Search This Blog

Tuesday, December 21, 2021

Interplanetary spaceflight

From Wikipedia, the free encyclopedia
 

Interplanetary spaceflight or interplanetary travel is the crewed or uncrewed travel between stars and planets, usually within a single planetary system. In practice, spaceflights of this type are confined to travel between the planets of the Solar System. Uncrewed space probes have flown to all the observed planets in the Solar System as well as to dwarf planets Pluto and Ceres, and several asteroids. Orbiters and landers return more information than fly-by missions. Crewed flights have landed on the Moon and have been planned, from time to time, for Mars and Venus. While many scientists appreciate the knowledge value that uncrewed flights provide, the value of crewed missions is more controversial. Science fiction writers propose a number of benefits, including the mining of asteroids, access to solar power, and room for colonization in the event of an Earth catastrophe.

A number of techniques have been developed to make interplanetary flights more economical. Advances in computing and theoretical science have already improved some techniques, while new proposals may lead to improvements in speed, fuel economy, and safety. Travel techniques must take into consideration the velocity changes necessary to travel from one body to another in the Solar System. For orbital flights, an additional adjustment must be made to match the orbital speed of the destination body. Other developments are designed to improve rocket launching and propulsion, as well as the use of non-traditional sources of energy. Using extraterrestrial resources for energy, oxygen, and water would reduce costs and improve life support systems.

Any crewed interplanetary flight must include certain design requirements. Life support systems must be capable of supporting human lives for extended periods of time. Preventative measures are needed to reduce exposure to radiation and ensure optimum reliability.

Cutaway diagram of the Apollo Applications Project Venus flyby spacecraft
 
View from MESSENGER as it flies by Earth en route to Mercury

Current achievements in interplanetary travel

The plains of Pluto, as seen by New Horizons after its nearly 10-year voyage

Remotely guided space probes have flown by all of the observed planets of the Solar System from Mercury to Neptune, with the New Horizons probe having flown by the dwarf planet Pluto and the Dawn spacecraft currently orbiting the dwarf planet Ceres. The most distant spacecraft, Voyager 1 and Voyager 2 have left the Solar System as of 8 December 2018 while Pioneer 10, Pioneer 11, and New Horizons are on course to leave it.

In general, planetary orbiters and landers return much more detailed and comprehensive information than fly-by missions. Space probes have been placed into orbit around all the five planets known to the ancients: The first being Venus (Venera 7, 1970), Mars (Mariner 9, 1971), Jupiter (Galileo, 1995), Saturn (Cassini/Huygens, 2004), and most recently Mercury (MESSENGER, March 2011), and have returned data about these bodies and their natural satellites.

The NEAR Shoemaker mission in 2000 orbited the large near-Earth asteroid 433 Eros, and was even successfully landed there, though it had not been designed with this maneuver in mind. The Japanese ion-drive spacecraft Hayabusa in 2005 also orbited the small near-Earth asteroid 25143 Itokawa, landing on it briefly and returning grains of its surface material to Earth. Another ion-drive mission, Dawn, has orbited the large asteroid Vesta (July 2011 – September 2012) and later moved on to the dwarf planet Ceres, arriving in March 2015.

Remotely controlled landers such as Viking, Pathfinder and the two Mars Exploration Rovers have landed on the surface of Mars and several Venera and Vega spacecraft have landed on the surface of Venus. The Huygens probe successfully landed on Saturn's moon, Titan.

No crewed missions have been sent to any planet of the Solar System. NASA's Apollo program, however, landed twelve people on the Moon and returned them to Earth. The American Vision for Space Exploration, originally introduced by U.S. President George W. Bush and put into practice through the Constellation program, had as a long-term goal to eventually send human astronauts to Mars. However, on February 1, 2010, President Barack Obama proposed cancelling the program in Fiscal Year 2011. An earlier project which received some significant planning by NASA included a crewed fly-by of Venus in the Manned Venus Flyby mission, but was cancelled when the Apollo Applications Program was terminated due to NASA budget cuts in the late 1960s.

Reasons for interplanetary travel

Space colony on the O'Neill cylinder

The costs and risk of interplanetary travel receive a lot of publicity—spectacular examples include the malfunctions or complete failures of probes without a human crew, such as Mars 96, Deep Space 2, and Beagle 2 (the article List of Solar System probes gives a full list).

Many astronomers, geologists and biologists believe that exploration of the Solar System provides knowledge that could not be gained by observations from Earth's surface or from orbit around Earth. But they disagree about whether human-crewed missions make a useful scientific contribution—some think robotic probes are cheaper and safer, while others argue that either astronauts or spacefaring scientists, advised by Earth-based scientists, can respond more flexibly and intelligently to new or unexpected features of the region they are exploring.

Those who pay for such missions (primarily in the public sector) are more likely to be interested in benefits for themselves or for the human race as a whole. So far the only benefits of this type have been "spin-off" technologies which were developed for space missions and then were found to be at least as useful in other activities (NASA publicizes spin-offs from its activities).

Other practical motivations for interplanetary travel are more speculative, because our current technologies are not yet advanced enough to support test projects. But science fiction writers have a fairly good track record in predicting future technologies—for example geosynchronous communications satellites (Arthur C. Clarke) and many aspects of computer technology (Mack Reynolds).

Many science fiction stories feature detailed descriptions of how people could extract minerals from asteroids and energy from sources including orbital solar panels (unhampered by clouds) and the very strong magnetic field of Jupiter. Some point out that such techniques may be the only way to provide rising standards of living without being stopped by pollution or by depletion of Earth's resources (for example peak oil).

Finally, colonizing other parts of the Solar System would prevent the whole human species from being exterminated by any one of a number of possible events (see Human extinction). One of these possible events is an asteroid impact like the one which may have resulted in the Cretaceous–Paleogene extinction event. Although various Spaceguard projects monitor the Solar System for objects that might come dangerously close to Earth, current asteroid deflection strategies are crude and untested. To make the task more difficult, carbonaceous chondrites are rather sooty and therefore very hard to detect. Although carbonaceous chondrites are thought to be rare, some are very large and the suspected "dinosaur-killer" may have been a carbonaceous chondrite.

Some scientists, including members of the Space Studies Institute, argue that the vast majority of mankind eventually will live in space and will benefit from doing this.

Economical travel techniques

One of the main challenges in interplanetary travel is producing the very large velocity changes necessary to travel from one body to another in the Solar System.

Due to the Sun's gravitational pull, a spacecraft moving farther from the Sun will slow down, while a spacecraft moving closer will speed up. Also, since any two planets are at different distances from the Sun, the planet from which the spacecraft starts is moving around the Sun at a different speed than the planet to which the spacecraft is travelling (in accordance with Kepler's Third Law). Because of these facts, a spacecraft desiring to transfer to a planet closer to the Sun must decrease its speed with respect to the Sun by a large amount in order to intercept it, while a spacecraft traveling to a planet farther out from the Sun must increase its speed substantially. Then, if additionally the spacecraft wishes to enter into orbit around the destination planet (instead of just flying by it), it must match the planet's orbital speed around the Sun, usually requiring another large velocity change.

Simply doing this by brute force – accelerating in the shortest route to the destination and then matching the planet's speed – would require an extremely large amount of fuel. And the fuel required for producing these velocity changes has to be launched along with the payload, and therefore even more fuel is needed to put both the spacecraft and the fuel required for its interplanetary journey into orbit. Thus, several techniques have been devised to reduce the fuel requirements of interplanetary travel.

As an example of the velocity changes involved, a spacecraft travelling from low Earth orbit to Mars using a simple trajectory must first undergo a change in speed (also known as a delta-v), in this case an increase, of about 3.8 km/s. Then, after intercepting Mars, it must change its speed by another 2.3 km/s in order to match Mars' orbital speed around the Sun and enter an orbit around it. For comparison, launching a spacecraft into low Earth orbit requires a change in speed of about 9.5 km/s.

Hohmann transfers

Hohmann Transfer Orbit: a spaceship leaves from point 2 in Earth's orbit and arrives at point 3 in Mars' (not to scale)

For many years economical interplanetary travel meant using the Hohmann transfer orbit. Hohmann demonstrated that the lowest energy route between any two orbits is an elliptical "orbit" which forms a tangent to the starting and destination orbits. Once the spacecraft arrives, a second application of thrust will re-circularize the orbit at the new location. In the case of planetary transfers this means directing the spacecraft, originally in an orbit almost identical to Earth's, so that the aphelion of the transfer orbit is on the far side of the Sun near the orbit of the other planet. A spacecraft traveling from Earth to Mars via this method will arrive near Mars orbit in approximately 8.5 months, but because the orbital velocity is greater when closer to the center of mass (i.e. the Sun) and slower when farther from the center, the spacecraft will be traveling quite slowly and a small application of thrust is all that is needed to put it into a circular orbit around Mars. If the manoeuver is timed properly, Mars will be "arriving" under the spacecraft when this happens.

The Hohmann transfer applies to any two orbits, not just those with planets involved. For instance it is the most common way to transfer satellites into geostationary orbit, after first being "parked" in low Earth orbit. However, the Hohmann transfer takes an amount of time similar to ½ of the orbital period of the outer orbit, so in the case of the outer planets this is many years – too long to wait. It is also based on the assumption that the points at both ends are massless, as in the case when transferring between two orbits around Earth for instance. With a planet at the destination end of the transfer, calculations become considerably more difficult.

Gravitational slingshot

Simplified example of a gravitational slingshot: the spacecraft's velocity changes by up to twice the planet's velocity
 
Plot of Voyager 2's heliocentric velocity against its distance from the Sun, illustrating the use of gravity assist to accelerate the spacecraft by Jupiter, Saturn and Uranus. To observe Triton, Voyager 2 passed over Neptune's north pole resulting in an acceleration out of the plane of the ecliptic and reduced velocity away from the Sun.

The gravitational slingshot technique uses the gravity of planets and moons to change the speed and direction of a spacecraft without using fuel. In typical example, a spacecraft is sent to a distant planet on a path that is much faster than what the Hohmann transfer would call for. This would typically mean that it would arrive at the planet's orbit and continue past it. However, if there is a planet between the departure point and the target, it can be used to bend the path toward the target, and in many cases the overall travel time is greatly reduced. A prime example of this are the two crafts of the Voyager program, which used slingshot effects to change trajectories several times in the outer Solar System. It is difficult to use this method for journeys in the inner part of the Solar System, although it is possible to use other nearby planets such as Venus or even the Moon as slingshots in journeys to the outer planets.

