Search This Blog

Wednesday, August 6, 2014

Titan (moon)

Titan (moon)

From Wikipedia, the free encyclopedia
 
Titan
Titan in natural color Cassini.jpg
Titan in natural color. The thick atmosphere is orange due to a dense organonitrogen haze.
Discovery
Discovered byChristiaan Huygens
Discovery dateMarch 25, 1655
Designations
PronunciationListeni/ˈttən/
Saturn VI
AdjectivesTitanean, Titanian[1]
Orbital characteristics[2]
Periapsis1186680 km
Apoapsis1257060 km
1221870 km
Eccentricity0.0288
15.945 d
Inclination0.3485 (to Saturn's equator)
Satellite ofSaturn
Physical characteristics
Mean radius
2576±2 km (0.404 Earths,[3] 1.480 Moons)
8.3×107 km2
Volume7.16×1010 km3 (0.066 Earths) (3.3 Moons)
Mass(1.3452±0.0002)×1023 kg
(0.0225 Earths)[3] (1.829 Moons)
Mean density
1.8798±0.0044 g/cm3[3]
1.352 m/s2 (0.14 g) (0.85 Moons)
2.639 km/s (1.11 Moons)
Synchronous
Zero
Albedo0.22[4]
Temperature93.7 K (−179.5 °C)[5]
8.2[6] to 9.0
Atmosphere
Surface pressure
146.7 kPa
CompositionVariable[7][8]
Stratosphere:
98.4% nitrogen (N2),
1.4% methane (CH4);
Lower troposphere:
95.0% N2, 4.9% CH4
Titan (or Saturn VI) is the largest moon of Saturn. It is the only natural satellite known to have a dense atmosphere,[9] and the only object other than Earth for which clear evidence of stable bodies of surface liquid has been found.[10]
 
Titan is the sixth ellipsoidal moon from Saturn. Frequently described as a planet-like moon, Titan has a diameter 50% larger than Earth's natural satellite, the Moon, and is 80% more massive. It is the second-largest moon in the Solar System, after Jupiter's moon Ganymede, and is larger by volume than the smallest planet, Mercury, although only 40% as massive. Discovered in 1655 by the Dutch astronomer Christiaan Huygens,[11][12] Titan was the first known moon of Saturn, and the fifth known satellite of another planet.[13]
 
Titan is primarily composed of water ice and rocky material. Much as with Venus prior to the Space Age, the dense, opaque atmosphere prevented understanding of Titan's surface until new information accumulated with the arrival of the Cassini–Huygens mission in 2004, including the discovery of liquid hydrocarbon lakes in Titan's polar regions. The geologically young surface is generally smooth, with few impact craters, although mountains and several possible cryovolcanoes have been found.[14][15]
 
The atmosphere of Titan is largely nitrogen; minor components lead to the formation of methane and ethane clouds and nitrogen-rich organic smog. The climate—including wind and rain—creates surface features similar to those of Earth, such as dunes, rivers, lakes, seas (probably of liquid methane and ethane), and deltas, and is dominated by seasonal weather patterns as on Earth. With its liquids (both surface and subsurface) and robust nitrogen atmosphere, Titan's methane cycle is viewed as an analogy to Earth's water cycle, although at a much lower temperature. On June 23, 2014, NASA announced strong evidence that nitrogen in the atmosphere of Titan came from materials in the Oort cloud, associated with comets, and not from the materials that formed Saturn earlier.[16] On July 2, 2014, NASA reported the ocean inside Titan may be "as salty as the Earth's Dead Sea".[17][18]
 

Orbit and rotation

Titan's orbit (highlighted in red) among the other large inner moons of Saturn. The moons outside its orbit are (from the outside to the inside) Iapetus and Hyperion; those inside are Rhea, Dione, Tethys, Enceladus, and Mimas.
 
