Search This Blog

Friday, August 18, 2023

Peat

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Peat
A lump of peat
Peat stacks in Südmoslesfehn (district of Oldenburg, Germany) in 2013
Peat gatherers at Westhay, Somerset Levels in 1905
Peat extraction in East Frisia, Germany

Peat (/pt/) is an accumulation of partially decayed vegetation or organic matter. It is unique to natural areas called peatlands, bogs, mires, moors, or muskegs. The peatland ecosystem covers 3.7 million square kilometres (1.4 million square miles) and is the most efficient carbon sink on the planet, because peatland plants capture carbon dioxide (CO2) naturally released from the peat, maintaining an equilibrium. In natural peatlands, the "annual rate of biomass production is greater than the rate of decomposition", but it takes "thousands of years for peatlands to develop the deposits of 1.5 to 2.3 m [4.9 to 7.5 ft], which is the average depth of the boreal [northern] peatlands", which store around 415 gigatonnes (Gt) of carbon (about 46 times 2019 global CO2 emissions). Globally, peat stores up to 550 Gt of carbon, 42% of all soil carbon, which exceeds the carbon stored in all other vegetation types, including the world's forests, although it covers just 3% of the land's surface. Sphagnum moss, also called peat moss, is one of the most common components in peat, although many other plants can contribute. The biological features of sphagnum mosses act to create a habitat aiding peat formation, a phenomenon termed 'habitat manipulation'. Soils consisting primarily of peat are known as histosols. Peat forms in wetland conditions, where flooding or stagnant water obstructs the flow of oxygen from the atmosphere, slowing the rate of decomposition. Peat properties such as organic matter content and saturated hydraulic conductivity can exhibit high spatial heterogeneity.

Peatlands, particularly bogs, are the primary source of peat; although less common, other wetlands, including fens, pocosins, and peat swamp forests, also deposit peat. Landscapes covered in peat are home to specific kinds of plants including Sphagnum moss, ericaceous shrubs, and sedges. Because organic matter accumulates over thousands of years, peat deposits provide records of past vegetation and climate by preserving plant remains, such as pollen. This allows the reconstruction of past environments and the study of changes in land use.

Peat is used by gardeners and for horticulture in certain parts of the world, but this is being banned in some places. By volume, there are about 4 trillion cubic metres of peat in the world. Over time, the formation of peat is often the first step in the geological formation of fossil fuels such as coal, particularly low-grade coal such as lignite.

Peat is not a renewable source of energy, due to its extraction rate in industrialized countries far exceeding its slow regrowth rate of 1 mm (0.04 in) per year, and as it is also reported that peat regrowth takes place only in 30–40% of peatlands. Centuries of burning and draining of peat by humans has released a significant amount of CO2 into the atmosphere, and much peatland restoration is needed to help limit climate change.

Formation

Peat in Lewis, Scotland

Peat forms when plant material does not fully decay in acidic and anaerobic conditions. It is composed mainly of wetland vegetation: principally bog plants including mosses, sedges, and shrubs. As it accumulates, the peat holds water. This slowly creates wetter conditions that allow the area of wetland to expand. Peatland features can include ponds, ridges, and raised bogs. The characteristics of some bog plants actively promote bog formation. For example, sphagnum mosses actively secrete tannins, which preserve organic material. Sphagnum also have special water-retaining cells, known as hyaline cells, which can release water ensuring the bogland remains constantly wet which helps promote peat production.

Most modern peat bogs formed 12,000 years ago in high latitudes after the glaciers retreated at the end of the last ice age. Peat usually accumulates slowly at the rate of about a millimetre per year. The estimated carbon content is 415 gigatonnes (457 billion short tons) (northern peatlands), 50 Gt (55 billion short tons) (tropical peatlands) and 15 Gt (17 billion short tons) (South America).

Types of peat material

Peat material is either fibric, hemic, or sapric. Fibric peats are the least decomposed and consist of intact fibre. Hemic peats are partially decomposed and sapric are the most decomposed.

Phragmites peat are composed of reed grass, Phragmites australis, and other grasses. It is denser than many other types of peat.

Engineers may describe a soil as peat which has a relatively high percentage of organic material. This soil is problematic because it exhibits poor consolidation properties – it cannot be easily compacted to serve as a stable foundation to support loads, such as roads or buildings.

Peatlands distribution

In a widely cited article, Joosten and Clarke (2002) described peatlands or mires (which they claim are the same) as

the most widespread of all wetland types in the world, representing 50 to 70% of global wetlands. They cover over 4 million square kilometres [1.5 million square miles] or 3% of the land and freshwater surface of the planet. In these ecosystems are found one third of the world's soil carbon and 10% of global freshwater resources. These ecosystems are characterized by the unique ability to accumulate and store dead organic matter from Sphagnum and many other non-moss species, as peat, under conditions of almost permanent water saturation. Peatlands are adapted to the extreme conditions of high water and low oxygen content, of toxic elements and low availability of plant nutrients. Their water chemistry varies from alkaline to acidic. Peatlands occur on all continents, from the tropical to boreal and Arctic zones from sea level to high alpine conditions.

PEATMAP is a GIS shapefile dataset that shows a distribution of peatlands that covers the entire world

A more recent estimate from an improved global peatland map, PEATMAP, based on a meta-analysis of geospatial information at global, regional and national levels puts global coverage slightly higher than earlier peatland inventories at 4.23 million square kilometres (1.63 million square miles) approximately 2.84% of the world land area. In Europe, peatlands extend to about 515,000 km2 (199,000 sq mi). About 60% of the world's wetlands are made of peat.