This maneuver can only change an object's velocity relative to a third, uninvolved object, – possibly the “centre of mass” or the Sun. There is no change in the velocities of the two objects involved in the maneuver relative to each other. The Sun cannot be used in a gravitational slingshot because it is stationary compared to rest of the Solar System, which orbits the Sun. It may be used to send a spaceship or probe into the galaxy because the Sun revolves around the center of the Milky Way.

Powered slingshot

A powered slingshot is the use of a rocket engine at or around closest approach to a body (periapsis). The use at this point multiplies up the effect of the delta-v, and gives a bigger effect than at other times.

Fuzzy orbits

Computers did not exist when Hohmann transfer orbits were first proposed (1925) and were slow, expensive and unreliable when gravitational slingshots were developed (1959). Recent advances in computing have made it possible to exploit many more features of the gravity fields of astronomical bodies and thus calculate even lower-cost trajectories. Paths have been calculated which link the Lagrange points of the various planets into the so-called Interplanetary Transport Network. Such "fuzzy orbits" use significantly less energy than Hohmann transfers but are much, much slower. They aren't practical for human crewed missions because they generally take years or decades, but may be useful for high-volume transport of low-value commodities if humanity develops a space-based economy.

Aerobraking

Apollo command module flying at a high angle of attack to aerobrake by skimming the atmosphere (artistic rendition)

Aerobraking uses the atmosphere of the target planet to slow down. It was first used on the Apollo program where the returning spacecraft did not enter Earth orbit but instead used a S-shaped vertical descent profile (starting with an initially steep descent, followed by a leveling out, followed by a slight climb, followed by a return to a positive rate of descent continuing to splash-down in the ocean) through Earth's atmosphere to reduce its speed until the parachute system could be deployed enabling a safe landing. Aerobraking does not require a thick atmosphere – for example most Mars landers use the technique, and Mars' atmosphere is only about 1% as thick as Earth's.

Aerobraking converts the spacecraft's kinetic energy into heat, so it requires a heatshield to prevent the craft from burning up. As a result, aerobraking is only helpful in cases where the fuel needed to transport the heatshield to the planet is less than the fuel that would be required to brake an unshielded craft by firing its engines. This can be addressed by creating heatshields from material available near the target

Improved technologies and methodologies

Several technologies have been proposed which both save fuel and provide significantly faster travel than the traditional methodology of using Hohmann transfers. Some are still just theoretical, but over time, several of the theoretical approaches have been tested on spaceflight missions. For example, the Deep Space 1 mission was a successful test of an ion drive. These improved technologies typically focus on one or more of:

  • Space propulsion systems with much better fuel economy. Such systems would make it possible to travel much faster while keeping the fuel cost within acceptable limits.
  • Using solar energy and in-situ resource utilization to avoid or minimize the expensive task of shipping components and fuel up from the Earth's surface, against the Earth's gravity (see "Using non-terrestrial resources", below).
  • Novel methodologies of using energy at different locations or in different ways that can shorten transport time or reduce cost per unit mass of space transport

Besides making travel faster or cost less, such improvements could also allow greater design "safety margins" by reducing the imperative to make spacecraft lighter.

Improved rocket concepts

All rocket concepts are limited by the Tsiolkovsky rocket equation, which sets the characteristic velocity available as a function of exhaust velocity and mass ratio, of initial (M0, including fuel) to final (M1, fuel depleted) mass. The main consequence is that mission velocities of more than a few times the velocity of the rocket motor exhaust (with respect to the vehicle) rapidly become impractical, as the dry mass (mass of payload and rocket without fuel) falls to below 10% of the entire rocket's wet mass (mass of rocket with fuel).

Nuclear thermal and solar thermal rockets

Sketch of nuclear thermal rocket

In a nuclear thermal rocket or solar thermal rocket a working fluid, usually hydrogen, is heated to a high temperature, and then expands through a rocket nozzle to create thrust. The energy replaces the chemical energy of the reactive chemicals in a traditional rocket engine. Due to the low molecular mass and hence high thermal velocity of hydrogen these engines are at least twice as fuel efficient as chemical engines, even after including the weight of the reactor.

The US Atomic Energy Commission and NASA tested a few designs from 1959 to 1968. The NASA designs were conceived as replacements for the upper stages of the Saturn V launch vehicle, but the tests revealed reliability problems, mainly caused by the vibration and heating involved in running the engines at such high thrust levels. Political and environmental considerations make it unlikely such an engine will be used in the foreseeable future, since nuclear thermal rockets would be most useful at or near the Earth's surface and the consequences of a malfunction could be disastrous. Fission-based thermal rocket concepts produce lower exhaust velocities than the electric and plasma concepts described below, and are therefore less attractive solutions. For applications requiring high thrust-to-weight ratio, such as planetary escape, nuclear thermal is potentially more attractive.

Electric propulsion

Electric propulsion systems use an external source such as a nuclear reactor or solar cells to generate electricity, which is then used to accelerate a chemically inert propellant to speeds far higher than achieved in a chemical rocket. Such drives produce feeble thrust, and are therefore unsuitable for quick maneuvers or for launching from the surface of a planet. But they are so economical in their use of reaction mass that they can keep firing continuously for days or weeks, while chemical rockets use up reaction mass so quickly that they can only fire for seconds or minutes. Even a trip to the Moon is long enough for an electric propulsion system to outrun a chemical rocket – the Apollo missions took 3 days in each direction.

NASA's Deep Space One was a very successful test of a prototype ion drive, which fired for a total of 678 days and enabled the probe to run down Comet Borrelly, a feat which would have been impossible for a chemical rocket. Dawn, the first NASA operational (i.e., non-technology demonstration) mission to use an ion drive for its primary propulsion, successfully orbited the large main-belt asteroids 1 Ceres and 4 Vesta. A more ambitious, nuclear-powered version was intended for a Jupiter mission without human crew, the Jupiter Icy Moons Orbiter (JIMO), originally planned for launch sometime in the next decade. Due to a shift in priorities at NASA that favored human crewed space missions, the project lost funding in 2005. A similar mission is currently under discussion as the US component of a joint NASA/ESA program for the exploration of Europa and Ganymede.

A NASA multi-center Technology Applications Assessment Team led from the Johnson Spaceflight Center, has as of January 2011 described "Nautilus-X", a concept study for a multi-mission space exploration vehicle useful for missions beyond low Earth orbit (LEO), of up to 24 months duration for a crew of up to six. Although Nautilus-X is adaptable to a variety of mission-specific propulsion units of various low-thrust, high specific impulse (Isp) designs, nuclear ion-electric drive is shown for illustrative purposes. It is intended for integration and checkout at the International Space Station (ISS), and would be suitable for deep-space missions from the ISS to and beyond the Moon, including Earth/Moon L1, Sun/Earth L2, near-Earth asteroidal, and Mars orbital destinations. It incorporates a reduced-g centrifuge providing artificial gravity for crew health to ameliorate the effects of long-term 0g exposure, and the capability to mitigate the space radiation environment.

Fission powered rockets

The electric propulsion missions already flown, or currently scheduled, have used solar electric power, limiting their capability to operate far from the Sun, and also limiting their peak acceleration due to the mass of the electric power source. Nuclear-electric or plasma engines, operating for long periods at low thrust and powered by fission reactors, can reach speeds much greater than chemically powered vehicles.

Fusion rockets

Fusion rockets, powered by nuclear fusion reactions, would "burn" such light element fuels as deuterium, tritium, or 3He. Because fusion yields about 1% of the mass of the nuclear fuel as released energy, it is energetically more favorable than fission, which releases only about 0.1% of the fuel's mass-energy. However, either fission or fusion technologies can in principle achieve velocities far higher than needed for Solar System exploration, and fusion energy still awaits practical demonstration on Earth.

One proposal using a fusion rocket was Project Daedalus. Another fairly detailed vehicle system, designed and optimized for crewed Solar System exploration, "Discovery II", based on the D3He reaction but using hydrogen as reaction mass, has been described by a team from NASA's Glenn Research Center. It achieves characteristic velocities of >300 km/s with an acceleration of ~1.7•10−3 g, with a ship initial mass of ~1700 metric tons, and payload fraction above 10%.

Fusion rockets are considered to be a likely source of interplanetary transport for a planetary civilization.

Exotic propulsion

See the spacecraft propulsion article for a discussion of a number of other technologies that could, in the medium to longer term, be the basis of interplanetary missions. Unlike the situation with interstellar travel, the barriers to fast interplanetary travel involve engineering and economics rather than any basic physics.

Solar sails

NASA illustration of a solar-sail propelled spacecraft

Solar sails rely on the fact that light reflected from a surface exerts pressure on the surface. The radiation pressure is small and decreases by the square of the distance from the Sun, but unlike rockets, solar sails require no fuel. Although the thrust is small, it continues as long as the Sun shines and the sail is deployed.

The original concept relied only on radiation from the Sun – for example in Arthur C. Clarke's 1965 story "Sunjammer". More recent light sail designs propose to boost the thrust by aiming ground-based lasers or masers at the sail. Ground-based lasers or masers can also help a light-sail spacecraft to decelerate: the sail splits into an outer and inner section, the outer section is pushed forward and its shape is changed mechanically to focus reflected radiation on the inner portion, and the radiation focused on the inner section acts as a brake.

Although most articles about light sails focus on interstellar travel, there have been several proposals for their use within the Solar System.

Currently, the only spacecraft to use a solar sail as the main method of propulsion is IKAROS which was launched by JAXA on May 21, 2010. It has since been successfully deployed, and shown to be producing acceleration as expected. Many ordinary spacecraft and satellites also use solar collectors, temperature-control panels and Sun shades as light sails, to make minor corrections to their attitude and orbit without using fuel. A few have even had small purpose-built solar sails for this use (for example Eurostar E3000 geostationary communications satellites built by EADS Astrium).

Cyclers

It is possible to put stations or spacecraft on orbits that cycle between different planets, for example a Mars cycler would synchronously cycle between Mars and Earth, with very little propellant usage to maintain the trajectory. Cyclers are conceptually a good idea, because massive radiation shields, life support and other equipment only need to be put onto the cycler trajectory once. A cycler could combine several roles: habitat (for example it could spin to produce an "artificial gravity" effect); mothership (providing life support for the crews of smaller spacecraft which hitch a ride on it). Cyclers could also possibly make excellent cargo ships for resupply of a colony.

Space elevator

A space elevator is a theoretical structure that would transport material from a planet's surface into orbit. The idea is that, once the expensive job of building the elevator is complete, an indefinite number of loads can be transported into orbit at minimal cost. Even the simplest designs avoid the vicious circle of rocket launches from the surface, wherein the fuel needed to travel the last 10% of the distance into orbit must be lifted all the way from the surface, requiring even more fuel, and so on. More sophisticated space elevator designs reduce the energy cost per trip by using counterweights, and the most ambitious schemes aim to balance loads going up and down and thus make the energy cost close to zero. Space elevators have also sometimes been referred to as "beanstalks", "space bridges", "space lifts", "space ladders" and "orbital towers".