Titan orbits Saturn once every 15 days and 22 hours. Like many of the other satellites of the gas giants and the Moon, its rotational period is identical to its orbital period; Titan is thus tidally locked in synchronous rotation with Saturn, and always shows one face to the planet. Because of this, there is a sub-Saturnian point on its surface, from which the planet would appear to hang directly overhead. Longitudes on Titan are measured westward from the meridian passing through this point.[22] Its orbital eccentricity is 0.0288, and the orbital plane is inclined 0.348 degrees relative to the Saturnian equator.[2] Viewed from Earth, Titan reaches an angular distance of about 20 Saturn radii (just over 1,200,000 kilometres (750,000 mi)) from Saturn and subtends a disk 0.8 arcseconds in diameter.
The small, irregularly shaped satellite Hyperion is locked in a 3:4 orbital resonance with Titan. A "slow and smooth" evolution of the resonance—in which Hyperion would have migrated from a chaotic orbit—is considered unlikely, based on models. Hyperion probably formed in a stable orbital island, whereas the massive Titan absorbed or ejected bodies that made close approaches.[23]

Bulk characteristics

Size comparison: Titan in infrared (lower left) with the Moon and Earth (top and right)
A model of Titan's internal structure
 
Titan is 5,150 kilometres (3,200 mi) across, compared to 4,879 kilometres (3,032 mi) for the planet Mercury, 3,474 kilometres (2,159 mi) for the Moon, and 12,742 kilometres (7,918 mi) for the Earth. Before the arrival of Voyager 1 in 1980, Titan was thought to be slightly larger than Ganymede (diameter 5,262 kilometres (3,270 mi)) and thus the largest moon in the Solar System; this was an overestimation caused by Titan's dense, opaque atmosphere, which extends many kilometres above its surface and increases its apparent diameter.[24] Titan's diameter and mass (and thus its density) are similar to those of the Jovian moons Ganymede and Callisto.[25] Based on its bulk density of 1.88 g/cm3, Titan's bulk composition is half water ice and half rocky material. Though similar in composition to Dione and Enceladus, it is denser due to gravitational compression.
 
Titan is likely differentiated into several layers with a 3,400-kilometre (2,100 mi) rocky center surrounded by several layers composed of different crystal forms of ice.[26] Its interior may still be hot and there may be a liquid layer consisting of a "magma" composed of water and ammonia between the ice Ih crust and deeper ice layers made of high-pressure forms of ice. The presence of ammonia allows water to remain liquid even at temperatures as low as 176 K (−97 °C) (for eutectic mixture with water).[27] Evidence for such an ocean has recently[when?] been uncovered by the Cassini probe in the form of natural extremely-low-frequency radio waves in Titan's atmosphere. Titan's surface is thought to be a poor reflector of extremely-low-frequency radio waves, so they may instead be reflecting off the liquid–ice boundary of a subsurface ocean.[28] Surface features were observed by the Cassini spacecraft to systematically shift by up to 30 kilometres (19 mi) between October 2005 and May 2007, which suggests that the crust is decoupled from the interior, and provides additional evidence for an interior liquid layer.[29] Further supporting evidence for a liquid layer and decoupled ice shell, comes from the way the gravity field varies as Titan orbits Saturn.[30] Comparison of the gravity field with the RADAR-based topography observations[31] also suggests that the ice shell may be substantially rigid.[32][33]

Formation

The moons of Jupiter and Saturn are thought to have formed through co-accretion, a similar process to that believed to have formed the planets in the Solar System. As the young gas giants formed, they were surrounded by discs of material that gradually coalesced into moons. However, whereas Jupiter possesses four large satellites in highly regular, planet-like orbits, Titan overwhelmingly dominates Saturn's system and possesses a high orbital eccentricity not immediately explained by co-accretion alone. A proposed model for the formation of Titan is that Saturn's system began with a group of moons similar to Jupiter's Galilean satellites, but that they were disrupted by a series of giant impacts, which would go on to form Titan. Saturn's mid-sized moons, such as Iapetus and Rhea, were formed from the debris of these collisions. Such a violent beginning would also explain Titan's orbital eccentricity.[34]
 
In 2014, analysis of Titan's atmospheric nitrogen suggested that it has possibly been sourced from material similar to that found in the Oort cloud and not from sources present during co-accretion of materials around Saturn.[16]

