Search This Blog

Friday, December 10, 2021

Great Oxidation Event

From Wikipedia, the free encyclopedia
 
O2 build-up in the Earth's atmosphere. Red and green lines represent the range of the estimates while time is measured in billions of years ago (Ga).
  • Stage 1 (3.85–2.45 Ga): Practically no O2 in the atmosphere. The oceans were also largely anoxic - with the possible exception of O2 in the shallow oceans.
  • Stage 2 (2.45–1.85 Ga): O2 produced, rising to values of 0.02 and 0.04 atm, but absorbed in oceans and seabed rock.
  • Stage 3 (1.85–0.85 Ga): O2 starts to gas out of the oceans, but is absorbed by land surfaces. No significant change in oxygen level.
  • Stages 4 and 5 (0.85 Ga – present): Other O2 reservoirs filled; gas accumulates in atmosphere.

The Great Oxidation Event (GOE), also called Great Oxygenation Event, was a time interval when the Earth's atmosphere and the shallow ocean first experienced a rise in the amount of oxygen. This occurred approximately 2.4–2.0 Ga (billion years ago), during the Paleoproterozoic era. Geological, isotopic, and chemical evidence suggests that biologically-produced molecular oxygen (dioxygen, O2) started to accumulate in Earth's atmosphere and changed it from a weakly reducing atmosphere practically free of oxygen into an oxidizing atmosphere containing abundant oxygen, causing many existing anaerobic species on Earth to die out. The event is inferred to have been caused by cyanobacteria producing the oxygen, which stored enough chemical energy to enable the subsequent development of multicellular life-forms.

The early atmosphere

The composition of the Earth's earliest atmosphere is not known with certainty. However, the bulk was likely dinitrogen, N2, and carbon dioxide, CO2, which are also the predominant carbon- and nitrogen-bearing gases produced by volcanism today. These are relatively inert gases. The Sun shone at about 70% of its current brightness 4 billion years ago, but there is strong evidence that liquid water existed on Earth at the time. A warm Earth, in spite of a faint Sun, is known as the faint young Sun paradox. Either carbon dioxide levels were much higher at the time, providing enough of a greenhouse effect to warm the Earth, or other greenhouse gases were present. The most likely such gas is methane, CH4, which is a powerful greenhouse gas and was produced by early forms of life known as methanogens. Scientists continue to research how the Earth was warmed before life arose.

An atmosphere of N2 and CO2 with trace amounts of H2O, CH4, carbon monoxide (CO), and hydrogen (H2), is described as a weakly reducing atmosphere. Such an atmosphere contains practically no oxygen. The modern atmosphere contains abundant oxygen, making it an oxidizing atmosphere. The rise in oxygen is attributed to photosynthesis by cyanobacteria, which are thought to have evolved as early as 3.5 billion years ago.

The current scientific understanding of when and how the Earth's atmosphere changed from a weakly reducing to a strongly oxidizing atmosphere largely began with the work of the American geologist, Preston Cloud, in the 1970s. Cloud observed that detrital sediments older than about 2 billion years ago contained grains of pyrite, uraninite, and siderite, all minerals containing reduced forms of iron or uranium that are not found in younger sediments because they are rapidly oxidized in an oxidizing atmosphere. He further observed that continental redbeds, which get their color from the oxidized (ferric) mineral hematite, began to appear in the geological record at about this time. Banded iron formation largely disappears from the geological record at 1.85 billion years ago, after peaking at about 2.5 billion years ago. Banded iron formation can form only when abundant dissolved ferrous iron is transported into depositional basins, and an oxygenated ocean blocks such transport by oxidizing the iron to form insoluble ferric iron compounds. The end of the deposition of banded iron formation at 1.85 billion years ago is therefore interpreted as marking the oxygenation of the deep ocean. Heinrich Holland further elaborated these ideas through the 1980s, placing the main time interval of oxygenation between 2.2 and 1.9 billion years ago, and they continue to shape the current scientific understanding.

Geological evidence

Evidence for the Great Oxidation Event is provided by a variety of petrological and geochemical markers that define this Geological event.

Continental indicators

Paleosols, detrital grains, and redbeds are evidence of low-level oxygen. Paleosols (fossil soils) older than 2.4 billion years old have low iron concentrations that suggest anoxic weathering. Detrital grains found in sediments older than 2.4 billion years old contain minerals that are stable only under low oxygen conditions. Redbeds are red-colored sandstones that are coated with hematite, which indicates that there was enough oxygen to oxidize iron to its ferric state.

Banded iron formation (BIF)

Banded iron formations are composed of thin alternating layers of chert (a fine-grained form of silica) and iron oxides, magnetite and hematite. Extensive deposits of this rock type are found around the world, almost all of which are more than 1.85 billion years old and most of which were deposited around 2.5 billion years ago. The iron in banded iron formation is partially oxidized, with roughly equal amounts of ferrous and ferric iron. Deposition of banded iron formation requires both an anoxic deep ocean capable of transporting iron in soluble ferrous form, and an oxidized shallow ocean where the ferrous iron is oxidized to insoluble ferric iron and precipitates onto the ocean floor. The deposition of banded iron formation before 1.8 billion years ago suggests the ocean was in a persistent ferruginous state, but deposition was episodic and there may have been significant intervals of euxinia.

Iron speciation

Black laminated shales, rich in organic matter, are often regarded as a marker for anoxic conditions. However, the deposition of abundant organic matter is not a sure indication of anoxia, and burrowing organisms that destroy lamination had not yet evolved during the time frame of the Great Oxygenation Event. Thus laminated black shale by itself is a poor indicator of oxygen levels. Scientists must look instead for geochemical evidence of anoxic conditions. These include ferruginous anoxia, in which dissolved ferrous iron is abundant, and euxinia, in which hydrogen sulfide is present in the water.

Examples of such indicators of anoxic conditions include the degree of pyritization (DOP), which is the ratio of iron present as pyrite to the total reactive iron. Reactive iron, in turn, is defined as iron found in oxides and oxyhydroxides, carbonates, and reduced sulfur minerals such as pyrites, in contrast with iron tightly bound in silicate minerals. A DOP near zero indicates oxidizing conditions, while a DOP near 1 indicates euxinic conditions. Values of 0.3 to 0.5 are transitional, suggesting anoxic bottom mud under an oxygenated ocean. Studies of the Black Sea, which is considered a modern model for ancient anoxic ocean basins, indicate that high DOP, a high ratio of reactive iron to total iron, and a high ratio of total iron to aluminum are all indicators of transport of iron into a euxinic environment. Ferruginous anoxic conditions can be distinguished from euxenic conditions by a DOP less than about 0.7.

The currently available evidence suggests that the deep ocean remained anoxic and ferruginous as late as 580 million years ago, well after the Great Oxygenation Event, remaining just short of euxenic during much of this interval of time. Deposition of banded iron formation ceased when conditions of local euxenia on continental platforms and shelves began precipitating iron out of upwelling ferruginous water as pyrite.

Isotopes

Some of the most persuasive evidence for the Great Oxidation Event is provided by the mass-independent fractionation (MIF) of sulfur. The chemical signature of the MIF of sulfur is found prior to 2.4–2.3 billion years ago but disappears thereafter. The presence of this signature all but eliminates the possibility of an oxygenated atmosphere.