A terrestrial space elevator is beyond our current technology, although a lunar space elevator could theoretically be built using existing materials.

Skyhook

Non-rotating skyhook first proposed by E. Sarmont in 1990.

A skyhook is a theoretical class of orbiting tether propulsion intended to lift payloads to high altitudes and speeds. Proposals for skyhooks include designs that employ tethers spinning at hypersonic speed for catching high speed payloads or high altitude aircraft and placing them in orbit. In addition, it has been suggested that the rotating skyhook is "not engineeringly feasible using presently available materials".

Launch vehicle and spacecraft reusability

The SpaceX Starship, with maiden launch slated to be no earlier than 2020, is designed to be fully and rapidly reusable, making use of the SpaceX reusable technology that was developed during 2011–2018 for Falcon 9 and Falcon Heavy launch vehicles.

SpaceX CEO Elon Musk estimates that the reusability capability alone, on both the launch vehicle and the spacecraft associated with the Starship will reduce overall system costs per tonne delivered to Mars by at least two orders of magnitude over what NASA had previously achieved.

Staging propellants

When launching interplanetary probes from the surface of Earth, carrying all energy needed for the long-duration mission, payload quantities are necessarily extremely limited, due to the basis mass limitations described theoretically by the rocket equation. One alternative to transport more mass on interplanetary trajectories is to use up nearly all of the upper stage propellant on launch, and then refill propellants in Earth orbit before firing the rocket to escape velocity for a heliocentric trajectory. These propellants could be stored on orbit at a propellant depot, or carried to orbit in a propellant tanker to be directly transferred to the interplanetary spacecraft. For returning mass to Earth, a related option is to mine raw materials from a solar system celestial object, refine, process, and store the reaction products (propellant) on the Solar System body until such time as a vehicle needs to be loaded for launch.

On-orbit tanker transfers

As of 2019, SpaceX is developing a system in which a reusable first stage vehicle would transport a crewed interplanetary spacecraft to Earth orbit, detach, return to its launch pad where a tanker spacecraft would be mounted atop it, then both fueled, then launched again to rendezvous with the waiting crewed spacecraft. The tanker would then transfer its fuel to the human crewed spacecraft for use on its interplanetary voyage. The SpaceX Starship is a stainless steel-structure spacecraft propelled by six Raptor engines operating on densified methane/oxygen propellants. It is 55 m (180 ft)-long, 9 m (30 ft)-diameter at its widest point, and is capable of transporting up to 100 tonnes (220,000 lb) of cargo and passengers per trip to Mars, with on-orbit propellant refill before the interplanetary part of the journey.

Propellant plant on a celestial body

As an example of a funded project currently under development, a key part of the system SpaceX has designed for Mars in order to radically decrease the cost of spaceflight to interplanetary destinations is the placement and operation of a physical plant on Mars to handle production and storage of the propellant components necessary to launch and fly the Starships back to Earth, or perhaps to increase the mass that can be transported onward to destinations in the outer Solar System.

The first Starship to Mars will carry a small propellant plant as a part of its cargo load. The plant will be expanded over multiple synods as more equipment arrives, is installed, and placed into mostly-autonomous production.

The SpaceX propellant plant will take advantage of the large supplies of carbon dioxide and water resources on Mars, mining the water (H2O) from subsurface ice and collecting CO2 from the atmosphere. A chemical plant will process the raw materials by means of electrolysis and the Sabatier process to produce oxygen (O2) and methane (CH4), and then liquefy it to facilitate long-term storage and ultimate use.

Using extraterrestrial resources

Langley's Mars Ice Dome design from 2016 for a Mars base would use in-situ water to make a sort of space-igloo.[clarification needed]

Current space vehicles attempt to launch with all their fuel (propellants and energy supplies) on board that they will need for their entire journey, and current space structures are lifted from the Earth's surface. Non-terrestrial sources of energy and materials are mostly a lot further away, but most would not require lifting out of a strong gravity field and therefore should be much cheaper to use in space in the long term.

The most important non-terrestrial resource is energy, because it can be used to transform non-terrestrial materials into useful forms (some of which may also produce energy). At least two fundamental non-terrestrial energy sources have been proposed: solar-powered energy generation (unhampered by clouds), either directly by solar cells or indirectly by focusing solar radiation on boilers which produce steam to drive generators; and electrodynamic tethers which generate electricity from the powerful magnetic fields of some planets (Jupiter has a very powerful magnetic field).

Water ice would be very useful and is widespread on the moons of Jupiter and Saturn:

  • The low gravity of these moons would make them a cheaper source of water for space stations and planetary bases than lifting it up from Earth's surface.
  • Non-terrestrial power supplies could be used to electrolyse water ice into oxygen and hydrogen for use in bipropellant rocket engines.
  • Nuclear thermal rockets or Solar thermal rockets could use it as reaction mass. Hydrogen has also been proposed for use in these engines and would provide much greater specific impulse (thrust per kilogram of reaction mass), but it has been claimed that water will beat hydrogen in cost/performance terms despite its much lower specific impulse by orders of magnitude.
  • A spacecraft with an adequate water supply could carry the water under the hull, which could provide a considerable additional safety margin for the vessel and its occupants:
    • The water would absorb and conduct solar energy, thus acting as a heat shield. A vessel traveling in the inner Solar System could maintain a constant heading relative to the Sun without overheating the side of the spacecraft facing the Sun, provided the water under the hull was constantly circulated to evenly distribute the solar heat throughout the hull;
    • The water would provide some additional protection against ionizing radiation;
    • The water would act as an insulator against the extreme cold assuming it was kept heated, whether by the Sun when traveling in the inner Solar System or by an on board power source when traveling further away from the Sun;
    • The water would provide some additional protection against micrometeoroid impacts, provided the hull was compartmentalized so as to ensure any leak could be isolated to a small section of the hull.

Oxygen is a common constituent of the moon's crust, and is probably abundant in most other bodies in the Solar System. Non-terrestrial oxygen would be valuable as a source of water ice only if an adequate source of hydrogen can be found. Possible uses include:

  • In the life support systems of space ships, space stations and planetary bases.
  • In rocket engines. Even if the other propellant has to be lifted from Earth, using non-terrestrial oxygen could reduce propellant launch costs by up to 2/3 for hydrocarbon fuel, or 85% for hydrogen. The savings are so high because oxygen accounts for the majority of the mass in most rocket propellant combinations.

Unfortunately hydrogen, along with other volatiles like carbon and nitrogen, are much less abundant than oxygen in the inner Solar System.

Scientists expect to find a vast range of organic compounds in some of the planets, moons and comets of the outer Solar System, and the range of possible uses is even wider. For example, methane can be used as a fuel (burned with non-terrestrial oxygen), or as a feedstock for petrochemical processes such as making plastics. And ammonia could be a valuable feedstock for producing fertilizers to be used in the vegetable gardens of orbital and planetary bases, reducing the need to lift food to them from Earth.

Even unprocessed rock may be useful as rocket propellant if mass drivers are employed.

Design requirements for crewed interplanetary travel

In the artistic vision, the spacecraft provides artificial gravity by spinning (1989)
 

Life support

Life support systems must be capable of supporting human life for weeks, months or even years. A breathable atmosphere of at least 35 kPa (5.1 psi) must be maintained, with adequate amounts of oxygen, nitrogen, and controlled levels of carbon dioxide, trace gases and water vapor.

In October 2015, the NASA Office of Inspector General issued a health hazards report related to human spaceflight, including a human mission to Mars.

Radiation

Once a vehicle leaves low Earth orbit and the protection of Earth's magnetosphere, it enters the Van Allen radiation belt, a region of high radiation. Beyond the Van Allen belts, radiation levels generally decrease, but can fluctuate over time. These high energy cosmic rays pose a health threat. Even the minimum levels of radiation during these fluctuations is comparable to the current annual limit for astronauts in low-Earth orbit.

Scientists of Russian Academy of Sciences are searching for methods of reducing the risk of radiation-induced cancer in preparation for the mission to Mars. They consider as one of the options a life support system generating drinking water with low content of deuterium (a stable isotope of hydrogen) to be consumed by the crew members. Preliminary investigations have shown that deuterium-depleted water features certain anti-cancer effects. Hence, deuterium-free drinking water is considered to have the potential of lowering the risk of cancer caused by extreme radiation exposure of the Martian crew.

In addition, coronal mass ejections from the Sun are highly dangerous, and are fatal within a very short timescale to humans unless they are protected by massive shielding.

Reliability

Any major failure to a spacecraft en route is likely to be fatal, and even a minor one could have dangerous results if not repaired quickly, something difficult to accomplish in open space. The crew of the Apollo 13 mission survived despite an explosion caused by a faulty oxygen tank (1970).

Launch windows

For astrodynamics reasons, economic spacecraft travel to other planets is only practical within certain time windows. Outside these windows the planets are essentially inaccessible from Earth with current technology. This constrains flights and limits rescue options in the case of an emergency.

 

Monday, December 20, 2021

Deep ocean minerals

From Wikipedia, the free encyclopedia

Deep ocean minerals (DOM) are mineral nutrients (chemical elements) extracted from deep ocean water (DOW) found at ocean depths of between 250 and 1500 meters. DOW contains over 70 mineral nutrients and trace elements including magnesium (Mg), calcium (Ca) and potassium (K) in their bio ionic form. To extract these products, DOW is treated with micro filtration and reverse osmosis to desalinate and concentrate magnesium, other minerals and trace elements whilst eliminating the salt (sodium chloride).

Although research about DOM is in its early stages, as it is a source of electrolytes that can help metabolize carbohydrate, proteins and fat plus maintain bone, teeth and muscle function, health benefits are possible.

The abundance of minerals and trace elements is also of note as deficiencies in macro minerals and micro trace elements can lead to premature aging, immune dysfunction and susceptibility to cardiovascular related diseases.

The minerals and trace elements (DOM) present in DOW have three important functions:

  1. Provide the structure to our organs, tissues and bones – calcium, phosphorus, magnesium, fluorine and sulfur.
  2. The electrolyte form facilitates body fluid activity in tissues to maintain fluid balance, acid-base balance, membrane permeability, tissue irritability (including nerve transmission and muscle contraction) - sodium, potassium, chloride, calcium and magnesium in blood, all present in DOMs.
  3. Magnesium alone, potentially catalyses up to 600 enzyme and hormone reactions.

