Search This Blog

Monday, April 1, 2024

Speciation

From Wikipedia, the free encyclopedia

There are four geographic modes of speciation in nature, based on the extent to which speciating populations are isolated from one another: allopatric, peripatric, parapatric, and sympatric. Whether genetic drift is a minor or major contributor to speciation is the subject of much ongoing discussion.

Rapid sympatric speciation can take place through polyploidy, such as by doubling of chromosome number; the result is progeny which are immediately reproductively isolated from the parent population. New species can also be created through hybridization, followed by reproductive isolation, if the hybrid is favoured by natural selection.

Historical background

In addressing the origin of species, there are two key issues:

  1. the evolutionary mechanisms of speciation
  2. how the separateness and individuality of species is maintained

Since Charles Darwin's time, efforts to understand the nature of species have primarily focused on the first aspect, and it is now widely agreed that the critical factor behind the origin of new species is reproductive isolation.

Darwin's dilemma: why do species exist?

In On the Origin of Species (1859), Darwin interpreted biological evolution in terms of natural selection, but was perplexed by the clustering of organisms into species. Chapter 6 of Darwin's book is entitled "Difficulties of the Theory". In discussing these "difficulties" he noted

Firstly, why, if species have descended from other species by insensibly fine gradations, do we not everywhere see innumerable transitional forms? Why is not all nature in confusion instead of the species being, as we see them, well defined?

— On the Origin of Species (1859), chapter 6

This dilemma can be described as the absence or rarity of transitional varieties in habitat space.

Another dilemma, related to the first one, is the absence or rarity of transitional varieties in time. Darwin pointed out that by the theory of natural selection "innumerable transitional forms must have existed", and wondered "why do we not find them embedded in countless numbers in the crust of the earth". That clearly defined species actually do exist in nature in both space and time implies that some fundamental feature of natural selection operates to generate and maintain species.

Effect of sexual reproduction on species formation

It has been argued that the resolution of Darwin's first dilemma lies in the fact that out-crossing sexual reproduction has an intrinsic cost of rarity. The cost of rarity arises as follows. If, on a resource gradient, a large number of separate species evolve, each exquisitely adapted to a very narrow band on that gradient, each species will, of necessity, consist of very few members. Finding a mate under these circumstances may present difficulties when many of the individuals in the neighborhood belong to other species. Under these circumstances, if any species' population size happens, by chance, to increase (at the expense of one or other of its neighboring species, if the environment is saturated), this will immediately make it easier for its members to find sexual partners. The members of the neighboring species, whose population sizes have decreased, experience greater difficulty in finding mates, and therefore form pairs less frequently than the larger species. This has a snowball effect, with large species growing at the expense of the smaller, rarer species, eventually driving them to extinction. Eventually, only a few species remain, each distinctly different from the other. The cost of rarity not only involves the costs of failure to find a mate, but also indirect costs such as the cost of communication in seeking out a partner at low population densities.

African pygmy kingfisher, showing coloration shared by all adults of that species to a high degree of fidelity.

Rarity brings with it other costs. Rare and unusual features are very seldom advantageous. In most instances, they indicate a (non-silent) mutation, which is almost certain to be deleterious. It therefore behooves sexual creatures to avoid mates sporting rare or unusual features (koinophilia). Sexual populations therefore rapidly shed rare or peripheral phenotypic features, thus canalizing the entire external appearance, as illustrated in the accompanying image of the African pygmy kingfisher, Ispidina picta. This uniformity of all the adult members of a sexual species has stimulated the proliferation of field guides on birds, mammals, reptiles, insects, and many other taxa, in which a species can be described with a single illustration (or two, in the case of sexual dimorphism). Once a population has become as homogeneous in appearance as is typical of most species (and is illustrated in the photograph of the African pygmy kingfisher), its members will avoid mating with members of other populations that look different from themselves. Thus, the avoidance of mates displaying rare and unusual phenotypic features inevitably leads to reproductive isolation, one of the hallmarks of speciation.

In the contrasting case of organisms that reproduce asexually, there is no cost of rarity; consequently, there are only benefits to fine-scale adaptation. Thus, asexual organisms very frequently show the continuous variation in form (often in many different directions) that Darwin expected evolution to produce, making their classification into "species" (more correctly, morphospecies) very difficult.

Modes

Comparison of allopatric, peripatric, parapatric and sympatric speciation

All forms of natural speciation have taken place over the course of evolution; however, debate persists as to the relative importance of each mechanism in driving biodiversity.

One example of natural speciation is the diversity of the three-spined stickleback, a marine fish that, after the last glacial period, has undergone speciation into new freshwater colonies in isolated lakes and streams. Over an estimated 10,000 generations, the sticklebacks show structural differences that are greater than those seen between different genera of fish including variations in fins, changes in the number or size of their bony plates, variable jaw structure, and color differences.

Allopatric

During allopatric (from the ancient Greek allos, "other" + patrā, "fatherland") speciation, a population splits into two geographically isolated populations (for example, by habitat fragmentation due to geographical change such as mountain formation). The isolated populations then undergo genotypic or phenotypic divergence as: (a) they become subjected to dissimilar selective pressures; (b) different mutations arise in the two populations. When the populations come back into contact, they have evolved such that they are reproductively isolated and are no longer capable of exchanging genes. Island genetics is the term associated with the tendency of small, isolated genetic pools to produce unusual traits. Examples include insular dwarfism and the radical changes among certain famous island chains, for example on Komodo. The Galápagos Islands are particularly famous for their influence on Charles Darwin. During his five weeks there he heard that Galápagos tortoises could be identified by island, and noticed that finches differed from one island to another, but it was only nine months later that he reflected that such facts could show that species were changeable. When he returned to England, his speculation on evolution deepened after experts informed him that these were separate species, not just varieties, and famously that other differing Galápagos birds were all species of finches. Though the finches were less important for Darwin, more recent research has shown the birds now known as Darwin's finches to be a classic case of adaptive evolutionary radiation.eripatric

In peripatric speciation, a subform of allopatric speciation, new species are formed in isolated, smaller peripheral populations that are prevented from exchanging genes with the main population. It is related to the concept of a founder effect, since small populations often undergo bottlenecks. Genetic drift is often proposed to play a significant role in peripatric speciation.

Case studies include Mayr's investigation of bird fauna; the Australian bird Petroica multicolor; and reproductive isolation in populations of Drosophila subject to population bottlenecking.

Parapatric

In parapatric speciation, there is only partial separation of the zones of two diverging populations afforded by geography; individuals of each species may come in contact or cross habitats from time to time, but reduced fitness of the heterozygote leads to selection for behaviours or mechanisms that prevent their interbreeding. Parapatric speciation is modelled on continuous variation within a "single", connected habitat acting as a source of natural selection rather than the effects of isolation of habitats produced in peripatric and allopatric speciation.

Parapatric speciation may be associated with differential landscape-dependent selection. Even if there is a gene flow between two populations, strong differential selection may impede assimilation and different species may eventually develop. Habitat differences may be more important in the development of reproductive isolation than the isolation time. Caucasian rock lizards Darevskia rudis, D. valentini and D. portschinskii all hybridize with each other in their hybrid zone; however, hybridization is stronger between D. portschinskii and D. rudis, which separated earlier but live in similar habitats than between D. valentini and two other species, which separated later but live in climatically different habitats.

Ecologists refer to arapatric and peripatric speciation in terms of ecological niches. A niche must be available in order for a new species to be successful. Ring species such as Larus gulls have been claimed to illustrate speciation in progress, though the situation may be more complex. The grass Anthoxanthum odoratum may be starting parapatric speciation in areas of mine contamination.

Sympatric

Cichlids such as Haplochromis nyererei diversified by sympatric speciation in the Rift Valley lakes.

Sympatric speciation is the formation of two or more descendant species from a single ancestral species all occupying the same geographic location.