Different isotopes of a chemical element have slightly different atomic masses. Most of the differences in geochemistry between isotopes of the same element scale with this mass difference. These include small differences in molecular velocities and diffusion rates, which are described as mass-dependent fractionation processes. By contrast, mass-independent fractionation describes processes that are not proportional to the difference in mass between isotopes. The only such process likely to be significant in the geochemistry of sulfur is photodissociation. This is the process in which a molecule containing sulfur is broken up by solar ultraviolet (UV) radiation. The presence of a clear MIF signature for sulfur prior to 2.4 billion years ago shows that UV radiation was penetrating deep into the Earth's atmosphere. This in turn rules out an atmosphere containing more than traces of oxygen, which would have produced an ozone layer that shielded the lower atmosphere from UV radiation. The disappearance of the MIF signature for sulfur indicates the formation of such an ozone shield as oxygen began to accumulate in the atmosphere.[9][13]

Mass-dependent fractionation also provides clues to the Great Oxygenation Event. For example, oxidation of manganese in surface rocks by atmospheric oxygen leads to further reactions that oxidize chromium. The heavier 53Cr is oxidized preferentially over the lighter 52Cr, and the soluble oxidized chromium carried into the ocean shows this enhancement of the heavier isotope. The chromium isotope ratio in banded iron formation suggests small but significant quantities of oxygen in the atmosphere before the Great Oxidation Event, and a brief return to low oxygen abundance 500 million years after the Great Oxidation Event. However, the chromium data may conflict with the sulfur isotope data, which calls the reliability of the chromium data into question. It is also possible that oxygen was present earlier only in localized "oxygen oases". Since chromium is not easily dissolved, its release from rocks requires the presence of a powerful acid such as sulfuric acid (H2SO4) which may have formed through bacterial oxidation of pyrite. This could provide some of the earliest evidence of oxygen-breathing life on land surfaces.

Other elements whose mass-dependent fractionation may provide clues to the Great Oxidation Event include carbon, nitrogen, transitional metals such as molybdenum and iron, and non-metal elements such as selenium.

Fossils and biomarkers (chemical fossils)

While the Great Oxidation Event is generally thought to be a result of oxygenic photosynthesis by ancestral cyanobacteria, the presence of cyanobacteria in the Archaean before the Great Oxidation Event is a highly controversial topic. Structures that are claimed to be fossils of cyanobacteria exist in rock as old as 3.5 billion years old These include microfossils of supposedly cyanobacterial cells and macrofossils called stromatolites, which are interpreted as colonies of microbes, including cyanobacteria, with characteristic layered structures. Modern stromatolites, which can only be seen in harsh environments such as Shark Bay in western Australia, are associated with cyanobacteria and thus fossil stromatolites had long been interpreted as the evidence for cyanobacteria. However, it has increasingly been inferred that at least some of these Archaean fossils were generated abiotically or produced by non-cyanobacterial phototrophic bacteria.

Additionally, Archaean sedimentary rocks were once found to contain biomarkers, also known as chemical fossils, interpreted as fossilized membrane lipids from cyanobacteria and eukaryotes. For example, traces of 2α-methylhopanes and steranes that are thought to be derived from cyanobacteria and eukaryotes, respectively, were found in Pilbara, Western Australia. Steranes are diagenetic products of sterols, which are biosynthesized utilizing molecular oxygen. Thus, steranes can additionally serve as an indicator of oxygen in the atmosphere. However, these biomarker samples have since been shown to have been contaminated and so the results are no longer accepted.

Other indicators

Some elements in marine sediments are sensitive to different levels of oxygen in the environment such as the transition metals molybdenum and rhenium. Non-metal elements such as selenium and iodine are also indicators of oxygen levels.

Hypotheses

The ability to generate oxygen via photosynthesis likely first appeared in the ancestors of cyanobacteria. These organisms evolved at least 2.45–2.32 billion years ago, and probably as early as 2.7 billion years ago or earlier. However, oxygen remained scarce in the atmosphere until around 2.0 billion years ago, and banded iron formation continued to be deposited until around 1.85 billion years ago. Given the rapid multiplication rate of cyanobacteria under ideal conditions, an explanation is needed for the delay of at least 400 million years between the evolution of oxygen-producing photosynthesis and the appearance of significant oxygen in the atmosphere.

Hypotheses to explain this gap must take into consideration the balance between oxygen sources and oxygen sinks. Oxygenic photosynthesis produces organic carbon that must be segregated from oxygen to allow oxygen accumulation in the surface environment, otherwise the oxygen back-reacts with the organic carbon and does not accumulate. The burial of organic carbon, sulfide, and minerals containing ferrous iron (Fe2+) is a primary factor in oxygen accumulation. When organic carbon is buried without being oxidized, the oxygen is left in the atmosphere. In total, the burial of organic carbon and pyrite today creates 15.8±3.3 Tmol (1 Tmol = 1012 moles) of O2 per year. This creates a net O2 flux from the global oxygen sources.

The rate of change of oxygen can be calculated from the difference between global sources and sinks. The oxygen sinks include reduced gases and minerals from volcanoes, metamorphism and weathering. The GOE started after these oxygen-sink fluxes and reduced-gas fluxes were exceeded by the flux of O2 associated with the burial of reductants, such as organic carbon. For the weathering mechanisms, 12.0±3.3 Tmol of O2 per year today goes to the sinks composed of reduced minerals and gases from volcanoes, metamorphism, percolating seawater and heat vents from the seafloor. On the other hand, 5.7±1.2 Tmol of O2 per year today oxidizes reduced gases in the atmosphere through photochemical reaction. On the early Earth, there was visibly very little oxidative weathering of continents (e.g., a lack of redbeds) and so the weathering sink on oxygen would have been negligible compared to that from reduced gases and dissolved iron in oceans.

Dissolved iron in oceans exemplifies O2 sinks. Free oxygen produced during this time was chemically captured by dissolved iron, converting iron Fe and Fe2+ to magnetite (Fe2+Fe3+2O4) that is insoluble in water, and sank to the bottom of the shallow seas to create banded iron formations such as the ones found in Minnesota and Pilbara, Western Australia. It took 50 million years or longer to deplete the oxygen sinks. The rate of photosynthesis and associated rate of organic burial also affect the rate of oxygen accumulation. When land plants spread over the continents in the Devonian, more organic carbon was buried and likely allowed higher O2 levels to occur. Today, the average time that an O2 molecule spends in the air before it is consumed by geological sinks is about 2 million years. That residence time is relatively short in geologic time - so in the Phanerozoic there must have been feedback processes that kept the atmospheric O2 level within bounds suitable for animal life.

Evolution by stages

Preston Cloud originally proposed that the first cyanobacteria had evolved the capacity to carry out oxygen-producing photosynthesis, but had not yet evolved enzymes (such as superoxide dismutase) for living in an oxygenated environment. These cyanobacteria would have been protected from their own poisonous oxygen waste through its rapid removal via the high levels of reduced ferrous iron, Fe(II), in the early ocean. Cloud suggested that the oxygen released by photosynthesis oxidized the Fe(II) to ferric iron, Fe(III), which precipitated out of the sea water to form banded iron formation. Cloud interpreted the great peak in deposition of banded iron formation at the end of the Archean as the signature for the evolution of mechanisms for living with oxygen. This ended self-poisoning and produced a population explosion in the cyanobacteria that rapidly oxygenated the ocean and ended banded iron formation deposition. However, improved dating of Precambrian strata showed that the late Archean peak of deposition was spread out over tens of millions of years, rather than taking place in a very short interval of time following the evolution of oxygen-coping mechanisms. This made Cloud's hypothesis untenable.

More recently, families of bacteria have been discovered that show no indication of ever having had photosynthetic capability, but which otherwise closely resemble cyanobacteria. These may be descended from the earliest ancestors of cyanobacteria, which only later acquired photosynthetic ability by lateral gene transfer. Based on molecular clock data, the evolution of oxygen-producing photosynthesis may have occurred much later than previously thought, at around 2.5 billion years ago. This reduces the gap between the evolution of oxygen photosynthesis and the appearance of significant atmospheric oxygen.

Nutrient famines

A second possibility is that early cyanobacteria were starved for vital nutrients and this checked their growth. However, a lack of the scarcest nutrients, iron, nitrogen, and phosphorus, could have slowed, but not prevented, a cyanobacteria population explosion and rapid oxygenation. The explanation for the delay in the oxygenation of the atmosphere following the evolution of oxygen-producing photosynthesis likely lies in the presence of various oxygen sinks on the young Earth.

