Search This Blog

Wednesday, December 1, 2021

Alternative fuel vehicle

From Wikipedia, the free encyclopedia
 
The Toyota Prius is the world's top selling hybrid electric vehicle, with global sales of almost 4 million units through January 2017.
 
A Brazilian filling station with four alternative fuels for sale: biodiesel (B3), gasohol (E25), neat ethanol ( E100), and compressed natural gas (CNG).
 
The Chevrolet Volt family was the world's top selling plug-in hybrid as of 2016, with global sales of about 134,500 units as of December 2016.

An alternative fuel vehicle is a motor vehicle that runs on alternative fuel, an energy other than traditional petroleum fuels (petrol or Diesel fuel); the term also refers to any technology of powering an engine that does not involve solely petroleum (e.g. electric car, hybrid electric vehicles, solar-powered vehicles). Because of a combination of factors, such as environmental concerns, high oil-prices and the potential for peak oil, development of cleaner alternative fuels and advanced power systems for vehicles has become a high priority for many governments and vehicle manufacturers around the world.

Vehicle engines powered by gasolene/petrol first emerged in the 1860s and 1870s; they took until the 1930s to completely dominate the original "alternative" engines driven by steam (18th century), by gases (early 19th century), or by electicity (c. 1830s).

Hybrid electric vehicles such as the Toyota Prius are not actually alternative fuel vehicles, but through advanced technologies in the electric battery and motor/generator, they make a more efficient use of petroleum fuel. Other research-and-development efforts in alternative forms of power focus on developing all-electric and fuel cell vehicles, and even on the stored energy of compressed air.

An environmental analysis of the impacts of various vehicle-fuels extends beyond just operating efficiency and emissions, especially if a technology comes into wide use. A life-cycle assessment of a vehicle involves production and post-use considerations. A cradle-to-cradle design is more important than a focus on a single factor such as the type of fuel.

Global outlook

As of 2017, there were more than 1.4 billion motor vehicles on the world's roads, compared with just more than 116 million alternative fuel and advanced technology vehicles that had been sold or converted worldwide at the end of 2016 and consisting of:

Brazil is the world's leader in flexible-fuel car sales, with cumulative sales totalling 25.5 million units as of June 2015 .
  • About 55 million flex fuel automobiles, motorcycles and light duty trucks manufactured and sold worldwide by mid 2015, led by Brazil with 29.5 million by mid 2015, followed by the United States with 17.4 million by the end of 2014, Canada with about 1.6 million by 2014, and Sweden with 243,100 through December 2014. The Brazilian flex fuel fleet includes over 4 million flexible-fuel motorcycles produced since 2009 through March 2015.
  • More than 12 million hybrid electric vehicles have been sold worldwide. As of April 2016, Japan ranked as the market leader with more than 5 million hybrids sold, followed by the United States with cumulative sales of over 4 million units since 1999, and Europe with about 1.5 million hybrids delivered since 2000. As of January 2017, global sales are by Toyota Motor Company with more than 10 million Lexus and Toyota hybrids sold, followed by Honda Motor Co., Ltd. with cumulative global sales of more than 1.35 million hybrids as of June 2014. As of January 2017, global hybrid sales are led by the Prius family, with cumulative sales of 6.1 million units. The Toyota Prius liftback is the world's top selling hybrid electric car with cumulative sales of 3.985 million units through January 2017.
  • 5.7 million neat-ethanol only light-vehicles built in Brazil since 1979, with 2.4 to 3.0 million vehicles still in use by 2003. and 1.22 million units as of December 2011.
The Tesla Model 3 all-electric car is the world's all-time best-selling plug-in electric car with about 950,000 units sold as of March 2021.
As of December 2020, China had the world's largest stock of highway legal plug-in electric passenger cars with 4.5 million units, representing 42% of the world's stock of plug-in cars. Europe ranked next with over 3.2 million plug-in passenger cars at the end of 2020, accounting for about 30% of the global stock. The U.S. cumulative sales totaled about 1.8 million plug-in cars through December 2020.
  • There were 31,225 passenger fuel cell electric vehicles (FCEV) powered with hydrogen on the world's roads. South Korea is the country market with the largest stock of passenger FCEVs with 10,041 units, followed by the United States (9,135), China (5,546) and Japan (4,100).

Single fuel source

Engine air compressor

The Peugeot 2008 HYbrid air prototype replaced conventional hybrid batteries with a compressed air propulsion system

The air engine is an emission-free piston engine that uses compressed air as a source of energy. The first compressed air car was invented by a French engineer named Guy Nègre. The expansion of compressed air may be used to drive the pistons in a modified piston engine. Efficiency of operation is gained through the use of environmental heat at normal temperature to warm the otherwise cold expanded air from the storage tank. This non-adiabatic expansion has the potential to greatly increase the efficiency of the machine. The only exhaust is cold air (−15 °C), which could also be used to air condition the car. The source for air is a pressurized carbon-fiber tank. Air is delivered to the engine via a rather conventional injection system. Unique crank design within the engine increases the time during which the air charge is warmed from ambient sources and a two-stage process allows improved heat transfer rates.

Electric, fed by external source

Electric power fed from an external source to the vehicle is standard in railway electrification. At such systems usually the tracks form one pole, while the other is usually a single overhead wire or a rail insulated against ground.

On roads this system does not work as described, as normal road surfaces are very poor electric conductors; and so electric vehicles fed with external power on roads require at least two overhead wires. The most common type of road vehicles fed with electricity from external source are trolleybusses, but there are also some trucks powered with this technology. The advantage is that the vehicle can be operated without breaks for refueling or charging. Disadvantages include: a large infrastructure of electric wires; difficulty in driving as one has to prevent a dewirement of the vehicle; vehicles cannot overtake each other; a danger of electrocution; and an aesthetic problem.

Wireless transmission (see Wireless power transfer) is possible, in principal; but the infrastructure (especially wiring) necessary for inductive or capacitive coupling would be extensive and expensive. In principle it is also possible to transmit energy by microwaves or by lasers to the vehicle, but this may be inefficient and dangerous for the power required. Beside this, in the case of lasers one requires a guidance system to track the vehicle to be powered, as laser beams have a small diameter.

Battery-electric

Battery electric vehicles (BEVs), also known as all-electric vehicles (AEVs), are electric vehicles whose main energy storage is in the chemical energy of batteries. BEVs are the most common form of what is defined by the California Air Resources Board (CARB) as zero emission vehicle (ZEV) because they produce no tailpipe emissions at the point of operation. The electrical energy carried on board a BEV to power the motors is obtained from a variety of battery chemistries arranged into battery packs. For additional range genset trailers or pusher trailers are sometimes used, forming a type of hybrid vehicle. Batteries used in electric vehicles include "flooded" lead-acid, absorbed glass mat, NiCd, nickel metal hydride, Li-ion, Li-poly and zinc-air batteries.

Attempts at building viable, modern battery-powered electric vehicles began in the 1950s with the introduction of the first modern (transistor controlled) electric car – the Henney Kilowatt, even though the concept was out in the market since 1890. Despite the poor sales of the early battery-powered vehicles, development of various battery-powered vehicles continued through the mid-1990s, with such models as the General Motors EV1 and the Toyota RAV4 EV.

The Nissan Leaf was the world's top selling highway-capable all-electric car until December 2019.

Battery powered cars had primarily used lead-acid batteries and NiMH batteries. Lead-acid batteries' recharge capacity is considerably reduced if they're discharged beyond 75% on a regular basis, making them a less-than-ideal solution. NiMH batteries are a better choice, but are considerably more expensive than lead-acid. Lithium-ion battery powered vehicles such as the Venturi Fetish and the Tesla Roadster have recently demonstrated excellent performance and range, and nevertheless is used in most mass production models launched since December 2010.

Expanding on traditional Lithium-ion batteries predominately used in today's battery electric vehicles, is an emerging science that is paving the way to utilize a carbon fiber structure (a vehicle body or chassis in this case) as a structural battery. Experiments being conducted at the Chalmers University of Technology in Sweden are showing that when coupled with Lithium-ion insertion mechanisms, an enhanced carbon fiber structure can have electromechanical properties. This means that the carbon fiber structure itself can act as its own battery/power source for propulsion. This would negate the need for traditional heavy battery banks, reducing weight and therefore increasing fuel efficiency.

As of December 2015, several neighborhood electric vehicles, city electric cars and series production highway-capable electric cars and utility vans have been made available for retails sales, including Tesla Roadster, GEM cars, Buddy, Mitsubishi i MiEV and its rebadged versions Peugeot iOn and Citroën C-Zero, Chery QQ3 EV, JAC J3 EV, Nissan Leaf, Smart ED, Mia electric, BYD e6, Renault Kangoo Z.E., Bolloré Bluecar, Renault Fluence Z.E., Ford Focus Electric, BMW ActiveE, Renault Twizy, Tesla Model S, Honda Fit EV, RAV4 EV second generation, Renault Zoe, Mitsubishi Minicab MiEV, Roewe E50, Chevrolet Spark EV, Fiat 500e, BMW i3, Volkswagen e-Up!, Nissan e-NV200, Volkswagen e-Golf, Mercedes-Benz B-Class Electric Drive, Kia Soul EV, BYD e5, and Tesla Model X. The world's all-time top selling highway legal electric car is the Nissan Leaf, released in December 2010, with global sales of more than 250,000 units through December 2016. The Tesla Model S, released in June 2012, ranks second with global sales of over 158,000 cars delivered as of December 2016. The Renault Kangoo Z.E. utility van is the leader of the light-duty all-electric segment with global sales of 25,205 units through December 2016.

Electric, stored-otherway

Electricity can be also stored in supercapacitors and supraconductors. However supraconductor storage is unsuitable for vehicle propulsion as it requires extreme deep temperature and produces strong magnetic fields. Supercapacitors, however, can be used in vehicles and are used in some trams on sections without overhead wire. They can be load in during regular stops, at which passengers enter and leave the train, but can only travel a few kilometres with the stored energy. However, this is no problem in this case as the next stop is usually in reachable distance.

Solar

Nuna team at a racecourse.
 
Nuna solar powered car, which has travelled up to 140km/h (84mph).

A solar car is an electric vehicle powered by solar energy obtained from solar panels on the car. Solar panels cannot currently be used to directly supply a car with a suitable amount of power at this time, but they can be used to extend the range of electric vehicles. They are raced in competitions such as the World Solar Challenge and the North American Solar Challenge. These events are often sponsored by Government agencies such as the United States Department of Energy keen to promote the development of alternative energy technology such as solar cells and electric vehicles. Such challenges are often entered by universities to develop their students' engineering and technological skills as well as motor vehicle manufacturers such as GM and Honda.

Trev's battery lasts over 250,000 kilometres.

The North American Solar Challenge is a solar car race across North America. Originally called Sunrayce, organized and sponsored by General Motors in 1990, it was renamed American Solar Challenge in 2001, sponsored by the United States Department of Energy and the National Renewable Energy Laboratory. Teams from universities in the United States and Canada compete in a long distance test of endurance as well as efficiency, driving thousands of miles on regular highways.