Peat deposits are found in many places around the world, including northern Europe and North America. The North American peat deposits are principally found in Canada and the Northern United States. Some of the world's largest peatlands include the West Siberian Lowland, the Hudson Bay Lowlands, and the Mackenzie River Valley. There is less peat in the Southern Hemisphere, in part because there is less land. The world's largest tropical peatland is located in Africa (the Democratic Republic of Congo). In addition, the vast Magellanic Moorland in South America (Southern Patagonia/Tierra del Fuego) is an extensive peat-dominated landscape. Peat can be found in New Zealand, Kerguelen, the Falkland Islands, and Indonesia (Kalimantan [Sungai Putri, Danau Siawan, Sungai Tolak], Rasau Jaya (West Kalimantan), and Sumatra). Indonesia has more tropical peatlands and mangrove forests than any other nation on earth, but Indonesia is losing wetlands by 100,000 hectares (250,000 acres) per year.

About 7% of all peatlands have been exploited for agriculture and forestry. Under certain conditions, peat will turn into lignite coal over geologic periods of time.

General uses

Fuel

Peat fire

Peat can be used as fuel once dried. Traditionally peat is cut by hand and left to dry in the sun. In many countries, including Ireland and Scotland, peat was traditionally stacked to dry in rural areas and used for cooking and domestic heating. For industrial uses, companies may use pressure to extract water from the peat, which is soft and easily compressed.

Agriculture

Worked bank in blanket bog, near Ulsta, Yell, Shetland Islands

In Sweden, farmers use dried peat to absorb excrement from cattle that are wintered indoors. The most important property of peat is retaining moisture in container soil when it is dry while preventing the excess of water from killing roots when it is wet. Peat can store nutrients although it is not fertile itself – it is polyelectrolytic with a high ion-exchange capacity due to its oxidized lignin. Peat is discouraged as a soil amendment by the Royal Botanic Gardens, Kew, England, since 2003. While bark or coir-based peat-free potting soil mixes are on the rise, particularly in the UK, peat remains an important raw material for horticulture in some other European countries, Canada, as well as parts of the United States.

Drinking water

Peatland can also be an important source of drinking water providing nearly 4% of all potable water stored in reservoirs. In the UK, 43% of the population receives drinking water sourced from peatlands, with the number climbing to 68% in Ireland. Catchments containing peatlands are the main source of water for large cities, including Dublin.

Falkland Islanders shovelling peat in the 1950s

Metallurgy

Peat wetlands also used to have a degree of metallurgical importance in the Early Middle Ages, being the primary source of bog iron used to create swords and armour.

Flood mitigation

Many peat swamps along the coast of Malaysia serve as a natural means of flood mitigation, with any overflow being absorbed by the peat, provided forests are still present to prevent peat fires.

Freshwater aquaria

Peat is sometimes used in freshwater aquaria. It is seen most commonly in soft water or blackwater river systems such as those mimicking the Amazon River basin. In addition to being soft in texture and therefore suitable for demersal (bottom-dwelling) species such as Corydoras catfish, peat is reported to have a number of other beneficial functions in freshwater aquaria. It softens water by acting as an ion exchanger; it also contains substances that are beneficial for plants, and for the reproductive health of fishes. Peat can prevent algae growth and kill microorganisms. Peat often stains the water yellow or brown due to the leaching of tannins.

Balneotherapy

Peat is[citation needed] widely used in balneotherapy (the use of bathing to treat disease). Many traditional spa treatments include peat as part of peloids. Such health treatments have an enduring tradition in European countries including Poland, the Czech Republic, Germany, and Austria. Some of these old spas date back to the 18th century and are still active today. The most common types of peat application in balneotherapy are peat muds, poultices, and suspension baths.

Peat archives

Authors Rydin and Jeglum in Biology of Habitats described the concept of peat archives, a phrase coined by influential peatland scientist Harry Godwin in 1981.

In a peat profile there is a fossilized record of changes over time in the vegetation, pollen, spores, animals (from microscopic to the giant elk), and archaeological remains that have been deposited in place, as well as pollen, spores and particles brought in by wind and weather. These remains are collectively termed the peat archives.

— Rydin, 2013

In Quaternary Palaeoecology, first published in 1980, Birks and Birks described how paleoecological studies "of peat can be used to reveal what plant communities were present (locally and regionally), what time period each community occupied, how environmental conditions changed, and how the environment affected the ecosystem in that time and place."

Scientists continue to compare modern mercury (Hg) accumulation rates in bogs with historical natural-archives records in peat bogs and lake sediments to estimate the potential human impacts on the biogeochemical cycle of mercury, for example. Over the years, different dating models and technologies for measuring date sediments and peat profiles accumulated over the last 100–150 years, have been used, including the widely used vertical distribution of 210Pb, the inductively coupled plasma mass spectrometry (ICP-SMS), and more recently the initial penetration (IP).

Bog bodies

Naturally mummified human bodies, often called "bog bodies" have been found in various places in Scotland, England, Ireland, and especially northern Germany and Denmark. They are almost perfectly preserved by the tanning properties of the acidic water. A famous example is the Tollund Man in Denmark. Having been discovered in 1950 after being mistaken for a recent murder victim, he was exhumed for scientific purposes and dated to have lived during the 4th century BC. Prior to that, another bog body, the Elling Woman, had been discovered in 1938 in the same bog about 60 m (200 ft) from the Tollund Man. She is believed to have lived during the late 3rd century BC and was a ritual sacrifice. In the Bronze and Iron Ages, people used peat bogs for rituals to nature gods and spirits.

Environmental and ecological issues

Increase, and change relative to previous year, of the atmospheric concentration of carbon dioxide.

The distinctive ecological conditions of peat wetlands provide a habitat for distinctive fauna and flora. For example, whooping cranes nest in North American peatlands, while Siberian cranes nest in the West Siberian peatland. Palsa mires have a rich bird life and are an EU-red listed habitat, and in Canada riparian peat banks are used as maternity sites for polar bears. Natural peatlands also have many species of wild orchids and carnivorous plants. For more on biological communities, see wetland, bog or fen.