Nickel famine

Early chemosynthetic organisms likely produced methane, an important trap for molecular oxygen, since methane readily oxidizes to carbon dioxide (CO2) and water in the presence of UV radiation. Modern methanogens require nickel as an enzyme cofactor. As the Earth's crust cooled and the supply of volcanic nickel dwindled, oxygen-producing algae began to out-perform methane producers, and the oxygen percentage of the atmosphere steadily increased. From 2.7 to 2.4 billion years ago, the rate of deposition of nickel declined steadily from a level 400 times today's.

Increasing flux

Some people suggest that GOE is caused by the increase of the source of oxygen. One hypothesis argues that GOE was the immediate result of photosynthesis, although the majority of scientists suggest that a long-term increase of oxygen is more likely. Several model results show possibilities of long-term increase of carbon burial, but the conclusions are indecisive.

Decreasing sink

In contrast to the increasing flux hypothesis, there are also several hypotheses that attempt to use decrease of sinks to explain GOE. One theory suggests that the composition of the volatiles from volcanic gases was more oxidized. Another theory suggests that the decrease of metamorphic gases and serpentinization is the main key of GOE. Hydrogen and methane released from metamorphic processes are also lost from Earth's atmosphere over time and leave the crust oxidized. Scientists realized that hydrogen would escape into space through a process called methane photolysis, in which methane decomposes under the action of ultraviolet light in the upper atmosphere and releases its hydrogen. The escape of hydrogen from the Earth into space must have oxidized the Earth because the process of hydrogen loss is chemical oxidation. This process of hydrogen escape required the generation of methane by methanogens, so that methanogens actually helped create the conditions necessary for the oxidation of the atmosphere.

Tectonic trigger

2.1-billion-year-old rock showing banded iron formation

One hypothesis suggests that the oxygen increase had to await tectonically driven changes in the Earth, including the appearance of shelf seas, where reduced organic carbon could reach the sediments and be buried. The newly produced oxygen was first consumed in various chemical reactions in the oceans, primarily with iron. Evidence is found in older rocks that contain massive banded iron formations apparently laid down as this iron and oxygen first combined; most present-day iron ore lies in these deposits. It was assumed oxygen released from cyanobacteria resulted in the chemical reactions that created rust, but it appears the iron formations were caused by anoxygenic phototrophic iron-oxidizing bacteria, which does not require oxygen. Evidence suggests oxygen levels spiked each time smaller land masses collided to form a super-continent. Tectonic pressure thrust up mountain chains, which eroded releasing nutrients into the ocean that fed photosynthetic cyanobacteria.

Bistability

Another hypothesis posits a model of the atmosphere that exhibits bistability: two steady states of oxygen concentration. The state of stable low oxygen concentration (0.02%) experiences a high rate of methane oxidation. If some event raises oxygen levels beyond a moderate threshold, the formation of an ozone layer shields UV rays and decreases methane oxidation, raising oxygen further to a stable state of 21% or more. The Great Oxygenation Event can then be understood as a transition from the lower to the upper steady states.

Increasing photoperiod

Cyanobacteria tend to consume nearly as much oxygen at night as they produce during the day. However, experiments demonstrate that cyanobacterial mats produce a greater excess of oxygen with longer photoperiods. The rotational period of the Earth was only about six hours shortly after its formation, 4.5 billion years ago, but increased to 21 hours by 2.4 billion years ago, in the Paleoproterozoic. The rotational period increased again, starting 700 million years ago, to its present value of 24 hours. It is possible that each increase in rotational period increased the net oxygen production by cyanobacterial mats, which in turn increased the atmospheric abundance of oxygen.

Consequences of oxygenation

Eventually, oxygen started to accumulate in the atmosphere, with two major consequences.

  • Oxygen likely oxidized atmospheric methane (a strong greenhouse gas) to carbon dioxide (a weaker one) and water. This weakened the greenhouse effect of the Earth's atmosphere, causing planetary cooling, which has been proposed to have triggered a series of ice ages known as the Huronian glaciation, bracketing an age range of 2.45–2.22 billion years ago.
  • The increased oxygen concentrations provided a new opportunity for biological diversification, as well as tremendous changes in the nature of chemical interactions between rocks, sand, clay, and other geological substrates and the Earth's air, oceans, and other surface waters. Despite the natural recycling of organic matter, life had remained energetically limited until the widespread availability of oxygen. Due to its relatively weak double bond, oxygen is a high-energy molecule and produced a breakthrough in metabolic evolution that greatly increased the free energy available to living organisms, with global environmental impacts. For example, mitochondria evolved after the GOE, giving organisms the energy to exploit new, more complex morphologies interacting in increasingly complex ecosystems, although these did not appear until the late Proterozoic and Cambrian.
Timeline of glaciations, shown in blue.

Role in mineral diversification

The Great Oxygenation Event triggered an explosive growth in the diversity of minerals, with many elements occurring in one or more oxidized forms near the Earth's surface. It is estimated that the GOE was directly responsible for more than 2,500 of the total of about 4,500 minerals found on Earth today. Most of these new minerals were formed as hydrated and oxidized forms due to dynamic mantle and crust processes.

Great Oxygenation
End of Huronian glaciation
Palæoproterozoic
Mesoproterozoic
Neoproterozoic
Palæozoic
Mesozoic
Cenozoic
−2500
−2300
−2100
−1900
−1700
−1500
−1300
−1100
−900
−700
−500
−300
−100
Million years ago. Age of Earth = 4,560

Role in cyanobacteria evolution

In field studies done in Lake Fryxell, Antarctica, scientists found that mats of oxygen-producing cyanobacteria produced a thin layer, one to two millimeters thick, of oxygenated water in an otherwise anoxic environment, even under thick ice. By inference, these organisms could have adapted to oxygen even before oxygen accumulated in the atmosphere. The evolution of such oxygen-dependent organisms eventually established an equilibrium in the availability of oxygen, which became a major constituent of the atmosphere.

Origin of eukaryotes

It has been proposed that a local rise in oxygen levels due to cyanobacterial photosynthesis in ancient microenvironments was highly toxic to the surrounding biota, and that this selective pressure drove the evolutionary transformation of an archaeal lineage into the first eukaryotes. Oxidative stress involving production of reactive oxygen species (ROS) might have acted in synergy with other environmental stresses (such as ultraviolet radiation and/or desiccation) to drive selection in an early archaeal lineage towards eukaryosis. This archaeal ancestor may already have had DNA repair mechanisms based on DNA pairing and recombination and possibly some kind of cell fusion mechanism. The detrimental effects of internal ROS (produced by endosymbiont proto-mitochondria) on the archaeal genome could have promoted the evolution of meiotic sex from these humble beginnings. Selective pressure for efficient DNA repair of oxidative DNA damage may have driven the evolution of eukaryotic sex involving such features as cell-cell fusions, cytoskeleton-mediated chromosome movements and emergence of the nuclear membrane. Thus the evolution of eukaryotic sex and eukaryogenesis were likely inseparable processes that evolved in large part to facilitate DNA repair.

Lomagundi-Jatuli event

The rise in oxygen content was not linear: instead, there was a rise in oxygen content around 2.3 Ga ago, followed by a drop around 2.1 Ga ago. The positive excursion, or more precisely, the carbon isotopic excursion evidencing it, is called the Lomagundi-Jatuli event (LJE) or Lomagundi event, (named for a district of Southern Rhodesia) and the time period has been termed Jatulian. In the Lomagundi-Jatuli event, oxygen content reached as high as modern levels, followed by a fall to very low levels during the following stage where black shales were deposited. The negative excursion is called the Shunga-Francevillian event. Evidence for the Lomagundi-Jatuli event has been found globally: in Fennoscandia and northern Russia, Scotland, Ukraine, China, the Wyoming craton in North America, Brazil, South Africa, India and Australia. Oceans seem to have been oxygenated for some time even after the termination of the isotope excursion itself.