Atmosphere

 
True-color image of layers of haze in Titan's atmosphere
 
Titan is the only known moon with more than a trace of atmosphere. Its atmosphere is the only nitrogen-rich dense atmosphere in the Solar System aside from Earth's. Observations of its atmosphere made in 2004 by Cassini suggest that Titan is a "super rotator", like Venus, with an atmosphere that rotates much faster than its surface.[35] Observations from the Voyager space probes have shown that Titan's atmosphere is denser than Earth's, with a surface pressure about 1.45 times that of Earth's. Titan's atmosphere is about 1.19 times as massive as Earth's overall,[36] or about 7.3 times more massive on a per surface area basis. It supports opaque haze layers that block most visible light from the Sun and other sources and renders Titan's surface features obscure.[37] Titan's lower gravity means that its atmosphere is far more extended than Earth's.[38] The atmosphere of Titan is opaque at many wavelengths and a complete reflectance spectrum of the surface is impossible to acquire from orbit.[39] It was not until the arrival of the Cassini–Huygens mission in 2004 that the first direct images of Titan's surface were obtained.[40]
 
Titan's atmospheric composition in the stratosphere is 98.4% nitrogen with the remaining 1.6% composed mostly of methane (1.4%) and hydrogen (0.1–0.2%).[8] There are trace amounts of other hydrocarbons, such as ethane, diacetylene, methylacetylene, acetylene and propane, and of other gases, such as cyanoacetylene, hydrogen cyanide, carbon dioxide, carbon monoxide, cyanogen, argon and helium.[7] The hydrocarbons are thought to form in Titan's upper atmosphere in reactions resulting from the breakup of methane by the Sun's ultraviolet light, producing a thick orange smog.[41] Titan spends 95% of its time within Saturn's magnetosphere, which may help shield Titan from the solar wind.[42]
Sunset studies on Titan by Cassini - helps better understand exoplanet atmospheres (artist concept; May 27, 2014).
 
Energy from the Sun should have converted all traces of methane in Titan's atmosphere into more complex hydrocarbons within 50 million years — a short time compared to the age of the Solar System. This suggests that methane must be somehow replenished by a reservoir on or within Titan itself.[43] The ultimate origin of the methane in Titan's atmosphere may be its interior, released via eruptions from cryovolcanoes.[44][45][46]
 
On April 3, 2013, NASA reported that complex organic chemicals could arise on Titan based on studies simulating the atmosphere of Titan.[47]
 
On June 6, 2013, scientists at the IAA-CSIC reported the detection of polycyclic aromatic hydrocarbons in the upper atmosphere of Titan.[48]
 
On September 30, 2013, propylene was detected in the atmosphere of Titan by NASA's Cassini–Huygens spacecraft, using its composite infrared spectrometer (CIRS).[49] This is the first time propylene has been found on any moon or planet other than Earth and is the first chemical found by the CIRS. The detection of propylene fills a mysterious gap in observations that date back to NASA’s Voyager spacecraft’s first close flyby of the moon in 1980, during which it was discovered that many of the gases that make up Titan’s hazy brown colored haze were hydrocarbons, theoretically formed via the recombination of radicals formed by the ultraviolet photolysis[50] of methane, the second-most common gas in Titan's atmosphere, the probe discovered propane, the heaviest member of the three-carbon family, and propyne, the lightest member of that family, but did not see propene.

Climate

 
Atmospheric polar vortex over Titan's south pole
 
Titan's surface temperature is about 94 K (−179.2 °C). At this temperature water ice has an extremely low vapor pressure, so the little water vapor present appears limited to the stratosphere.[51] Titan receives about 1% of the amount of sunlight that Earth gets.[52]
 
Atmospheric methane creates a greenhouse effect on Titan's surface, without which Titan would be far colder.[53] Conversely, haze in Titan's atmosphere contributes to an anti-greenhouse effect by reflecting sunlight back into space, cancelling a portion of the greenhouse effect warming and making its surface significantly colder than its upper atmosphere.[54]
 
Titan's clouds, probably composed of methane, ethane or other simple organics, are scattered and variable, punctuating the overall haze.[24] The findings of the Huygens probe indicate that Titan's atmosphere periodically rains liquid methane and other organic compounds onto its surface.[55]
 
Clouds typically cover 1% of Titan's disk, though outburst events have been observed in which the cloud cover rapidly expands to as much as 8%. One hypothesis asserts that the southern clouds are formed when heightened levels of sunlight during the southern summer generate uplift in the atmosphere, resulting in convection. This explanation is complicated by the fact that cloud formation has been observed not only after the southern summer solstice but also during mid-spring. Increased methane humidity at the south pole possibly contributes to the rapid increases in cloud size.[56] It was summer in Titan's southern hemisphere until 2010, when Saturn's orbit, which governs Titan's motion, moved Titan's northern hemisphere into the sunlight.[57] When the seasons switch, it is expected that ethane will begin to condense over the south pole.[58]