Around half of the area of northern peatlands is permafrost-affected, and this area represents around a tenth of the total permafrost area, and also a tenth (185 ± 66 Gt) of all permafrost carbon, equivalent to around half of the carbon stored in the atmosphere. Dry peat is a good insulator (with a thermal conductivity of around 0.25 Wm-1K-1) and therefore plays an important role in protecting permafrost from thaw. The insulating effect of dry peat also makes it integral to unique permafrost landforms such as palsas and permafrost peat plateaus. Peatland permafrost thaw tends to result in an increase in methane emissions and a small increase in carbon dioxide uptake, meaning that it contributes to the permafrost carbon feedback. Under 2°C global warming, 0.7 million km2 of peatland permafrost could thaw, and with warming of +1.5 to 6°C a cumulative 0.7 to 3 PgC of methane could be released as a result of permafrost peatland thaw by 2100. The forcing from these potential emissions would be approximately equivalent to 1% of projected anthropogenic emissions.

One characteristic of peat is the bioaccumulation of metals concentrated in the peat. Accumulated mercury is of significant environmental concern.

Peat drainage

Large areas of organic wetland (peat) soils are currently drained for agriculture, forestry, and peat extraction (i.e. through canals). This process is taking place all over the world. This not only destroys the habitat of many species but also heavily fuels climate change. As a result of peat drainage, the organic carbon – which built over thousands of years and is normally underwater – is suddenly exposed to the air. It decomposes and turns into carbon dioxide (CO2), which is released into the atmosphere. The global CO2 emissions from drained peatlands have increased from 1,058 Mton in 1990 to 1,298 Mton in 2008 (a 20% increase). This increase has particularly taken place in developing countries, of which Indonesia, Malaysia, and Papua New Guinea are the fastest-growing top emitters. This estimate excludes emissions from peat fires (conservative estimates amount to at least 4,000 Mton/CO2-eq./yr for south-east Asia). With 174 Mton/CO2-eq./yr the EU is after Indonesia (500 Mton) and before Russia (161 Mton) the world's second-largest emitter of drainage-related peatland CO2 (excl. extracted peat and fires). Total CO2 emissions from the worldwide 500,000 km2 of degraded peatland may exceed 2.0 Gtons (including emissions from peat fires) which is almost 6% of all global carbon emissions.

Peat fires

Smoke and ozone pollution from Indonesian fires, 1997

Peat can be a major fire hazard and is not extinguished by light rain. Peat fires may burn for great lengths of time, or smoulder underground and reignite after winter if an oxygen source is present.

Peat has a high carbon content and can burn under low moisture conditions. Once ignited by the presence of a heat source (e.g., a wildfire penetrating the subsurface), it smoulders. These smouldering fires can burn undetected for very long periods of time (months, years, and even centuries) propagating in a creeping fashion through the underground peat layer.

Despite the damage that the burning of raw peat can cause, bogs are naturally subject to wildfires and depend on the wildfires to keep woody competition from lowering the water table and shading out many bog plants. Several families of plants including the carnivorous Sarracenia (trumpet pitcher), Dionaea (Venus flytrap), Utricularia (bladderworts) and non-carnivorous plants such as the sandhills lily, toothache grass and many species of orchid are now threatened and in some cases endangered from the combined forces of human drainage, negligence, and absence of fire.

The recent burning of peat bogs in Indonesia, with their large and deep growths containing more than 50 billion tonnes (55 billion short tons; 49 billion long tons) of carbon, has contributed to increases in world carbon dioxide levels. Peat deposits in Southeast Asia could be destroyed by 2040.

It is estimated that in 1997, peat and forest fires in Indonesia released between 0.81 and 2.57 gigatonnes (0.89 and 2.83 billion short tons; 0.80 and 2.53 billion long tons) of carbon; equivalent to 13–40 percent of the amount released by global fossil fuel burning, and greater than the carbon uptake of the world's biosphere. These fires may be responsible for the acceleration in the increase in carbon dioxide levels since 1998. More than 100 peat fires in Kalimantan and East Sumatra have continued to burn since 1997; each year, these peat fires ignite new forest fires above the ground.

In North America, peat fires can occur during severe droughts throughout their occurrence, from boreal forests in Canada to swamps and fens in the subtropical southern Florida Everglades. Once a fire has burnt through the area, hollows in the peat are burnt out, and hummocks are desiccated but can contribute to Sphagnum recolonization.

In the summer of 2010, an unusually high heat wave of up to 40 °C (104 °F) ignited large deposits of peat in Central Russia, burning thousands of houses and covering the capital of Moscow with a toxic smoke blanket. The situation remained critical until the end of August 2010.

In June 2019, despite some forest fire prevention methods being put in place, peat fires in the Arctic emitted

Peat hags at the start of Allt Lagan a' Bhainne tributary on Eilrig

50 megatonnes (55 million short tons; 49 million long tons) of CO2, which is equal to Sweden's total annual emissions. The peat fires are linked to climate change, as they are much more likely to occur nowadays due to this effect.

Erosion: Peat hags

Peat "hags" are a form of erosion that occurs at the sides of gullies that cut into the peat or, sometimes in isolation. Hags may result when flowing water cuts downwards into the peat and when fire or overgrazing exposes the peat surface. Once the peat is exposed in these ways, it is prone to further erosion by wind, water, and livestock. The result is overhanging vegetation and peat. Hags are too steep and unstable for vegetation to establish itself, so they continue to erode unless restorative action is taken.

Protection

The United Nations Convention of Biological Diversity highlights peatlands as key ecosystems to be conserved and protected. The convention requires governments at all levels to present action plans for the conservation and management of wetland environments. Wetlands are also protected under the 1971 Ramsar Convention.