It has been hypothesized that eukaryotes first evolved during the LJE. The Lomagundi-Jatuli event coincides with the appearance, and subsequent disappearance, of curious fossils found in Gabon, termed Francevillian biota, which seem to have been multicellular. This appears to represent a "false start" of multicellular life. The organisms apparently went extinct when the LJE ended, because they are absent in the layers of shale deposited after the LJE.

Gaia hypothesis

From Wikipedia, the free encyclopedia
 
The study of planetary habitability is partly based upon extrapolation from knowledge of the Earth's conditions, as the Earth is the only planet currently known to harbour life (The Blue Marble, 1972 Apollo 17 photograph)

The Gaia hypothesis (/ˈɡ.ə/), also known as the Gaia theory, Gaia paradigm, or the Gaia principle, proposes that living organisms interact with their inorganic surroundings on Earth to form a synergistic and self-regulating, complex system that helps to maintain and perpetuate the conditions for life on the planet.

The hypothesis was formulated by the chemist James Lovelock and co-developed by the microbiologist Lynn Margulis in the 1970s. Lovelock named the idea after Gaia, the primordial goddess who personified the Earth in Greek mythology. In 2006, the Geological Society of London awarded Lovelock the Wollaston Medal in part for his work on the Gaia hypothesis.

Topics related to the hypothesis include how the biosphere and the evolution of organisms affect the stability of global temperature, salinity of seawater, atmospheric oxygen levels, the maintenance of a hydrosphere of liquid water and other environmental variables that affect the habitability of Earth.

The Gaia hypothesis was initially criticized for being teleological and against the principles of natural selection, but later refinements aligned the Gaia hypothesis with ideas from fields such as Earth system science, biogeochemistry and systems ecology.[4][5][6] Even so, the Gaia hypothesis continues to attract criticism, and today many scientists consider it to be only weakly supported by, or at odds with, the available evidence.

Overview

Gaian hypotheses suggest that organisms co-evolve with their environment: that is, they "influence their abiotic environment, and that environment in turn influences the biota by Darwinian process". Lovelock (1995) gave evidence of this in his second book, showing the evolution from the world of the early thermo-acido-philic and methanogenic bacteria towards the oxygen-enriched atmosphere today that supports more complex life.

A reduced version of the hypothesis has been called "influential Gaia" in "Directed Evolution of the Biosphere: Biogeochemical Selection or Gaia?" by Andrei G. Lapenis, which states the biota influence certain aspects of the abiotic world, e.g. temperature and atmosphere. This is not the work of an individual but a collective of Russian scientific research that was combined into this peer reviewed publication. It states the coevolution of life and the environment through “micro-forces” and biogeochemical processes. An example is how the activity of photosynthetic bacteria during Precambrian times completely modified the Earth atmosphere to turn it aerobic, and thus supports the evolution of life (in particular eukaryotic life).

Since barriers existed throughout the twentieth century between Russia and the rest of the world, it is only relatively recently that the early Russian scientists who introduced concepts overlapping the Gaia paradigm have become better known to the Western scientific community. These scientists include Piotr Alekseevich Kropotkin (1842–1921) (although he spent much of his professional life outside Russia), Rafail Vasil’evich Rizpolozhensky (1862 – c. 1922), Vladimir Ivanovich Vernadsky (1863–1945), and Vladimir Alexandrovich Kostitzin (1886–1963).

Biologists and Earth scientists usually view the factors that stabilize the characteristics of a period as an undirected emergent property or entelechy of the system; as each individual species pursues its own self-interest, for example, their combined actions may have counterbalancing effects on environmental change. Opponents of this view sometimes reference examples of events that resulted in dramatic change rather than stable equilibrium, such as the conversion of the Earth's atmosphere from a reducing environment to an oxygen-rich one at the end of the Archaean and the beginning of the Proterozoic periods.

Less accepted versions of the hypothesis claim that changes in the biosphere are brought about through the coordination of living organisms and maintain those conditions through homeostasis. In some versions of Gaia philosophy, all lifeforms are considered part of one single living planetary being called Gaia. In this view, the atmosphere, the seas and the terrestrial crust would be results of interventions carried out by Gaia through the coevolving diversity of living organisms.

The Gaia paradigm was an influence on the deep ecology movement.

Details

The Gaia hypothesis posits that the Earth is a self-regulating complex system involving the biosphere, the atmosphere, the hydrospheres and the pedosphere, tightly coupled as an evolving system. The hypothesis contends that this system as a whole, called Gaia, seeks a physical and chemical environment optimal for contemporary life.

Gaia evolves through a cybernetic feedback system operated unconsciously by the biota, leading to broad stabilization of the conditions of habitability in a full homeostasis. Many processes in the Earth's surface essential for the conditions of life depend on the interaction of living forms, especially microorganisms, with inorganic elements. These processes establish a global control system that regulates Earth's surface temperature, atmosphere composition and ocean salinity, powered by the global thermodynamic disequilibrium state of the Earth system.

The existence of a planetary homeostasis influenced by living forms had been observed previously in the field of biogeochemistry, and it is being investigated also in other fields like Earth system science. The originality of the Gaia hypothesis relies on the assessment that such homeostatic balance is actively pursued with the goal of keeping the optimal conditions for life, even when terrestrial or external events menace them.

Regulation of global surface temperature

Rob Rohde's palaeotemperature graphs

Since life started on Earth, the energy provided by the Sun has increased by 25% to 30%; however, the surface temperature of the planet has remained within the levels of habitability, reaching quite regular low and high margins. Lovelock has also hypothesised that methanogens produced elevated levels of methane in the early atmosphere, giving a view similar to that found in petrochemical smog, similar in some respects to the atmosphere on Titan. This, he suggests tended to screen out ultraviolet until the formation of the ozone screen, maintaining a degree of homeostasis. However, the Snowball Earth research has suggested that "oxygen shocks" and reduced methane levels led, during the Huronian, Sturtian and Marinoan/Varanger Ice Ages, to a world that very nearly became a solid "snowball". These epochs are evidence against the ability of the pre Phanerozoic biosphere to fully self-regulate.

Processing of the greenhouse gas CO2, explained below, plays a critical role in the maintenance of the Earth temperature within the limits of habitability.

The CLAW hypothesis, inspired by the Gaia hypothesis, proposes a feedback loop that operates between ocean ecosystems and the Earth's climate. The hypothesis specifically proposes that particular phytoplankton that produce dimethyl sulfide are responsive to variations in climate forcing, and that these responses lead to a negative feedback loop that acts to stabilise the temperature of the Earth's atmosphere.

Currently the increase in human population and the environmental impact of their activities, such as the multiplication of greenhouse gases may cause negative feedbacks in the environment to become positive feedback. Lovelock has stated that this could bring an extremely accelerated global warming, but he has since stated the effects will likely occur more slowly.

Daisyworld simulations

Plots from a standard black and white Daisyworld simulation

In response to the criticism that the Gaia hypothesis seemingly required unrealistic group selection and cooperation between organisms, James Lovelock and Andrew Watson developed a mathematical model, Daisyworld, in which ecological competition underpinned planetary temperature regulation.

Daisyworld examines the energy budget of a planet populated by two different types of plants, black daisies and white daisies, which are assumed to occupy a significant portion of the surface. The colour of the daisies influences the albedo of the planet such that black daisies absorb more light and warm the planet, while white daisies reflect more light and cool the planet. The black daisies are assumed to grow and reproduce best at a lower temperature, while the white daisies are assumed to thrive best at a higher temperature. As the temperature rises closer to the value the white daisies like, the white daisies outreproduce the black daisies, leading to a larger percentage of white surface, and more sunlight is reflected, reducing the heat input and eventually cooling the planet. Conversely, as the temperature falls, the black daisies outreproduce the white daisies, absorbing more sunlight and warming the planet. The temperature will thus converge to the value at which the reproductive rates of the plants are equal.