Nuna is the name of a series of manned solar powered vehicles that won the World solar challenge in Australia three times in a row, in 2001 (Nuna 1 or just Nuna), 2003 (Nuna 2) and 2005 (Nuna 3). The Nunas are built by students of the Delft University of Technology.

The World solar challenge is a solar powered car race over 3,021 kilometres (1,877 mi) through central Australia from Darwin to Adelaide. The race attracts teams from around the world, most of which are fielded by universities or corporations although some are fielded by high schools.

Trev (two-seater renewable energy vehicle) was designed by the staff and students at the University of South Australia. Trev was first displayed at the 2005 World Solar Challenge as the concept of a low-mass, efficient commuter car. With 3 wheels and a mass of about 300 kg, the prototype car had maximum speed of 120 km/h and acceleration of 0–100 km/h in about 10 seconds. The running cost of Trev is projected to be less than 1/10 of the running cost of a small petrol car.

Dimethyl ether fuel

Installation of BioDME synthesis towers at Chemrec's pilot facility

Dimethyl ether (DME) is a promising fuel in diesel engines, petrol engines (30% DME / 70% LPG), and gas turbines owing to its high cetane number, which is 55, compared to diesel's, which is 40–53.  Only moderate modifications are needed to convert a diesel engine to burn DME. The simplicity of this short carbon chain compound leads during combustion to very low emissions of particulate matter, NOx, CO. For these reasons as well as being sulfur-free, DME meets even the most stringent emission regulations in Europe (EURO5), U.S. (U.S. 2010), and Japan (2009 Japan). Mobil is using DME in their methanol to gasoline process.

DME is being developed as a synthetic second generation biofuel (BioDME), which can be manufactured from lignocellulosic biomass. Currently the EU is considering BioDME in its potential biofuel mix in 2030; the Volvo Group is the coordinator for the European Community Seventh Framework Programme project BioDME where Chemrec's BioDME pilot plant based on black liquor gasification is nearing completion in Piteå, Sweden.

Ammonia fuelled vehicles

Ammoniacal Gas Engine Streetcar in New Orleans drawn by Alfred Waud in 1871.
 
The X-15 aircraft used ammonia as one component fuel of its rocket engine

Ammonia is produced by combining gaseous hydrogen with nitrogen from the air. Large-scale ammonia production uses natural gas for the source of hydrogen. Ammonia was used during World War II to power buses in Belgium, and in engine and solar energy applications prior to 1900. Liquid ammonia also fuelled the Reaction Motors XLR99 rocket engine, that powered the X-15 hypersonic research aircraft. Although not as powerful as other fuels, it left no soot in the reusable rocket engine and its density approximately matches the density of the oxidizer, liquid oxygen, which simplified the aircraft's design.

Ammonia has been proposed as a practical alternative to fossil fuel for internal combustion engines. The calorific value of ammonia is 22.5 MJ/kg (9690 BTU/lb), which is about half that of diesel. In a normal engine, in which the water vapour is not condensed, the calorific value of ammonia will be about 21% less than this figure. It can be used in existing engines with only minor modifications to carburettors/injectors.

If produced from coal, the CO2 can be readily sequestered (the combustion products are nitrogen and water).

Ammonia engines or ammonia motors, using ammonia as a working fluid, have been proposed and occasionally used. The principle is similar to that used in a fireless locomotive, but with ammonia as the working fluid, instead of steam or compressed air. Ammonia engines were used experimentally in the 19th century by Goldsworthy Gurney in the UK and in streetcars in New Orleans. In 1981 a Canadian company converted a 1981 Chevrolet Impala to operate using ammonia as fuel.

Ammonia and GreenNH3 is being used with success by developers in Canada, since it can run in spark ignited or diesel engines with minor modifications, also the only green fuel to power jet engines, and despite its toxicity is reckoned to be no more dangerous than petrol or LPG. It can be made from renewable electricity, and having half the density of petrol or diesel can be readily carried in sufficient quantities in vehicles. On complete combustion it has no emissions other than nitrogen and water vapour. The combustion chemical formula is 4 NH3 + 3 O2 → 2 N2 + 6 H2O, 75% water is the result.

Biofuels

Bioalcohol and ethanol

The Ford Model T was the first commercial flex-fuel vehicle. The engine was capable of running on gasoline or ethanol, or a mix of both.
 
The 1996 Ford Taurus was the first flexible-fuel vehicle produced with versions capable of running with either ethanol (E85) or methanol (M85) blended with gasoline.
 
The 2003 VW Gol 1.6 Total Flex was the first commercial flexible-fuel vehicle in the Brazilian market, capable of running on any mixture of gasoline (E20 to E25 blend) and ethanol (E100).

The first commercial vehicle that used ethanol as a fuel was the Ford Model T, produced from 1908 through 1927. It was fitted with a carburetor with adjustable jetting, allowing use of gasoline or ethanol, or a combination of both. Other car manufactures also provided engines for ethanol fuel use. In the United States, alcohol fuel was produced in corn-alcohol stills until Prohibition criminalized the production of alcohol in 1919. The use of alcohol as a fuel for internal combustion engines, either alone or in combination with other fuels, lapsed until the oil price shocks of the 1970s. Furthermore, additional attention was gained because of its possible environmental and long-term economical advantages over fossil fuel.

Both ethanol and methanol have been used as an automotive fuel. While both can be obtained from petroleum or natural gas, ethanol has attracted more attention because it is considered a renewable resource, easily obtained from sugar or starch in crops and other agricultural produce such as grain, sugarcane, sugar beets or even lactose. Since ethanol occurs in nature whenever yeast happens to find a sugar solution such as overripe fruit, most organisms have evolved some tolerance to ethanol, whereas methanol is toxic. Other experiments involve butanol, which can also be produced by fermentation of plants. Support for ethanol comes from the fact that it is a biomass fuel, which addresses climate change and greenhouse gas emissions, though these benefits are now highly debated, including the heated 2008 food vs fuel debate.

Most modern cars are designed to run on gasoline are capable of running with a blend from 10% up to 15% ethanol mixed into gasoline (E10-E15). With a small amount of redesign, gasoline-powered vehicles can run on ethanol concentrations as high as 85% (E85), the maximum set in the United States and Europe due to cold weather during the winter, or up to 100% (E100) in Brazil, with a warmer climate. Ethanol has close to 34% less energy per volume than gasoline, consequently fuel economy ratings with ethanol blends are significantly lower than with pure gasoline, but this lower energy content does not translate directly into a 34% reduction in mileage, because there are many other variables that affect the performance of a particular fuel in a particular engine, and also because ethanol has a higher octane rating which is beneficial to high compression ratio engines.

For this reason, for pure or high ethanol blends to be attractive for users, its price must be lower than gasoline to offset the lower fuel economy. As a rule of thumb, Brazilian consumers are frequently advised by the local media to use more alcohol than gasoline in their mix only when ethanol prices are 30% lower or more than gasoline, as ethanol price fluctuates heavily depending on the results and seasonal harvests of sugar cane and by region. In the US, and based on EPA tests for all 2006 E85 models, the average fuel economy for E85 vehicles was found 25.56% lower than unleaded gasoline. The EPA-rated mileage of current American flex-fuel vehicles could be considered when making price comparisons, though E85 has octane rating of about 104 and could be used as a substitute for premium gasoline. Regional retail E85 prices vary widely across the US, with more favorable prices in the Midwest region, where most corn is grown and ethanol produced. In August 2008 the US average spread between the price of E85 and gasoline was 16.9%, while in Indiana was 35%, 30% in Minnesota and Wisconsin, 19% in Maryland, 12 to 15% in California, and just 3% in Utah. Depending on the vehicle capabilities, the break even price of E85 usually has to be between 25 and 30% lower than gasoline.

E85 fuel sold at a regular gasoline station in Washington, D.C..

Reacting to the high price of oil and its growing dependence on imports, in 1975 Brazil launched the Pro-alcool program, a huge government-subsidized effort to manufacture ethanol fuel (from its sugar cane crop) and ethanol-powered automobiles. These ethanol-only vehicles were very popular in the 1980s, but became economically impractical when oil prices fell – and sugar prices rose – late in that decade. In May 2003 Volkswagen built for the first time a commercial ethanol flexible fuel car, the Gol 1.6 Total Flex. These vehicles were a commercial success and by early 2009 other nine Brazilian manufacturers are producing flexible fuel vehicles: Chevrolet, Fiat, Ford, Peugeot, Renault, Honda, Mitsubishi, Toyota, Citroën, and Nissan. The adoption of the flex technology was so rapid, that flexible fuel cars reached 87.6% of new car sales in July 2008. As of August 2008, the fleet of "flex" automobiles and light commercial vehicles had reached 6 million new vehicles sold, representing almost 19% of all registered light vehicles. The rapid success of "flex" vehicles, as they are popularly known, was made possible by the existence of 33,000 filling stations with at least one ethanol pump available by 2006, a heritage of the Pro-alcool program.

In the United States, initial support to develop alternative fuels by the government was also a response to the 1973 oil crisis, and later on, as a goal to improve air quality. Also, liquid fuels were preferred over gaseous fuels not only because they have a better volumetric energy density but also because they were the most compatible fuels with existing distribution systems and engines, thus avoiding a big departure from the existing technologies and taking advantage of the vehicle and the refueling infrastructure. California led the search of sustainable alternatives with interest in methanol. In 1996, a new FFV Ford Taurus was developed, with models fully capable of running either methanol or ethanol blended with gasoline. This ethanol version of the Taurus was the first commercial production of an E85 FFV. The momentum of the FFV production programs at the American car companies continued, although by the end of the 1990s, the emphasis was on the FFV E85 version, as it is today. Ethanol was preferred over methanol because there is a large support in the farming community and thanks to government's incentive programs and corn-based ethanol subsidies. Sweden also tested both the M85 and the E85 flexifuel vehicles, but due to agriculture policy, in the end emphasis was given to the ethanol flexifuel vehicles.

Biodiesel

Bus running on soybean biodiesel
 
Biodiesel (B20) pump in the U.S.

The main benefit of Diesel combustion engines is that they have a 44% fuel burn efficiency; compared with just 25–30% in the best gasoline engines. In addition diesel fuel has slightly higher energy density by volume than gasoline. This makes Diesel engines capable of achieving much better fuel economy than gasoline vehicles.

Biodiesel (fatty acid methyl ester), is commercially available in most oilseed-producing states in the United States. As of 2005, it is somewhat more expensive than fossil diesel, though it is still commonly produced in relatively small quantities (in comparison to petroleum products and ethanol). Many farmers who raise oilseeds use a biodiesel blend in tractors and equipment as a matter of policy, to foster production of biodiesel and raise public awareness. It is sometimes easier to find biodiesel in rural areas than in cities. Biodiesel has lower energy density than fossil diesel fuel, so biodiesel vehicles are not quite able to keep up with the fuel economy of a fossil fuelled diesel vehicle, if the diesel injection system is not reset for the new fuel. If the injection timing is changed to take account of the higher cetane value of biodiesel, the difference in economy is negligible. Because biodiesel contains more oxygen than diesel or vegetable oil fuel, it produces the lowest emissions from diesel engines, and is lower in most emissions than gasoline engines. Biodiesel has a higher lubricity than mineral diesel and is an additive in European pump diesel for lubricity and emissions reduction.