In June 2002, the United Nations Development Programme launched the Wetlands Ecosystem and Tropical Peat Swamp Forest Rehabilitation Project. This project was targeted to last for 5 years, and brings together the efforts of various non-government organisations.

In November 2002, the International Peatland (formerly Peat) Society (IPS) and the International Mire Conservation Group (IMCG) published guidelines on the "Wise Use of Mires and Peatlands – Backgrounds and Principles including a framework for decision-making". The aim of this publication is to develop mechanisms that can balance the conflicting demands on the global peatland heritage, to ensure its wise use to meet the needs of humankind.

In June 2008, the IPS published the book Peatlands and Climate Change, summarising the currently available knowledge on the topic. In 2010, IPS presented a "Strategy for Responsible Peatland Management", which can be applied worldwide for decision-making.

Restoration

Often, restoration is done by blocking drainage channels in the peatland, and allowing natural vegetation to recover. Rehabilitation projects undertaken in North America and Europe usually focus on the rewetting of peatlands and revegetation of native species. This acts to mitigate carbon release in the short term before the new growth of vegetation provides a new source of organic litter to fuel the peat formation in the long term. UNEP is supporting peatland restoration in Indonesia.

Characteristics and uses by nation

Finland

The Toppila Power Station, a peat-fired facility in Oulu, Finland

The climate, geography, and environment of Finland favours bog and peat bog formation. Thus, peat is available in considerable quantities. It is burned to produce heat and electricity. Peat provides around 4% of Finland's annual energy production.

Also, agricultural and forestry-drained peat bogs actively release more CO2 annually than is released in peat energy production in Finland. The average regrowth rate of a single peat bog, however, is indeed slow, from 1,000 up to 5,000 years. Furthermore, it is a common practice to forest used peat bogs instead of giving them a chance to renew. This leads to lower levels of CO2 storage than the original peat bog.

At 106 g CO2/MJ, the carbon dioxide emissions of peat are higher than those of coal (at 94.6 g CO2/MJ) and natural gas (at 56.1). According to one study, increasing the average amount of wood in the fuel mixture from the current 2.6% to 12.5% would take the emissions down to 93 g CO2/MJ. That said, little effort is being made to achieve this.

The International Mire Conservation Group (IMCG) in 2006 urged the local and national governments of Finland to protect and conserve the remaining pristine peatland ecosystems. This includes the cessation of drainage and peat extraction in intact mire sites and the abandoning of current and planned groundwater extraction that may affect these sites. A proposal for a Finnish peatland management strategy was presented to the government in 2011, after a lengthy consultation phase.

Ireland

Industrial-milled peat production in a section of the Bog of Allen in the Irish Midlands: The 'turf' in the foreground is machine-produced for domestic use.

In the Republic of Ireland, a state-owned company called Bord na Móna was responsible for managing peat extraction. It processed the extracted peat into milled peat which was used in power stations and sold processed peat fuel in the form of peat briquettes which are used for domestic heating. These are oblong bars of densely compressed, dried, and shredded peat. Peat moss is a manufactured product for use in garden cultivation. Turf (dried out peat sods) is also commonly used in rural areas.

In January 2021 Bord na Móna announced that it had ceased all peat harvesting and cutting operations and would be moving its business to a climate solutions company.

In 2022 the sale of peat for burning was prohibited, but some people are still allowed to cut and burn it.

Russia

Shatura Power Station. Russia has the largest peat power capacity in the world
The Bor Peat Briquette Factory, Russia

Use of peat for energy production was prominent in the Soviet Union, especially in 1965. In 1929, over 40% of the Soviet Union's electric energy came from peat, which dropped to 1% by 1980.

In the 1960s, larger sections of swamps and bogs in Western Russia were drained for agricultural and mining purposes.

Netherlands

Peat covered area (brown) 2,500 years ago in the Netherlands

2,500 years ago, the area now named the Netherlands was largely covered with peat. Drainage, causing compaction and oxidation and excavation have reduced peatlands (>40 cm (16 in) peat) to about 2,733 km2 (1,055 sq mi) or 10% of the land area, mostly used as meadows. Drainage and excavation have lowered the surface of the peatlands. In the west of the country dikes and mills were built, creating polders so that dwelling and economic activities could continue below sea level, the first polder probably in 1533 and the last one in 1968. Harvesting of peat could continue in suitable locations as the lower peat layers below current sea level became exposed. This peat was deposited before the rise of the sea level in the Holocene. As a result, approximately 26% of the area and 21% of the population of the Netherlands are presently below sea level. The deepest point is in the Zuidplaspolder, 6.76 m (22.2 ft) below average sea level.

The Netherlands compared to sea level

In 2020, the Netherlands imported 2,156 million kg of peat (5.39 million m3 (400 kg/m3 dry peat) ): 44.5% from Germany (2020), 9.5% from Estonia (2018), 9.2% from Latvia (2020), 7.2% from Ireland (2018), 8.0% from Sweden (2019), 6.5% from Lithuania (2020), 5.1% from Belgium (2019) and 1.7% from Denmark (2019)); 1,35 million kg was exported. Most is used in gardening and greenhouse horticulture.

Since the Netherlands did not have many trees to use as firewood or charcoal, one use the Dutch made of the available peat was to fire kilns to make pottery. During World War II, the Dutch Resistance came up with an unusual use for peat. Since peat was so available in the fields, resistance fighters sometimes stacked peat into human-sized piles and used the piles for target practice.

Estonia

After oil shale in Estonia, peat is the second most mined natural resource. The peat production sector has a yearly revenue of around €100 million and it is mostly export-oriented. Peat is extracted from around 14 thousand hectares (35,000 acres).