Sea water and holistic nutrition

Sea water has had a long history of therapeutic use, referred to as ‘Thalassotherapy’ it originates from the Greek word 'thalassa’. Both the Greeks and the Romans used the therapeutic effects of sea water for relaxation, regeneration and stimulation. Books on the healing power of sea water first appeared in the 17th Century and until the early 20th Century seaside holidays were both therapeutic and recreational.

In 1897, René Quinton published the first comprehensive scientific thesis advocating the medical use of sea water in his book, Seawater Organic Matrix, 1904. He discovered the similarity between nutrient profile in micro algae ocean water and our blood nutrient profile. He noted that the ratios of minerals in both fluids were similar with the exception of sodium chloride, which he adjusted. Quinton selected sea water from regions which also contained micro algae.

Ocean water profile

There are three distinctly different layers of ocean water - Surface Sea Water, Deep Ocean Water (DOW) and Very Deep Ocean Water. Each layer remains separate and autonomous from the others, moving at different speeds and directions from different kinetic forces and having different temperatures, densities and life form status.

The surface sea water layer is influenced by sunlight penetration and circulates rapidly in unison with the seasons and wind patterns to a depth of 250 meters. It supports micro and animal life.

The middle layer is DOW where the water is free of sunlight and life forms. It is characterized not only by its mineral density but cold temperature, cleanliness and trace elements. DOW is present at depths of between 250 and 1500 meters. This deep ocean current moves very slowly under the influence of density and temperature gradients. The high mineral density is attributed to the depth related pressure and the change in temperature from 20 °C+ at the surface to 8 °C at 600 meters depth generates the movement of this layer.

Very deep ocean water has been discovered in a number of troughs in the Atlantic and Pacific Oceans. Depths can range from 1500 meters to 15 kilometers and life forms are supported where volcanic processes bring heat and minerals to the seabed floor.

DOM creation begins when the summer ice melts from both Greenland and the Sub Arctic region. The melting water collects minerals and trace elements during its journey to the ocean.

The minerals make the water heavier (DOW) so the water naturally sinks to the ocean floor where it commences a 2000-year journey. It flows southwards down the Atlantic Ocean, moves around the African Cape and then inches north through the Indian Ocean and also into the western Pacific Ocean, first coming close to land at Taiwan, then Okinawa and Hawaii and then arching back south, towards the Antarctica where the changing sea water temperatures from the summer sun force the deep ocean water to the surface to feed the largest micro and macro food chain on our planet.

The east coast of Taiwan is directly adjacent to one of the largest reservoirs of accessible DOW. The southern islands off Japan and Hawaii also have land access to deep ocean water.

Taiwan´s East Coast is ideally located to siphon deep ocean water directly to the surface from the coast. It is then micro filtered, followed by reverse osmosis to desalinate and concentrate the magnesium and other minerals and trace elements at the expense of sodium chloride.

Research

Over the past 15 years, there have been many new publications (over 40) establishing DOM as statistically significant with regards improved cardiovascular and metabolic function. Recent clinical research from Taiwan, Japan and Korea also shows statistically significant therapeutic health benefits from either topical or oral consumption of DOM.

In 2009, scientists at the National Taiwan Ocean University, Keelung, Taiwan, published the first notable wistar rat treadmill fatigue study. Researchers used desalinated deep ocean water processed with ultra-filtration and reverse osmosis to increase magnesium levels and hardness. The water was sourced from the East Coast of Taiwan. The Study showed that the DOM experimental groups were significantly better than the control group with regards exhausting time and the ratio of lactic acid elimination to lactic acid increment. Summarizing the results, the researchers suggested that endurance, adaptation for exercising load and accelerating elimination in fatigue of rats could be improved when fed with DOM of higher hardness and quantity.

In 2014 scientists at Hung Kuang University, Taichung, Taiwan, published a gerbil animal trial, endorsing the findings of the wistar rat trial and again demonstrating that profiled deep ocean water, significantly improved exercise performance in gerbils subjected to treadmill exercise.

In 2013, Researchers at the department of Sports Sciences, Taipei University conducted a randomized double blind placebo controlled cross-over human study to evaluate the effect of DOW on time recovery from a fatiguing exercise conducted at 30 °C. DOM supplementation resulted in complete recovery of aerobic power within four hours. Muscle power was also elevated above placebo levels within 24 hours of recovery. Increased circulating creatine kinase (CK) and myoglobin, indicators of exercise-induced muscle damage, were completely eliminated by DOM in parallel with attenuated oxidative damage. Researchers concluded that the results provide compelling evidence that DOM contains soluble elements, which can increase human recovery following an exhaustive physical challenge.

Over the last 11 years, studies show potential application of DOM for use as a dietary therapy for prevention and complimentary treatment of cardiovascular disease. In 2003, Japanese researchers published their findings regarding the pharmacological activity of DOM directly influencing the serum lipid values of cholesterol fed rabbits.

In 2004, the same group also published new findings showing changes to LDL cholesterol in dietary induced hyperlipidemia rabbits, comparing surface sea water, DOW and a control group. The plasma LDL cholesterol level was lower in the DOW group than in the surface seawater group. Glutathione peroxidase (GPx) activity was significantly higher in the DOW group than in the control group, while there was no difference between the surface seawater and control groups. The level of lipid peroxidation was also significantly lower in the DOW group than in the control group. These early findings suggested that DOW may be useful for the prevention of hyperlipidemia and atherosclerosis compared to the surface seawater, and it was found that reduction of the LDL cholesterol level and enhancement of (GPx) activity were involved in these effects.

In 2008, a Japanese research group used Hypercholesterolemic rabbits to examine changes due to DOW diet on cardiovascular Hemodynamics (blood flow and pressure). Systolic, diastolic, pulse and mean arterial pressures and total peripheral resistance were significantly lower in the DOW group than in the control group.

The first human trial of DOM was conducted in Japan in 2008 with 16 male volunteers examining the effect of Nigari (natural salty sea or lake water) standardized on magnesium in a two way, randomized cross over study. The healthy subjects were given a fat load test prior to measuring effect of postprandial (after meal) hyperlipidaemia. They found that Mg supplementation reduced and delayed the postprandial serum and chylomicron TAG responses after fat loading. The data indicates that Mg supplementation may contribute to preventing the atherogenic process in healthy subjects.

In addition a series of research papers from Taichung University, Taiwan were published. In 2011, mice trials confirmed similar results to the Japanese findings and concluded that electro-dialyzed DOW benefited high cholesterol dietary mice and recommended that standardized DOM should be pursued as a dietary food ingredient for cardiovascular health. Similar results at the Taichung Medical University were also published in 2011 for hamsters.

In 2012, Taipei, a major human trial with 42 hypercholesterolemic volunteers were randomly divided into three groups: reverse osmotic (RO) water, DOM (Mg: 395 mg/L, hardness 1410ppm), and magnesium-chloride fortified (MCF) water (Mg: 386 mg/L, hardness 1430ppm). Serum low-density lipoprotein- cholesterol (LDL-C) was also decreased by DOM. Further, total cholesterol levels of subjects in the DOM group were significantly lower than those in the MCF water or RO water groups.

In 2013, Taichung University researchers published an extended rat trial. The study indicated that 0.1 × DOM, 1 × DOM and 2 × DOM decreased the systolic and diastolic pressures in spontaneous hypertensive rats in an eight-week experiment. DOM has been shown to reduce serum lipids and prevent atherogenesis in a hypercholesterolemic rabbit model. The results demonstrated that DSW significantly suppressed the serum cholesterol levels, reduced the lipid accumulation in liver tissues, and limited aortic fatty streaks.

In 2014, Qingdao Ocean University, China, published a paper showing when DOM was added to HepG2 cells, it decreased the lipid contents of hepatocyte through the activation of AMP-activated protein kinase, thus inhibiting the synthesis of cholesterol and fatty acid and recommended further investigation for treatment and prevention of hypolipidemic and other lifestyle-related diseases.

The DOM research points to it having a possible, positive impact on cardiovascular health. However research findings from the Biomedical Research Institute, Kyungpook National University Hospital, Daegu, Korea also extend the possible dietary use of DOM as a treatment for metabolic syndrome. In 2008 the Korean researchers reported DOM could potentially be used as an anti-obesity agent by inhibiting adipocyte differentiation, mediated through the down-regulated expression of adipogenic transcription factors and adipocyte specific proteins.

In 2009, the same Korean researchers published a further study on the anti-obesity and anti-diabetic effects of DOM in obese mice. The control group received tap water and the experimental group received DOM of hardness 1000 for 84 days. The DOM fed group compared to control group reported a 7% body weight decrease, reduced plasma glucose levels by 35.4% and significant increase of glucose disposal after 84 days. The research suggests that the anti-diabetic and anti-obesity activities of DOM were mediated by modulating the expression of diabetes and obesity specific molecules. Taken together, these results provide a possibility that continuous intake of DOM can be of dietary therapeutic value for treatment of obesity and diabetes. In 2013, a further diabetes induced mice study was conducted to establish dosage regimes. The researchers concluded that DOM provided a novel activator for glucose uptake.

Aquaculture

From Wikipedia, the free encyclopedia

Aquaculture
Aquaculture installations in southern Chile
 
Aquaculture production by region

Aquaculture (less commonly spelled aquiculture), also known as aquafarming, is the controlled cultivation ("farming") of aquatic organisms such as fish, crustaceans, mollusks, algae and other organisms of value such as aquatic plants (e.g. lotus). Aquaculture involves cultivating freshwater and saltwater populations under controlled or semi-natural conditions, and can be contrasted with commercial fishing, which is the harvesting of wild fish. Mariculture, commonly known as marine farming, refers specifically to aquaculture practiced in seawater habitats, opposed to in freshwater aquaculture.

Aquaculture can be conducted in completely artificial facilities built on land (onshore aquaculture), as in the case of fish tank, ponds or raceways, where the living conditions rely on human control; on well-sheltered shallow waters nearshore of a body of water (inshore aquaculture), where the cultivated species are subjected to a relatively more naturalistic environments; or on fenced/enclosed sections of open water away from the shore (offshore aquaculture), where the species are exposed to more diverse natural conditions such as ocean currents, diel vertical migration and nutrient cycles.

According to the Food and Agriculture Organization (FAO), aquaculture "is understood to mean the farming of aquatic organisms including fish, molluscs, crustaceans and aquatic plants. Farming implies some form of intervention in the rearing process to enhance production, such as regular stocking, feeding, protection from predators, etc. Farming also implies individual or corporate ownership of the stock being cultivated." The reported

World capture fisheries and aquaculture production
By species group
 
By main producers (2019)

output from global aquaculture operations in 2014 supplied over one half of the fish and shellfish that is directly consumed by humans; however, there are issues about the reliability of the reported figures. Further, in current aquaculture practice, products from several pounds of wild fish are used to produce one pound of a piscivorous fish like salmon.