Some Diesel-powered cars can run with minor modifications on 100% pure vegetable oils. Vegetable oils tend to thicken (or solidify if it is waste cooking oil), in cold weather conditions so vehicle modifications (a two tank system with diesel start/stop tank), are essential in order to heat the fuel prior to use under most circumstances. Heating to the temperature of engine coolant reduces fuel viscosity, to the range cited by injection system manufacturers, for systems prior to 'common rail' or 'unit injection ( VW PD)' systems. Waste vegetable oil, especially if it has been used for a long time, may become hydrogenated and have increased acidity. This can cause the thickening of fuel, gumming in the engine and acid damage of the fuel system. Biodiesel does not have this problem, because it is chemically processed to be PH neutral and lower viscosity. Modern low emission diesels (most often Euro -3 and -4 compliant), typical of the current production in the European industry, would require extensive modification of injector system, pumps and seals etc. due to the higher operating pressures, that are designed thinner (heated) mineral diesel than ever before, for atomisation, if they were to use pure vegetable oil as fuel. Vegetable oil fuel is not suitable for these vehicles as they are currently produced. This reduces the market as increasing numbers of new vehicles are not able to use it. However, the German Elsbett company has successfully produced single tank vegetable oil fuel systems for several decades, and has worked with Volkswagen on their TDI engines. This shows that it is technologically possible to use vegetable oil as a fuel in high efficiency / low emission diesel engines.

Greasestock is an event held yearly in Yorktown Heights, New York, and is one of the largest showcases of vehicles using waste oil as a biofuel in the United States.

Biogas

Compressed biogas may be used for internal combustion engines after purification of the raw gas. The removal of H2O, H2S and particles can be seen as standard producing a gas which has the same quality as compressed natural gas. The use of biogas is particularly interesting for climates where the waste heat of a biogas powered power plant cannot be used during the summer.

Charcoal

In the 1930s Tang Zhongming made an invention using abundant charcoal resources for Chinese auto market. The charcoal-fuelled car was later used intensively in China, serving the army and conveyancer after the breakout of World War II.

Compressed natural gas

The Brazilian Fiat Siena Tetrafuel 1.4, the first multifuel car that runs as a flexible-fuel on pure gasoline, or E25, or E100; or runs as a bi-fuel with natural gas (CNG).

High-pressure compressed natural gas (CNG), mainly composed of methane, that is used to fuel normal combustion engines instead of gasoline. Combustion of methane produces the least amount of CO2 of all fossil fuels. Gasoline cars can be retrofitted to CNG and become bifuel Natural gas vehicles (NGVs) as the gasoline tank is kept. The driver can switch between CNG and gasoline during operation. Natural gas vehicles (NGVs) are popular in regions or countries where natural gas is abundant. Widespread use began in the Po River Valley of Italy, and later became very popular in New Zealand by the eighties, though its use has declined.

Buses powered with CNG are common in the United States.

As of December 2012, there were 17.8 million natural gas vehicles worldwide, led by Iran with 3.30 million, followed by Pakistan (2.79 million), Argentina (2.29 million), Brazil (1.75 million), China (1.58 million) and India (1.5 million). As of 2010, the Asia-Pacific region led the global market with a share of 54%. In Europe they are popular in Italy (730,000), Ukraine (200,000), Armenia (101,352), Russia (100,000) and Germany (91,500), and they are becoming more so as various manufacturers produce factory made cars, buses, vans and heavy vehicles. In the United States CNG powered buses are the favorite choice of several public transit agencies, with an estimated CNG bus fleet of some 130,000. Other countries where CNG-powered buses are popular include India, Australia, Argentina, and Germany.

CNG vehicles are common in South America, where these vehicles are mainly used as taxicabs in main cities of Argentina and Brazil. Normally, standard gasoline vehicles are retrofitted in specialized shops, which involve installing the gas cylinder in the trunk and the CNG injection system and electronics. The Brazilian GNV fleet is concentrated in the cities of Rio de Janeiro and São Paulo. Pike Research reports that almost 90% of NGVs in Latin America have bi-fuel engines, allowing these vehicles to run on either gasoline or CNG.

In 2006 the Brazilian subsidiary of FIAT introduced the Fiat Siena Tetra fuel, a four-fuel car developed under Magneti Marelli of Fiat Brazil. This automobile can run on 100% ethanol (E100), E25 (Brazil's normal ethanol gasoline blend), pure gasoline (not available in Brazil), and natural gas, and switches from the gasoline-ethanol blend to CNG automatically, depending on the power required by road conditions. Other existing option is to retrofit an ethanol flexible-fuel vehicle to add a natural gas tank and the corresponding injection system. Some taxicabs in São Paulo and Rio de Janeiro, Brazil, run on this option, allowing the user to choose among three fuels (E25, E100 and CNG) according to current market prices at the pump. Vehicles with this adaptation are known in Brazil as "tri-fuel" cars.

HCNG or hydrogen enriched compressed natural gas for automobile use is premixed at the hydrogen station.

Liquefied natural gas

Liquefied natural gas (LNG) is natural gas that has been cooled to a point at which it becomes a cryogenic liquid. In this liquid state, natural gas is more than 2 times as dense as highly compressed CNG. LNG fuel systems function on any vehicle capable of burning natural gas. Unlike CNG, which is stored at high pressure (typically 3000 or 3600 psi) and then regulated to a lower pressure that the engine can accept, LNG is stored at low pressure (50 to 150 psi) and simply vaporized by a heat exchanger before entering the fuel metering devices to the engine. Because of its high energy density compared to CNG, it is very suitable for those interested in long ranges while running on natural gas.

In the United States, the LNG supply chain is the main thing that has held back this fuel source from growing rapidly. The LNG supply chain is very analogous to that of diesel or gasoline. First, pipeline natural gas is liquefied in large quantities, which is analogous to refining gasoline or diesel. Then, the LNG is transported via semi trailer to fuel stations where it is stored in bulk tanks until it is dispensed into a vehicle. CNG, on the other hand, requires expensive compression at each station to fill the high-pressure cylinder cascades.

Autogas

A propane-fueled school bus in the United States.

LPG or liquefied petroleum gas (LPG) is a low pressure liquefied gas mixture composed mainly of propane and butane which burns in conventional gasoline combustion engines with less CO2 than gasoline. Gasoline cars can be retrofitted to LPG aka Autogas and become bifuel vehicles as the gasoline tank is not removed, allowing drivers to switch between LPG and gasoline during operation. Estimated 10 million vehicles running worldwide.

There are 17.473 million LPG powered vehicles worldwide as of December 2010, and the leading countries are Turkey (2.394 million vehicles), Poland (2.325 million), and South Korea (2.3 million). In the U.S., 190,000 on-road vehicles use propane, and 450,000 forklifts use it for power. Whereas it is banned in Pakistan (DEC 2013) as it is considered a risk to public safety by OGRA.

Hyundai Motor Company began sales of the Elantra LPI Hybrid in the South Korean domestic market in July 2009. The Elantra LPI (Liquefied Petroleum Injected) is the world's first hybrid electric vehicle to be powered by an internal combustion engine built to run on liquefied petroleum gas (LPG) as a fuel.

Formic acid

Formic acid is used by converting it first to hydrogen, and using that in a hydrogen fuel cell. It can also be used directly in formic acid fuel cells. Formic acid is much easier to store than hydrogen.

Hydrogen

The 2009 Honda FCX Clarity is a hydrogen fuel cell automobile launched to the market in 2008.
 
Hydrogen fueling station in California.
 
Sequel, a hydrogen fuel cell-powered vehicle from General Motors.
 
The Hyundai ix35 FCEV was released for leasing in the U.S. in 2014.
 
The Toyota Mirai is one of the first hydrogen fuel-cell vehicles to be sold commercially to retail customers, initially, only in Japan and California.

A hydrogen car is an automobile which uses hydrogen as its primary source of power for locomotion. These cars generally use the hydrogen in one of two methods: combustion or fuel-cell conversion. In combustion, the hydrogen is "burned" in engines in fundamentally the same method as traditional gasoline cars. In fuel-cell conversion, the hydrogen is turned into electricity through fuel cells which then powers electric motors. With either method, the only byproduct from the spent hydrogen is water, however during combustion with air NOx can be produced.

Honda introduced its fuel cell vehicle in 1999 called the FCX and have since then introduced the second generation FCX Clarity. Limited marketing of the FCX Clarity, based on the 2007 concept model, began in June 2008 in the United States, and it was introduced in Japan in November 2008. The FCX Clarity was available in the U.S. only in Los Angeles Area, where 16 hydrogen filling stations are available, and until July 2009, only 10 drivers have leased the Clarity for US$600 a month. At the 2012 World Hydrogen Energy Conference, Daimler AG, Honda, Hyundai and Toyota all confirmed plans to produce hydrogen fuel cell vehicles for sale by 2015, with some types planned to enter the showroom in 2013. From 2008 to 2014, Honda leased a total of 45 FCX units in the US.

A small number of prototype hydrogen cars currently exist, and a significant amount of research is underway to make the technology more viable. The common internal combustion engine, usually fueled with gasoline (petrol) or diesel liquids, can be converted to run on gaseous hydrogen. However, the most efficient use of hydrogen involves the use of fuel cells and electric motors instead of a traditional engine. Hydrogen reacts with oxygen inside the fuel cells, which produces electricity to power the motors. One primary area of research is hydrogen storage, to try to increase the range of hydrogen vehicles while reducing the weight, energy consumption, and complexity of the storage systems. Two primary methods of storage are metal hydrides and compression. Some believe that hydrogen cars will never be economically viable and that the emphasis on this technology is a diversion from the development and popularization of more efficient hybrid cars and other alternative technologies.

A study by The Carbon Trust for the UK Department of Energy and Climate Change suggests that hydrogen technologies have the potential to deliver UK transport with near-zero emissions whilst reducing dependence on imported oil and curtailment of renewable generation. However, the technologies face very difficult challenges, in terms of cost, performance and policy.

Buses, trains, PHB bicycles, canal boats, cargo bikes, golf carts, motorcycles, wheelchairs, ships, airplanes, submarines, and rockets can already run on hydrogen, in various forms. NASA used hydrogen to launch Space Shuttles into space. A working toy model car runs on solar power, using a regenerative fuel cell to store energy in the form of hydrogen and oxygen gas. It can then convert the fuel back into water to release the solar energy.

BMW's Clean Energy internal combustion hydrogen car has more power and is faster than hydrogen fuel cell electric cars. A limited series production of the 7 Series Saloon was announced as commencing at the end of 2006. A BMW hydrogen prototype (H2R) using the driveline of this model broke the speed record for hydrogen cars at 300 km/h (186 mi/h), making automotive history. Mazda has developed Wankel engines to burn hydrogen. The Wankel uses a rotary principle of operation, so the hydrogen burns in a different part of the engine from the intake. This reduces pre-detonation, a problem with hydrogen fueled piston engines.