Lovelock and Watson showed that, over a limited range of conditions, this negative feedback due to competition can stabilize the planet's temperature at a value which supports life, if the energy output of the Sun changes, while a planet without life would show wide temperature changes. The percentage of white and black daisies will continually change to keep the temperature at the value at which the plants' reproductive rates are equal, allowing both life forms to thrive.

It has been suggested that the results were predictable because Lovelock and Watson selected examples that produced the responses they desired.

Regulation of oceanic salinity

Ocean salinity has been constant at about 3.5% for a very long time. Salinity stability in oceanic environments is important as most cells require a rather constant salinity and do not generally tolerate values above 5%. The constant ocean salinity was a long-standing mystery, because no process counterbalancing the salt influx from rivers was known. Recently it was suggested that salinity may also be strongly influenced by seawater circulation through hot basaltic rocks, and emerging as hot water vents on mid-ocean ridges. However, the composition of seawater is far from equilibrium, and it is difficult to explain this fact without the influence of organic processes. One suggested explanation lies in the formation of salt plains throughout Earth's history. It is hypothesized that these are created by bacterial colonies that fix ions and heavy metals during their life processes.

In the biogeochemical processes of Earth, sources and sinks are the movement of elements. The composition of salt ions within our oceans and seas is: sodium (Na+), chlorine (Cl), sulfate (SO42−), magnesium (Mg2+), calcium (Ca2+) and potassium (K+). The elements that comprise salinity do not readily change and are a conservative property of seawater. There are many mechanisms that change salinity from a particulate form to a dissolved form and back. Considering the metallic composition of iron sources across a multifaceted grid of thermomagnetic design, not only would the movement of elements hypothetically help restructure the movement of ions, electrons, and the like, but would also potentially and inexplicably assist in balancing the magnetic bodies of the Earth's geomagnetic field. The known sources of sodium i.e. salts are when weathering, erosion, and dissolution of rocks are transported into rivers and deposited into the oceans.

The Mediterranean Sea as being Gaia's kidney is found (here) by Kenneth J. Hsue, a correspondence author in 2001. Hsue suggests the "desiccation" of the Mediterranean is evidence of a functioning Gaia "kidney". In this and earlier suggested cases, it is plate movements and physics, not biology, which performs the regulation. Earlier "kidney functions" were performed during the "deposition of the Cretaceous (South Atlantic), Jurassic (Gulf of Mexico), Permo-Triassic (Europe), Devonian (Canada), Cambrian/Precambrian (Gondwana) saline giants."

Regulation of oxygen in the atmosphere

Levels of gases in the atmosphere in 420,000 years of ice core data from Vostok, Antarctica research station. Current period is at the left.

The Gaia theorem states that the Earth's atmospheric composition is kept at a dynamically steady state by the presence of life. The atmospheric composition provides the conditions that contemporary life has adapted to. All the atmospheric gases other than noble gases present in the atmosphere are either made by organisms or processed by them.

The stability of the atmosphere in Earth is not a consequence of chemical equilibrium. Oxygen is a reactive compound, and should eventually combine with gases and minerals of the Earth's atmosphere and crust. Oxygen only began to persist in the atmosphere in small quantities about 50 million years before the start of the Great Oxygenation Event. Since the start of the Cambrian period, atmospheric oxygen concentrations have fluctuated between 15% and 35% of atmospheric volume. Traces of methane (at an amount of 100,000 tonnes produced per year) should not exist, as methane is combustible in an oxygen atmosphere.

Dry air in the atmosphere of Earth contains roughly (by volume) 78.09% nitrogen, 20.95% oxygen, 0.93% argon, 0.039% carbon dioxide, and small amounts of other gases including methane. Lovelock originally speculated that concentrations of oxygen above about 25% would increase the frequency of wildfires and conflagration of forests. This mechanism, however, would not raise oxygen levels if they became too low. If plants can be shown to robustly over-produce O2 then perhaps only the high oxygen forest fires regulator is necessary. Recent work on the findings of fire-caused charcoal in Carboniferous and Cretaceous coal measures, in geologic periods when O2 did exceed 25%, has supported Lovelock's contention.

Processing of CO2

Gaia scientists see the participation of living organisms in the carbon cycle as one of the complex processes that maintain conditions suitable for life. The only significant natural source of atmospheric carbon dioxide (CO2) is volcanic activity, while the only significant removal is through the precipitation of carbonate rocks. Carbon precipitation, solution and fixation are influenced by the bacteria and plant roots in soils, where they improve gaseous circulation, or in coral reefs, where calcium carbonate is deposited as a solid on the sea floor. Calcium carbonate is used by living organisms to manufacture carbonaceous tests and shells. Once dead, the living organisms' shells fall. Some arrive at the bottom of the oceans where plate tectonics and heat and/or pressure eventually convert them to deposits of chalk and limestone. Much of the falling dead shells, however, re-dissolve into the ocean below the carbon compensation depth.

One of these organisms is Emiliania huxleyi, an abundant coccolithophore algae which may have a role in the formation of clouds. CO2 excess is compensated by an increase of coccolithophoride life, increasing the amount of CO2 locked in the ocean floor. Coccolithophorides, if the CLAW Hypothesis turns out to be supported (see "Regulation of Global Surface Temperature" above), could help increase the cloud cover, hence control the surface temperature, help cool the whole planet and favor precipitation necessary for terrestrial plants. Lately the atmospheric CO2 concentration has increased and there is some evidence that concentrations of ocean algal blooms are also increasing.

Lichen and other organisms accelerate the weathering of rocks in the surface, while the decomposition of rocks also happens faster in the soil, thanks to the activity of roots, fungi, bacteria and subterranean animals. The flow of carbon dioxide from the atmosphere to the soil is therefore regulated with the help of living beings. When CO2 levels rise in the atmosphere the temperature increases and plants grow. This growth brings higher consumption of CO2 by the plants, who process it into the soil, removing it from the atmosphere.

History

Precedents

Earthrise taken from Apollo 8 on December 24, 1968

The idea of the Earth as an integrated whole, a living being, has a long tradition. The mythical Gaia was the primal Greek goddess personifying the Earth, the Greek version of "Mother Nature" (from Ge = Earth, and Aia = PIE grandmother), or the Earth Mother. James Lovelock gave this name to his hypothesis after a suggestion from the novelist William Golding, who was living in the same village as Lovelock at the time (Bowerchalke, Wiltshire, UK). Golding's advice was based on Gea, an alternative spelling for the name of the Greek goddess, which is used as prefix in geology, geophysics and geochemistry. Golding later made reference to Gaia in his Nobel prize acceptance speech.

In the eighteenth century, as geology consolidated as a modern science, James Hutton maintained that geological and biological processes are interlinked. Later, the naturalist and explorer Alexander von Humboldt recognized the coevolution of living organisms, climate, and Earth's crust. In the twentieth century, Vladimir Vernadsky formulated a theory of Earth's development that is now one of the foundations of ecology. Vernadsky was a Ukrainian geochemist and was one of the first scientists to recognize that the oxygen, nitrogen, and carbon dioxide in the Earth's atmosphere result from biological processes. During the 1920s he published works arguing that living organisms could reshape the planet as surely as any physical force. Vernadsky was a pioneer of the scientific bases for the environmental sciences. His visionary pronouncements were not widely accepted in the West, and some decades later the Gaia hypothesis received the same type of initial resistance from the scientific community.

Also in the turn to the 20th century Aldo Leopold, pioneer in the development of modern environmental ethics and in the movement for wilderness conservation, suggested a living Earth in his biocentric or holistic ethics regarding land.