Often-cited examples of sympatric speciation are found in insects that become dependent on different host plants in the same area.

Sympatric Speciation with Cichlids

The best known example of sympatric speciation is that of the cichlids of East Africa inhabiting the Rift Valley lakes, particularly Lake Victoria, Lake Malawi and Lake Tanganyika. There are over 800 described species, and according to estimates, there could be well over 1,600 species in the region. Their evolution is cited as an example of both natural and sexual selection. A 2008 study suggests that sympatric speciation has occurred in Tennessee cave salamanders. Sympatric speciation driven by ecological factors may also account for the extraordinary diversity of crustaceans living in the depths of Siberia's Lake Baikal.

Budding speciation has been proposed as a particular form of sympatric speciation, whereby small groups of individuals become progressively more isolated from the ancestral stock by breeding preferentially with one another. This type of speciation would be driven by the conjunction of various advantages of inbreeding such as the expression of advantageous recessive phenotypes, reducing the recombination load, and reducing the cost of sex.

Rhagoletis pomonella, the hawthorn fly, appears to be in the process of sympatric speciation.

The hawthorn fly (Rhagoletis pomonella), also known as the apple maggot fly, appears to be undergoing sympatric speciation. Different populations of hawthorn fly feed on different fruits. A distinct population emerged in North America in the 19th century some time after apples, a non-native species, were introduced. This apple-feeding population normally feeds only on apples and not on the historically preferred fruit of hawthorns. The current hawthorn feeding population does not normally feed on apples. Some evidence, such as that six out of thirteen allozyme loci are different, that hawthorn flies mature later in the season and take longer to mature than apple flies; and that there is little evidence of interbreeding (researchers have documented a 4–6% hybridization rate) suggests that sympatric speciation is occurring.

Methods of selection

Reinforcement

Reinforcement assists speciation by selecting against hybrids.

Reinforcement, also called the Wallace effect, is the process by which natural selection increases reproductive isolation. It may occur after two populations of the same species are separated and then come back into contact. If their reproductive isolation was complete, then they will have already developed into two separate incompatible species. If their reproductive isolation is incomplete, then further mating between the populations will produce hybrids, which may or may not be fertile. If the hybrids are infertile, or fertile but less fit than their ancestors, then there will be further reproductive isolation and speciation has essentially occurred, as in horses and donkeys.

One reasoning behind this is that if the parents of the hybrid offspring each have naturally selected traits for their own certain environments, the hybrid offspring will bear traits from both, therefore would not fit either ecological niche as well as either parent (ecological speciation). The low fitness of the hybrids would cause selection to favor assortative mating, which would control hybridization. This is sometimes called the Wallace effect after the evolutionary biologist Alfred Russel Wallace who suggested in the late 19th century that it might be an important factor in speciation. Conversely, if the hybrid offspring are more fit than their ancestors, then the populations will merge back into the same species within the area they are in contact.

Another important theoretical mechanism is the arise of intrinsic genetic incompatibilities, addressed in the Bateson-Dobzhansky-Muller model. Genes from allopatric populations will have different evolutionary backgrounds and are never tested together until hybridization at secondary contact, when negative epistatic interactions will be exposed. In other words, new alleles will emerge in a population and only pass through selection if they work well together with other genes in the same population, but it may not be compatible with genes in an allopatric population, be those other newly derived alleles or retained ancestral alleles. This is only revealed through new hybridization. Such incompatibilities cause lower fitness in hybrids regardless of the ecological environment, and are thus intrinsic, although they can originate from the adaptation to different environments. The accumulation of such incompatibilities increases faster and faster with time, creating a "snowball" effect. There is a large amount of evidence supporting this theory, primarily from laboratory populations such as Drosophila and Mus, and some genes involved in incompatibilities have been identified.

Reinforcement favoring reproductive isolation is required for both parapatric and sympatric speciation. Without reinforcement, the geographic area of contact between different forms of the same species, called their "hybrid zone", will not develop into a boundary between the different species. Hybrid zones are regions where diverged populations meet and interbreed. Hybrid offspring are common in these regions, which are usually created by diverged species coming into secondary contact. Without reinforcement, the two species would have uncontrollable inbreeding. Reinforcement may be induced in artificial selection experiments as described below.

Ecological

Ecological selection is "the interaction of individuals with their environment during resource acquisition". Natural selection is inherently involved in the process of speciation, whereby, "under ecological speciation, populations in different environments, or populations exploiting different resources, experience contrasting natural selection pressures on the traits that directly or indirectly bring about the evolution of reproductive isolation". Evidence for the role ecology plays in the process of speciation exists. Studies of stickleback populations support ecologically-linked speciation arising as a by-product, alongside numerous studies of parallel speciation, where isolation evolves between independent populations of species adapting to contrasting environments than between independent populations adapting to similar environments. Ecological speciation occurs with much of the evidence, "...accumulated from top-down studies of adaptation and reproductive isolation".

Sexual selection

Sexual selection can drive speciation in a clade, independently of natural selection. However the term "speciation", in this context, tends to be used in two different, but not mutually exclusive senses. The first and most commonly used sense refers to the "birth" of new species. That is, the splitting of an existing species into two separate species, or the budding off of a new species from a parent species, both driven by a biological "fashion fad" (a preference for a feature, or features, in one or both sexes, that do not necessarily have any adaptive qualities). In the second sense, "speciation" refers to the wide-spread tendency of sexual creatures to be grouped into clearly defined species, rather than forming a continuum of phenotypes both in time and space – which would be the more obvious or logical consequence of natural selection. This was indeed recognized by Darwin as problematic, and included in his On the Origin of Species (1859), under the heading "Difficulties with the Theory". There are several suggestions as to how mate choice might play a significant role in resolving Darwin's dilemma. If speciation takes place in the absence of natural selection, it might be referred to as nonecological speciation.

Artificial speciation

Gaur (Indian bison) can interbreed with domestic cattle.
Male Drosophila pseudoobscura

New species have been created by animal husbandry, but the dates and methods of the initiation of such species are not clear. Often, the domestic counterpart can still interbreed and produce fertile offspring with its wild ancestor. This is the case with domestic cattle, which can be considered the same species as several varieties of wild ox, gaur, and yak; and with domestic sheep that can interbreed with the mouflon.

The best-documented creations of new species in the laboratory were performed in the late 1980s. William R. Rice and George W. Salt bred Drosophila melanogaster fruit flies using a maze with three different choices of habitat such as light/dark and wet/dry. Each generation was placed into the maze, and the groups of flies that came out of two of the eight exits were set apart to breed with each other in their respective groups. After thirty-five generations, the two groups and their offspring were isolated reproductively because of their strong habitat preferences: they mated only within the areas they preferred, and so did not mate with flies that preferred the other areas. The history of such attempts is described by Rice and Elen E. Hostert (1993). Diane Dodd used a laboratory experiment to show how reproductive isolation can develop in Drosophila pseudoobscura fruit flies after several generations by placing them in different media, starch- and maltose-based media.

Dodd's experiment has been replicated many times, including with other kinds of fruit flies and foods. Such rapid evolution of reproductive isolation may sometimes be a relic of infection by Wolbachia bacteria.

An alternative explanation is that these observations are consistent with sexually-reproducing animals being inherently reluctant to mate with individuals whose appearance or behavior is different from the norm. The risk that such deviations are due to heritable maladaptations is high. Thus, if an animal, unable to predict natural selection's future direction, is conditioned to produce the fittest offspring possible, it will avoid mates with unusual habits or features. Sexual creatures then inevitably group themselves into reproductively isolated species.

Genetics

Few speciation genes have been found. They usually involve the reinforcement process of late stages of speciation. In 2008, a speciation gene causing reproductive isolation was reported. It causes hybrid sterility between related subspecies. The order of speciation of three groups from a common ancestor may be unclear or unknown; a collection of three such species is referred to as a "trichotomy".