Particular kinds of aquaculture include fish farming, shrimp farming, oyster farming, mariculture, algaculture (such as seaweed farming), and the cultivation of ornamental fish. Particular methods include aquaponics and integrated multi-trophic aquaculture, both of which integrate fish farming and aquatic plant farming. The Food and Agriculture Organization describes aquaculture as one of the industries most directly affected by climate change and its impacts. Some forms of aquaculture have negative impacts on the environment, such as through nutrient pollution or disease transfer to wild populations.

Overview

Global capture fisheries and aquaculture production reported by FAO, 1990-2030
 
World aquaculture production of food fish and aquatic plants, 1990–2016.

Harvest stagnation in wild fisheries and overexploitation of popular marine species, combined with a growing demand for high-quality protein, encouraged aquaculturists to domesticate other marine species. At the outset of modern aquaculture, many were optimistic that a "Blue Revolution" could take place in aquaculture, just as the Green Revolution of the 20th century had revolutionized agriculture. Although land animals had long been domesticated, most seafood species were still caught from the wild. Concerned about the impact of growing demand for seafood on the world's oceans, prominent ocean explorer Jacques Cousteau wrote in 1973: "With earth's burgeoning human populations to feed, we must turn to the sea with new understanding and new technology."

About 430 (97%) of the species cultured as of 2007 were domesticated during the 20th and 21st centuries, of which an estimated 106 came in the decade to 2007. Given the long-term importance of agriculture, to date, only 0.08% of known land plant species and 0.0002% of known land animal species have been domesticated, compared with 0.17% of known marine plant species and 0.13% of known marine animal species. Domestication typically involves about a decade of scientific research. Domesticating aquatic species involves fewer risks to humans than do land animals, which took a large toll in human lives. Most major human diseases originated in domesticated animals, including diseases such as smallpox and diphtheria, that like most infectious diseases, move to humans from animals. No human pathogens of comparable virulence have yet emerged from marine species.

Biological control methods to manage parasites are already being used, such as cleaner fish (e.g. lumpsuckers and wrasse) to control sea lice populations in salmon farming. Models are being used to help with spatial planning and siting of fish farms in order to minimize impact.

Aquaculture production (2019)

The decline in wild fish stocks has increased the demand for farmed fish. However, finding alternative sources of protein and oil for fish feed is necessary so the aquaculture industry can grow sustainably; otherwise, it represents a great risk for the over-exploitation of forage fish.

Another recent issue following the banning in 2008 of organotins by the International Maritime Organization is the need to find environmentally friendly, but still effective, compounds with antifouling effects.

Many new natural compounds are discovered every year, but producing them on a large enough scale for commercial purposes is almost impossible.

It is highly probable that future developments in this field will rely on microorganisms, but greater funding and further research is needed to overcome the lack of knowledge in this field.

Species groups

Global aquaculture production in million tonnes, 1950–2010, as reported by the FAO
 
Main species groups
Minor species groups
 
World capture fisheries and aquaculture production by main producers (2018), from FAO's Statistical Yearbook 2020

Aquatic plants

Aquatic plants in floating containers
Cultivating emergent aquatic plants in floating containers
 

Microalgae, also referred to as phytoplankton, microphytes, or planktonic algae, constitute the majority of cultivated algae. Macroalgae commonly known as seaweed also have many commercial and industrial uses, but due to their size and specific requirements, they are not easily cultivated on a large scale and are most often taken in the wild.

In 2016, aquaculture was the source of 96.5 percent by volume of the total 31.2 million tonnes of wild-collected and cultivated aquatic plants combined. Global production of farmed aquatic plants, overwhelmingly dominated by seaweeds, grew in output volume from 13.5 million tonnes in 1995 to just over 30 million tonnes in 2016.

Seaweed farming

Underwater Eucheuma farming in the Philippines
 
A person stands in shallow water, gathering seaweed that has grown on a rope.
A seaweed farmer in Nusa Lembongan (Indonesia) gathers edible seaweed that has grown on a rope.

Seaweed farming or kelp farming is the practice of cultivating and harvesting seaweed. In its simplest form, it consists of the management of naturally found batches. In its most advanced form, it consists of fully controlling the life cycle of the algae.

The top seven most cultivated seaweed taxa are Eucheuma spp., Kappaphycus alvarezii, Gracilaria spp., Saccharina japonica, Undaria pinnatifida, Pyropia spp., and Sargassum fusiforme. Eucheuma and K. alvarezii are farmed for carrageenan (a gelling agent); Gracilaria is farmed for agar; while the rest are farmed for food. The largest seaweed-producing countries are China, Indonesia, and the Philippines. Other notable producers include South Korea, North Korea, Japan, Malaysia, and Zanzibar (Tanzania). Seaweed farming has frequently been developed as an alternative to improve economic conditions and to reduce fishing pressure and overexploited fisheries.

Global production of farmed aquatic plants, overwhelmingly dominated by seaweeds, grew in output volume from 13.5 million tonnes in 1995 to just over 30 million tonnes in 2016. As of 2014, seaweed was 27% of all marine aquaculture. Seaweed farming is a carbon negative crop, with a high potential for climate change mitigation . The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" as a mitigation tactic.

Fish

The farming of fish is the most common form of aquaculture. It involves raising fish commercially in tanks, fish ponds, or ocean enclosures, usually for food. A facility that releases juvenile fish into the wild for recreational fishing or to supplement a species' natural numbers is generally referred to as a fish hatchery. Worldwide, the most important fish species used in fish farming are, in order, carp, salmon, tilapia, and catfish.

In the Mediterranean, young bluefin tuna are netted at sea and towed slowly towards the shore. They are then interned in offshore pens (sometimes made from floating HDPE pipe) where they are further grown for the market. In 2009, researchers in Australia managed for the first time to coax southern bluefin tuna to breed in landlocked tanks. Southern bluefin tuna are also caught in the wild and fattened in grow-out sea cages in southern Spencer Gulf, South Australia.

A similar process is used in the salmon-farming section of this industry; juveniles are taken from hatcheries and a variety of methods are used to aid them in their maturation. For example, as stated above, some of the most important fish species in the industry, salmon, can be grown using a cage system. This is done by having netted cages, preferably in open water that has a strong flow, and feeding the salmon a special food mixture that aids their growth. This process allows for year-round growth of the fish, thus a higher harvest during the correct seasons. An additional method, known sometimes as sea ranching, has also been used within the industry. Sea ranching involves raising fish in a hatchery for a brief time and then releasing them into marine waters for further development, whereupon the fish are recaptured when they have matured.

Crustaceans

Commercial shrimp farming began in the 1970s, and production grew steeply thereafter. Global production reached more than 1.6 million tonnes in 2003, worth about US$9 billion. About 75% of farmed shrimp is produced in Asia, in particular in China and Thailand. The other 25% is produced mainly in Latin America, where Brazil is the largest producer. Thailand is the largest exporter.

Shrimp farming has changed from its traditional, small-scale form in Southeast Asia into a global industry. Technological advances have led to ever higher densities per unit area, and broodstock is shipped worldwide. Virtually all farmed shrimp are penaeids (i.e., shrimp of the family Penaeidae), and just two species of shrimp, the Pacific white shrimp and the giant tiger prawn, account for about 80% of all farmed shrimp. These industrial monocultures are very susceptible to disease, which has decimated shrimp populations across entire regions. Increasing ecological problems, repeated disease outbreaks, and pressure and criticism from both nongovernmental organizations and consumer countries led to changes in the industry in the late 1990s and generally stronger regulations. In 1999, governments, industry representatives, and environmental organizations initiated a program aimed at developing and promoting more sustainable farming practices through the Seafood Watch program.

Freshwater prawn farming shares many characteristics with, including many problems with, marine shrimp farming. Unique problems are introduced by the developmental lifecycle of the main species, the giant river prawn.

The global annual production of freshwater prawns (excluding crayfish and crabs) in 2007 was about 460,000 tonnes, exceeding 1.86 billion dollars. Additionally, China produced about 370,000 tonnes of Chinese river crab.

In addition astaciculture is the freshwater farming of crayfish (mostly in the US, Australia, and Europe).

Molluscs

Abalone farm
Abalone farm
 
Sturgeon farm
Sturgeon farm

Aquacultured shellfish include various oyster, mussel, and clam species. These bivalves are filter and/or deposit feeders, which rely on ambient primary production rather than inputs of fish or other feed. As such, shellfish aquaculture is generally perceived as benign or even beneficial.

Depending on the species and local conditions, bivalve molluscs are either grown on the beach, on longlines, or suspended from rafts and harvested by hand or by dredging. In May 2017 a Belgian consortium installed the first of two trial mussel farms on a wind farm in the North Sea.

Abalone farming began in the late 1950s and early 1960s in Japan and China. Since the mid-1990s, this industry has become increasingly successful. Overfishing and poaching have reduced wild populations to the extent that farmed abalone now supplies most abalone meat. Sustainably farmed molluscs can be certified by Seafood Watch and other organizations, including the World Wildlife Fund (WWF). WWF initiated the "Aquaculture Dialogues" in 2004 to develop measurable and performance-based standards for responsibly farmed seafood. In 2009, WWF co-founded the Aquaculture Stewardship Council with the Dutch Sustainable Trade Initiative to manage the global standards and certification programs.

After trials in 2012, a commercial "sea ranch" was set up in Flinders Bay, Western Australia, to raise abalone. The ranch is based on an artificial reef made up of 5000 (As of April 2016) separate concrete units called abitats (abalone habitats). The 900 kg abitats can host 400 abalone each. The reef is seeded with young abalone from an onshore hatchery. The abalone feed on seaweed that has grown naturally on the habitats, with the ecosystem enrichment of the bay also resulting in growing numbers of dhufish, pink snapper, wrasse, and Samson fish, among other species.

Brad Adams, from the company, has emphasised the similarity to wild abalone and the difference from shore-based aquaculture. "We're not aquaculture, we're ranching, because once they're in the water they look after themselves."

Other groups

Other groups include aquatic reptiles, amphibians, and miscellaneous invertebrates, such as echinoderms and jellyfish. They are separately graphed at the top right of this section, since they do not contribute enough volume to show clearly on the main graph.

Commercially harvested echinoderms include sea cucumbers and sea urchins. In China, sea cucumbers are farmed in artificial ponds as large as 1,000 acres (400 ha).