The other major car companies like Daimler, Chrysler, Honda, Toyota, Ford and General Motors, are investing in hydrogen fuel cells instead. VW, Nissan, and Hyundai/Kia also have fuel cell vehicle prototypes on the road. In addition, transit agencies across the globe are running prototype fuel cell buses. Fuel cell vehicles, such as the new Honda Clarity, can get up to 70 miles (110 km) on a kilogram of hydrogen.

The Hyundai ix35 FCEV fuel cell vehicle is available for lease in the U.S. In 2014, a total of 54 units were leased. Sales of the Toyota Mirai to government and corporate customers began in Japan on December 15, 2014. Toyota delivered the first market placed Mirai to the Prime Minister's Official Residence and announced it got 1,500 orders in Japan in one month after sales began against a sales target of 400 for 12 months.

Deliveries to retail customers began in California in October 2015. A total of 57 units were delivered between October and November 2015. Toyota scheduled to release the Mirai in the Northeastern States in the first half of 2016. The market launch in Europe is slated for September 2015.

Liquid nitrogen car

Liquid nitrogen (LN2) is a method of storing energy. Energy is used to liquefy air, and then LN2 is produced by evaporation, and distributed. LN2 is exposed to ambient heat in the car and the resulting nitrogen gas can be used to power a piston or turbine engine. The maximum amount of energy that can be extracted from LN2 is 213 Watt-hours per kg (W·h/kg) or 173 W·h per liter, in which a maximum of 70 W·h/kg can be utilized with an isothermal expansion process. Such a vehicle with a 350-liter (93 gallon) tank can achieve ranges similar to a gasoline powered vehicle with a 50-liter (13 gallon) tank. Theoretical future engines, using cascading topping cycles, can improve this to around 110 W·h/kg with a quasi-isothermal expansion process. The advantages are zero harmful emissions and superior energy densities compared to a compressed-air vehicle as well as being able to refill the tank in a matter of minutes.

Nuclear power

Mars rover Curiosity driven by radioisotope thermoelectric generators

In principle, it is possible to build a vehicle powered by nuclear fission or nuclear decay. However, there are two major problems: first one has to transform the energy, which comes as heat and radiation into energy usable for a drive. One possible would be to use a steam turbine as in a nuclear power plant, but such a device would take too much space. A more suitable way would be direct conversion into electricity for example with thermoelements or thermionic devices. The second problem is that nuclear fission produces high levels of neutron and gamma rays, which require excessive shielding, that would result in a vehicle too large for use on public roads. However studies were made in this way by Ford Nucleon.

A better way for a nuclear powered vehicle would be the use of power of radioactive decay in radioisotope thermoelectric generators, which are also very safe and reliable. The required shielding of these devices depends on the used radio nuclide. Plutonium-238 as nearly pure alpha radiator does not require much shielding. As prices for suitable radionuclide are high and energy density is low (generating 1 watt with Plutonium-238 requires a half gram of it), this way of propulsion is too expansive for wide use. Also radioisotope thermoelectric generators offer according to their large content of high radioactive material an extreme danger in case of misuse for example by terrorists. The only vehicle in use, which is driven by radioisotope thermoelectric generators is the Mars rover Curiosity.

Other forms of nuclear power as fusion and annihilation are at present not available for vehicle propulsion, as no working fusion reactor is available and it is questionable if one can ever built one with a size suitable for a road vehicle. Annihilation may perhaps work in some ways (see antimatter drive), but there is no technology existing to produce and store enough antimatter.

Flywheels

Flywheels can be also used for alternative fuel and were used in the 1950s for the propulsion of buses in Switzerland, the such called gyrobuses. The flywheel of the bus was loaded up by electric power at the terminals of the line and allowed it to travel a way up to 8 kilometres just with its flywheel. Flywheel-powered vehicles are quieter than vehicles with combustion engine, require no overhead wire and generate no exhausts, but the flywheel device has a great weight (1.5 tons for 5 kWh) and requires special safety measures due to its high rotational speed.

Silanes

Silanes higher than heptasilane can be stored like gasoline and may also work as fuel. They have the advantage that they can also burn with the nitrogen of the air, but have as major disadvantage its high price and that its combustion products are solid, which gives trouble in combustion engines.

Spring

The power of wound-up springs or twisted rubber cords can be used for the propulsion of small vehicles. However this way of energy storage allows only saving small energy amounts not suitable for the propulsion of vehicles for transporting people. Spring-powered vehicles are wind-up toys or mousetrap cars.

Steam

A steam car is a car that has a steam engine. Wood, coal, ethanol, or others can be used as fuel. The fuel is burned in a boiler and the heat converts water into steam. When the water turns to steam, it expands. The expansion creates pressure. The pressure pushes the pistons back and forth. This turns the driveshaft to spin the wheels which provides moves the car forward. It works like a coal-fueled steam train, or steam boat. The steam car was the next logical step in independent transport.

Steam cars take a long time to start, but some can reach speeds over 100 mph (161 km/h) eventually. The late model Doble steam cars could be brought to operational condition in less than 30 seconds, had high top speeds and fast acceleration, but were expensive to buy.

A steam engine uses external combustion, as opposed to internal combustion. Gasoline-powered cars are more efficient at about 25–28% efficiency. In theory, a combined cycle steam engine in which the burning material is first used to drive a gas turbine can produce 50% to 60% efficiency. However, practical examples of steam engined cars work at only around 5–8% efficiency.

The best known and best selling steam-powered car was the Stanley Steamer. It used a compact fire-tube boiler under the hood to power a simple two-piston engine which was connected directly to the rear axle. Before Henry Ford introduced monthly payment financing with great success, cars were typically purchased outright. This is why the Stanley was kept simple; to keep the purchase price affordable.

Steam produced in refrigeration also can be use by a turbine in other vehicle types to produce electricity, that can be employed in electric motors or stored in a battery.

Steam power can be combined with a standard oil-based engine to create a hybrid. Water is injected into the cylinder after the fuel is burned, when the piston is still superheated, often at temperatures of 1500 degrees or more. The water will instantly be vaporized into steam, taking advantage of the heat that would otherwise be wasted.

Wind

Wind powered vehicles for recreational purposes

Wind powered vehicles are well-known since long time. They can be realized with sails similar to that used on ships, by using an onboard wind turbine, which drives directly the wheels or which generates electricity for electric engines driving the wheels or can be pulled by a kite. Wind powered land vehicles need an enormous clearance in height, especially when sails or kites are used and are unsuitable in urban area. They may be also be bad steerable. Wind powered vehicles are only used for recreational activities on beaches or other free areas. 

Wood gas

Vehicle with a gasifier

Wood gas can be used to power cars with ordinary internal combustion engines if a wood gasifier is attached. This was quite popular during World War II in several European and Asian countries because the war prevented easy and cost-effective access to oil.

Herb Hartman of Woodward, Iowa currently drives a wood powered Cadillac. He claims to have attached the gasifier to the Cadillac for just $700. Hartman claims, "A full hopper will go about fifty miles depending on how you drive it," and he added that splitting the wood was "labor-intensive. That's the big drawback."

Multiple fuel source

Dual fuel

Dual fuel vehicle is referred as the vehicle using two types of fuel in the same time (can be gas + liquid, gas + gas, liquid + liquid) with different fuel tank.

Diesel-CNG dual fuel is a system using two type of fuel which are diesel and compressed natural gas (CNG) at the same time. It is because of CNG need a source of ignition for combustion in diesel engine.

Flexible fuel

Six typical Brazilian full flex-fuel models from several carmakers, popularly known as "flex" cars, that run on any blend of ethanol and gasoline(actually between E20-E25 to E100).

A flexible-fuel vehicle (FFV) or dual-fuel vehicle (DFF) is an alternative fuel automobile or light duty truck with a multifuel engine that can use more than one fuel, usually mixed in the same tank, and the blend is burned in the combustion chamber together. These vehicles are colloquially called flex-fuel, or flexifuel in Europe, or just flex in Brazil. FFVs are distinguished from bi-fuel vehicles, where two fuels are stored in separate tanks. The most common commercially available FFV in the world market is the ethanol flexible-fuel vehicle, with the major markets concentrated in the United States, Brazil, Sweden, and some other European countries. In addition to flex-fuel vehicles running with ethanol, in the US and Europe there were successful test programs with methanol flex-fuel vehicles, known as M85 FFVs, and more recently there have been also successful tests using p-series fuels with E85 flex fuel vehicles, but as of June 2008, this fuel is not yet available to the general public.

Ethanol flexible-fuel vehicles have standard gasoline engines that are capable of running with ethanol and gasoline mixed in the same tank. These mixtures have "E" numbers which describe the percentage of ethanol in the mixture, for example, E85 is 85% ethanol and 15% gasoline. (See common ethanol fuel mixtures for more information.) Though technology exists to allow ethanol FFVs to run on any mixture up to E100, in the U.S. and Europe, flex-fuel vehicles are optimized to run on E85. This limit is set to avoid cold starting problems during very cold weather. The alcohol content might be reduced during the winter, to E70 in the U.S. or to E75 in Sweden. Brazil, with a warmer climate, developed vehicles that can run on any mix up to E100, though E20-E25 is the mandatory minimum blend, and no pure gasoline is sold in the country.

About 48 million automobiles, motorcycles and light duty trucks manufactured and sold worldwide by mid 2015, and concentrated in four markets, Brazil (29.5 million by mid 2015), the United States (17.4 million by the end of 2014), Canada (1.6 million by 2014), and Sweden (243,100 through December 2014). The Brazilian flex fuel fleet includes over 4 million flexible-fuel motorcycles produced since 2009 through March 2015. In Brazil, 65% of flex-fuel car owners were using ethanol fuel regularly in 2009, while, the actual number of American FFVs being run on E85 is much lower; surveys conducted in the U.S. have found that 68% of American flex-fuel car owners were not aware they owned an E85 flex. This is thought to be due to a number of factors, including:

Typical labeling used in the US to identify E85 vehicles. Top left: a small sticker in the back of the fuel filler door. Bottom left: the bright yellow gas cap used in newer models. E85 Flexfuel badging used in newer models from Chrysler (top right), Ford (middle right) and GM (bottom right).
  • The appearance of flex-fuel and non-flex-fuel vehicles is identical;
  • There is no price difference between a pure-gasoline vehicle and its flex-fuel variant;
  • The lack of consumer awareness of flex-fuel vehicles;
  • The lack of promotion of flex-fuel vehicles by American automakers, who often do not label the cars or market them in the same way they do to hybrid cars

By contrast, automakers selling FFVs in Brazil commonly affix badges advertising the car as a flex-fuel vehicle. As of 2007, new FFV models sold in the U.S. were required to feature a yellow gas cap emblazoned with the label "E85/gasoline", in order to remind drivers of the cars' flex-fuel capabilities. Use of E85 in the U.S. is also affected by the relatively low number of E85 filling stations in operation across the country, with just over 1,750 in August 2008, most of which are concentrated in the Corn Belt states, led by Minnesota with 353 stations, followed by Illinois with 181, and Wisconsin with 114. By comparison, there are some 120,000 stations providing regular non-ethanol gasoline in the United States alone.

US E85FlexFuel Chevrolet Impala LT 2009.