Speciation via polyploidy

Speciation via polyploidy: A diploid cell undergoes failed meiosis, producing diploid gametes, which self-fertilize to produce a tetraploid zygote. In plants, this can effectively be a new species, reproductively isolated from its parents, and able to reproduce.

Polyploidy is a mechanism that has caused many rapid speciation events in sympatry because offspring of, for example, tetraploid x diploid matings often result in triploid sterile progeny. However, among plants, not all polyploids are reproductively isolated from their parents, and gene flow may still occur, such as through triploid hybrid x diploid matings that produce tetraploids, or matings between meiotically unreduced gametes from diploids and gametes from tetraploids (see also hybrid speciation).

It has been suggested that many of the existing plant and most animal species have undergone an event of polyploidization in their evolutionary history. Reproduction of successful polyploid species is sometimes asexual, by parthenogenesis or apomixis, as for unknown reasons many asexual organisms are polyploid. Rare instances of polyploid mammals are known, but most often result in prenatal death.

Hybrid speciation

Hybridization between two different species sometimes leads to a distinct phenotype. This phenotype can also be fitter than the parental lineage and as such natural selection may then favor these individuals. Eventually, if reproductive isolation is achieved, it may lead to a separate species. However, reproductive isolation between hybrids and their parents is particularly difficult to achieve and thus hybrid speciation is considered an extremely rare event. The Mariana mallard is thought to have arisen from hybrid speciation.

Hybridization is an important means of speciation in plants, since polyploidy (having more than two copies of each chromosome) is tolerated in plants more readily than in animals. Polyploidy is important in hybrids as it allows reproduction, with the two different sets of chromosomes each being able to pair with an identical partner during meiosis. Polyploids also have more genetic diversity, which allows them to avoid inbreeding depression in small populations.

Hybridization without change in chromosome number is called homoploid hybrid speciation. It is considered very rare but has been shown in Heliconius butterflies and sunflowers. Polyploid speciation, which involves changes in chromosome number, is a more common phenomenon, especially in plant species.

Gene transposition

Theodosius Dobzhansky, who studied fruit flies in the early days of genetic research in 1930s, speculated that parts of chromosomes that switch from one location to another might cause a species to split into two different species. He mapped out how it might be possible for sections of chromosomes to relocate themselves in a genome. Those mobile sections can cause sterility in inter-species hybrids, which can act as a speciation pressure. In theory, his idea was sound, but scientists long debated whether it actually happened in nature. Eventually a competing theory involving the gradual accumulation of mutations was shown to occur in nature so often that geneticists largely dismissed the moving gene hypothesis. However, 2006 research shows that jumping of a gene from one chromosome to another can contribute to the birth of new species. This validates the reproductive isolation mechanism, a key component of speciation.

Rates

Phyletic gradualism, above, consists of relatively slow change over geological time. Punctuated equilibrium, bottom, consists of morphological stability and rare, relatively rapid bursts of evolutionary change.

There is debate as to the rate at which speciation events occur over geologic time. While some evolutionary biologists claim that speciation events have remained relatively constant and gradual over time (known as "Phyletic gradualism" – see diagram), some palaeontologists such as Niles Eldredge and Stephen Jay Gould have argued that species usually remain unchanged over long stretches of time, and that speciation occurs only over relatively brief intervals, a view known as punctuated equilibrium. (See diagram, and Darwin's dilemma.)

Punctuated evolution

Evolution can be extremely rapid, as shown in the creation of domesticated animals and plants in a very short geological space of time, spanning only a few tens of thousands of years. Maize (Zea mays), for instance, was created in Mexico in only a few thousand years, starting about 7,000 to 12,000 years ago. This raises the question of why the long term rate of evolution is far slower than is theoretically possible.

Plants and domestic animals can differ markedly from their wild ancestors:
 
Top: wild teosinte; middle: maize-teosinte hybrid; bottom: maize
 

Evolution is imposed on species or groups. It is not planned or striven for in some Lamarckist way. The mutations on which the process depends are random events, and, except for the "silent mutations" which do not affect the functionality or appearance of the carrier, are thus usually disadvantageous, and their chance of proving to be useful in the future is vanishingly small. Therefore, while a species or group might benefit from being able to adapt to a new environment by accumulating a wide range of genetic variation, this is to the detriment of the individuals who have to carry these mutations until a small, unpredictable minority of them ultimately contributes to such an adaptation. Thus, the capability to evolve would require group selection, a concept discredited by (for example) George C. Williams, John Maynard Smith and Richard Dawkins as selectively disadvantageous to the individual.

The resolution to Darwin's second dilemma might thus come about as follows:

If sexual individuals are disadvantaged by passing mutations on to their offspring, they will avoid mutant mates with strange or unusual characteristics. Mutations that affect the external appearance of their carriers will then rarely be passed on to the next and subsequent generations. They would therefore seldom be tested by natural selection. Evolution is, therefore, effectively halted or slowed down considerably. The only mutations that can accumulate in a population, on this punctuated equilibrium view, are ones that have no noticeable effect on the outward appearance and functionality of their bearers (i.e., they are "silent" or "neutral mutations", which can be, and are, used to trace the relatedness and age of populations and species.)

This argument implies that evolution can only occur if mutant mates cannot be avoided, as a result of a severe scarcity of potential mates. This is most likely to occur in small, isolated communities. These occur most commonly on small islands, in remote valleys, lakes, river systems, or caves, or during the aftermath of a mass extinction. Under these circumstances, not only is the choice of mates severely restricted but population bottlenecks, founder effects, genetic drift and inbreeding cause rapid, random changes in the isolated population's genetic composition. Furthermore, hybridization with a related species trapped in the same isolate might introduce additional genetic changes. If an isolated population such as this survives its genetic upheavals, and subsequently expands into an unoccupied niche, or into a niche in which it has an advantage over its competitors, a new species, or subspecies, will have come into being. In geological terms, this will be an abrupt event. A resumption of avoiding mutant mates will thereafter result, once again, in evolutionary stagnation.

In apparent confirmation of this punctuated equilibrium view of evolution, the fossil record of an evolutionary progression typically consists of species that suddenly appear, and ultimately disappear, hundreds of thousands or millions of years later, without any change in external appearance, these fossil species are represented by lines parallel with the time axis, whose lengths depict how long each of them existed. The fact that the lines remain parallel with the time axis illustrates the unchanging appearance of each of the fossil species depicted on the graph. During each species' existence new species appear at random intervals, each also lasting many hundreds of thousands of years before disappearing without a change in appearance. The exact relatedness of these concurrent species is generally impossible to determine. This is illustrated in the diagram depicting the distribution of hominin species through time since the hominins separated from the line that led to the evolution of their closest living primate relatives, the chimpanzees.

Life-support system

From Wikipedia, the free encyclopedia
(Redirected from Life support system)
Apollo portable life support system

A life-support system is the combination of equipment that allows survival in an environment or situation that would not support that life in its absence. It is generally applied to systems supporting human life in situations where the outside environment is hostile, such as outer space or underwater, or medical situations where the health of the person is compromised to the extent that the risk of death would be high without the function of the equipment.

In human spaceflight, a life-support system is a group of devices that allow a human being to survive in outer space. US government space agency NASA, and private spaceflight companies use the phrase "environmental control and life-support system" or the acronym "ECLSS" when describing these systems. The life-support system may supply air, water and food. It must also maintain the correct body temperature, an acceptable pressure on the body and deal with the body's waste products. Shielding against harmful external influences such as radiation and micro-meteorites may also be necessary. Components of the life-support system are life-critical, and are designed and constructed using safety engineering techniques.

In underwater diving, the breathing apparatus is considered to be life support equipment, and a saturation diving system is considered a life-support system – the personnel who are responsible for operating it are called life support technicians. The concept can also be extended to submarines, crewed submersibles and atmospheric diving suits, where the breathing gas requires treatment to remain respirable, and the occupants are isolated from the outside ambient pressure and temperature.