India

Sikkim

The mountains of the Himalaya and Tibetan Plateau contains pockets of high-altitude wetlands. Khecheopalri is one of the Sikkim's most famous and diverse peatlands in the eastern Indian territory of Sikkim, which includes 682 species representing 5 kingdoms, 196 families, and 453 genera.

United Kingdom

England

England has around 1 million acres of peatland. Peatland in England store 584m tonnes of carbon in total but emit around 11m tonnes of CO2 every year due to degradation and draining. In 2021 only 124 people owned 60% of England's peat land.

The extraction of peat from the Somerset Levels began during the Roman times and has been carried out since the Levels were first drained. On Dartmoor, there were several commercial distillation plants formed and run by the British Patent Naphtha Company in 1844. These produced naphtha on a commercial scale from the high-quality local peat.

Fenn's, Whixall and Bettisfield Mosses is an element of a post-Ice Age peat bog that straddles the England–Wales border and contains many rare plant and animal species due to the acidic environment created by the peat. Only lightly hand-dug, it is now a national nature reserve and is being restored to its natural condition.

Industrial extraction of peat occurred at the Thorne Moor site, outside Doncaster near to the village of Hatfield. Government policy incentivised commercial removal to peat for agricultural use. This caused much destruction of the area during the 1980s. The removal of the peat resulted in later flooding further downstream at Goole due to the loss of water retaining peatlands. Recently regeneration of peatland has occurred as part of the Thorne Moors project, and at Fleet Moss, organised by Yorkshire Wildlife Trust.

Northern Ireland

In Northern Ireland, there is small-scale domestic turf cutting in rural areas, but areas of bogs have been diminished because of changes in agriculture. In response, afforestation has seen the establishment of tentative steps towards conservation such as Peatlands Park, County Armagh which is an Area of Special Scientific Interest.

Scotland

A peat stack in Ness on the Isle of Lewis (Scotland)

Some Scotch whisky distilleries, such as those on Islay, use peat fires to dry malted barley. The drying process takes about 30 hours. This gives the whiskies a distinctive smoky flavour, often called "peatiness". The peatiness, or degree of peat flavour, of a whisky, is calculated in ppm of phenol. Normal Highland whiskies have a peat level of up to 30 ppm, and the whiskies on Islay usually have up to 50 ppm. In rare types like the Octomore, the whisky can have more than 100 ppm of phenol. Scotch Ales can also use peat roasted malt, imparting a similar smoked flavor.

Because they are easily compressed under minimal weight, peat deposits pose major difficulties to builders of structures, roads, and railways. When the West Highland railway line was built across Rannoch Moor in western Scotland, its builders had to float the tracks on a multi-thousand-ton mattress of tree roots, brushwood, earth and ash.

Wales

Wales has over 70,000 hectares of peatlands. Most of it is blanket peat bog in the highlands, but there are a few hundred hectares of peatland in lowland areas. Some peatland areas in Wales are in poor condition. In 2020, the Welsh Government established a five-year peatland restoration initiative, which will be implemented by Natural Resources Wales (NRW).

Canada

Canada is the top exporter of peat by value. In 2021, top exporters of peat (including peat litter), whether or not agglomerated, were Canada ($580,591.39K, 1,643,950,000 kg), European Union ($445,304.42K, 2,362,280,000 kg), Latvia ($275,459.14K, 2,184,860,000 kg), Netherlands ($235,250.84K, 1,312,850,000 kg), Germany ($223,414.66K, 1,721,170,000 kg).

Sequential hermaphroditism

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Sequential_hermaphroditism

Sequential hermaphroditism (called dichogamy in botany) is one of the two types of hermaphroditism, the other type being simultaneous hermaphroditism. It occurs when the organism's sex changes at some point in its life. In particular, a sequential hermaphrodite produces eggs (female gametes) and sperm (male gametes) at different stages in life. Sequential hermaphroditism occurs in many fish, gastropods, and plants. Species that can undergo these changes do so as a normal event within their reproductive cycle, usually cued by either social structure or the achievement of a certain age or size. In some species of fish, sequential hermaphroditism is much more common than simultaneous hermaphroditism.

In animals, the different types of change are male to female (protandry or protandrous hermaphroditism), female to male (protogyny or protogynous hermaphroditism), and bidirectional (serial or bidirectional hermaphroditism). Both protogynous and protandrous hermaphroditism allow the organism to switch between functional male and functional female. Bidirectional hermaphrodites have the capacity for sex change in either direction between male and female or female and male, potentially repeatedly during their lifetime. These various types of sequential hermaphroditism may indicate that there is no advantage based on the original sex of an individual organism. Those that change gonadal sex can have both female and male germ cells in the gonads or can change from one complete gonadal type to the other during their last life stage.

In plants, individual flowers are called dichogamous if their function has the two sexes separated in time, although the plant as a whole may have functionally male and functionally female flowers open at any one moment. A flower is protogynous if its function is first female, then male, and protandrous if its function is male then female. It used to be thought that this reduced inbreeding, but it may be a more general mechanism for reducing pollen-pistil interference.

Zoology

Teleost fishes are the only vertebrate lineage where sequential hermaphroditism occurs.

Protandry

Ocellaris clownfish, Amphiprion ocellaris, a protandrous animal species

In general, protandrous hermaphrodites are animals that develop as males, but can later reproduce as females. However, protandry features a spectrum of different forms, which are characterized by the overlap between male and female reproductive function throughout an organism's lifetime:

  1. Protandrous sequential hermaphroditism: Early reproduction as a pure male and later reproduction as a pure female.
  2. Protandrous hermaphroditism with overlap: Early reproduction as a pure male and later reproduction as a pure female with an intervening overlap between both male and female reproduction.
  3. Protandrous simultaneous hermaphroditism: Early pure male reproduction and later reproduction in both sexes.

Furthermore, there are also species that reproduce as both sexes throughout their lifespans (i.e simultaneous hermaphrodites), but shift their reproductive resources from male to female over time.