There have been claims that American automakers are motivated to produce flex-fuel vehicles due to a loophole in the Corporate Average Fuel Economy (CAFE) requirements, which gives the automaker a "fuel economy credit" for every flex-fuel vehicle sold, whether or not the vehicle is actually fueled with E85 in regular use. This loophole allegedly allows the U.S. auto industry to meet CAFE fuel economy targets not by developing more fuel-efficient models, but by spending between US$100 and US$200 extra per vehicle to produce a certain number of flex-fuel models, enabling them to continue selling less fuel-efficient vehicles such as SUVs, which netted higher profit margins than smaller, more fuel-efficient cars.

In the United States, E85 FFVs are equipped with sensor that automatically detect the fuel mixture, signaling the ECU to tune spark timing and fuel injection so that fuel will burn cleanly in the vehicle's internal combustion engine. Originally, the sensors were mounted in the fuel line and exhaust system; more recent models do away with the fuel line sensor. Another feature of older flex-fuel cars is a small separate gasoline storage tank that was used for starting the car on cold days, when the ethanol mixture made ignition more difficult.

The Honda CG 150 Titan Mix was the first flex-fuel motorcycle launched to the market in the world.

Modern Brazilian flex-fuel technology enables FFVs to run an any blend between E20-E25 gasohol and E100 ethanol fuel, using a lambda probe to measure the quality of combustion, which informs the engine control unit as to the exact composition of the gasoline-alcohol mixture. This technology, developed by the Brazilian subsidiary of Bosch in 1994, and further improved and commercially implemented in 2003 by the Italian subsidiary of Magneti Marelli, is known as "Software Fuel Sensor". The Brazilian subsidiary of Delphi Automotive Systems developed a similar technology, known as "Multifuel", based on research conducted at its facility in Piracicaba, São Paulo. This technology allows the controller to regulate the amount of fuel injected and spark time, as fuel flow needs to be decreased to avoid detonation due to the high compression ratio (around 12:1) used by flex-fuel engines.

The first flex motorcycle was launched by Honda in March 2009. Produced by its Brazilian subsidiary Moto Honda da Amazônia, the CG 150 Titan Mix is sold for around US$2,700. Because the motorcycle does not have a secondary gas tank for a cold start like the Brazilian flex cars do, the tank must have at least 20% of gasoline to avoid start up problems at temperatures below 15 °C (59 °F). The motorcycle's panel includes a gauge to warn the driver about the actual ethanol-gasoline mix in the storage tank.

Hybrids

Hybrid electric vehicle

A hybrid vehicle uses multiple propulsion systems to provide motive power. The most common type of hybrid vehicle is the gasoline-electric hybrid vehicles, which use gasoline (petrol) and electric batteries for the energy used to power internal-combustion engines (ICEs) and electric motors. These motors are usually relatively small and would be considered "underpowered" by themselves, but they can provide a normal driving experience when used in combination during acceleration and other maneuvers that require greater power.

The Toyota Prius is the world's best-selling hybrid electric vehicle, with global sales of almost 4 million units through January 2017.

The Toyota Prius first went on sale in Japan in 1997 and it is sold worldwide since 2000. By 2017 the Prius is sold in more than 90 countries and regions, with Japan and the United States as its largest markets. In May 2008, global cumulative Prius sales reached the 1 million units, and by September 2010, the Prius reached worldwide cumulative sales of 2 million units, and 3 million units by June 2013. As of January 2017, global hybrid sales are led by the Prius family, with cumulative sales of 6.0361 million units, excluding its plug-in hybrid variant. The Toyota Prius liftback is the leading model of the Toyota brand with cumulative sales of 3.985 million units, followed by the Toyota Aqua/Prius c, with global sales of 1.380 million units, the Prius v/α/+ with 671,200, the Camry Hybrid with 614,700 units, the Toyota Auris with 378,000 units, and the Toyota Yaris Hybrid with 302,700. The best-selling Lexus model is the Lexus RX 400h/RX 450h with global sales of 363,000 units.

The Honda Insight is a two-seater hatchback hybrid automobile manufactured by Honda. It was the first mass-produced hybrid automobile sold in the United States, introduced in 1999, and produced until 2006. Honda introduced the second-generation Insight in Japan in February 2009, and the new Insight went on sale in the United States on April 22, 2009. Honda also offers the Honda Civic Hybrid since 2002.

As of January 2017, there are over 50 models of hybrid electric cars available in several world markets, with more than 12 million hybrid electric vehicles sold worldwide since their inception in 1997.As of April 2016, Japan ranked as the market leader with more than 5 million hybrids sold, followed by the United States with cumulative sales of over 4 million units since 1999, and Europe with about 1.5 million hybrids delivered since 2000. Japan has the world's highest hybrid market penetration. By 2013 the hybrid market share accounted for more than 30% of new standard passenger car sold, and about 20% new passenger vehicle sales including kei cars. The Netherlands ranks second with a hybrid market share of 4.5% of new car sales in 2012.

As of January 2017, global sales are by Toyota Motor Company with more than 10 million Lexus and Toyota hybrids sold, followed by Honda Motor Co., Ltd. with cumulative global sales of more than 1.35 million hybrids as of June 2014; Ford Motor Corporation with over 424 thousand hybrids sold in the United States through June 2015, of which, around 10% are plug-in hybrids; Hyundai Group with cumulative global sales of 200 thousand hybrids as of March 2014, including both Hyundai Motors and Kia Motors hybrid models; and PSA Peugeot Citroën with over 50,000 diesel-powered hybrids sold in Europe through December 2013.

The Elantra LPI Hybrid, launched in the South Korean domestic market in July 2009, is a hybrid vehicle powered by an internal combustion engine built to run on liquefied petroleum gas (LPG) as a fuel. The Elantra PLI is a mild hybrid and the first hybrid to adopt advanced lithium polymer (Li–Poly) batteries.

Plug-in hybrid electric vehicle

Until 2010 most plug-in hybrids on the road in the U.S. were conversions of conventional hybrid electric vehicles, and the most prominent PHEVs were conversions of 2004 or later Toyota Prius, which have had plug-in charging and more batteries added and their electric-only range extended. Chinese battery manufacturer and automaker BYD Auto released the F3DM to the Chinese fleet market in December 2008 and began sales to the general public in Shenzhen in March 2010. General Motors began deliveries of the Chevrolet Volt in the U.S. in December 2010. Deliveries to retail customers of the Fisker Karma began in the U.S. in November 2011.

The Mitsubishi Outlander P-HEV is the world's all-time best selling plug-in hybrid with 270,000 units sold through December 2020.

During 2012, the Toyota Prius Plug-in Hybrid, Ford C-Max Energi, and Volvo V60 Plug-in Hybrid were released. The following models were launched during 2013 and 2015: Honda Accord Plug-in Hybrid, Mitsubishi Outlander P-HEV, Ford Fusion Energi, McLaren P1 (limited edition), Porsche Panamera S E-Hybrid, BYD Qin, Cadillac ELR, BMW i3 REx, BMW i8, Porsche 918 Spyder (limited production), Volkswagen XL1 (limited production), Audi A3 Sportback e-tron, Volkswagen Golf GTE, Mercedes-Benz S 500 e, Porsche Cayenne S E-Hybrid, Mercedes-Benz C 350 e, BYD Tang, Volkswagen Passat GTE, Volvo XC90 T8, BMW X5 xDrive40e, Hyundai Sonata PHEV, and Volvo S60L PHEV.

As of December 2015, about 500,000 highway-capable plug-in hybrid electric cars had been sold worldwide since December 2008, out of total cumulative global sales of 1.2 million light-duty plug-in electric vehicles. As of December 2016, the Volt/Ampera family of plug-in hybrids, with combined sales of about 134,500 units is the top selling plug-in hybrid in the world. Ranking next are the Mitsubishi Outlander P-HEV with about 119,500, and the Toyota Prius Plug-in Hybrid with almost 78,000.

Pedal-assisted electric hybrid vehicle

In very small vehicles, the power demand decreases, so human power can be employed to make a significant improvement in battery life. Three such commercially made vehicles are the Sinclair C5, ELF and TWIKE.

Comparative assessment of fossil and alternative fuels

Different fuel pathways require different amounts of energy to drive 100 km. From left to right: Coal to electricity to electrical car. Renewable energy (e.g. wind or photovoltaics) to electrical car. Renewable energy to hydrogen to hydrogen-powered car. Petroleum to diesel to internal combustion engine.

According to a recent comparative energy and environmental analysis of the vehicle fuel end use (petroleum and natural gas derivatives & hydrogen; biofuels like ethanol or biodiesel, and their mixtures; as well as electricity intended to be used in plug-in electric vehicles), the renewable and non-renewable unit energy costs and CO2 emission cost are suitable indicators for assessing the renewable energy consumption intensity and the environmental impact, and for quantifying the thermodynamic performance of the transportation sector. This analysis allows ranking the energy conversion processes along the vehicle fuels production routes and their end-use, so that the best options for the transportation sector can be determined and better energy policies may be issued. Thus, if a drastic CO2 emissions abatement of the transportation sector is pursued, a more intensive utilization of ethanol in the Brazilian transportation sector mix is advisable. However, as the overall exergy conversion efficiency of the sugar cane industry is still very low, which increases the unit energy cost of ethanol, better production and end-use technologies are required. Nonetheless, with the current scenario of a predominantly renewable Brazilian electricity mix, based on more than 80% of renewable sources, this source consolidates as the most promising energy source to reduce the large amount of greenhouse gas emissions which transportation sector is responsible for.

Tuesday, November 30, 2021

Hydrogen vehicle

From Wikipedia, the free encyclopedia
 
The 2015 Toyota Mirai is one of the first hydrogen fuel cell vehicles to be sold commercially. The Mirai is based on the Toyota fuel cell vehicle (FCV) concept car (shown).

A hydrogen vehicle is a type of alternative fuel vehicle that uses hydrogen fuel for motive power. Hydrogen vehicles include hydrogen-fueled space rockets, as well as automobiles and other transportation vehicles. Power is generated by converting the chemical energy of hydrogen to mechanical energy, either by reacting hydrogen with oxygen in a fuel cell to power electric motors or, less commonly, by burning hydrogen in an internal combustion engine.

As of 2021, there are two models of hydrogen cars publicly available in select markets: the Toyota Mirai (2014–), which is the world's first mass-produced dedicated fuel cell electric vehicle (FCEV), and the Hyundai Nexo (2018–). The Honda Clarity was produced from 2016 to 2021. Most companies that had been testing hydrogen cars have switched to battery electric cars; Volkswagen has expressed that the technology has no future in the automotive space, mainly because a fuel cell electric vehicle consumes about three times more energy than a battery electric car for each mile driven. As of December 2020, there were 31,225 passenger FCEVs powered with hydrogen on the world's roads.

As of 2019, 98% of hydrogen is produced by steam methane reforming, which emits carbon monoxide. It can be produced by thermochemical or pyrolytic means using renewable feedstocks, but the processes are currently expensive. Various technologies are being developed that aim to deliver costs low enough, and quantities great enough, to compete with hydrogen production using natural gas.

The benefits of hydrogen technology are fast refueling time (comparable to gasoline) and long driving range on a single tank. The drawbacks of hydrogen use are high carbon emissions when hydrogen is produced from natural gas, capital cost burden, low energy content per unit volume at ambient conditions, production and compression of hydrogen, the investment required in filling stations to dispense hydrogen, transportation of hydrogen to filling stations, and lack of ability to produce or dispense hydrogen at home.