Medical life-support systems include heart-lung machines, medical ventilators and dialysis equipment.

Human physiological and metabolic needs

A crewmember of typical size requires approximately 5 kilograms (11 lb) of food, water, and oxygen per day to perform standard activities on a space mission, and outputs a similar amount in the form of waste solids, waste liquids, and carbon dioxide. The mass breakdown of these metabolic parameters is as follows: 0.84 kg (1.9 lb) of oxygen, 0.62 kg (1.4 lb) of food, and 3.54 kg (7.8 lb) of water consumed, converted through the body's physiological processes to 0.11 kg (3.9 oz) of solid wastes, 3.89 kg (8.6 lb) of liquid wastes, and 1.00 kg (2.20 lb) of carbon dioxide produced. These levels can vary due to activity level of a specific mission assignment, but must obey the principle of mass balance. Actual water use during space missions is typically double the given value, mainly due to non-biological use (e.g. showering). Additionally, the volume and variety of waste products varies with mission duration to include hair, finger nails, skin flaking, and other biological wastes in missions exceeding one week in length. Other environmental considerations such as radiation, gravity, noise, vibration, and lighting also factor into human physiological response in outer space, though not with the more immediate effect that the metabolic parameters have.

Atmosphere

Outer space life-support systems maintain atmospheres composed, at a minimum, of oxygen, water vapor and carbon dioxide. The partial pressure of each component gas adds to the overall barometric pressure.

However, the elimination of diluent gases substantially increases fire risks, especially in ground operations when for structural reasons the total cabin pressure must exceed the external atmospheric pressure; see Apollo 1. Furthermore, oxygen toxicity becomes a factor at high oxygen concentrations. For this reason, most modern crewed spacecraft use conventional air (nitrogen/oxygen) atmospheres and use pure oxygen only in pressure suits during extravehicular activity where acceptable suit flexibility mandates the lowest inflation pressure possible.

Water

Water is consumed by crew members for drinking, cleaning activities, EVA thermal control, and emergency uses. It must be stored, used, and reclaimed (from waste water and exhaled water vapor) efficiently since no on-site sources currently exist for the environments reached in the course of human space exploration. Future lunar missions may utilize water sourced from polar ices; Mars missions may utilize water from the atmosphere or ice deposits.

Food

All space missions to date have used supplied food. Life-support systems could include a plant cultivation system which allows food to be grown within buildings or vessels. This would also regenerate water and oxygen. However, no such system has flown in outer space as yet. Such a system could be designed so that it reuses most (otherwise lost) nutrients. This is done, for example, by composting toilets which reintegrate waste material (excrement) back into the system, allowing the nutrients to be taken up by the food crops. The food coming from the crops is then consumed again by the system's users and the cycle continues. The logistics and area requirements involved however have been prohibitive in implementing such a system to date.

Gravity

Depending on the length of the mission, astronauts may need artificial gravity to reduce the effects of space adaptation syndrome, body fluid redistribution, and loss of bone and muscle mass. Two methods of generating artificial weight in outer space exist.

Linear acceleration

If a spacecraft's engines could produce thrust continuously on the outbound trip with a thrust level equal to the mass of the ship, it would continuously accelerate at the rate of 32.2 feet per second (9.8 m/s) per second, and the crew would experience a pull toward the ship's aft bulkhead at normal Earth gravity (one g). The effect is proportional to the rate of acceleration. When the ship reaches the halfway point, it would turn around and produce thrust in the retrograde direction to slow down.

Rotation

Alternatively, if the ship's cabin is designed with a large cylindrical wall, or with a long beam extending another cabin section or counterweight, spinning it at an appropriate speed will cause centrifugal force to simulate the effect of gravity. If ω is the angular velocity of the ship's spin, then the acceleration at a radius r is:

Notice the magnitude of this effect varies with the radius of rotation, which crewmembers might find inconvenient depending on the cabin design. Also, the effects of Coriolis force (a force imparted at right angles to motion within the cabin) must be dealt with. And there is concern that rotation could aggravate the effects of vestibular disruption.

Space vehicle systems

Gemini, Mercury, and Apollo

American Mercury, Gemini and Apollo spacecraft contained 100% oxygen atmospheres, suitable for short duration missions, to minimize weight and complexity.

Space Shuttle

The Space Shuttle was the first American spacecraft to have an Earth-like atmospheric mixture, comprising 22% oxygen and 78% nitrogen. For the Space Shuttle, NASA includes in the ECLSS category systems that provide both life support for the crew and environmental control for payloads. The Shuttle Reference Manual contains ECLSS sections on: Crew Compartment Cabin Pressurization, Cabin Air Revitalization, Water Coolant Loop System, Active Thermal Control System, Supply and Waste Water, Waste Collection System, Waste Water Tank, Airlock Support, Extravehicular Mobility Units, Crew Altitude Protection System, and Radioisotope Thermoelectric Generator Cooling and Gaseous Nitrogen Purge for Payloads.

Soyuz

The life-support system on the Soyuz spacecraft is called the Kompleks Sredstv Obespecheniya Zhiznideyatelnosti (KSOZh). Vostok, Voshkod and Soyuz contained air-like mixtures at approximately 101kPa (14.7 psi).

Plug and play

The Paragon Space Development Corporation is developing a plug and play ECLSS called commercial crew transport-air revitalization system (CCT-ARS) for future spacecraft partially paid for using NASA's Commercial Crew Development (CCDev) funding.

The CCT-ARS provides seven primary spacecraft life support functions in a highly integrated and reliable system: Air temperature control, Humidity removal, Carbon dioxide removal, Trace contaminant removal, Post-fire atmospheric recovery, Air filtration, and Cabin air circulation.

Space station systems

Space station systems include technology that enables humans to live in outer space for a prolonged period of time. Such technology includes filtration systems for human waste disposal and air production.

Skylab

Skylab used 72% oxygen and 28% nitrogen at a total pressure of 5 psi.

Salyut and Mir

The Salyut and Mir space stations contained an air-like Oxygen and Nitrogen mixture at approximately sea-level pressures of 93.1 kPa (13.5psi) to 129 kPa (18.8 psi) with an Oxygen content of 21% to 40%.

Bigelow commercial space station

The life-support system for the Bigelow Commercial Space Station is being designed by Bigelow Aerospace in Las Vegas, Nevada. The space station will be constructed of habitable Sundancer and BA 330 expandable spacecraft modules. As of October 2010, "human-in-the-loop testing of the environmental control and life-support system (ECLSS)" for Sundancer has begun.

Natural systems

Natural LSS like the Biosphere 2 in Arizona have been tested for future space travel or colonization. These systems are also known as closed ecological systems. They have the advantage of using solar energy as primary energy only and being independent from logistical support with fuel. Natural systems have the highest degree of efficiency due to integration of multiple functions. They also provide the proper ambience for humans which is necessary for a longer stay in outer space.

Underwater and saturation diving habitats

Underwater habitats and surface saturation accommodation facilities provide life-support for their occupants over periods of days to weeks. The occupants are constrained from immediate return to surface atmospheric pressure by decompression obligations of up to several weeks.

The life support system of a surface saturation accommodation facility provides breathing gas and other services to support life for the personnel under pressure. It includes the following components: Underwater habitats differ in that the ambient external pressure is the same as internal pressure, so some engineering problems are simplified.

  • Gas compression, mixing and storage facilities
  • Chamber climate control system – control of temperature and humidity, and filtration of gas
  • Instrumentation, control, monitoring and communications equipment
  • Fire suppression systems
  • Sanitation systems

Underwater habitats balance internal pressure with the ambient external pressure, allowing the occupants free access to the ambient environment within a specific depth range, while saturation divers accommodated in surface systems are transferred under pressure to the working depth in a closed diving bell

The life support system for the bell provides and monitors the main supply of breathing gas, and the control station monitors the deployment and communications with the divers. Primary gas supply, power and communications to the bell are through a bell umbilical, made up from a number of hoses and electrical cables twisted together and deployed as a unit. This is extended to the divers through the diver umbilicals.