Protandrous examples

Protandry occurs in a widespread range of animal phyla. In fact, protandrous hermaphroditism occurs in many fish, mollusks, and crustaceans, but is completely absent in terrestrial vertebrates.

Protandrous fishes include teleost species in the families Pomacentridae, Sparidae, and Gobiidae. A common example of a protandrous species are clownfish, which have a very structured society. In the Amphiprion percula species, there are zero to four individuals excluded from breeding and a breeding pair living in a sea anemone. Dominance is based on size, the female being the largest and the reproductive male being the second largest. The rest of the group is made up of progressively smaller males that do not breed and have no functioning gonads. If the female dies, in many cases, the reproductive male gains weight and becomes the female for that group. The largest non-breeding male then sexually matures and becomes the reproductive male for the group.

Other protandrous fishes can be found in the classes clupeiformes, siluriformes, stomiiformes. Since these groups are distantly related and have many intermediate relatives that are not protandrous, it strongly suggests that protandry evolved multiple times.

Phylogenies support this assumption because ancestral states differ for each family. For example, the ancestral state of the family Pomacentridae was gonochoristic (single-sexed), indicating that protandry evolved within the family. Therefore, because other families also contain protandrous species, protandry likely has evolved multiple times.

Other examples of protandrous animals include:

  • The Platyctenida order of comb jellies. Unlike most ctenophores, which are simultaneous hermaphrodites, Platyctenida are primarily protandrous, but asexual reproduction has also been observed in some species.
  • The flatworms Hymanella retenuova.
  • Laevapex fuscus, a gastropod, is described as being functionally protandric. The sperm matures in late winter and early spring, the eggs mature in early summer, and copulation occurs only in June. This shows that males cannot reproduce until the females appear, thus why they are considered to be functionally protandric.
  • Speyeria mormonia, or the Mormon Fritillary, is a butterfly species exhibiting protandry. In its case, functional protandry refers to the emergence of male adults 2–3 weeks before female adults.
  • The shrimp genus Lysmata perform protandric simultaneous hermaphroditism where they become true hermaphrodites instead of females. During the "female phase," they have both male and female tissues in their gonads and produce both gametes.
    Lysmata, a genus of shrimp that performs protandric simultaneous hermaphroditism

Protogyny

Moon wrasse, Thalassoma lunare, a protogynous animal species

Protogynous hermaphrodites are animals that are born female and at some point in their lifespan change sex to male. Protogyny is a more common form of sequential hermaphroditism in fish, especially when compared to protandry. As the animal ages, it shifts sex to become a male animal due to internal or external triggers. Unlike females, male fecundity increases greatly with age, and it is hypothesized that it is more selectively advantageous to be a male when an organism's body is larger. This advantage may cause certain species to be protogynous hermaphrodites as the sex change to male leads to an increased reproductive fitness advantage.

Protogynous examples

Protogyny is the most common form of hermaphroditism in fish in nature. About 75% of the 500 known sequentially hermaphroditic fish species are protogynous and often have polygynous mating systems. In these systems, large males use aggressive territorial defense to dominate female mating. This causes small males to have a severe reproductive disadvantage, which promotes strong selection of size-based protogyny. Therefore, if an individual is small, it is more reproductively advantageous to be female because they will still be able to reproduce, unlike small males.

Common model organisms for this type of sequential hermaphroditism are wrasses. They are one of the largest families of coral reef fish and belong to the family Labridae. Wrasses are found around the world in all marine habitats and tend to bury themselves in sand at night or when they feel threatened. In wrasses, the larger of a mating pair is the male, while the smaller is the female. In most cases, females and immature males have a uniform color while the male has the terminal bicolored phase. Large males hold territories and try to pair spawn, while small to mid-size initial-phase males live with females and group spawn. In other words, both the initial- and terminal-phase males can breed, but they differ in the way they do it.

In the California sheephead (Semicossyphus pulcher), a type of wrasse, when the female changes to male, the ovaries degenerate and spermatogenic crypts appear in the gonads. The general structure of the gonads remains ovarian after the transformation and the sperm is transported through a series of ducts on the periphery of the gonad and oviduct. Here, sex change is age-dependent. For example, the California sheephead stays a female for four to six years before changing sex since all California sheephead are born female.

A terminal-phase male bluehead wrasse

Bluehead wrasses begin life as males or females, but females can change sex and function as males. Young females and males start with a dull initial-phase coloration before progressing into a brilliant terminal-phase coloration, which has a change in intensity of color, stripes, and bars. Terminal-phase coloration occurs when males become large enough to defend territory. Initial-phase males have larger testes than larger, terminal phase males, which enables the initial-phase males to produce a large amount of sperm. This strategy allows these males to compete with the larger territorial male.

Botryllus schlosseri, a colonial tunicate, is a protogynous hermaphrodite. In a colony, eggs are released about two days before the peak of sperm emission. Although self-fertilization is avoided and cross-fertilization favored by this strategy, self-fertilization is still possible. Self-fertilized eggs develop with a substantially higher frequency of anomalies during cleavage than cross-fertilized eggs (23% vs. 1.6%). Also a significantly lower percentage of larvae derived from self-fertilized eggs metamorphose, and the growth of the colonies derived from their metamorphosis is significantly lower. These findings suggest that self-fertilization gives rise to inbreeding depression associated with developmental deficits that are likely caused by expression of deleterious recessive mutations.

Other examples of protogynous organisms include:

Ultimate causes

The ultimate cause of a biological event determines how the event makes organisms better adapted to their environment, and thus why evolution by natural selection has produced that event. While a large number of ultimate causes of hermaphroditism have been proposed, the two causes most relevant to sequential hermaphroditism are the size-advantage model and protection against inbreeding.