Vehicles

Honda FCX Clarity, a hydrogen fuel cell demonstration vehicle introduced in 2008

Automobiles, buses, forklifts, trains, PHB bicycles, canal boats, cargo bikes, golf carts, motorcycles, wheelchairs, ships, aeroplanes, submarines, and rockets can already run on hydrogen, in various forms. NASA used hydrogen to launch Space Shuttles into space. A working toy model car runs on solar power, using a regenerative fuel cell to store energy in the form of hydrogen and oxygen gas. It can then convert the fuel back into water to release the solar energy. Since the advent of hydraulic fracturing the key concern for hydrogen fuel cell vehicles is consumer and public policy confusion concerning the adoption of natural gas powered hydrogen vehicles with heavy hidden emissions to the detriment of environmentally friendly transportation.

Automobiles

As of 2021, there are two hydrogen cars publicly available in select markets: the Toyota Mirai and the Hyundai Nexo. The Honda Clarity was produced from 2016 to 2021.

The Hyundai Nexo is a hydrogen fuel cell-powered crossover SUV

In 2013 the Hyundai Tucson FCEV was launched, it was a conversion of the Tucson and available in left-hand drive only and became the first commercially mass-produced vehicle of its type in the world. Hyundai Nexo, which succeeded the Tucson in 2018, was selected as the "safest SUV" by the Euro NCAP in 2018 and was rated as "Good" in a side crash test conducted by the Insurance Institute for Highway Safety (IIHS)

Toyota launched the world's first dedicated mass-produced fuel cell vehicle (FCV), the Mirai, in Japan at the end of 2014 and began sales in California, mainly the Los Angeles area and also in selected markets in Europe, the UK, Germany and Denmark later in 2015. The car has a range of 312 mi (502 km) and takes about five minutes to refill its hydrogen tank. The initial sale price in Japan was about 7 million yen ($69,000). Former European Parliament President Pat Cox estimated that Toyota would initially lose about $100,000 on each Mirai sold. At the end of 2019, Toyota had sold over 10,000 Mirais. Many automobile companies have introduced demonstration models in limited numbers (see List of fuel cell vehicles and List of hydrogen internal combustion engine vehicles).

In 2013 BMW leased hydrogen technology from Toyota, and a group formed by Ford Motor Company, Daimler AG, and Nissan announced a collaboration on hydrogen technology development. By 2017, however, Daimler had abandoned hydrogen vehicle development, and most of the automobile companies developing hydrogen cars had switched their focus to battery electric vehicles. By 2020, all but three automobile companies had abandoned plans to manufacture hydrogen cars.

Auto racing

A record of 207.297 miles per hour (333.612 km/h) was set by a prototype Ford Fusion Hydrogen 999 Fuel Cell Race Car at the Bonneville Salt Flats, in August 2007, using a large compressed oxygen tank to increase power. The land-speed record for a hydrogen-powered vehicle of 286.476 miles per hour (461.038 km/h) was set by Ohio State University's Buckeye Bullet 2, which achieved a "flying-mile" speed of 280.007 miles per hour (450.628 km/h) at the Bonneville Salt Flats in August 2008.

In 2007, the Hydrogen Electric Racing Federation was formed as a racing organization for hydrogen fuel cell-powered vehicles. The organization sponsored the Hydrogen 500, a 500-mile race.

Buses

Solaris Urbino 12 bus near the factory In Bolechowo, Poland

Fuel-cell buses are being trialed by several manufacturers in different locations, for example, the Ursus Lublin. Solaris Bus & Coach introduced its Urbino 12 hydrogen electric buses in 2019. Several dozen have been ordered and are expected to be delivered in 2020 and 2021.

Trams and trains

In March 2015, China South Rail Corporation (CSR) demonstrated the world's first hydrogen fuel cell-powered tramcar at an assembly facility in Qingdao. The chief engineer of the CSR subsidiary CSR Sifang Co Ltd., Liang Jianying, said that the company is studying how to reduce the running costs of the tram. Tracks for the new vehicle have been built in seven Chinese cities. China plans to spend 200 billion yuan ($32 billion) through 2020 to increase tram tracks to more than 1,200 miles.

In northern Germany in 2018 the first fuel-cell powered Coradia iLint trains were placed into service; excess power is stored in lithium-ion batteries.

An experimental "Hydroflex" train, British Rail Class 799, began tests in Great Britain in June 2019.

Ships

As of 2019 Hydrogen fuel cells are not suitable for propulsion in large long-distance ships, but they are being considered as a range-extender for smaller, short-distance, low-speed electric vessels, such as ferries. Hydrogen in ammonia is being considered as a long-distance fuel.

Bicycles

PHB hydrogen bicycle

In 2007, Pearl Hydrogen Power Source Technology Co of Shanghai, China, demonstrated a PHB hydrogen bicycle. In 2014, Australian scientists from the University of New South Wales presented their Hy-Cycle model. The same year, Canyon Bicycles started to work on the Eco Speed concept bicycle.

In 2017, Pragma Industries of France developed a bicycle that was able to travel 100 km on a single hydrogen cylinder. In 2019, Pragma announced that the product, "Alpha Bike", has been improved to offer an electrically assisted pedalling range of 150 km, and the first 200 of the bikes are to be provided to journalists covering the 45th G7 summit in Biarritz, France. If successful, Lloyd Alter of TreeHugger responded to the announcement, asking "why … go through the trouble of using electricity to make hydrogen, only to turn it back into electricity to charge a battery to run the e-bike [or] pick a fuel that needs an expensive filling station that can only handle 35 bikes a day, when you can charge a battery powered bike anywhere. [If] you were a captive fleet operator, why [not] just swap out batteries to get the range and the fast turnover?"

Military vehicles

General Motors' military division, GM Defense, focuses on hydrogen fuel cell vehicles. Its SURUS (Silent Utility Rover Universal Superstructure) is a flexible fuel cell electric platform with autonomous capabilities. Since April 2017, the U.S. Army has been testing the commercial Chevrolet Colorado ZH2 on its U.S. bases to determine the viability of hydrogen-powered vehicles in military mission tactical environments.

Motorcycles and scooters

ENV develops electric motorcycles powered by a hydrogen fuel cell, including the Crosscage and Biplane. Other manufacturers as Vectrix are working on hydrogen scooters. Finally, hydrogen-fuel-cell-electric-hybrid scooters are being made such as the Suzuki Burgman fuel-cell scooter and the FHybrid. The Burgman received "whole vehicle type" approval in the EU. The Taiwanese company APFCT conducted a live street test with 80 fuel-cell scooters for Taiwan's Bureau of Energy.

Auto rickshaws

Hydrogen auto rickshaw concept vehicles have been built by Mahindra HyAlfa and Bajaj Auto.

Quads and tractors

Autostudi S.r.l's H-Due is a hydrogen-powered quad, capable of transporting 1-3 passengers. A concept for a hydrogen-powered tractor has been proposed.

Aeroplanes

The Boeing Fuel Cell Demonstrator powered by a hydrogen fuel cell

Companies such as Boeing, Lange Aviation, and the German Aerospace Center pursue hydrogen as fuel for manned and unmanned aeroplanes. In February 2008 Boeing tested a manned flight of a small aircraft powered by a hydrogen fuel cell. Unmanned hydrogen planes have also been tested. For large passenger aeroplanes, The Times reported that "Boeing said that hydrogen fuel cells were unlikely to power the engines of large passenger jet aeroplanes but could be used as backup or auxiliary power units onboard."

In July 2010, Boeing unveiled its hydrogen-powered Phantom Eye UAV, powered by two Ford internal-combustion engines that have been converted to run on hydrogen.

In Britain, the Reaction Engines A2 has been proposed to use the thermodynamic properties of liquid hydrogen to achieve very high speed, long distance (antipodal) flight by burning it in a precooled jet engine.

Fork trucks

A hydrogen internal combustion engine (or "HICE") forklift or HICE lift truck is a hydrogen fueled, internal combustion engine-powered industrial forklift truck used for lifting and transporting materials. The first production HICE forklift truck based on the Linde X39 Diesel was presented at an exposition in Hannover on May 27, 2008. It used a 2.0 litre, 43 kW (58 hp) diesel internal combustion engine converted to use hydrogen as a fuel with the use of a compressor and direct injection.

A fuel cell forklift (also called a fuel cell lift truck) is a fuel cell powered industrial forklift truck. In 2013 there were over 4,000 fuel cell forklifts used in material handling in the US. The global market was estimated at 1 million fuel cell powered forklifts per year for 2014–2016. Fleets are being operated by companies around the world. Pike Research stated in 2011 that fuel-cell-powered forklifts will be the largest driver of hydrogen fuel demand by 2020.

Most companies in Europe and the US do not use petroleum powered forklifts, as these vehicles work indoors where emissions must be controlled and instead use electric forklifts. Fuel-cell-powered forklifts can provide benefits over battery powered forklifts as they can be refueled in 3 minutes. They can be used in refrigerated warehouses, as their performance is not degraded by lower temperatures. The fuel cell units are often designed as drop-in replacements.

Rockets

Many large rockets use liquid hydrogen as fuel, with liquid oxygen as an oxidizer (LH2/LOX). An advantage of hydrogen rocket fuel is the high effective exhaust velocity compared to kerosene/LOX or UDMH/NTO engines. According to the Tsiolkovsky rocket equation, a rocket with higher exhaust velocity uses less propellant to accelerate. Also the energy density of hydrogen is greater than any other fuel. LH2/LOX also yields the greatest efficiency in relation to the amount of propellant consumed, of any known rocket propellant.

A disadvantage of LH2/LOX engines is the low density and low temperature of liquid hydrogen, which means bigger and insulated and thus heavier fuel tanks are needed. This increases the rocket's structural mass which reduces its delta-v significantly. Another disadvantage is the poor storability of LH2/LOX-powered rockets: Due to the constant hydrogen boil-off, the rocket must be fueled shortly before launch, which makes cryogenic engines unsuitable for ICBMs and other rocket applications with the need for short launch preparations.

Overall, the delta-v of a hydrogen stage is typically not much different from that of a dense fuelled stage, but the weight of a hydrogen stage is much less, which makes it particularly effective for upper stages, since they are carried by the lower stages. For first stages, dense fuelled rockets in studies may show a small advantage, due to the smaller vehicle size and lower air drag.

LH2/LOX were also used in the Space Shuttle to run the fuel cells that power the electrical systems. The byproduct of the fuel cell is water, which is used for drinking and other applications that require water in space.

Heavy trucks

United Parcel Service began testing of a hydrogen powered delivery vehicle in 2017. US Hybrid, Toyota, and Kenworth also plan to test Class 8 drayage hydrogen fuel cell trucks.

In 2020, Hyundai began commercial production of its Xcient fuel cell trucks and has shipped ten of them to Switzerland. It plans to sell to additional markets, including the US by 2022.