The accommodation life support system maintains the chamber environment within the acceptable range for health and comfort of the occupants. Temperature, humidity, breathing gas quality sanitation systems and equipment function are monitored and controlled.

Experimental life-support systems

MELiSSA

Micro-Ecological Life Support System Alternative (MELiSSA) is a European Space Agency led initiative, conceived as a micro-organisms and higher plants based ecosystem intended as a tool to gain understanding of the behaviour of artificial ecosystems, and for the development of the technology for a future regenerative life-support system for long term crewed space missions.

CyBLiSS

CyBLiSS ("Cyanobacterium-Based Life Support Systems") is a concept developed by researchers from several space agencies (NASA, the German Aerospace Center and the Italian Space Agency) which would use cyanobacteria to process resources available on Mars directly into useful products, and into substrates for other key organisms of Bioregenerative life support system (BLSS). The goal is to make future human-occupied outposts on Mars as independent of Earth as possible (explorers living "off the land"), to reduce mission costs and increase safety. Even though developed independently, CyBLiSS would be complementary to other BLSS projects (such as MELiSSA) as it can connect them to materials found on Mars, thereby making them sustainable and expandable there. Instead of relying on a closed loop, new elements found on site can be brought into the system.

Sunday, March 31, 2024

Reproductive isolation

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Reproductive_isolation

The mechanisms of reproductive isolation are a collection of evolutionary mechanisms, behaviors and physiological processes critical for speciation. They prevent members of different species from producing offspring, or ensure that any offspring are sterile. These barriers maintain the integrity of a species by reducing gene flow between related species.

The mechanisms of reproductive isolation have been classified in a number of ways. Zoologist Ernst Mayr classified the mechanisms of reproductive isolation in two broad categories: pre-zygotic for those that act before fertilization (or before mating in the case of animals) and post-zygotic for those that act after it. The mechanisms are genetically controlled and can appear in species whose geographic distributions overlap (sympatric speciation) or are separate (allopatric speciation).

Pre-zygotic isolation

Pre-zygotic isolation mechanisms are the most economic in terms of the natural selection of a population, as resources are not wasted on the production of a descendant that is weak, non-viable or sterile. These mechanisms include physiological or systemic barriers to fertilization.

Temporal or habitat isolation

The Central Valley in California prevents the two salamander populations from interacting with each other which is an example of habitat isolation. After many generations the two salamander gene pools will become mutated caused by natural selection. The mutation will change the DNA sequence of the two populations enough that the salamander populations can no longer successfully breed between each other making the populations of salamander become classified as different species.

Any of the factors that prevent potentially fertile individuals from meeting will reproductively isolate the members of distinct species. The types of barriers that can cause this isolation include: different habitats, physical barriers, and a difference in the time of sexual maturity or flowering.

An example of the ecological or habitat differences that impede the meeting of potential pairs occurs in two fish species of the family Gasterosteidae (sticklebacks). One species lives all year round in fresh water, mainly in small streams. The other species lives in the sea during winter, but in spring and summer individuals migrate to river estuaries to reproduce. The members of the two populations are reproductively isolated due to their adaptations to distinct salt concentrations. An example of reproductive isolation due to differences in the mating season are found in the toad species Bufo americanus and Bufo fowleri. The members of these species can be successfully crossed in the laboratory producing healthy, fertile hybrids. However, mating does not occur in the wild even though the geographical distribution of the two species overlaps. The reason for the absence of inter-species mating is that B. americanus mates in early summer and B. fowleri in late summer. Certain plant species, such as Tradescantia canaliculata and T. subaspera, are sympatric throughout their geographic distribution, yet they are reproductively isolated as they flower at different times of the year. In addition, one species grows in sunny areas and the other in deeply shaded areas.

Behavioral isolation

The different mating rituals of animal species creates extremely powerful reproductive barriers, termed sexual or behavior isolation, that isolate apparently similar species in the majority of the groups of the animal kingdom. In dioecious species, males and females have to search for a partner, be in proximity to each other, carry out the complex mating rituals and finally copulate or release their gametes into the environment in order to breed.

Duration: 26 seconds.

Mating dances, the songs of males to attract females or the mutual grooming of pairs, are all examples of typical courtship behavior that allows both recognition and reproductive isolation. This is because each of the stages of courtship depend on the behavior of the partner. The male will only move onto the second stage of the exhibition if the female shows certain responses in her behavior. He will only pass onto the third stage when she displays a second key behavior. The behaviors of both interlink, are synchronized in time and lead finally to copulation or the liberation of gametes into the environment. No animal that is not physiologically suitable for fertilization can complete this demanding chain of behavior. In fact, the smallest difference in the courting patterns of two species is enough to prevent mating (for example, a specific song pattern acts as an isolation mechanism in distinct species of grasshopper of the genus Chorthippus). Even where there are minimal morphological differences between species, differences in behavior can be enough to prevent mating. For example, Drosophila melanogaster and D. simulans which are considered twin species due to their morphological similarity, do not mate even if they are kept together in a laboratory. Drosophila ananassae and D. pallidosa are twin species from Melanesia. In the wild they rarely produce hybrids, although in the laboratory it is possible to produce fertile offspring. Studies of their sexual behavior show that the males court the females of both species but the females show a marked preference for mating with males of their own species. A different regulator region has been found on Chromosome II of both species that affects the selection behavior of the females.heromones play an important role in the sexual isolation of insect species. These compounds serve to identify individuals of the same species and of the same or different sex. Evaporated molecules of volatile pheromones can serve as a wide-reaching chemical signal. In other cases, pheromones may be detected only at a short distance or by contact.

In species of the melanogaster group of Drosophila, the pheromones of the females are mixtures of different compounds, there is a clear dimorphism in the type and/or quantity of compounds present for each sex. In addition, there are differences in the quantity and quality of constituent compounds between related species, it is assumed that the pheromones serve to distinguish between individuals of each species. An example of the role of pheromones in sexual isolation is found in 'corn borers' in the genus Ostrinia. There are two twin species in Europe that occasionally cross. The females of both species produce pheromones that contain a volatile compound which has two isomers, E and Z; 99% of the compound produced by the females of one species is in the E isomer form, while the females of the other produce 99% isomer Z. The production of the compound is controlled by just one locus and the interspecific hybrid produces an equal mix of the two isomers. The males, for their part, almost exclusively detect the isomer emitted by the females of their species, such that the hybridization although possible is scarce. The perception of the males is controlled by one gene, distinct from the one for the production of isomers, the heterozygous males show a moderate response to the odour of either type. In this case, just 2 'loci' produce the effect of ethological isolation between species that are genetically very similar.

Sexual isolation between two species can be asymmetrical. This can happen when the mating that produces descendants only allows one of the two species to function as the female progenitor and the other as the male, while the reciprocal cross does not occur. For instance, half of the wolves tested in the Great Lakes area of America show mitochondrial DNA sequences of coyotes, while mitochondrial DNA from wolves is never found in coyote populations. This probably reflects an asymmetry in inter-species mating due to the difference in size of the two species as male wolves take advantage of their greater size in order to mate with female coyotes, while female wolves and male coyotes do not mate.

Mechanical isolation

The flowers of many species of Angiosperm have evolved to attract and reward a single or a few pollinator species (insects, birds, mammals). Their wide diversity of form, colour, fragrance and presence of nectar is, in many cases, the result of coevolution with the pollinator species. This dependency on its pollinator species also acts as a reproductive isolation barrier.