It is at least not impossible to regard the earth's parts—soil, mountains, rivers, atmosphere etc,—as organs or parts of organs of a coordinated whole, each part with its definite function. And if we could see this whole, as a whole, through a great period of time, we might perceive not only organs with coordinated functions, but possibly also that process of consumption as replacement which in biology we call metabolism, or growth. In such case we would have all the visible attributes of a living thing, which we do not realize to be such because it is too big, and its life processes too slow.

— Stephan Harding, Animate Earth.

Another influence for the Gaia hypothesis and the environmental movement in general came as a side effect of the Space Race between the Soviet Union and the United States of America. During the 1960s, the first humans in space could see how the Earth looked as a whole. The photograph Earthrise taken by astronaut William Anders in 1968 during the Apollo 8 mission became, through the Overview Effect an early symbol for the global ecology movement.

Formulation of the hypothesis

Lovelock started defining the idea of a self-regulating Earth controlled by the community of living organisms in September 1965, while working at the Jet Propulsion Laboratory in California on methods of detecting life on Mars. The first paper to mention it was Planetary Atmospheres: Compositional and other Changes Associated with the Presence of Life, co-authored with C.E. Giffin. A main concept was that life could be detected in a planetary scale by the chemical composition of the atmosphere. According to the data gathered by the Pic du Midi observatory, planets like Mars or Venus had atmospheres in chemical equilibrium. This difference with the Earth atmosphere was considered to be a proof that there was no life in these planets.

Lovelock formulated the Gaia Hypothesis in journal articles in 1972 and 1974, followed by a popularizing 1979 book Gaia: A new look at life on Earth. An article in the New Scientist of February 6, 1975, and a popular book length version of the hypothesis, published in 1979 as The Quest for Gaia, began to attract scientific and critical attention.

Lovelock called it first the Earth feedback hypothesis, and it was a way to explain the fact that combinations of chemicals including oxygen and methane persist in stable concentrations in the atmosphere of the Earth. Lovelock suggested detecting such combinations in other planets' atmospheres as a relatively reliable and cheap way to detect life.

Later, other relationships such as sea creatures producing sulfur and iodine in approximately the same quantities as required by land creatures emerged and helped bolster the hypothesis.

In 1971 microbiologist Dr. Lynn Margulis joined Lovelock in the effort of fleshing out the initial hypothesis into scientifically proven concepts, contributing her knowledge about how microbes affect the atmosphere and the different layers in the surface of the planet. The American biologist had also awakened criticism from the scientific community with her advocacy of the theory on the origin of eukaryotic organelles and her contributions to the endosymbiotic theory, nowadays accepted. Margulis dedicated the last of eight chapters in her book, The Symbiotic Planet, to Gaia. However, she objected to the widespread personification of Gaia and stressed that Gaia is "not an organism", but "an emergent property of interaction among organisms". She defined Gaia as "the series of interacting ecosystems that compose a single huge ecosystem at the Earth's surface. Period". The book's most memorable "slogan" was actually quipped by a student of Margulis'.

James Lovelock called his first proposal the Gaia hypothesis but has also used the term Gaia theory. Lovelock states that the initial formulation was based on observation, but still lacked a scientific explanation. The Gaia hypothesis has since been supported by a number of scientific experiments and provided a number of useful predictions.

First Gaia conference

In 1985, the first public symposium on the Gaia hypothesis, Is The Earth A Living Organism? was held at University of Massachusetts Amherst, August 1–6. The principal sponsor was the National Audubon Society. Speakers included James Lovelock, George Wald, Mary Catherine Bateson, Lewis Thomas, John Todd, Donald Michael, Christopher Bird, Thomas Berry, David Abram, Michael Cohen, and William Fields. Some 500 people attended.

Second Gaia conference

In 1988, climatologist Stephen Schneider organised a conference of the American Geophysical Union. The first Chapman Conference on Gaia, was held in San Diego, California on March 7, 1988.

During the "philosophical foundations" session of the conference, David Abram spoke on the influence of metaphor in science, and of the Gaia hypothesis as offering a new and potentially game-changing metaphorics, while James Kirchner criticised the Gaia hypothesis for its imprecision. Kirchner claimed that Lovelock and Margulis had not presented one Gaia hypothesis, but four:

  • CoEvolutionary Gaia: that life and the environment had evolved in a coupled way. Kirchner claimed that this was already accepted scientifically and was not new.
  • Homeostatic Gaia: that life maintained the stability of the natural environment, and that this stability enabled life to continue to exist.
  • Geophysical Gaia: that the Gaia hypothesis generated interest in geophysical cycles and therefore led to interesting new research in terrestrial geophysical dynamics.
  • Optimising Gaia: that Gaia shaped the planet in a way that made it an optimal environment for life as a whole. Kirchner claimed that this was not testable and therefore was not scientific.

Of Homeostatic Gaia, Kirchner recognised two alternatives. "Weak Gaia" asserted that life tends to make the environment stable for the flourishing of all life. "Strong Gaia" according to Kirchner, asserted that life tends to make the environment stable, to enable the flourishing of all life. Strong Gaia, Kirchner claimed, was untestable and therefore not scientific.

Lovelock and other Gaia-supporting scientists, however, did attempt to disprove the claim that the hypothesis is not scientific because it is impossible to test it by controlled experiment. For example, against the charge that Gaia was teleological, Lovelock and Andrew Watson offered the Daisyworld Model (and its modifications, above) as evidence against most of these criticisms. Lovelock said that the Daisyworld model "demonstrates that self-regulation of the global environment can emerge from competition amongst types of life altering their local environment in different ways".

Lovelock was careful to present a version of the Gaia hypothesis that had no claim that Gaia intentionally or consciously maintained the complex balance in her environment that life needed to survive. It would appear that the claim that Gaia acts "intentionally" was a statement in his popular initial book and was not meant to be taken literally. This new statement of the Gaia hypothesis was more acceptable to the scientific community. Most accusations of teleologism ceased, following this conference.

Third Gaia conference

By the time of the 2nd Chapman Conference on the Gaia Hypothesis, held at Valencia, Spain, on 23 June 2000, the situation had changed significantly. Rather than a discussion of the Gaian teleological views, or "types" of Gaia hypotheses, the focus was upon the specific mechanisms by which basic short term homeostasis was maintained within a framework of significant evolutionary long term structural change.

The major questions were:

  1. "How has the global biogeochemical/climate system called Gaia changed in time? What is its history? Can Gaia maintain stability of the system at one time scale but still undergo vectorial change at longer time scales? How can the geologic record be used to examine these questions?"
  2. "What is the structure of Gaia? Are the feedbacks sufficiently strong to influence the evolution of climate? Are there parts of the system determined pragmatically by whatever disciplinary study is being undertaken at any given time or are there a set of parts that should be taken as most true for understanding Gaia as containing evolving organisms over time? What are the feedbacks among these different parts of the Gaian system, and what does the near closure of matter mean for the structure of Gaia as a global ecosystem and for the productivity of life?"
  3. "How do models of Gaian processes and phenomena relate to reality and how do they help address and understand Gaia? How do results from Daisyworld transfer to the real world? What are the main candidates for "daisies"? Does it matter for Gaia theory whether we find daisies or not? How should we be searching for daisies, and should we intensify the search? How can Gaian mechanisms be collaborated with using process models or global models of the climate system that include the biota and allow for chemical cycling?"