Size-advantage model

The size-advantage model states that individuals of a given sex reproduce more effectively if they are a certain size or age. To create selection for sequential hermaphroditism, small individuals must have higher reproductive fitness as one sex and larger individuals must have higher reproductive fitness as the opposite sex. For example, eggs are larger than sperm, thus larger individuals are able to make more eggs, so individuals could maximize their reproductive potential by beginning life as male and then turning female upon achieving a certain size.

In most ectotherms, body size and female fecundity are positively correlated. This supports the size-advantage model. Kazancioglu and Alonzo (2010) performed the first comparative analysis of sex change in Labridae. Their analysis supports the size-advantage model and suggest that sequential hermaphroditism is correlated to the size-advantage. They determined that dioecy was less likely to occur when the size advantage is stronger than other advantages. Warner suggests that selection for protandry may occur in populations where female fecundity is augmented with age and individuals mate randomly. Selection for protogyny may occur where there are traits in the population that depress male fecundity at early ages (territoriality, mate selection or inexperience) and when female fecundity is decreased with age, the latter seems to be rare in the field. An example of territoriality favoring protogyny occurs when there is a need to protect their habitat and being a large male is advantageous for this purpose. In the mating aspect, a large male has a higher chance of mating, while this has no effect on the female mating fitness. Thus, he suggests that female fecundity has more impact on sequential hermaphroditism than the age structures of the population.

The size-advantage model predicts that sex change would only be absent if the relationship between size/age with reproductive potential is identical in both sexes. With this prediction one would assume that hermaphroditism is very common, but this is not the case. Sequential hermaphroditism is very rare and according to scientists this is due to some cost that decreases fitness in sex changers as opposed to those who don't change sex. Some of the hypotheses proposed for the dearth of hermaphrodites are the energetic cost of sex change, genetic and/or physiological barriers to sex change, and sex-specific mortality rates.

In 2009, Kazanciglu and Alonzo found that dioecy was only favored when the cost of changing sex was very large. This indicates that the cost of sex change does not explain the rarity of sequential hermaphroditism by itself.

Protection against inbreeding

Sequential hermaphroditism can also protect against inbreeding in populations of organisms that have low enough motility and/or are sparsely distributed enough that there is a considerable risk of siblings encountering each other after reaching sexual maturity, and interbreeding. If siblings are all the same or similar ages, and if they all begin life as one sex and then transition to the other sex at about the same age, then siblings are highly likely to be the same sex at any given time. This should dramatically reduce the likelihood of inbreeding. Both protandry and protogyny are known to help prevent inbreeding in plants, and many examples of sequential hermaphroditism attributable to inbreeding prevention have been identified in a wide variety of animals.

Proximate causes

The proximate cause of a biological event concerns the molecular and physiological mechanisms that produce the event. Many studies have focused on the proximate causes of sequential hermaphroditism, which may be caused by various hormonal and enzyme changes in organisms.

The role of aromatase has been widely studied in this area. Aromatase is an enzyme that controls the androgen/estrogen ratio in animals by catalyzing the conversion of testosterone into oestradiol, which is irreversible. It has been discovered that the aromatase pathway mediates sex change in both directions in organisms. Many studies also involve understanding the effect of aromatase inhibitors on sex change. One such study was performed by Kobayashi et al. In their study they tested the role of estrogens in male three-spot wrasses (Halichoeres trimaculatus). They discovered that fish treated with aromatase inhibitors showed decreased gonodal weight, plasma estrogen level and spermatogonial proliferation in the testis as well as increased androgen levels. Their results suggest that estrogens are important in the regulation of spermatogenesis in this protogynous hermaphrodite.

Previous studies have also investigated sex reversal mechanisms in teleost fish. During sex reversal, their whole gonads including the germinal epithelium undergoes significant changes, remodeling, and reformation. One study on the teleost Synbranchus marmoratus found that metalloproteinases (MMPs) were involved in gonadal remodeling. In this process, the ovaries degenerated and were slowly replaced by the germinal male tissue. In particular, the action of MMPs induced significant changes in the interstitial gonadal tissue, allowing for reorganization of germinal epithelial tissue. The study also found that sex steroids help in the sex reversal process by being synthesized as Leydig cells replicate and differentiate. Thus, the synthesis of sex steroids coincides with gonadal remodeling, which is triggered by MMPs produced by germinal epithelial tissue. These results suggests that MMPs and changes in steroid levels play a large role in sequential hermaphroditism in teleosts.

Genetic consequences

Sequential hermaphrodites almost always have a sex ratio biased towards the birth sex, and consequently experience significantly more reproductive success after switching sexes. According to the population genetics theory, this should decrease genetic diversity and effective population size (Ne). However, a study of two ecologically similar santer sea bream (gonochoric) and slinger sea bream (protogynous) in South African waters found that genetic diversities were similar in the two species, and while Ne was lower in the instant for the sex-changer, they were similar over a relatively short time horizon. The ability of these organisms to change biological sex has allowed for better reproductive success based on the ability for certain genes to pass down more easily from generation to generation. The change in sex also allows for organisms to reproduce if no individuals of the opposite sex are already present.

Botany

Small male Arisaema triphyllum plant

Sequential hermaphroditism in plants is the process in which a plant changes its sex throughout its lifetime. Sequential hermaphroditism in plants is very rare. There are less than 0.1% of recorded cases in which plant species entirely change their sex. The Patchy Environment Model and Size Dependent Sex Allocation are the two environmental factors which drive sequential hermaphroditism in plants. The Patchy Environment Model states that plants will want to maximize the use of their resources through the change of their sex. For example, if a plant will benefit more from the resources of a given environment in a certain sex, it will want to change to that sex. Furthermore, Size Dependent Sex Allocation outlines that in sequential hermaphroditic plants, it is preferable to change sexes in a way that maximizes their overall fitness compared to their size over time. Similar to maximizing the use of resources, if the combination of size and fitness for a certain sex is more beneficial, the plant will want to change to that sex. Evolutionarily, sequential hermaphrodites emerged as certain species found that one of the best ways to maximize the benefits of their environment was through changing their sex.