Internal combustion vehicle

Hydrogen internal combustion engine cars are different from hydrogen fuel cell cars. The hydrogen internal combustion car is a slightly modified version of the traditional gasoline internal combustion engine car. These hydrogen engines burn fuel in the same manner that gasoline engines do; the main difference is the exhaust product. Gasoline combustion results in emissions of mostly carbon dioxide and water, plus trace amounts of carbon monoxide, NOx, particulates and unburned hydrocarbons, while the main exhaust product of hydrogen combustion is water vapor.

In 1807 Francois Isaac de Rivaz designed the first hydrogen-fueled internal combustion engine. In 1965, Roger Billings, then a high school student, converted a Model A to run on hydrogen. In 1970 Paul Dieges patented a modification to internal combustion engines which allowed a gasoline-powered engine to run on hydrogen US 3844262.

Mazda has developed Wankel engines burning hydrogen, which are used in the Mazda RX-8 Hydrogen RE. The advantage of using an internal combustion engine, like Wankel and piston engines, is the lower cost of retooling for production.

HICE forklift trucks have been demonstrated based on converted diesel internal combustion engines with direct injection.

Fuel cell

Fuel cell cost

Hydrogen fuel cells are relatively expensive to produce, as their designs require rare substances, such as platinum, as a catalyst, In 2014, former European Parliament President Pat Cox estimated that Toyota would initially lose about $100,000 on each Mirai sold. In 2020, researchers at the University of Copenhagen's Department of Chemistry are developing a new type of catalyst that they hope will decrease the cost of fuel cells. This new catalyst uses far less platinum because the platinum nano-particles are not coated over carbon which, in conventional hydrogen fuel cells, keeps the nano-particles in place but also causes the catalyst to become unstable and denatures it slowly, requiring even more platinum. The new technology uses durable nanowires instead of the nano-particles. "The next step for the researchers is to scale up their results so that the technology can be implemented in hydrogen vehicles."

Freezing conditions

The problems in early fuel-cell designs at low temperatures concerning range and cold start capabilities have been addressed so that they "cannot be seen as show-stoppers anymore". Users in 2014 said that their fuel cell vehicles perform flawlessly in temperatures below zero, even with the heaters blasting, without significantly reducing range. Studies using neutron radiography on unassisted cold-start indicate ice formation in the cathode, three stages in cold start and Nafion ionic conductivity. A parameter, defined as coulomb of charge, was also defined to measure cold start capability.

Service life

The service life of fuel cells is comparable to that of other vehicles. Polymer-electrolyte membrane (PEM) fuel cell service life is 7,300 hours under cycling conditions.

Hydrogen

Hydrogen does not exist in convenient reservoirs or deposits like fossil fuels or helium. It is produced from feedstocks such as natural gas and biomass or electrolyzed from water. A suggested benefit of large-scale deployment of hydrogen vehicles is that it could lead to decreased emissions of greenhouse gases and ozone precursors. However, as of 2014, 95% of hydrogen is made from methane. It can be produced by thermochemical or pyrolitic means using renewable feedstocks, but that is an expensive process. Renewable electricity can however be used to power the conversion of water into hydrogen: Integrated wind-to-hydrogen (power to gas) plants, using electrolysis of water, are exploring technologies to deliver costs low enough, and quantities great enough, to compete with traditional energy sources.

According to Ford Motor Company, a hydrogen fuel-cell vehicle would generate only three-fifths as much carbon dioxide as a comparable vehicle running on gasoline blended to 10 percent ethanol. Although methods of hydrogen production that do not use fossil fuel would be more sustainable, currently renewable energy represents only a small percentage of energy generated, and power produced from renewable sources can be used more efficiently in electric vehicles and for non-vehicle applications.

The challenges facing the use of hydrogen in vehicles include chiefly its storage on board the vehicle. While the well-to-wheel efficiency for hydrogen from the least efficient manner of producing it (electrolysis) is less than 25 percent, it still exceeds that of vehicles based on internal combustion engines.

Production

The molecular hydrogen needed as an onboard fuel for hydrogen vehicles can be obtained through many thermochemical methods utilizing natural gas, coal (by a process known as coal gasification), liquefied petroleum gas, biomass (biomass gasification), by a process called thermolysis, or as a microbial waste product called biohydrogen or Biological hydrogen production. 95% of hydrogen is produced using natural gas, and 85% of hydrogen produced is used to remove sulfur from gasoline. Hydrogen can also be produced from water by electrolysis at working efficiencies of 65–70%. Hydrogen can also be made by chemical reduction using chemical hydrides or aluminum. Current technologies for manufacturing hydrogen use energy in various forms, totaling between 25 and 50 percent of the higher heating value of the hydrogen fuel, used to produce, compress or liquefy, and transmit the hydrogen by pipeline or truck.

Environmental consequences of the production of hydrogen from fossil energy resources include the emission of greenhouse gasses, a consequence that would also result from the on-board reforming of methanol into hydrogen. Analyses comparing the environmental consequences of hydrogen production and use in fuel-cell vehicles to the refining of petroleum and combustion in conventional automobile engines do not agree on whether a net reduction of ozone and greenhouse gasses would result. Hydrogen production using renewable energy resources would not create such emissions, but the scale of renewable energy production would need to be expanded to be used in producing hydrogen for a significant part of transportation needs. As of 2016, 14.9 percent of U.S. electricity was produced from renewable sources. In a few countries, renewable sources are being used more widely to produce energy and hydrogen. For example, Iceland is using geothermal power to produce hydrogen, and Denmark is using wind.

Storage

Compressed hydrogen storage mark

Compressed hydrogen in hydrogen tanks at 350 bar (5,000 psi) and 700 bar (10,000 psi) is used for hydrogen tank systems in vehicles, based on type IV carbon-composite technology.

Hydrogen has a very low volumetric energy density at ambient conditions, compared with gasoline and other vehicle fuels. It must be stored in a vehicle either as a super-cooled liquid or as highly compressed gas, which require additional energy to accomplish. In 2018, researchers at CSIRO in Australia powered a Toyota Mirai and Hyundai Nexo with hydrogen separated from ammonia using a membrane technology. Ammonia is easier to transport safely in tankers than pure hydrogen.

Infrastructure

Hydrogen car fueling
 
Hydrogen fueling

The hydrogen infrastructure consists of hydrogen-equipped filling stations, which are supplied with hydrogen via compressed hydrogen tube trailers, liquid hydrogen tank trucks or dedicated onsite production, and some industrial hydrogen pipeline transport. The distribution of hydrogen fuel for vehicles throughout the U.S. would require new hydrogen stations that would cost between 20 billion dollars in the US, (4.6 billion in the EU). and half trillion dollars in the US.

As of 2021, there were 49 publicly accessible hydrogen refueling stations in the US, 48 of which were located in California (compared with 42,830 electric charging stations). By 2017, there were 91 hydrogen fueling stations in Japan.

Codes and standards

Hydrogen codes and standards, as well as codes and technical standards for hydrogen safety and the storage of hydrogen, have been an institutional barrier to deploying hydrogen technologies. To enable the commercialization of hydrogen in consumer products, new codes and standards must be developed and adopted by federal, state and local governments.

Official support

U.S. initiatives

In 2003, George W. Bush announced an initiative to promote hydrogen-powered vehicles. In 2009, President Obama and his Energy Secretary Steven Chu stripped the funding of fuel cell technology after concluding that the technology was still decades away. Under heavy criticism, the funding was partially restored.

In 2013, Senator Byron L. Dorgan said that "The Energy and Water Appropriations bill makes investments in our nation’s efforts to develop safe, homegrown energy sources that will reduce our reliance on foreign oil. And, because ongoing research and development is necessary to develop game-changing technologies, this bill also restores funding for Hydrogen energy research." The same year, the U.S. Department of Energy gave 9 million dollars in grants to speed up technology development, 4.5 million for advanced fuel cell membranes, $3 million to 3M to work on membranes with improved durability and performance, and 1.5 million to the Colorado School of Mines for work on simpler and more affordable fuel cell membranes. US investments in fueling were planned in 2014.

Other efforts

In Japan, hydrogen is mainly to be sourced from outside Japan.

Norway plans a series of hydrogen refueling stations along the main roads.

Criticism

Critics claim the time frame for overcoming the technical and economic challenges to implementing wide-scale use of hydrogen cars is likely to last for at least several decades. They claim that the focus on the use of the hydrogen car is a dangerous detour from more readily available solutions to reducing the use of fossil fuels in vehicles. In May 2008, Wired News reported that "experts say it will be 40 years or more before hydrogen has any meaningful impact on gasoline consumption or global warming, and we can't afford to wait that long. In the meantime, fuel cells are diverting resources from more immediate solutions."

Critiques of hydrogen vehicles are presented in the 2006 documentary, Who Killed the Electric Car?. According to former U.S. Department of Energy official Joseph Romm, "A hydrogen car is one of the least efficient, most expensive ways to reduce greenhouse gases." Asked when hydrogen cars will be broadly available, Romm replied: "Not in our lifetime, and very possibly never." The Los Angeles Times wrote, in 2009, "Hydrogen fuel-cell technology won't work in cars. ... Any way you look at it, hydrogen is a lousy way to move cars." The Economist magazine, in 2008, quoted Robert Zubrin, the author of Energy Victory, as saying: "Hydrogen is 'just about the worst possible vehicle fuel'". The magazine noted the withdrawal of California from earlier goals: "In [2008] the California Air Resources Board, an agency of California's state government and a bellwether for state governments across America, changed its requirement for the number of zero-emission vehicles (ZEVs) to be built and sold in California between 2012 and 2014. The revised mandate allows manufacturers to comply with the rules by building more battery-electric cars instead of fuel-cell vehicles." The magazine also noted that most hydrogen is produced through steam methane reformation, which creates at least as much emission of carbon per mile as some of today's gasoline cars. On the other hand, if the hydrogen could be produced using renewable energy, "it would surely be easier simply to use this energy to charge the batteries of all-electric or plug-in hybrid vehicles." As of 2019, 98% of hydrogen is produced by steam methane reforming, which emits carbon dioxide.

A 2009 study at UC Davis, published in the Journal of Power Sources, similarly found that, over their lifetimes, hydrogen vehicles will emit more carbon than gasoline vehicles. This agrees with a 2014 analysis. The Washington Post asked in 2009, "[W]hy would you want to store energy in the form of hydrogen and then use that hydrogen to produce electricity for a motor, when electrical energy is already waiting to be sucked out of sockets all over America and stored in auto batteries"? The Motley Fool stated in 2013 that "there are still cost-prohibitive obstacles [for hydrogen cars] relating to transportation, storage, and, most importantly, production."

Volkswagen's Rudolf Krebs said in 2013 that "no matter how excellent you make the cars themselves, the laws of physics hinder their overall efficiency. The most efficient way to convert energy to mobility is electricity." He elaborated: "Hydrogen mobility only makes sense if you use green energy", but ... you need to convert it first into hydrogen "with low efficiencies" where "you lose about 40 percent of the initial energy". You then must compress the hydrogen and store it under high pressure in tanks, which uses more energy. "And then you have to convert the hydrogen back to electricity in a fuel cell with another efficiency loss". Krebs continued: "in the end, from your original 100 percent of electric energy, you end up with 30 to 40 percent." The Business Insider commented:

Pure hydrogen can be industrially derived, but it takes energy. If that energy does not come from renewable sources, then fuel-cell cars are not as clean as they seem. ... Another challenge is the lack of infrastructure. Gas stations need to invest in the ability to refuel hydrogen tanks before FCEVs [fuel cell electric vehicles] become practical, and it's unlikely many will do that while there are so few customers on the road today. ... Compounding the lack of infrastructure is the high cost of the technology. Fuel cells are "still very, very expensive".