Mating pairs may not be able to couple successfully if their genitals are not compatible. The relationship between the reproductive isolation of species and the form of their genital organs was signaled for the first time in 1844 by the French entomologist Léon Dufour. Insects' rigid carapaces act in a manner analogous to a lock and key, as they will only allow mating between individuals with complementary structures, that is, males and females of the same species (termed co-specifics).

Evolution has led to the development of genital organs with increasingly complex and divergent characteristics, which will cause mechanical isolation between species. Certain characteristics of the genital organs will often have converted them into mechanisms of isolation. However, numerous studies show that organs that are anatomically very different can be functionally compatible, indicating that other factors also determine the form of these complicated structures.

Mechanical isolation also occurs in plants and this is related to the adaptation and coevolution of each species in the attraction of a certain type of pollinator (where pollination is zoophilic) through a collection of morphophysiological characteristics of the flowers (called pollination syndrome), in such a way that the transport of pollen to other species does not occur.

Gametic isolation

The synchronous spawning of many species of coral in marine reefs means that inter-species hybridization can take place as the gametes of hundreds of individuals of tens of species are liberated into the same water at the same time. Approximately a third of all the possible crosses between species are compatible, in the sense that the gametes will fuse and lead to individual hybrids. This hybridization apparently plays a fundamental role in the evolution of coral species. However, the other two-thirds of possible crosses are incompatible. It has been observed that in sea urchins of the genus Strongylocentrotus the concentration of spermatocytes that allow 100% fertilization of the ovules of the same species is only able to fertilize 1.5% of the ovules of other species. This inability to produce hybrid offspring, despite the fact that the gametes are found at the same time and in the same place, is due to a phenomenon known as gamete incompatibility, which is often found between marine invertebrates, and whose physiological causes are not fully understood.

In some Drosophila crosses, the swelling of the female's vagina has been noted following insemination. This has the effect of consequently preventing the fertilization of the ovule by sperm of a different species.

In plants the pollen grains of a species can germinate in the stigma and grow in the style of other species. However, the growth of the pollen tubes may be detained at some point between the stigma and the ovules, in such a way that fertilization does not take place. This mechanism of reproductive isolation is common in the angiosperms and is called cross-incompatibility or incongruence. A relationship exists between self-incompatibility and the phenomenon of cross-incompatibility. In general crosses between individuals of a self-compatible species (SC) with individuals of a self-incompatible (SI) species give hybrid offspring. On the other hand, a reciprocal cross (SI x SC) will not produce offspring, because the pollen tubes will not reach the ovules. This is known as unilateral incompatibility, which also occurs when two SC or two SI species are crossed.

In coral reefs, gamete incompatibility prevents the formation of numerous inter-species hybrids.

Post-zygotic isolation

A number of mechanisms which act after fertilization preventing successful inter-population crossing are discussed below.

Zygote mortality and non-viability of hybrids

A type of incompatibility that is found as often in plants as in animals occurs when the egg or ovule is fertilized but the zygote does not develop, or it develops and the resulting individual has a reduced viability. This is the case for crosses between species of the frog order, where widely differing results are observed depending upon the species involved. In some crosses there is no segmentation of the zygote (or it may be that the hybrid is extremely non-viable and changes occur from the first mitosis). In others, normal segmentation occurs in the blastula but gastrulation fails. Finally, in other crosses, the initial stages are normal but errors occur in the final phases of embryo development. This indicates differentiation of the embryo development genes (or gene complexes) in these species and these differences determine the non-viability of the hybrids.

Similar results are observed in mosquitoes of the genus Culex, but the differences are seen between reciprocal crosses, from which it is concluded that the same effect occurs in the interaction between the genes of the cell nucleus (inherited from both parents) as occurs in the genes of the cytoplasmic organelles which are inherited solely from the female progenitor through the cytoplasm of the ovule.

In Angiosperms, the successful development of the embryo depends on the normal functioning of its endosperm.

The failure of endosperm development and its subsequent abortion has been observed in many interploidal crosses (that is, those between populations with a particular degree of intra or interspecific ploidy), and in certain crosses in species with the same level of ploidy. The collapse of the endosperm, and the subsequent abortion of the hybrid embryo is one of the most common post-fertilization reproductive isolation mechanism found in angiosperms.

Hybrid sterility

Mules are hybrids with interspecific sterility.

A hybrid may have normal viability but is typically deficient in terms of reproduction or is sterile. This is demonstrated by the mule and in many other well known hybrids. In all of these cases sterility is due to the interaction between the genes of the two species involved; to chromosomal imbalances due to the different number of chromosomes in the parent species; or to nucleus-cytoplasmic interactions such as in the case of Culex described above.

Hinnies and mules are hybrids resulting from a cross between a horse and a donkey or between a mare and a donkey, respectively. These animals are nearly always sterile due to the difference in the number of chromosomes between the two parent species. Both horses and donkeys belong to the genus Equus, but Equus caballus has 64 chromosomes, while Equus asinus only has 62. A cross will produce offspring (mule or hinny) with 63 chromosomes, that will not form pairs, which means that they do not divide in a balanced manner during meiosis. In the wild, the horses and donkeys ignore each other and do not cross. In order to obtain mules or hinnies it is necessary to train the progenitors to accept copulation between the species or create them through artificial insemination.

The sterility of many interspecific hybrids in angiosperms has been widely recognised and studied. Interspecific sterility of hybrids in plants has multiple possible causes. These may be genetic, related to the genomes, or the interaction between nuclear and cytoplasmic factors, as will be discussed in the corresponding section. Nevertheless, in plants, hybridization is a stimulus for the creation of new species – the contrary to the situation in animals. Although the hybrid may be sterile, it can continue to multiply in the wild by asexual reproduction, whether vegetative propagation or apomixis or the production of seeds. Indeed, interspecific hybridization can be associated with polyploidia and, in this way, the origin of new species that are called allopolyploids. Rosa canina, for example, is the result of multiple hybridizations. The common wheat (Triticum aestivum) is an allohexaploid (allopolyploid with six chromosome sets) that contains the genomes of three different species.

Multiple mechanisms

In general, the barriers that separate species do not consist of just one mechanism. The twin species of Drosophila, D. pseudoobscura and D. persimilis, are isolated from each other by habitat (persimilis generally lives in colder regions at higher altitudes), by the timing of the mating season (persimilis is generally more active in the morning and pseudoobscura at night) and by behavior during mating (the females of both species prefer the males of their respective species). In this way, although the distribution of these species overlaps in wide areas of the west of the United States of America, these isolation mechanisms are sufficient to keep the species separated. Such that, only a few fertile females have been found amongst the other species among the thousands that have been analyzed. However, when hybrids are produced between both species, the gene flow between the two will continue to be impeded as the hybrid males are sterile. Also, and in contrast with the great vigor shown by the sterile males, the descendants of the backcrosses of the hybrid females with the parent species are weak and notoriously non-viable. This last mechanism restricts even more the genetic interchange between the two species of fly in the wild.

Hybrid sex: Haldane's rule

Haldane's rule states that when one of the two sexes is absent in interspecific hybrids between two specific species, then the sex that is not produced, is rare or is sterile is the heterozygous (or heterogametic) sex. In mammals, at least, there is growing evidence to suggest that this is due to high rates of mutation of the genes determining masculinity in the Y chromosome.

It has been suggested that Haldane's rule simply reflects the fact that the male sex is more sensitive than the female when the sex-determining genes are included in a hybrid genome. But there are also organisms in which the heterozygous sex is the female: birds and butterflies and the law is followed in these organisms. Therefore, it is not a problem related to sexual development, nor with the sex chromosomes. Haldane proposed that the stability of hybrid individual development requires the full gene complement of each parent species, so that the hybrid of the heterozygous sex is unbalanced (i.e. missing at least one chromosome from each of the parental species). For example, the hybrid male obtained by crossing D. melanogaster females with D. simulans males, which is non-viable, lacks the X chromosome of D. simulans.