Global fish production

Global fish production peaked at about 171 million tonnes in 2016, with aquaculture representing 47 percent of the total and 53 percent if non-food uses (including reduction to fishmeal and fish oil) are excluded. With capture fishery production relatively static since the late 1980s, aquaculture has been responsible for the continuing growth in the supply of fish for human consumption. Global aquaculture production (including aquatic plants) in 2016 was 110.2 million tonnes, with the first-sale value estimated at US$243.5 billion. The contribution of aquaculture to the global production of capture fisheries and aquaculture combined has risen continuously, reaching 46.8 percent in 2016, up from 25.7 percent in 2000. With 5.8 percent annual growth rate during the period 2001–2016, aquaculture continues to grow faster than other major food production sectors, but it no longer has the high annual growth rates experienced in the 1980s and 1990s.

In 2012, the total world production of fisheries was 158 million tonnes, of which aquaculture contributed 66.6 million tonnes, about 42%. The growth rate of worldwide aquaculture has been sustained and rapid, averaging about 8% per year for over 30 years, while the take from wild fisheries has been essentially flat for the last decade. The aquaculture market reached $86 billion in 2009.

Aquaculture is an especially important economic activity in China. Between 1980 and 1997, the Chinese Bureau of Fisheries reports, aquaculture harvests grew at an annual rate of 16.7%, jumping from 1.9 million tonnes to nearly 23 million tonnes. In 2005, China accounted for 70% of world production. Aquaculture is also currently one of the fastest-growing areas of food production in the U.S.

About 90% of all U.S. shrimp consumption is farmed and imported. In recent years, salmon aquaculture has become a major export in southern Chile, especially in Puerto Montt, Chile's fastest-growing city.

A United Nations report titled The State of the World Fisheries and Aquaculture released in May 2014 maintained fisheries and aquaculture support the livelihoods of some 60 million people in Asia and Africa. FAO estimates that in 2016, overall, women accounted for nearly 14 percent of all people directly engaged in the fisheries and aquaculture primary sector.

Category 2011 2012 2013 2014 2015 2016
Production





Capture





Inland 10.7 11.2 11.2 11.3 11.4 11.6
Marine 81.5 78.4 79.4 79.9 81.2 79.3
Total capture 92.2 89.5 90.6 91.2 92.7 90.9
Aquaculture





Inland 38.6 42 44.8 46.9 48.6 51.4
Marine 23.2 24.4 25.4 26.8 27.5 28.7
Total aquaculture 61.8 66.4 70.2 73.7 76.1 80
Total world fisheries and aquaculture 154 156 160.7 164.9 168.7 170.9
Utilization





Human consumption 130 136.4 140.1 144.8 148.4 151.2
Non-food uses 24 19.6 20.6 20 20.3 19.7
Population (billions) 7 7.1 7.2 7.3 7.3 7.4
Per capita apparent consumption (kg) 18.5 19.2 19.5 19.9 20.2 20.3

Over-reporting by China

China overwhelmingly dominates the world in reported aquaculture output, reporting a total output which is double that of the rest of the world put together. However, there are some historical issues with the accuracy of China's returns.

In 2001, scientists Reg Watson and Daniel Pauly expressed concerns that China was over reporting its catch from wild fisheries in the 1990s. They said that made it appear that the global catch since 1988 was increasing annually by 300,000 tonnes, whereas it was really shrinking annually by 350,000 tonnes. Watson and Pauly suggested this may be have been related to Chinese policies where state entities that monitored the economy were also tasked with increasing output. Also, until more recently, the promotion of Chinese officials was based on production increases from their own areas.

China disputed this claim. The official Xinhua News Agency quoted Yang Jian, director general of the Agriculture Ministry's Bureau of Fisheries, as saying that China's figures were "basically correct". However, the FAO accepted there were issues with the reliability of China's statistical returns, and for a period treated data from China, including the aquaculture data, apart from the rest of the world.

Aquacultural methods

Mariculture

Mariculture
Mariculture off High Island, Hong Kong
 
Carp are one of the dominant fishes in aquaculture
 
The adaptable tilapia is another commonly farmed fish
 

Mariculture refers to the cultivation of marine organisms in seawater, usually in sheltered coastal or offshore waters. The farming of marine fish is an example of mariculture, and so also is the farming of marine crustaceans (such as shrimp), mollusks (such as oysters), and seaweed. Channel catfish (Ictalurus punctatus), hard clams (Mercenaria mercenaria) and Atlantic salmon (Salmo salar) are prominent in the U.S. mariculture.

Mariculture may consist of raising the organisms on or in artificial enclosures such as in floating netted enclosures for salmon and on racks for oysters. In the case of enclosed salmon, they are fed by the operators; oysters on racks filter feed on naturally available food. Abalone have been farmed on an artificial reef consuming seaweed which grows naturally on the reef units.

Integrated

Integrated multi-trophic aquaculture (IMTA) is a practice in which the byproducts (wastes) from one species are recycled to become inputs (fertilizers, food) for another. Fed aquaculture (for example, fish, shrimp) is combined with inorganic extractive and organic extractive (for example, shellfish) aquaculture to create balanced systems for environmental sustainability (biomitigation), economic stability (product diversification and risk reduction) and social acceptability (better management practices).

"Multi-trophic" refers to the incorporation of species from different trophic or nutritional levels in the same system. This is one potential distinction from the age-old practice of aquatic polyculture, which could simply be the co-culture of different fish species from the same trophic level. In this case, these organisms may all share the same biological and chemical processes, with few synergistic benefits, which could potentially lead to significant shifts in the ecosystem. Some traditional polyculture systems may, in fact, incorporate a greater diversity of species, occupying several niches, as extensive cultures (low intensity, low management) within the same 2006"/> A working IMTA system can result in greater total production based on mutual benefits to the co-cultured species and improved ecosystem health, even if the production of individual species is lower than in a monoculture over a short-term period.

Sometimes the term "integrated aquaculture" is used to describe the integration of monocultures through water transfer. For all intents and purposes, however, the terms "IMTA" and "integrated aquaculture" differ only in their degree of descriptiveness. Aquaponics, fractionated aquaculture, integrated agriculture-aquaculture systems, integrated peri-urban-aquaculture systems, and integrated fisheries-aquaculture systems are other variations of the IMTA concept.

Netting materials

Various materials, including nylon, polyester, polypropylene, polyethylene, plastic-coated welded wire, rubber, patented rope products (Spectra, Thorn-D, Dyneema), galvanized steel and copper are used for netting in aquaculture fish enclosures around the world. All of these materials are selected for a variety of reasons, including design feasibility, material strength, cost, and corrosion resistance.

Recently, copper alloys have become important netting materials in aquaculture because they are antimicrobial (i.e., they destroy bacteria, viruses, fungi, algae, and other microbes) and they therefore prevent biofouling (i.e., the undesirable accumulation, adhesion, and growth of microorganisms, plants, algae, tubeworms, barnacles, mollusks, and other organisms). By inhibiting microbial growth, copper alloy aquaculture cages avoid costly net changes that are necessary with other materials. The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive.

Issues

If performed without consideration for potential local environmental impacts, aquaculture in inland waters can result in more environmental damage than wild fisheries, though with less waste produced per kg on a global scale. Local concerns with aquaculture in inland waters may include waste handling, side-effects of antibiotics, competition between farmed and wild animals, and the potential introduction of invasive plant and animal species, or foreign pathogens, particularly if unprocessed fish are used to feed more marketable carnivorous fish. If non-local live feeds are used, aquaculture may introduce exotic plants or animals with disastrous effects. Improvements in methods resulting from advances in research and the availability of commercial feeds has reduced some of these concerns since their greater prevalence in the 1990s and 2000s .

Fish waste is organic and composed of nutrients necessary in all components of aquatic food webs. In-ocean aquaculture often produces much higher than normal fish waste concentrations. The waste collects on the ocean bottom, damaging or eliminating bottom-dwelling life. Waste can also decrease dissolved oxygen levels in the water column, putting further pressure on wild animals. An alternative model to food being added to the ecosystem, is the installation of artificial reef structures to increase the habitat niches available, without the need to add any more than ambient feed and nutrient. This has been used in the "ranching" of abalone in Western Australia.

Impacts on wild fish

Some carnivorous and omnivorous farmed fish species are fed wild forage fish. Although carnivorous farmed fish represented only 13 percent of aquaculture production by weight in 2000, they represented 34 percent of aquaculture production by value.

Farming of carnivorous species like salmon and shrimp leads to a high demand for forage fish to match the nutrition they get in the wild. Fish do not actually produce omega-3 fatty acids, but instead accumulate them from either consuming microalgae that produce these fatty acids, as is the case with forage fish like herring and sardines, or, as is the case with fatty predatory fish, like salmon, by eating prey fish that have accumulated omega-3 fatty acids from microalgae. To satisfy this requirement, more than 50 percent of the world fish oil production is fed to farmed salmon.

Farmed salmon consume more wild fish than they generate as a final product, although the efficiency of production is improving. To produce one pound of farmed salmon, products from several pounds of wild fish are fed to them - this can be described as the "fish-in-fish-out" (FIFO) ratio. In 1995, salmon had a FIFO ratio of 7.5 (meaning 7.5 pounds of wild fish feed were required to produce 1 pound of salmon); by 2006 the ratio had fallen to 4.9. Additionally, a growing share of fish oil and fishmeal come from residues (byproducts of fish processing), rather than dedicated whole fish. In 2012, 34 percent of fish oil and 28 percent of fishmeal came from residues. However, fishmeal and oil from residues instead of whole fish have a different composition with more ash and less protein, which may limit its potential use for aquaculture.

As the salmon farming industry expands, it requires more wild forage fish for feed, at a time when seventy-five percent of the world's monitored fisheries are already near to or have exceeded their maximum sustainable yield. The industrial-scale extraction of wild forage fish for salmon farming then impacts the survivability of the wild predator fish who rely on them for food. An important step in reducing the impact of aquaculture on wild fish is shifting carnivorous species to plant-based feeds. Salmon feeds, for example, have gone from containing only fishmeal and oil to containing 40 percent plant protein. The USDA has also experimented with using grain-based feeds for farmed trout. When properly formulated (and often mixed with fishmeal or oil), plant-based feeds can provide proper nutrition and similar growth rates in carnivorous farmed fish.

Another impact aquaculture production can have on wild fish is the risk of fish escaping from coastal pens, where they can interbreed with their wild counterparts, diluting wild genetic stocks. Escaped fish can become invasive, out-competing native species.