In 2014, Joseph Romm devoted three articles to updating his critiques of hydrogen vehicles made in his book The Hype about Hydrogen. He stated that fuel cell vehicles still had not overcome the high cost of the vehicles, high fueling cost, and lack of fuel-delivery infrastructure. "It would take several miracles to overcome all of those problems simultaneously in the coming decades." Moreover, he wrote, "FCVs aren't green" because of escaping methane during natural gas extraction and when hydrogen is produced, as 95% of it is, using the steam reforming process. He concluded that renewable energy cannot economically be used to make hydrogen for an FCV fleet "either now or in the future." GreenTech Media's analyst reached similar conclusions in 2014. In 2015, Clean Technica listed some of the disadvantages of hydrogen fuel cell vehicles as did Car Throttle. Another Clean Technica writer concluded that "while hydrogen may have a part to play in the world of energy storage (especially seasonal storage), it looks like a dead end when it comes to mainstream vehicles." A 2016 study in the November issue of the journal Energy by scientists at Stanford University and the Technical University of Munich concluded that, even assuming local hydrogen production, "investing in all-electric battery vehicles is a more economical choice for reducing carbon dioxide emissions, primarily due to their lower cost and significantly higher energy efficiency."

A 2017 analysis published in Green Car Reports concluded that the best hydrogen-fuel-cell vehicles consume "more than three times more electricity per mile than an electric vehicle ... generate more greenhouse gas emissions than other powertrain technologies ... [and have] very high fuel costs. ... Considering all the obstacles and requirements for new infrastructure (estimated to cost as much as $400 billion), fuel-cell vehicles seem likely to be a niche technology at best, with little impact on U.S. oil consumption. The US Department of Energy agrees, for fuel produced by grid electricity via electrolysis, but not for most other pathways for generation. A 2019 video by Real Engineering noted that, notwithstanding the introduction of vehicles that run on hydrogen, using hydrogen as a fuel for cars does not help to reduce carbon emissions from transportation. The 95% of hydrogen still produced from fossil fuels releases carbon dioxide, and producing hydrogen from water is an energy-consuming process. Storing hydrogen requires more energy either to cool it down to the liquid state or to put it into tanks under high pressure, and delivering the hydrogen to fueling stations requires more energy and may release more carbon. The hydrogen needed to move a FCV a kilometer costs approximately 8 times as much as the electricity needed to move a BEV the same distance. Also in 2019, Katsushi Inoue, the president of Honda Europe, stated, "Our focus is on hybrid and electric vehicles now. Maybe hydrogen fuel cell cars will come, but that’s a technology for the next era."

A 2020 assessment concluded that hydrogen vehicles are still only 38% efficient, while battery EVs are 80% efficient. A 2021 assessment by CleanTechnica concluded that while hydrogen cars are far less efficient than electric cars, the vast majority of hydrogen being produced is polluting grey hydrogen, and delivering hydrogen would require building a vast and expensive new infrastructure, the remaining two "advantages of fuel cell vehicles – longer range and fast fueling times – are rapidly being eroded by improving battery and charging technology."

Safety and supply

Hydrogen fuel is hazardous because of the low ignition energy (see also Autoignition temperature) and high combustion energy of hydrogen, and because it tends to leak easily from tanks. Explosions at hydrogen filling stations have been reported. Hydrogen fuelling stations generally receive deliveries of hydrogen by truck from hydrogen suppliers. An interruption at a hydrogen supply facility can shut down multiple hydrogen fuelling stations.

Comparison with other types of alternative fuel vehicle

Hydrogen vehicles compete with various proposed alternatives to the modern fossil fuel powered vehicle infrastructure.

Plug-in hybrids

Plug-in hybrid electric vehicles, or PHEVs, are hybrid vehicles that can be plugged into the electric grid and contain an electric motor and also an internal combustion engine. The PHEV concept augments standard hybrid electric vehicles with the ability to recharge their batteries from an external source, enabling increased use of the vehicle's electric motors while reducing their reliance on internal combustion engines. The infrastructure required to charge PHEVs is already in place, and transmission of power from grid to car is about 93% efficient. This, however, is not the only energy loss in transferring power from grid to wheels. AC/DC conversion must take place from the grid's AC supply to the PHEV's DC. This is roughly 98% efficient. The battery then must be charged. As of 2007, the Lithium iron phosphate battery was between 80 and 90% efficient in charging/discharging. The battery needs to be cooled. As of 2009, "the total well-to-wheels efficiency with which a hydrogen fuel cell vehicle might utilize renewable electricity is roughly 20%. ... The well-to-wheels efficiency of charging an onboard battery and then discharging it to run an electric motor in a PHEV or EV, however, is 80%... four times more efficient than current hydrogen fuel cell vehicle pathways." A December 2009 study at UC Davis found that, over their lifetimes, PHEVs will emit less carbon than current vehicles, while hydrogen cars will emit more carbon than gasoline vehicles.

Natural gas

Internal combustion engine-based compressed natural gas(CNG), HCNG, LPG or LNG vehicles (Natural gas vehicles or NGVs) use methane (Natural gas or Biogas) directly as a fuel source. Natural gas has a higher energy density than hydrogen gas. NGVs using biogas are nearly carbon neutral. Unlike hydrogen vehicles, CNG vehicles have been available for many years, and there is sufficient infrastructure to provide both commercial and home refueling stations. Worldwide, there were 14.8 million natural gas vehicles by the end of 2011. The other use for natural gas is in steam reforming which is the common way to produce hydrogen gas for use in electric cars with fuel cells.

All-electric vehicles

A 2008 Technology Review article stated, "Electric cars—and plug-in hybrid cars—have an enormous advantage over hydrogen fuel-cell vehicles in utilizing low-carbon electricity. That is because of the inherent inefficiency of the entire hydrogen fueling process, from generating the hydrogen with that electricity to transporting this diffuse gas long distances, getting the hydrogen in the car, and then running it through a fuel cell—all for the purpose of converting the hydrogen back into electricity to drive the same exact electric motor you'll find in an electric car." Thermodynamically, each additional step in the conversion process decreases the overall efficiency of the process.

A 2013 comparison of hydrogen and battery electric vehicles agreed with the 25% figure from Ulf Bossel in 2006 and stated that the cost of an electric vehicle battery "is rapidly coming down, and the gap will widen further", while there is little "existing infrastructure to transport, store and deliver hydrogen to vehicles and would cost billions of dollars to put into place, everyone's household power sockets are "electric vehicle refueling" station and the "cost of electricity (depending on the source) is at least 75% cheaper than hydrogen." By 2018, the cost of EV batteries had fallen to below $150 per kWh.

Early electric car designs offered limited driving range causing range anxiety. For example, the 2013 Nissan Leaf had a range of 75 mi (121 km), More recent EV models generally have considerably greater range; for example, the 2020 Tesla Model S has a range of more than 400 mi (640 km). Most US commutes are 30–40 miles (48–64 km) per day round trip, and in Europe, most commutes are around 20 kilometres (12 mi) round-trip

In 2013 John Swanton of the California Air Resources Board, who saw EVs and hydrogen vehicles as complementary technologies, stated that EVs had the jump on fuel-cell autos, which "are like electric vehicles were 10 years ago. EVs are for real consumers, no strings attached. With EVs you have a lot of infrastructure in place. The Business Insider, in 2013 commented that if the energy to produce hydrogen "does not come from renewable sources, then fuel-cell cars are not as clean as they seem. ... Gas stations need to invest in the ability to refuel hydrogen tanks before FCEVs become practical, and it's unlikely many will do that while there are so few customers on the road today. ... Compounding the lack of infrastructure is the high cost of the technology. Fuel cells are "still very, very expensive", even compared to battery-powered EVs.

 

Johnson thermoelectric energy converter

From Wikipedia, the free encyclopedia

A Johnson thermoelectric energy converter or JTEC is a type of solid-state heat engine that uses the electrochemical oxidation and reduction of hydrogen in a two-cell, thermal cycle that approximates the Ericsson cycle. It is under investigation as a viable alternative to conventional thermoelectric conversion. Lonnie Johnson invented it and claims the converter exhibits an energy conversion efficiency of as much as 60%, however, this claim is at a theoretical level based on comparison with a Carnot cycle and assumes a temperature gradient of 600 °C. It was originally proposed for funding to the Office of Naval Research but was refused. Johnson obtained later funding by framing the engine as a hydrogen fuel cell. Johnson had been collaborating with PARC on development of the engine.

Mechanism of action

The JTEC converts is a form of heat engine that converts thermal energy into electrical energy by compressing and expanding hydrogen gas. It operates as a closed system with no moving classical mechanical parts, requires no input of fuel, and creates no exhaust. The engine consists of two stages: A low-temperature compression stage and a high-temperature power stage. Each stage consists of a working fluid chamber that a copper lined membrane electrode assembly (MEA) bisects. A MEA is a proprietary ceramic proton exchange membrane (PEM) that is sandwiched between two electrodes.

The operation is similar to an alkali-metal thermal to electric converter, using hydrogen as the working fluid rather than the highly-reactive molten alkali metals, which are difficult to work with. In the high-temperature power stage, expanding high pressure hydrogen from the compression stage converts the heat energy into electrical energy via the MEA. As the high-temperature, high pressure hydrogen is forced through the PEM it is ionized, producing protons and electrons. The protons pass through the membrane while the electrodes expel the electrons through a load. After passing through the PEM, the protons recombine with the electrons to produce low pressure hydrogen gas that flows out to the compression stage. From the perspective of the high-temperature stage, the load consists of the external load on the engine and the low-temperature compression stage. In the compression stage, electrical potential is applied across the MEA and forces protons to flow through the PEM to produce high pressure hydrogen. As the hydrogen travels between the stages, it passes through a heat exchanger that increases efficiency by helping to keep the high-temperature stage hot and the low-temperature stage cool.

The amount of energy available to the external load is the difference in electrical potential between that needed to compress hydrogen at low-temperature and that which expanding it at high temperature generates. Unlike other heat pump devices, the JTEC requires an initial input of electrical energy to start the compression stage and initiate the cycle. In principle, the engine can also be operated in reverse to convert electrical energy into a temperature differential, for example in HVAC applications. In one proposed application, solar irradiance would heat the power stage, and the compression stage would connect to an ambient temperature heat sink.

Applications

The scalability of the engine leads its developers to claim that its potential applications range from providing power for microelectromechanical systems (MEMS) to functioning as large-scale power plants.

The converter can use many diverse forms of fuel without the need for fuel-specific customization as seen in internal combustion engines, and can generate power from fuel combustion, solar irradiance, low grade waste heat from industry, or such other power generation systems as fuel cells, internal combustion engines, or turbines, because it functions as an external combustion engine.

 

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...