoms. These symptoms would yield diagnoses based on criteria for agoraphobia, social phobia, and simple phobia. Women had significantly higher prevalence rates of agoraphobia and simple phobia; however, there were no differences found between men and women in social phobia. The most common phobias for both women and men involved spiders, bugs, mice, snakes, and heights. The biggest differences between men and women in these disorders were found on the agoraphobic symptoms of "going out of the house alone" and "being alone", and on two simple phobic symptoms, involving the fear of "any harmless or dangerous animal" and "storms", with relatively more women having both phobias. There were no differences in the age of onset, reporting a fear on the phobic level, telling a doctor about symptoms, or the recall of past symptoms.

One study interviewed 2,181 people in Detroit, aged 18–45, seeking to explain gender differences in exposure to traumatic events and in the development or emergence of post traumatic stress disorder following this exposure. It was found that lifetime prevalence of traumatic events was a little higher in men than in women. However, following exposure to a traumatic event, the risk for PTSD was two times higher in women. It is believed this difference is due to the greater risk women have of developing PTSD after a traumatic event that involved assaultive violence. In fact, the probability of a woman developing PTSD following assaultive violence was 36% compared to 6% of men. The duration of PTSD is longer in women, as well.

Women and men are both equally likely at developing symptoms of schizophrenia, but the onset occurs earlier for men. It has been suggested that sexually dimorphic brain anatomy, the differential effects of estrogens and androgens, and the heavy exposure of male adolescents to alcohol and other toxic substances can lead to this earlier onset in men. It is believed that estrogens have a protective effect against the symptoms of schizophrenia. Although, it has been shown that other factors can contribute to the delayed onset and symptoms in women, estrogens have a large effect, as can be seen during a pregnancy. In pregnancy, estrogen levels are rising in women, so women who have had recurrent acute episodes of schizophrenia did not usually break down. However, after pregnancy, when estrogen levels have dropped, women tend to suffer from postpartum psychoses. Also, psychotic symptoms are exacerbated when, during the menstrual cycle, estrogen levels are at their lowest. In addition, estrogen treatment has yielded beneficial effects in patients with schizophrenia.

Pathological gambling has been known to have a higher prevalence rate, 2:1, in men to women. One study chose to identify gender-related differences by examining male and female gamblers, who were using a gambling helpline. There was 562 calls placed, and of this amount, 62.1% were men, and 37.9% were women. Male gamblers were more likely to report problems with strategic forms of gambling (blackjack or poker), and female gamblers were more likely to report problems with nonstrategic forms, such as slots or bingo. Male gamblers were also more likely to report a longer duration of gambling than women. Female gamblers were more likely to report receiving mental health treatment that was not related to gambling. Male gamblers were more likely to report a drug problem or being arrested on account of gambling. There were high rates of debt and psychiatric symptoms related to gambling observed in both groups of men and women.

There are also differences regarding gender and suicide. Males in Western societies are much more likely to die from suicide despite females having more suicide attempts.

The "extreme male brain theory" views autism and the Asperger syndrome as an extreme version of male-female differences regarding "systemizing" and empathizing abilities. The "imprinted brain theory" argues that autism and psychosis are contrasting disorders on a number of different variables and that this is caused by an unbalanced genomic imprinting favoring paternal genes (autism) or maternal genes (psychosis).

Cognitive control of behavior

Females tend to have a greater basal capacity to exert inhibitory control over undesired or habitual behaviors than males and respond differently to modulatory environmental contextual factors. For example, listening to music tends to significantly improve the rate of response inhibition in females, but reduce the rate of response inhibition in males. A 2010 meta-analyses found that women have small, but persistent, advantages in punishment sensitivity and effortful control across cultures. A 2014 review found that In humans, women discount more steeply than men, but sex differences on measures of impulsive action depend on tasks and subject samples.

Possible causes

Both biological and social/environmental factors have been studied for their impact on sex differences. Separating biological from environmental effects is difficult, and advocates for biological influences generally accept that social factors are also important.

Biology

Genetics

Psychological traits can vary between the sexes through sex-linkage. That is to say, what causes a trait may be related to the chromosomal sex of the individual. In contrast, there are also "sex-influenced" (or sex-conditioned) traits, in which the phenotypic manifestation of a gene depends on the sex of the individual. Even in a homozygous dominant or recessive female the condition may not be expressed fully. "Sex-limited" traits are characteristics only expressed in one sex. They may be caused by genes on either autosomal or sex chromosomes.

Evidence exists that there are sex-linked differences between the male and female brain.

Epigenetics

Epigenetic changes have also been found to cause sex-based differentiation in the brain. The extent and nature of these differences are not fully characterised. It has been shown that sex differences in some abilities (such as verbal processing, sensation seeking, speed in physical activities) are more apparent mostly in younger ages and subside after the age 30. Differences in socialization of males and females may decrease or increase the size of sex differences.

Brain structure and function

When it comes to the brain there are many similarities but also a number of differences in structure, neurotransmitters, and function. However, some argue that innate differences in the neurobiology of women and men have not been conclusively identified.