Animal welfare

As with the farming of terrestrial animals, social attitudes influence the need for humane practices and regulations in farmed marine animals. Under the guidelines advised by the Farm Animal Welfare Council good animal welfare means both fitness and a sense of well-being in the animal's physical and mental state. This can be defined by the Five Freedoms:

  • Freedom from hunger & thirst
  • Freedom from discomfort
  • Freedom from pain, disease, or injury
  • Freedom to express normal behaviour
  • Freedom from fear and distress

However, the controversial issue in aquaculture is whether fish and farmed marine invertebrates are actually sentient, or have the perception and awareness to experience suffering. Although no evidence of this has been found in marine invertebrates, recent studies conclude that fish do have the necessary receptors (nociceptors) to sense noxious stimuli and so are likely to experience states of pain, fear and stress. Consequently, welfare in aquaculture is directed at vertebrates; finfish in particular.

Common welfare concerns

Welfare in aquaculture can be impacted by a number of issues such as stocking densities, behavioural interactions, disease and parasitism. A major problem in determining the cause of impaired welfare is that these issues are often all interrelated and influence each other at different times.

Optimal stocking density is often defined by the carrying capacity of the stocked environment and the amount of individual space needed by the fish, which is very species specific. Although behavioural interactions such as shoaling may mean that high stocking densities are beneficial to some species, in many cultured species high stocking densities may be of concern. Crowding can constrain normal swimming behaviour, as well as increase aggressive and competitive behaviours such as cannibalism, feed competition, territoriality and dominance/subordination hierarchies. This potentially increases the risk of tissue damage due to abrasion from fish-to-fish contact or fish-to-cage contact. Fish can suffer reductions in food intake and food conversion efficiency. In addition, high stocking densities can result in water flow being insufficient, creating inadequate oxygen supply and waste product removal. Dissolved oxygen is essential for fish respiration and concentrations below critical levels can induce stress and even lead to asphyxiation. Ammonia, a nitrogen excretion product, is highly toxic to fish at accumulated levels, particularly when oxygen concentrations are low.

Many of these interactions and effects cause stress in the fish, which can be a major factor in facilitating fish disease. For many parasites, infestation depends on the host's degree of mobility, the density of the host population and vulnerability of the host's defence system. Sea lice are the primary parasitic problem for finfish in aquaculture, high numbers causing widespread skin erosion and haemorrhaging, gill congestion, and increased mucus production. There are also a number of prominent viral and bacterial pathogens that can have severe effects on internal organs and nervous systems.

Improving welfare

The key to improving welfare of marine cultured organisms is to reduce stress to a minimum, as prolonged or repeated stress can cause a range of adverse effects. Attempts to minimise stress can occur throughout the culture process. Understanding and providing required environmental enrichment can be vital for reducing stress and benefit aquaculture objects such as improved growth body condition and reduced damage from aggression. During grow-out it is important to keep stocking densities at appropriate levels specific to each species, as well as separating size classes and grading to reduce aggressive behavioural interactions. Keeping nets and cages clean can assist positive water flow to reduce the risk of water degradation.

Not surprisingly disease and parasitism can have a major effect on fish welfare and it is important for farmers not only to manage infected stock but also to apply disease prevention measures. However, prevention methods, such as vaccination, can also induce stress because of the extra handling and injection. Other methods include adding antibiotics to feed, adding chemicals into water for treatment baths and biological control, such as using cleaner wrasse to remove lice from farmed salmon.

Many steps are involved in transport, including capture, food deprivation to reduce faecal contamination of transport water, transfer to transport vehicle via nets or pumps, plus transport and transfer to the delivery location. During transport water needs to be maintained to a high quality, with regulated temperature, sufficient oxygen and minimal waste products. In some cases anaesthetics may be used in small doses to calm fish before transport.

Aquaculture is sometimes part of an environmental rehabilitation program or as an aid in conserving endangered species.

Coastal ecosystems

Aquaculture is becoming a significant threat to coastal ecosystems. About 20 percent of mangrove forests have been destroyed since 1980, partly due to shrimp farming. An extended cost–benefit analysis of the total economic value of shrimp aquaculture built on mangrove ecosystems found that the external costs were much higher than the external benefits. Over four decades, 269,000 hectares (660,000 acres) of Indonesian mangroves have been converted to shrimp farms. Most of these farms are abandoned within a decade because of the toxin build-up and nutrient loss.

Pollution from sea cage aquaculture

Salmon aquaculture, Norway

Salmon farms are typically sited in pristine coastal ecosystems which they then pollute. A farm with 200,000 salmon discharges more fecal waste than a city of 60,000 people. This waste is discharged directly into the surrounding aquatic environment, untreated, often containing antibiotics and pesticides." There is also an accumulation of heavy metals on the benthos (seafloor) near the salmon farms, particularly copper and zinc.

In 2016, mass fish kill events impacted salmon farmers along Chile's coast and the wider ecology. Increases in aquaculture production and its associated effluent were considered to be possible contributing factors to fish and molluscan mortality.

Sea cage aquaculture is responsible for nutrient enrichment of the waters in which they are established. This results from fish wastes and uneaten feed inputs. Elements of most concern are nitrogen and phosphorus which can promote algal growth, including harmful algal blooms which can be toxic to fish. Flushing times, current speeds, distance from the shore and water depth are important considerations when locating sea cages in order to minimize the impacts of nutrient enrichment on coastal ecosystems.

The extent of the effects of pollution from sea-cage aquaculture varies depending on where the cages are located, which species are kept, how densely cages are stocked and what the fish are fed. Important species-specific variables include the species' food conversion ratio (FCR) and nitrogen retention.

Freshwater ecosystems

Whole-lake experiments carried out at the Experimental Lakes Area in Ontario, Canada have displayed the potential for cage aquaculture to source numerous changes in freshwater ecosystems. Following the initiation of an experimental rainbow trout cage farm in a small boreal lake, dramatic reductions in mysis concentrations associated with a decrease in dissolved oxygen were observed. Significant increases in ammonium and total phosphorus, a driver for eutrophication in freshwater systems, were measured in the hypolimnion of the lake. Annual phosphorus inputs from aquaculture waste exceeded that of natural inputs from atmospheric deposition and inflows, and phytoplankton biomass has had a fourfold annual increase following the initiation of the experimental farm.

Genetic modification

A type of salmon called the AquAdvantage salmon has been genetically modified for faster growth, although it has not been approved for commercial use, due to controversy. The altered salmon incorporates a growth hormone from a Chinook salmon that allows it to reach full size in 16–28 months, instead of the normal 36 months for Atlantic salmon, and while consuming 25 percent less feed. The U.S. Food and Drug Administration reviewed the AquAdvantage salmon in a draft environmental assessment and determined that it "would not have a significant impact (FONSI) on the U.S. environment."

Fish diseases, parasites and vaccines

A major difficulty for aquaculture is the tendency towards monoculture and the associated risk of widespread disease. Aquaculture is also associated with environmental risks; for instance, shrimp farming has caused the destruction of important mangrove forests throughout southeast Asia.

In the 1990s, disease wiped out China's farmed Farrer's scallop and white shrimp and required their replacement by other species.

Needs of the aquaculture sector in vaccines

Aquaculture has an average annual growth rate of 9.2%, however the success and continued expansion of the fish farming sector is highly dependent on the control of fish pathogens including a wide range of viruses, bacteria, fungi, and parasites. In 2014, it was estimated that these parasites cost the global salmon farming industry up to 400 million Euros. This represents 6-10% of the production value of the affected countries, but it can go up to 20% (Fisheries and Oceans Canada, 2014). Since pathogens quickly spread within a population of cultured fish, their control is vital for the sector. Historically, the use of antibiotics was against bacterial epizootics but production of animal proteins has to be sustainable, which means that preventive measures that are acceptable from a biological and environmental point of view should be used to keep disease problems in aquaculture at an acceptable level. So, this added to the efficiency of vaccines resulted in an immediate and permanent reduction in the use of antibiotics in the 90s. At the beginning there were fish immersion vaccines efficient against the vibriosis but proved ineffective against the furunculosis, hence the arrival of injectable vaccines: first water-based and after oil-based, much more efficient (Sommerset, 2005).

Development of new vaccines

It is the important mortality in cages among farmed fish, the debates around DNA injection vaccines, although effective, their safety and their side effects but also societal expectations for cleaner fish and security, lead research on new vaccine vectors. Several initiatives are financed by the European Union to develop a rapid and cost-effective approach to using bacteria in feed to make vaccines, in particular thanks to lactic bacteria whose DNA is modified (Boudinot, 2006). In fact, vaccinating farmed fish by injection is time-consuming and costly, so vaccines can be administered orally or by immersion by being added to feed or directly into water. This allows to vaccinate many individuals at the same time, while limiting the associated handling and stress. Indeed, many tests are necessary because the antigens of the vaccines must be adapted to each species or not present a certain level of variability or they will not have any effect. For example, tests have been done with 2 species: Lepeophtheirus salmonis (from which the antigens were collected) and Caligus rogercresseyi (which was vaccinated with the antigens), although the homology between the two species is important, the level of variability made the protection ineffective (Fisheries and Oceans Canada, 2014).

Recent vaccines development in aquaculture

There are 24 vaccines available and one for lobsters. The first vaccine was used in the USA against enteric red mouth in 1976. However, there are 19 companies and some small stakeholders are producing vaccines for aquaculture nowadays. The novel approaches are a way forward to prevent the loss of 10% aquaculture through disease. Genetically modified vaccines are not being used in the EU due to societal concerns and regulations. Meanwhile, DNA vaccines are now authorised in the EU (Adams, 2019). There are challenges in fish vaccine development, immune response due to lack of potent adjScientists are considering microdose application in future. But there are also exciting opportunities in aquaculture vaccinology due to low cost of technology, regulations change and novel antigen expression and delivery systems. In Norway subunit vaccine (VP2 peptide) against infectious pancreatic necrosis is being used. In Canada, a licensed DNA vaccine against Infectious hematopoietic necrosis has been launched for industry use. Fish have large mucosal surfaces, so the preferred route is immersion, intraperitoneal and oral respectively. Nanoparticles are under progress for delivery purposes. The common antibodies produced are IgM and IgT. Normally booster is not required ifn Fish because more memory cells are produced in response to booster rather than increased level of antibodies. mRNA vaccines are alternative to DNA vaccines because they are more safe, stable, easily producible at large scale and mass immunization potential. Recently these are used in cancer prevention and therapeutics. Studies in rabies has shown that efficacy depends on dose and route of administration. These are still in infancy (Adams, 2019).