Genetics

Pre-copulatory mechanisms in animals

The genetics of ethological isolation barriers will be discussed first. Pre-copulatory isolation occurs when the genes necessary for the sexual reproduction of one species differ from the equivalent genes of another species, such that if a male of species A and a female of species B are placed together they are unable to copulate. Study of the genetics involved in this reproductive barrier tries to identify the genes that govern distinct sexual behaviors in the two species. The males of Drosophila melanogaster and those of D. simulans conduct an elaborate courtship with their respective females, which are different for each species, but the differences between the species are more quantitative than qualitative. In fact the simulans males are able to hybridize with the melanogaster females. Although there are lines of the latter species that can easily cross there are others that are hardly able to. Using this difference, it is possible to assess the minimum number of genes involved in pre-copulatory isolation between the melanogaster and simulans species and their chromosomal location.

In experiments, flies of the D. melanogaster line, which hybridizes readily with simulans, were crossed with another line that it does not hybridize with, or rarely. The females of the segregated populations obtained by this cross were placed next to simulans males and the percentage of hybridization was recorded, which is a measure of the degree of reproductive isolation. It was concluded from this experiment that 3 of the 8 chromosomes of the haploid complement of D. melanogaster carry at least one gene that affects isolation, such that substituting one chromosome from a line of low isolation with another of high isolation reduces the hybridization frequency. In addition, interactions between chromosomes are detected so that certain combinations of the chromosomes have a multiplying effect. Cross incompatibility or incongruence in plants is also determined by major genes that are not associated at the self-incompatibility S locus.

Post-copulation or fertilization mechanisms in animals

Reproductive isolation between species appears, in certain cases, a long time after fertilization and the formation of the zygote, as happens – for example – in the twin species Drosophila pavani and D. gaucha. The hybrids between both species are not sterile, in the sense that they produce viable gametes, ovules and spermatozoa. However, they cannot produce offspring as the sperm of the hybrid male do not survive in the semen receptors of the females, be they hybrids or from the parent lines. In the same way, the sperm of the males of the two parent species do not survive in the reproductive tract of the hybrid female. This type of post-copulatory isolation appears as the most efficient system for maintaining reproductive isolation in many species.

The development of a zygote into an adult is a complex and delicate process of interactions between genes and the environment that must be carried out precisely, and if there is any alteration in the usual process, caused by the absence of a necessary gene or the presence of a different one, it can arrest the normal development causing the non-viability of the hybrid or its sterility. It should be borne in mind that half of the chromosomes and genes of a hybrid are from one species and the other half come from the other. If the two species are genetically different, there is little possibility that the genes from both will act harmoniously in the hybrid. From this perspective, only a few genes would be required in order to bring about post copulatory isolation, as opposed to the situation described previously for pre-copulatory isolation.

In many species where pre-copulatory reproductive isolation does not exist, hybrids are produced but they are of only one sex. This is the case for the hybridization between females of Drosophila simulans and Drosophila melanogaster males: the hybridized females die early in their development so that only males are seen among the offspring. However, populations of D. simulans have been recorded with genes that permit the development of adult hybrid females, that is, the viability of the females is "rescued". It is assumed that the normal activity of these speciation genes is to "inhibit" the expression of the genes that allow the growth of the hybrid. There will also be regulator genes.

A number of these genes have been found in the melanogaster species group. The first to be discovered was "Lhr" (Lethal hybrid rescue) located in Chromosome II of D. simulans. This dominant allele allows the development of hybrid females from the cross between simulans females and melanogaster males. A different gene, also located on Chromosome II of D. simulans is "Shfr" that also allows the development of female hybrids, its activity being dependent on the temperature at which development occurs. Other similar genes have been located in distinct populations of species of this group. In short, only a few genes are needed for an effective post copulatory isolation barrier mediated through the non-viability of the hybrids.

As important as identifying an isolation gene is knowing its function. The Hmr gene, linked to the X chromosome and implicated in the viability of male hybrids between D. melanogaster and D. simulans, is a gene from the proto-oncogene family myb, that codes for a transcriptional regulator. Two variants of this gene function perfectly well in each separate species, but in the hybrid they do not function correctly, possibly due to the different genetic background of each species. Examination of the allele sequence of the two species shows that change of direction substitutions are more abundant than synonymous substitutions, suggesting that this gene has been subject to intense natural selection.

The Dobzhansky–Muller model proposes that reproductive incompatibilities between species are caused by the interaction of the genes of the respective species. It has been demonstrated recently that Lhr has functionally diverged in D. simulans and will interact with Hmr which, in turn, has functionally diverged in D. melanogaster to cause the lethality of the male hybrids. Lhr is located in a heterochromatic region of the genome and its sequence has diverged between these two species in a manner consistent with the mechanisms of positive selection. An important unanswered question is whether the genes detected correspond to old genes that initiated the speciation favoring hybrid non-viability, or are modern genes that have appeared post-speciation by mutation, that are not shared by the different populations and that suppress the effect of the primitive non-viability genes. The OdsH (abbreviation of Odysseus) gene causes partial sterility in the hybrid between Drosophila simulans and a related species, D. mauritiana, which is only encountered on Mauritius, and is of recent origin. This gene shows monophyly in both species and also has been subject to natural selection. It is thought that it is a gene that intervenes in the initial stages of speciation, while other genes that differentiate the two species show polyphyly. Odsh originated by duplication in the genome of Drosophila and has evolved at very high rates in D. mauritania, while its paralogue, unc-4, is nearly identical between the species of the group melanogaster. Seemingly, all these cases illustrate the manner in which speciation mechanisms originated in nature, therefore they are collectively known as "speciation genes", or possibly, gene sequences with a normal function within the populations of a species that diverge rapidly in response to positive selection thereby forming reproductive isolation barriers with other species. In general, all these genes have functions in the transcriptional regulation of other genes.

The Nup96 gene is another example of the evolution of the genes implicated in post-copulatory isolation. It regulates the production of one of the approximately 30 proteins required to form a nuclear pore. In each of the simulans groups of Drosophila the protein from this gene interacts with the protein from another, as yet undiscovered, gene on the X chromosome in order to form a functioning pore. However, in a hybrid the pore that is formed is defective and causes sterility. The differences in the sequences of Nup96 have been subject to adaptive selection, similar to the other examples of speciation genes described above.

Post-copulatory isolation can also arise between chromosomally differentiated populations due to chromosomal translocations and inversions. If, for example, a reciprocal translocation is fixed in a population, the hybrid produced between this population and one that does not carry the translocation will not have a complete meiosis. This will result in the production of unequal gametes containing unequal numbers of chromosomes with a reduced fertility. In certain cases, complete translocations exist that involve more than two chromosomes, so that the meiosis of the hybrids is irregular and their fertility is zero or nearly zero. Inversions can also give rise to abnormal gametes in heterozygous individuals but this effect has little importance compared to translocations. An example of chromosomal changes causing sterility in hybrids comes from the study of Drosophila nasuta and D. albomicans which are twin species from the Indo-Pacific region. There is no sexual isolation between them and the F1 hybrid is fertile. However, the F2 hybrids are relatively infertile and leave few descendants which have a skewed ratio of the sexes. The reason is that the X chromosome of albomicans is translocated and linked to an autosome which causes abnormal meiosis in hybrids. Robertsonian translocations are variations in the numbers of chromosomes that arise from either: the fusion of two acrocentric chromosomes into a single chromosome with two arms, causing a reduction in the haploid number, or conversely; or the fission of one chromosome into two acrocentric chromosomes, in this case increasing the haploid number. The hybrids of two populations with differing numbers of chromosomes can experience a certain loss of fertility, and therefore a poor adaptation, because of irregular meiosis.