Arisaema

Female Arisaema triphyllum plant

Arisaema is a plant genus which is commonly cited as exercising sequential hermaphroditism. The most commonly known Arisaema plant is Arisaema triphyllum (Jack in the pulpit) plant. As the A. triphyllum grows and changes, it develops from a nonsexual juvenile plant, to a young all-male plant, to a male-and-female plant, to an all-female plant. This means that A. triphyllum is changing its sex from male to female over the course of its lifetime as its size increases, showcasing Size Dependent Sex Allocation. Another example is Arisaema dracontium or the green dragon, which can change its sex on a yearly basis. A. dracontium's sex is also dependent on size: the smaller flowers are male while the larger flowers are both male and female. Typically in Arisaema species, small flowers only contain stamens, meaning they are males. Larger flowers can contain both stamen and pistils or only pistils, meaning they can be either hermaphrodites or strictly female. Overall, Arisaemas are changing their sex as they grow larger, maximizing the overall fitness for that particular environment.

Striped maple (Acer pensylvanicum)

Striped maple or Acer pensylvanicum

Striped maple trees (Acer pensylvanicum) are sequential hermaphrodites as they are known to have the ability to change sex. Starting in 2014, a case study showed that over a four year time span 54% of striped maple trees developed a different sex. Scientists removed branches from striped maple trees to research the cause of their sequential hermaphroditism. It was found that the branches changed to either female or female and male as a response to being damaged by being cut off the tree. Researchers concur that when the striped maple experiences damage or is sick, this will trigger a sex change to either female or female and male. This could be because the striped maple would need to bloom as quickly as possible, producing offspring before it ultimately dies from damage or sickness.

Dichogamy in flowering plants

Protandrous flowers of Aeonium undulatum

In the context of the plant sexuality of flowering plants (angiosperms), there are two forms of dichogamy: protogyny—female function precedes male function—and protandry—male function precedes female function. Examples include in Asteraceae, bisexual tubular (disks) florets are usually protandrous. Whereas in Acacia and Banksia flowers are protogynous, with the style of the female flower elongating, then in the male phase shedding pollen.

Evolution

Historically, dichogamy has been regarded as a mechanism for reducing inbreeding. However, a survey of the angiosperms found that self-incompatible (SI) plants, which are incapable of inbreeding, were as likely to be dichogamous as were self-compatible (SC) plants. This finding led to a reinterpretation of dichogamy as a more general mechanism for reducing the impact of pollen-pistil interference on pollen import and export. Unlike the inbreeding avoidance hypothesis, which focused on female function, this interference-avoidance hypothesis considers both reproductive functions.

Mechanism

In many hermaphroditic species, the close physical proximity of anthers and stigma makes interference unavoidable, either within a flower or between flowers on an inflorescence. Within-flower interference, which occurs when either the pistil interrupts pollen removal or the anthers prevent pollen deposition, can result in autonomous or facilitated self-pollination. Between-flower interference results from similar mechanisms, except that the interfering structures occur on different flowers within the same inflorescence and it requires pollinator activity. This results in geitonogamous pollination, the transfer of pollen between flowers of the same individual. In contrast to within-flower interference, geitonogamy necessarily involves the same processes as outcrossing: pollinator attraction, reward provisioning, and pollen removal. Therefore, between-flower interference not only carries the cost of self-fertilization (inbreeding depression), but also reduces the amount of pollen available for export (so-called "pollen discounting"). Because pollen discounting diminishes outcross siring success, interference avoidance may be an important evolutionary force in floral biology. Dichogamy may reduce between-flower interference by reducing or eliminating the temporal overlap between stigma and anthers within an inflorescence. Large inflorescences attract more pollinators, potentially enhancing reproductive success by increasing pollen import and export. However, large inflorescences also increase the opportunities for both geitonogamy and pollen discounting, so that the opportunity for between-flower interference increases with inflorescence size. Consequently, the evolution of floral display size may represent a compromise between maximizing pollinator visitation and minimizing geitonogamy and pollen discounting (Barrett et al., 1994).

Protandry

Protandry may be particularly relevant to this compromise, because it often results in an inflorescence structure with female phase flowers positioned below male phase flowers. Given the tendency of many insect pollinators to forage upwards through inflorescences, protandry may enhance pollen export by reducing between-flower interference. Furthermore, this enhanced pollen export should increase as floral display size increases, because between-flower interference should increase with floral display size. These effects of protandry on between-flower interference may decouple the benefits of large inflorescences from the consequences of geitonogamy and pollen discounting. Such a decoupling would provide a significant reproductive advantage through increased pollinator visitation and siring success.

Advantages

Harder et al. (2000) demonstrated experimentally that dichogamy both reduced rates of self-fertilization and enhanced outcross siring success through reductions in geitonogamy and pollen discounting, respectively. Routley & Husband (2003) examined the influence of inflorescence size on this siring advantage and found a bimodal distribution with increased siring success with both small and large display sizes.

The length of stigmatic receptivity plays a key role in regulating the isolation of the male and female stages in dichogamous plants, and stigmatic receptivity can be influenced by both temperature and humidity. Another study by Jersakova and Johnson, studied the effects of protandry on the pollination process of the moth pollinated orchid, Satyrium longicauda. They discovered that protandry tended to reduce the absolute levels of self-pollination and suggest that the evolution of protandry could be driven by the consequences of the pollination process for male mating success. Another study that indicated that dichogamy might increase male pollination success was by Dai and Galloway.

Politics of Europe

From Wikipedia, the free encyclopedia ...