Economic gains

In 2014, the aquaculture produced fish overtook wild caught fish, in supply for human food. This means there is a huge demand for vaccines, in prevention of diseases. The reported annual loss fish, calculates to >10 billion usd. This is from approximately 10% of all fishes dying from infectious diseases. (Adams, 2019). The high annual losses increases the demand for vaccines. Even though there are about 24 traditionally used vaccines, there is still demand for more vaccines. The breakthrough of DNA-vaccines has sunk the cost of vaccines (Adams, 2019).

The alternative to vaccines would be antibiotics and chemotherapy, which are more expensive and with bigger drawbacks. DNA-vaccines have become the most cost-efficient method of preventing infectious diseases. This bouts well for DNA-vaccines becoming the new standard both in fish vaccines, and in general vaccines (Ragnar Thorarinsson, 2021).

Salinization/acidification of soils

Sediment from abandoned aquaculture farms can remain hypersaline, acidic and eroded. This material can remain unusable for aquaculture purposes for long periods thereafter. Various chemical treatments, such as adding lime, can aggravate the problem by modify the physicochemical characteristics of the sediment.

Ecological benefits

While some forms of aquaculture can be devastating to ecosystems, such as shrimp farming in mangroves, other forms can be very beneficial. Shellfish aquaculture adds substantial filter feeding capacity to an environment which can significantly improve water quality. A single oyster can filter 15 gallons of water a day, removing microscopic algal cells. By removing these cells, shellfish are removing nitrogen and other nutrients from the system and either retaining it or releasing it as waste which sinks to the bottom. By harvesting these shellfish the nitrogen they retained is completely removed from the system. Raising and harvesting kelp and other macroalgae directly remove nutrients such as nitrogen and phosphorus. Repackaging these nutrients can relieve eutrophic, or nutrient-rich, conditions known for their low dissolved oxygen which can decimate species diversity and abundance of marine life. Removing algal cells from the water also increases light penetration, allowing plants such as eelgrass to reestablish themselves and further increase oxygen levels.

Aquaculture in an area can provide for crucial ecological functions for the inhabitants. Shellfish beds or cages can provide habitat structure. This structure can be used as shelter by invertebrates, small fish or crustaceans to potentially increase their abundance and maintain biodiversity. Increased shelter raises stocks of prey fish and small crustaceans by increasing recruitment opportunities in turn providing more prey for higher trophic levels. One study estimated that 10 square meters of oyster reef could enhance an ecosystem's biomass by 2.57 kg The shellfish acting as herbivores will also be preyed on. This moves energy directly from primary producers to higher trophic levels potentially skipping out on multiple energetically-costly trophic jumps which would increase biomass in the ecosystem.

Seaweed farming is a carbon negative crop, with a high potential for climate change mitigation. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate recommends "further research attention" as a mitigation tactic. Regenerative ocean farming is a polyculture farming system that grows a mix of seaweeds and shellfish while sequestering carbon, decreasing nitrogen in the water and increasing oxygen, helping to regenerate and restore local habitat like reef ecosystems.

Prospects

Global wild fisheries are in decline, with valuable habitat such as estuaries in critical condition. The aquaculture or farming of piscivorous fish, like salmon, does not help the problem because they need to eat products from other fish, such as fish meal and fish oil. Studies have shown that salmon farming has major negative impacts on wild salmon, as well as the forage fish that need to be caught to feed them. Fish that are higher on the food chain are less efficient sources of food energy.

Apart from fish and shrimp, some aquaculture undertakings, such as seaweed and filter-feeding bivalve mollusks like oysters, clams, mussels and scallops, are relatively benign and even environmentally restorative. Filter-feeders filter pollutants as well as nutrients from the water, improving water quality. Seaweeds extract nutrients such as inorganic nitrogen and phosphorus directly from the water, and filter-feeding mollusks can extract nutrients as they feed on particulates, such as phytoplankton and detritus.

Some profitable aquaculture cooperatives promote sustainable practices. New methods lessen the risk of biological and chemical pollution through minimizing fish stress, fallowing netpens, and applying Integrated Pest Management. Vaccines are being used more and more to reduce antibiotic use for disease control.

Onshore recirculating aquaculture systems, facilities using polyculture techniques, and properly sited facilities (for example, offshore areas with strong currents) are examples of ways to manage negative environmental effects.

Recirculating aquaculture systems (RAS) recycle water by circulating it through filters to remove fish waste and food and then recirculating it back into the tanks. This saves water and the waste gathered can be used in compost or, in some cases, could even be treated and used on land. While RAS was developed with freshwater fish in mind, scientists associated with the Agricultural Research Service have found a way to rear saltwater fish using RAS in low-salinity waters. Although saltwater fish are raised in off-shore cages or caught with nets in water that typically has a salinity of 35 parts per thousand (ppt), scientists were able to produce healthy pompano, a saltwater fish, in tanks with a salinity of only 5 ppt. Commercializing low-salinity RAS are predicted to have positive environmental and economical effects. Unwanted nutrients from the fish food would not be added to the ocean and the risk of transmitting diseases between wild and farm-raised fish would greatly be reduced. The price of expensive saltwater fish, such as the pompano and combia used in the experiments, would be reduced. However, before any of this can be done researchers must study every aspect of the fish's lifecycle, including the amount of ammonia and nitrate the fish will tolerate in the water, what to feed the fish during each stage of its lifecycle, the stocking rate that will produce the healthiest fish, etc.

Some 16 countries now use geothermal energy for aquaculture, including China, Israel, and the United States. In California, for example, 15 fish farms produce tilapia, bass, and catfish with warm water from underground. This warmer water enables fish to grow all year round and mature more quickly. Collectively these California farms produce 4.5 million kilograms of fish each year.

National laws, regulations, and management

Laws governing aquaculture practices vary greatly by country and are often not closely regulated or easily traceable.

In the United States, land-based and nearshore aquaculture is regulated at the federal and state levels; however, no national laws govern offshore aquaculture in U.S. exclusive economic zone waters. In June 2011, the Department of Commerce and National Oceanic and Atmospheric Administration released national aquaculture policies to address this issue and "to meet the growing demand for healthy seafood, to create jobs in coastal communities, and restore vital ecosystems." Large aquaculture facilities (i.e. those producing 20,000 pounds (9,100 kg) per year) which discharge wastewater are required to obtain permits pursuant to the Clean Water Act. Facilities that produce at least 100,000 pounds (45,000 kg) of fish, molluscs or crustaceans a year are subject to specific national discharge standards. Other permitted facilities are subject to effluent limitations that are developed on a case-by-case basis.

History

Photo of dripping, cup-shaped net, approximately 6 feet (1.8 m) in diameter and equally tall, half full of fish, suspended from crane boom, with four workers on and around larger, ring-shaped structure in water
Workers harvest catfish from the Delta Pride Catfish farms in Mississippi

The Gunditjmara, the local Aboriginal Australian people in south-western Victoria, Australia, may have raised short-finned eels as early as about 4,580 BCE. Evidence indicates they developed about 100 km2 (39 sq mi) of volcanic floodplains in the vicinity of Lake Condah into a complex of channels and dams, and used woven traps to capture eels, and preserve them to eat all year round. The Budj Bim Cultural Landscape, a World Heritage Site, is thought to be one of the oldest aquaculture sites in the world.

Oral tradition in China tells of the culture of the common carp, Cyprinus carpio, as long ago as 2000–2100 BCE (around 4,000 years BP), but the earliest significant evidence lies in the literature, in the earliest monograph on fish culture called The Classic of Fish Culture, by Fan Li, written around 475 BCE (c.2475 BP). Another ancient Chinese guide to aquaculture was by Yang Yu Jing, written around 460 BCE, showing that carp farming was becoming more sophisticated. The Jiahu site in China has circumstantial archeological evidence as possibly the oldest aquaculture locations, dating from 6200BCE (about 8,200 years BP), but this is speculative. When the waters subsided after river floods, some fish, mainly carp, were trapped in lakes. Early aquaculturists fed their brood using nymphs and silkworm faeces, and ate them.

Ancient Egyptians might have farmed fish (especially Gilt-head bream) from Lake Bardawil about 1,500 BCE (3,520 years BP), and they traded them with Canaan.

Gim cultivation is the oldest aquaculture in Korea. Early cultivation methods used bamboo or oak sticks, which were replaced by newer methods that utilized nets in the 19th century. Floating rafts have been used for mass production since the 1920s.

Japanese cultivated seaweed by providing bamboo poles and, later, nets and oyster shells to serve as anchoring surfaces for spores.

Romans bred fish in ponds and farmed oysters in coastal lagoons before 100 CE.

In central Europe, early Christian monasteries adopted Roman aquacultural practices. Aquaculture spread in Europe during the Middle Ages since away from the seacoasts and the big rivers, fish had to be salted so they did not rot. Improvements in transportation during the 19th century made fresh fish easily available and inexpensive, even in inland areas, making aquaculture less popular. The 15th-century fishponds of the Trebon Basin in the Czech Republic are maintained as a UNESCO World Heritage Site.

Hawaiians constructed oceanic fish ponds. A remarkable example is the "Menehune" fishpond dating from at least 1,000 years ago, at Alekoko. Legend says that it was constructed by the mythical Menehune dwarf people.

In the first half of the 18th century, German Stephan Ludwig Jacobi experimented with external fertilization of brown trouts and salmon. He wrote an article "Von der künstlichen Erzeugung der Forellen und Lachse" (On the Artificial Production of Trout and Salmon) summarizing his findings, and is regarded as the founder of artificial fish rearing in Europe. By the latter decades of the 18th century, oyster farming had begun in estuaries along the Atlantic Coast of North America.

The word aquaculture appeared in an 1855 newspaper article in reference to the harvesting of ice. It also appeared in descriptions of the terrestrial agricultural practise of sub-irrigation in the late 19th century before becoming associated primarily with the cultivation of aquatic plant and animal species.

In 1859, Stephen Ainsworth of West Bloomfield, New York, began experiments with brook trout. By 1864, Seth Green had established a commercial fish-hatching operation at Caledonia Springs, near Rochester, New York. By 1866, with the involvement of Dr. W. W. Fletcher of Concord, Massachusetts, artificial fish hatcheries were underway in both Canada and the United States. When the Dildo Island fish hatchery opened in Newfoundland in 1889, it was the largest and most advanced in the world. The word aquaculture was used in descriptions of the hatcheries experiments with cod and lobster in 1890.

By the 1920s, the American Fish Culture Company of Carolina, Rhode Island, founded in the 1870s was one of the leading producers of trout. During the 1940s, they had perfected the method of manipulating the day and night cycle of fish so that they could be artificially spawned year around.

Californians harvested wild kelp and attempted to manage supply around 1900, later labeling it a wartime resource.

Green development

From Wikipedia, the free encyclopedia https://en.wikipedia.org/w...