Structurally adult male brains are on average 11–12% heavier and 10% bigger than female brains. However, because men generally have a greater body mass than women, the brain-to-body mass ratio does not differ between the sexes. Other studies have stated bigger male brain size can only be partly accounted by body size. Researchers also found greater cortical thickness and cortical complexity in females and greater female cortical surface area after adjusting for brain volumes. Given that cortical complexity and cortical features are positively correlated with intelligence, researchers postulated that these differences might have evolved for females to compensate for smaller brain size and equalize overall cognitive abilities with males. Women have a greater developed neuropil or the space between neurons, which contains synapses, dendrites and axons and the cortex has neurons packed more closely together in the temporal and prefrontal cortex. Females also have greater cortical thickness in posterior temporal and inferior parietal regions compared to males independent of differences in brain or body size.

Though statistically there are sex differences in white matter and gray matter percentage, this ratio is directly related to brain size, and some argue these sex differences in gray and white matter percentage are caused by the average size difference between men and women. Others argue that these differences remain after controlling for brain volume.

In a 2013 meta-analysis, researchers found on average males had larger grey matter volume in bilateral amygdalae, hippocampi, anterior parahippocampal gyri, posterior cingulate gyri, precuneus, putamen and temporal poles, areas in the left posterior and anterior cingulate gyri, and areas in the cerebellum bilateral VIIb, VIIIa and Crus I lobes, left VI and right Crus II lobes. On the other hand, females on average had larger grey matter volume at the right frontal pole, inferior and middle frontal gyri, pars triangularis, planum temporale/parietal operculum, anterior cingulate gyrus, insular cortex, and Heschl's gyrus; bilateral thalami and precuneus; the left parahippocampal gyrus and lateral occipital cortex (superior division). The meta-analysis found larger volumes in females were most pronounced in areas in the right hemisphere related to language in addition to several limbic structures such as the right insular cortex and anterior cingulate gyrus.

Amber Ruigrok's 2013 meta-analysis also found greater grey matter density in the average male left amygdala, hippocampus, insula, pallidum, putamen, claustrum and right cerebellum. The meta-analysis also found greater grey matter density in the average female left frontal pole.

According to the neuroscience journal review series Progress in Brain Research, it has been found that males have larger and longer planum temporale and Sylvian fissure while females have significantly larger proportionate volumes to total brain volume in the superior temporal cortex, Broca's area, the hippocampus and the caudate. The midsagittal & fiber numbers in the anterior commissure that connect the temporal poles and mass intermedia that connects the thalami is also larger in women.

In the cerebral cortex, it has been observed that there is greater intra-lobe neural communication in male brains and greater inter-lobe (between the left and right hemispheres of the cerebral cortex) neural communication in female brains. In the cerebellum, the region of the brain that plays an important role in motor functions, males showed higher connectivity between hemispheres, and females showed higher connectivity within hemispheres. This potentially provides a neural basis for previous studies that showed sex-specific difference in certain psychological functions. Females on average outperform males on emotional recognition and nonverbal reasoning tests, while males outperform females on motor and spatial cognitive tests.

In the work of Szalkai et al. have computed structural (i.e., anatomical) connectomes of 96 subjects of the Human Connectome Project, and they have shown that in several deep graph-theoretical parameters, the structural connectome of women is significantly better connected than that of men. For example, women's connectome has more edges, higher minimum bipartition width, larger eigengap, greater minimum vertex cover than that of men. The minimum bipartition width (or the minimum balanced cut (see Cut (graph theory))) is a well-known measure of quality of computer multistage interconnection networks, it describes the possible bottlenecks in network communication: the higher this value is, the better is the network. The larger eigengap shows that the female connectome is a better expander graph than the connectome of males. The better expanding property, the higher minimum bipartition width and the greater minimum vertex cover show deep advantages in network connectivity in the case of female braingraph. Szalkai et al. have also shown that most of the deep graph theoretical differences remain in effect if big-brained women and small-brained men are compared: i.e., the graph theoretical differences are due to sex, and not the brain volume-differences of the subjects.

Hormones

Testosterone appears to be a major contributing factor to sexual motivation in male primates, including humans. The elimination of testosterone in adulthood has been shown to reduce sexual motivation in both male humans and male primates. Male humans who had their testicular function suppressed with a GnRH anatagonist displayed decreases in sexual desire and masturbation two weeks following the procedure. It is also suggested that levels of testosterone in men are related to the type of relationship in which they are involved. Men involved in polyamorous relationships display higher levels of testosterone than men involved in either a single partner relationship or single men.

Research on the ovulatory shift hypothesis explores differences in female mate preferences across the ovulatory cycle. Non-pill using heterosexual females who are ovulating (high levels of estrogens) were shown to have a preference for the scent of males with low levels of fluctuating asymmetry. Certain research has also indicated that ovulating heterosexual females display a preference toward masculine faces and report greater sexual attraction to males other than their current partner, though this has been called into question. A meta-analysis of 58 studies concluded that there was no evidence to support this theory. A different meta-analysis partially supported the hypothesis, but only in regards to "short-term" attractiveness. A later study of Finnish twins found that the influence of "context-dependent" factors (such as ovulation) on a female's attraction to masculine faces was less than one-percent.

Additionally, a 2016 paper suggested that any possible changes in preferences during ovulation would be moderated by the relationship quality itself, even to the point of inversion in favor of the female's current partner.

Culture

Fundamental sex differences in genetics, hormones and brain structure and function may manifest as distal cultural phenomena (e.g., males as primary combatants in warfare, the primarily female readership of romance novels, etc.). In addition, differences in socialization of males and females may have the effect of decreasing or increasing the magnitude of sex differences.

Right to property

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Right_to_property The right to property , or the right to own property ...