In 1997, Tyler Volk argued that a Gaian system is almost inevitably produced as a result of an evolution towards far-from-equilibrium homeostatic states that maximise entropy production, and Kleidon (2004) agreed stating: "...homeostatic behavior can emerge from a state of MEP associated with the planetary albedo"; "...the resulting behavior of a symbiotic Earth at a state of MEP may well lead to near-homeostatic behavior of the Earth system on long time scales, as stated by the Gaia hypothesis". Staley (2002) has similarly proposed "...an alternative form of Gaia theory based on more traditional Darwinian principles... In [this] new approach, environmental regulation is a consequence of population dynamics. The role of selection is to favor organisms that are best adapted to prevailing environmental conditions. However, the environment is not a static backdrop for evolution, but is heavily influenced by the presence of living and vibration-based beings and organisms. The resulting co-evolving dynamical process eventually leads to the convergence of equilibrium and optimal conditions", but would also require progress of truth and understanding in a lens that could be argued was put on hiatus while the species was proliferating the needs of Economic manipulation and environmental degradation while losing sight of the maturing nature of the needs of many. (12:22 10.29.2020)

Fourth Gaia conference

A fourth international conference on the Gaia hypothesis, sponsored by the Northern Virginia Regional Park Authority and others, was held in October 2006 at the Arlington, VA campus of George Mason University.

Martin Ogle, Chief Naturalist, for NVRPA, and long-time Gaia hypothesis proponent, organized the event. Lynn Margulis, Distinguished University Professor in the Department of Geosciences, University of Massachusetts-Amherst, and long-time advocate of the Gaia hypothesis, was a keynote speaker. Among many other speakers: Tyler Volk, co-director of the Program in Earth and Environmental Science at New York University; Dr. Donald Aitken, Principal of Donald Aitken Associates; Dr. Thomas Lovejoy, President of the Heinz Center for Science, Economics and the Environment; Robert Correll, Senior Fellow, Atmospheric Policy Program, American Meteorological Society and noted environmental ethicist, J. Baird Callicott.

Criticism

After initially receiving little attention from scientists (from 1969 until 1977), thereafter for a period the initial Gaia hypothesis was criticized by a number of scientists, such as Ford Doolittle, Richard Dawkins, and Stephen Jay Gould. Lovelock has said that because his hypothesis is named after a Greek goddess, and championed by many non-scientists, the Gaia hypothesis was interpreted as a neo-Pagan religion. Many scientists in particular also criticised the approach taken in his popular book Gaia, a New Look at Life on Earth for being teleological—a belief that things are purposeful and aimed towards a goal. Responding to this critique in 1990, Lovelock stated, "Nowhere in our writings do we express the idea that planetary self-regulation is purposeful, or involves foresight or planning by the biota".

Stephen Jay Gould criticised Gaia as being "a metaphor, not a mechanism." He wanted to know the actual mechanisms by which self-regulating homeostasis was achieved. In his defense of Gaia, David Abram argues that Gould overlooked the fact that "mechanism", itself, is a metaphor — albeit an exceedingly common and often unrecognized metaphor — one which leads us to consider natural and living systems as though they were machines organized and built from outside (rather than as autopoietic or self-organizing phenomena). Mechanical metaphors, according to Abram, lead us to overlook the active or agential quality of living entities, while the organismic metaphorics of the Gaia hypothesis accentuate the active agency of both the biota and the biosphere as a whole. With regard to causality in Gaia, Lovelock argues that no single mechanism is responsible, that the connections between the various known mechanisms may never be known, that this is accepted in other fields of biology and ecology as a matter of course, and that specific hostility is reserved for his own hypothesis for other reasons.

Aside from clarifying his language and understanding of what is meant by a life form, Lovelock himself ascribes most of the criticism to a lack of understanding of non-linear mathematics by his critics, and a linearizing form of greedy reductionism in which all events have to be immediately ascribed to specific causes before the fact. He also states that most of his critics are biologists but that his hypothesis includes experiments in fields outside biology, and that some self-regulating phenomena may not be mathematically explainable.

Natural selection and evolution

Lovelock has suggested that global biological feedback mechanisms could evolve by natural selection, stating that organisms that improve their environment for their survival do better than those that damage their environment. However, in the early 1980s, W. Ford Doolittle and Richard Dawkins separately argued against this aspect of Gaia. Doolittle argued that nothing in the genome of individual organisms could provide the feedback mechanisms proposed by Lovelock, and therefore the Gaia hypothesis proposed no plausible mechanism and was unscientific. Dawkins meanwhile stated that for organisms to act in concert would require foresight and planning, which is contrary to the current scientific understanding of evolution. Like Doolittle, he also rejected the possibility that feedback loops could stabilize the system.

Lynn Margulis, a microbiologist who collaborated with Lovelock in supporting the Gaia hypothesis, argued in 1999 that "Darwin's grand vision was not wrong, only incomplete. In accentuating the direct competition between individuals for resources as the primary selection mechanism, Darwin (and especially his followers) created the impression that the environment was simply a static arena". She wrote that the composition of the Earth's atmosphere, hydrosphere, and lithosphere are regulated around "set points" as in homeostasis, but those set points change with time.

Evolutionary biologist W. D. Hamilton called the concept of Gaia Copernican, adding that it would take another Newton to explain how Gaian self-regulation takes place through Darwinian natural selection. More recently Ford Doolittle building on his and Inkpen's ITSNTS (It's The Song Not The Singer) proposal proposed that differential persistence can play a similar role to differential reproduction in evolution by natural selections, thereby providing a possible reconciliation between the theory of natural selection and the Gaia hypothesis.

Criticism in the 21st century

The Gaia hypothesis continues to be broadly skeptically received by the scientific community. For instance, arguments both for and against it were laid out in the journal Climatic Change in 2002 and 2003. A significant argument raised against it are the many examples where life has had a detrimental or destabilising effect on the environment rather than acting to regulate it. Several recent books have criticised the Gaia hypothesis, expressing views ranging from "... the Gaia hypothesis lacks unambiguous observational support and has significant theoretical difficulties" to "Suspended uncomfortably between tainted metaphor, fact, and false science, I prefer to leave Gaia firmly in the background" to "The Gaia hypothesis is supported neither by evolutionary theory nor by the empirical evidence of the geological record". The CLAW hypothesis, initially suggested as a potential example of direct Gaian feedback, has subsequently been found to be less credible as understanding of cloud condensation nuclei has improved. In 2009 the Medea hypothesis was proposed: that life has highly detrimental (biocidal) impacts on planetary conditions, in direct opposition to the Gaia hypothesis.

In a 2013 book-length evaluation of the Gaia hypothesis considering modern evidence from across the various relevant disciplines, Toby Tyrrell concluded that: "I believe Gaia is a dead end*. Its study has, however, generated many new and thought provoking questions. While rejecting Gaia, we can at the same time appreciate Lovelock's originality and breadth of vision, and recognize that his audacious concept has helped to stimulate many new ideas about the Earth, and to champion a holistic approach to studying it". Elsewhere he presents his conclusion "The Gaia hypothesis is not an accurate picture of how our world works". This statement needs to be understood as referring to the "strong" and "moderate" forms of Gaia—that the biota obeys a principle that works to make Earth optimal (strength 5) or favourable for life (strength 4) or that it works as a homeostatic mechanism (strength 3). The latter is the "weakest" form of Gaia that Lovelock has advocated. Tyrrell rejects it. However, he finds that the two weaker forms of Gaia—Coeveolutionary Gaia and Influential Gaia, which assert that there are close links between the evolution of life and the environment and that biology affects the physical and chemical environment—are both credible, but that it is not useful to use the term "Gaia" in this sense and that those two forms were already accepted and explained by the processes of natural selection and adaptation.

Carbonate–silicate cycle

This figure describes the geological aspects and processes of the carbonate silicate cycle, within the long-term carbon cycle.

The carbonate–silicate geochemical cycle, also known as the inorganic carbon cycle, describes the long-term transformation of silicate rocks to carbonate rocks by weathering and sedimentation, and the transformation of carbonate rocks back into silicate rocks by metamorphism and volcanism. Carbon dioxide is removed from the atmosphere during burial of weathered minerals and returned to the atmosphere through volcanism. On million-year time scales, the carbonate-silicate cycle is a key factor in controlling Earth's climate because it regulates carbon dioxide levels and therefore global temperature.