In plants

A large variety of mechanisms have been demonstrated to reinforce reproductive isolation between closely related plant species that either historically lived or currently live in sympatry. This phenomenon is driven by strong selection against hybrids, typically resulting from instances in which hybrids suffer reduced fitness. Such negative fitness consequences have been proposed to be the result of negative epistasis in hybrid genomes and can also result from the effects of hybrid sterility. In such cases, selection gives rise to population-specific isolating mechanisms to prevent either fertilization by interspecific gametes or the development of hybrid embryos.

Because many sexually reproducing species of plants are exposed to a variety of interspecific gametes, natural selection has given rise to a variety of mechanisms to prevent the production of hybrids. These mechanisms can act at different stages in the developmental process and are typically divided into two categories, pre-fertilization and post-fertilization, indicating at which point the barrier acts to prevent either zygote formation or development. In the case of angiosperms and other pollinated species, pre-fertilization mechanisms can be further subdivided into two more categories, pre-pollination and post-pollination, the difference between the two being whether or not a pollen tube is formed. (Typically when pollen encounters a receptive stigma, a series of changes occur which ultimately lead to the growth of a pollen tube down the style, allowing for the formation of the zygote.) Empirical investigation has demonstrated that these barriers act at many different developmental stages and species can have none, one, or many barriers to hybridization with interspecifics.

Examples of pre-fertilization mechanisms

A well-documented example of a pre-fertilization isolating mechanism comes from study of Louisiana iris species. These iris species were fertilized with interspecific and conspecific pollen loads and it was demonstrated by measure of hybrid progeny success that differences in pollen-tube growth between interspecific and conspecific pollen led to a lower fertilization rate by interspecific pollen. This demonstrates how a specific point in the reproductive process is manipulated by a particular isolating mechanism to prevent hybrids.

Another well-documented example of a pre-fertilization isolating mechanism in plants comes from study of the 2 wind-pollinated birch species. Study of these species led to the discovery that mixed conspecific and interspecific pollen loads still result in 98% conspecific fertilization rates, highlighting the effectiveness of such barriers. In this example, pollen tube incompatibility and slower generative mitosis have been implicated in the post-pollination isolation mechanism.

Examples of post-fertilization mechanisms

Crosses between diploid and tetraploid species of Paspalum provide evidence of a post-fertilization mechanism preventing hybrid formation when pollen from tetraploid species was used to fertilize a female of a diploid species. There were signs of fertilization and even endosperm formation but subsequently this endosperm collapsed. This demonstrates evidence of an early post-fertilization isolating mechanism, in which the hybrid early embryo is detected and selectively aborted. This process can also occur later during development in which developed, hybrid seeds are selectively aborted.

Effects of hybrid necrosis

Plant hybrids often suffer from an autoimmune syndrome known as hybrid necrosis. In the hybrids, specific gene products contributed by one of the parents may be inappropriately recognized as foreign and pathogenic, and thus trigger pervasive cell death throughout the plant. In at least one case, a pathogen receptor, encoded by the most variable gene family in plants, was identified as being responsible for hybrid necrosis.

Chromosomal rearrangements in yeast

In brewers' yeast Saccharomyces cerevisiae, chromosomal rearrangements are a major mechanism to reproductively isolate different strains. Hou et al. showed that reproductive isolation acts postzygotically and could be attributed to chromosomal rearrangements. These authors crossed 60 natural isolates sampled from diverse niches with the reference strain S288c and identified 16 cases of reproductive isolation with reduced offspring viabilities, and identified reciprocal chromosomal translocations in a large fraction of isolates.

Incompatibility caused by microorganisms

In addition to the genetic causes of reproductive isolation between species there is another factor that can cause post zygotic isolation: the presence of microorganisms in the cytoplasm of certain species. The presence of these organisms in a species and their absence in another causes the non-viability of the corresponding hybrid. For example, in the semi-species of the group D. paulistorum the hybrid females are fertile but the males are sterile, this is due to the presence of a Wolbachia in the cytoplasm which alters spermatogenesis leading to sterility. It is interesting that incompatibility or isolation can also arise at an intraspecific level. Populations of D. simulans have been studied that show hybrid sterility according to the direction of the cross. The factor determining sterility has been found to be the presence or absence of a microorganism Wolbachia and the populations tolerance or susceptibility to these organisms. This inter population incompatibility can be eliminated in the laboratory through the administration of a specific antibiotic to kill the microorganism. Similar situations are known in a number of insects, as around 15% of species show infections caused by this symbiont. It has been suggested that, in some cases, the speciation process has taken place because of the incompatibility caused by this bacteria. Two wasp species Nasonia giraulti and N. longicornis carry two different strains of Wolbachia. Crosses between an infected population and one free from infection produces a nearly total reproductive isolation between the semi-species. However, if both species are free from the bacteria or both are treated with antibiotics there is no reproductive barrier. Wolbachia also induces incompatibility due to the weakness of the hybrids in populations of spider mites (Tetranychus urticae), between Drosophila recens and D. subquinaria and between species of Diabrotica (beetle) and Gryllus (cricket).

Selection

Selection for reproductive isolation between two Drosophila species.
Generation Percentage of hybrids
1 49
2 17.6
3 3.3
4 1.0
5 1.4
10 0.6

In 1950 K. F. Koopman reported results from experiments designed to examine the hypothesis that selection can increase reproductive isolation between populations. He used D. pseudoobscura and D. persimilis in these experiments. When the flies of these species are kept at 16 °C approximately a third of the matings are interspecific. In the experiment equal numbers of males and females of both species were placed in containers suitable for their survival and reproduction. The progeny of each generation were examined in order to determine if there were any interspecific hybrids. These hybrids were then eliminated. An equal number of males and females of the resulting progeny were then chosen to act as progenitors of the next generation. As the hybrids were destroyed in each generation the flies that solely mated with members of their own species produced more surviving descendants than the flies that mated solely with individuals of the other species. In the adjacent table it can be seen that for each generation the number of hybrids continuously decreased up to the tenth generation when hardly any interspecific hybrids were produced.t is evident that selection against the hybrids was very effective in increasing reproductive isolation between these species. From the third generation, the proportions of the hybrids were less than 5%. This confirmed that selection acts to reinforce the reproductive isolation of two genetically divergent populations if the hybrids formed by these species are less well adapted than their parents.

These discoveries allowed certain assumptions to be made regarding the origin of reproductive isolation mechanisms in nature. Namely, if selection reinforces the degree of reproductive isolation that exists between two species due to the poor adaptive value of the hybrids, it is expected that the populations of two species located in the same area will show a greater reproductive isolation than populations that are geographically separated (see reinforcement). This mechanism for "reinforcing" hybridization barriers in sympatric populations is also known as the "Wallace effect", as it was first proposed by Alfred Russel Wallace at the end of the 19th century, and it has been experimentally demonstrated in both plants and animals.

The sexual isolation between Drosophila miranda and D. pseudoobscura, for example, is more or less pronounced according to the geographic origin of the flies being studied. Flies from regions where the distribution of the species is superimposed show a greater sexual isolation than exists between populations originating in distant regions.

Reproductive isolation can be caused by allopatric speciation. A population of Drosophila was divided into sub populations selected to adapt to different food types. After some generations the two sub populations were mixed again. Subsequent matings occurred between individuals belonging to the same adapted group.

On the other hand, interspecific hybridization barriers can also arise as a result of the adaptive divergence that accompanies allopatric speciation. This mechanism has been experimentally proved by an experiment carried out by Diane Dodd on D. pseudoobscura. A single population of flies was divided into two, with one of the populations fed with starch-based food and the other with maltose-based food. This meant that each sub population was adapted to each food type over a number of generations. After the populations had diverged over many generations, the groups were again mixed; it was observed that the flies would mate only with others from their adapted population. This indicates that the mechanisms of reproductive isolation can arise even though the interspecific hybrids are not selected against.

Computer-aided software engineering

From Wikipedia, the free encyclopedia ...