However the rate of weathering is sensitive to factors that modulate how much land is exposed. These factors include sea level, topography, lithology, and vegetation changes. Furthermore, these geomorphic and chemical changes have worked in tandem with solar forcing, whether due to orbital changes or stellar evolution, to determine the global surface temperature. Additionally, the carbonate-silicate cycle has been considered a possible solution to the faint young Sun paradox.

Overview of the cycle

This schematic shows the relationship between the different physical and chemical processes that make up the carbonate-silicate cycle.

The carbonate-silicate cycle is the primary control on carbon dioxide levels over long timescales. It can be seen as a branch of the carbon cycle, which also includes the organic carbon cycle, in which biological processes convert carbon dioxide and water into organic matter and oxygen via photosynthesis.

Physical and chemical processes

Microscopic shells found in sediment cores may be used to determine past climate conditions including ocean temperatures and aspects of atmospheric chemistry.

The inorganic cycle begins with the production of carbonic acid (H2CO3) from rainwater and gaseous carbon dioxide. Carbonic acid is a weak acid, but over long timescales, it can dissolve silicate rocks (as well as carbonate rocks). Most of the Earth's crust (and mantle) is composed of silicates. These substances break down into dissolved ions as a result. For example, calcium silicate CaSiO3, or wollastonite, reacts with carbon dioxide and water to yield a calcium ion, Ca2+, a bicarbonate ion, HCO3, and dissolved silica. This reaction structure is representative of general silicate weathering of calcium silicate minerals. The chemical pathway is as follows:

River runoff carries these products to the ocean, where marine calcifying organisms use Ca2+ and HCO3 to build their shells and skeletons, a process called carbonate precipitation:

Two molecules of CO2 are required for silicate rock weathering; marine calcification releases one molecule back to the atmosphere. The calcium carbonate (CaCO3) contained in shells and skeletons sinks after the marine organism dies and is deposited on the ocean floor.

The final stage of the process involves the movement of the seafloor. At subduction zones, the carbonate sediments are buried and forced back into the mantle. Some carbonate may be carried deep into the mantle where high pressure and temperature conditions allow it to combine metamorphically with SiO2 to form CaSiO3 and CO2, which is released from the interior into the atmosphere via volcanism, thermal vents in the ocean, or soda springs, which are natural springs that contain carbon dioxide gas or soda water:

This final step returns the second CO2 molecule to the atmosphere and closes the inorganic carbon budget. 99.6% of all carbon on Earth (equating to roughly 108 billion tons of carbon) is sequestered in the longterm rock reservoir. And essentially all carbon has spent time in the form of carbonate. By contrast, only 0.002% of carbon exists in the biosphere.

Feedbacks

Changes to the surface of the planet, such as an absence of volcanoes or higher sea levels, which would reduce the amount of land surface exposed to weathering can change the rates at which different processes in this cycle take place. Over tens to hundreds of millions of years, carbon dioxide levels in the atmosphere may vary due to natural perturbations in the cycle but even more generally, it serves as a critical negative feedback loop between carbon dioxide levels and climate changes. For example, if CO2 builds up in the atmosphere, the greenhouse effect will serve to increase the surface temperature, which will in turn increase the rate of rainfall and silicate weathering, which will remove carbon from the atmosphere. In this way, over long timescales, the carbonate-silicate cycle has a stabilizing effect on the Earth's climate, which is why it has been called the Earth's thermostat.

Changes through Earth history

Aspects of the carbonate-silicate cycle have changed through Earth history as a result of biological evolution and tectonic changes. Generally, the formation of carbonates has outpaced that of silicates, effectively removing carbon dioxide from the atmosphere. The advent of carbonate biomineralization near the Precambrian-Cambrian boundary would have allowed more efficient removal of weathering products from the ocean. Biological processes in soils can significantly increase weathering rates. Plants produce organic acids that increase weathering. These acids are secreted by root and mycorrhizal fungi, as well as microbial plant decay. Root respiration and oxidation of organic soil matter also produce carbon dioxide, which is converted to carbonic acid, which increases weathering.

Tectonics can induce changes in the carbonate-silicate cycle. For example, the uplift of major mountain ranges, such as Himalayas and the Andes, is thought to have initiated the Late Cenozoic Ice Age due to increased rates of silicate weathering and draw down of carbon dioxide. Seafloor weather is linked both to solar luminosity and carbon dioxide concentration. However, it presented a challenge to modelers who have tried to relate the rate of outgassing and subduction to the related rates of seafloor change. Proper, uncomplicated proxy data is difficult to attain for such questions. For example, sediment cores, from which scientists can deduce past sea levels, are not ideal because sea levels change as a result of more than just seafloor adjustment. Recent modeling studies have investigated the role of seafloor weathering on the early evolution of life, showing that relatively fast seafloor creation rates worked to draw down carbon dioxide levels to a moderate extent.

Observations of so-called deep time indicate that Earth has a relatively insensitive rock weathering feedback, allowing for large temperature swings. With about twice as much carbon dioxide in the atmosphere, paleoclimate records show that global temperatures reached up to 5 to 6 °C higher than current temperatures. However, other factors such as changes in orbital/solar forcing contribute to global temperature change in the paleo-record.

Human emissions of CO2 have been steadily increasing, and the consequent concentration of CO2 in the Earth system has reached unprecedented levels in a very short amount of time. Excess carbon in the atmosphere that is dissolved in seawater can alter the rates of carbonate-silicate cycle. Dissolved CO2 may react with water to form bicarbonate ions, HCO3, and hydrogen ions, H+. These hydrogen ions quickly react with carbonate, CO32- to produce more bicarbonate ions and reduce the available carbonate ions, which presents an obstacle to the carbon carbonate precipitation process. Put differently, 30% of excess carbon emitted into the atmosphere is absorbed by the oceans. Higher concentrations of carbon dioxide in the oceans work to push the carbonate precipitation process in the opposite direction (to the left), producing less CaCO3. This process, which harms shell-building organisms, is called ocean acidification.

The cycle on other planets

One should not assume that a carbonate-silicate cycle would appear on all terrestrial planets. To begin, the carbonate-silicate cycle requires the presence of a water cycle. It therefore breaks down at the inner edge of the Solar System's habitable zone. Even if a planet starts out with liquid water on the surface, if it becomes too warm, it will undergo a runaway greenhouse, losing surface water. Without the requisite rainwater, no weathering will occur to produce carbonic acid from gaseous CO2. Furthermore, at the outer edge, CO2 may condense, consequently reducing the greenhouse effect and reducing the surface temperature. As a result, the atmosphere would collapse into polar caps.

Mars is such a planet. Located at the edge of the solar system's habitable zone, its surface is too cold for liquid water to form without a greenhouse effect. With its thin atmosphere, Mars' mean surface temperature is 210 K (−63 °C). In attempting to explain topographical features resembling fluvial channels, despite seemingly insufficient incoming solar radiation, some have suggested that a cycle similar to Earth's carbonate-silicate cycle could have existed – similar to a retreat from Snowball Earth periods. It has been shown using modeling studies that gaseous CO2 and H2O acting as greenhouse gases could not have kept Mars warm during its early history when the sun was fainter because CO2 would condense out into clouds. Even though CO2 clouds do not reflect in the same way that water clouds do on Earth, it could not have had much of a carbonate-silicate cycle in the past.

By contrast, Venus is located at the inner edge of the habitable zone and has a mean surface temperature of 737 K (464 °C). After losing its water by photodissociation and hydrogen escape, Venus stopped removing carbon dioxide from its atmosphere, and began instead to build it up, and experience a runaway greenhouse effect.

On tidally locked exoplanets, the location of the substellar point will dictate the release of carbon dioxide from the lithosphere.

Butane

From Wikipedia, the free encyclopedia ...