Surface features

 
Map of Titan's surface from April 2011
The surface of Titan has been described as "complex, fluid-processed, [and] geologically young".[59] Titan has been around since the Solar System's formation, but its surface is much younger, between 100 million and 1 billion years old. Geological processes may have reshaped Titan's surface.[60] Titan's atmosphere is twice as thick as the Earth's, making it difficult for astronomical instruments to image its surface in the visible light spectrum.[61] The Cassini spacecraft is using infrared instruments, radar altimetry and synthetic aperture radar (SAR) imaging to map portions of Titan during its close fly-bys. The first images revealed a diverse geology, with both rough and smooth areas. There are features that may be volcanic in origin, disgorging water mixed with ammonia onto the surface. However, there is also evidence that Titan's ice shell may be substantially rigid,[32][33] which would suggest little geologic activity.[62]
 
There are also streaky features, some of them hundreds of kilometers in length, that appear to be caused by windblown particles.[63][64] Examination has also shown the surface to be relatively smooth; the few objects that seem to be impact craters appeared to have been filled in, perhaps by raining hydrocarbons or volcanoes. Radar altimetry suggests height variation is low, typically no more than 150 meters. Occasional elevation changes of 500 meters have been discovered and Titan has mountains that sometimes reach several hundred meters to more than 1 kilometer in height.[65]
 
Titan's surface is marked by broad regions of bright and dark terrain. These include Xanadu, a large, reflective equatorial area about the size of Australia. It was first identified in infrared images from the Hubble Space Telescope in 1994, and later viewed by the Cassini spacecraft. The convoluted region is filled with hills and cut by valleys and chasms.[66] It is criss-crossed in places by dark lineaments—sinuous topographical features resembling ridges or crevices. These may represent tectonic activity, which would indicate that Xanadu is geologically young. Alternatively, the lineaments may be liquid-formed channels, suggesting old terrain that has been cut through by stream systems.[67] There are dark areas of similar size elsewhere on Titan, observed from the ground and by Cassini; it had been speculated that these are methane or ethane seas, but Cassini observations seem to indicate otherwise (see below).
Titan2005.jpg
Titan multi spectral overlay.jpg
Titan globe m.jpg
Mosaic of Titan from Cassini's February 2005 flyby. The large dark region is Shangri-la.Titan in false color showing surface details and atmosphere with Xanadu in the bright region at the center-right.Titan Globe, a mosaic of infrared images with nomenclature

Liquids

 
False-color Cassini radar mosaic of Titan's north polar region. Blue coloring indicates low radar reflectivity, caused by hydrocarbon seas, lakes and tributary networks filled with liquid ethane, methane and dissolved N2.[8] About half of the large body at lower left, Kraken Mare, is shown. Ligeia Mare is at lower right.
 
The possibility of hydrocarbon seas on Titan was first suggested based on Voyager 1 and 2 data that showed Titan to have a thick atmosphere of approximately the correct temperature and composition to support them, but direct evidence was not obtained until 1995 when data from Hubble and other observations suggested the existence of liquid methane on Titan, either in disconnected pockets or on the scale of satellite-wide oceans, similar to water on Earth.[68]
 
The Cassini mission confirmed the former hypothesis, although not immediately. When the probe arrived in the Saturnian system in 2004, it was hoped that hydrocarbon lakes or oceans might be detectable by reflected sunlight from the surface of any liquid bodies, but no specular reflections were initially observed.[69] Near Titan's south pole, an enigmatic dark feature named Ontario Lacus was identified[70] (and later confirmed to be a lake).[71] A possible shoreline was also identified near the pole via radar imagery.[72] Following a flyby on July 22, 2006, in which the Cassini spacecraft's radar imaged the northern latitudes (that were then in winter), a number of large, smooth (and thus dark to radar) patches were seen dotting the surface near the pole.[73] Based on the observations, scientists announced "definitive evidence of lakes filled with methane on Saturn's moon Titan" in January 2007.[10][74] The Cassini–Huygens team concluded that the imaged features are almost certainly the long-sought hydrocarbon lakes, the first stable bodies of surface liquid found outside of Earth. Some appear to have channels associated with liquid and lie in topographical depressions.[10]
The liquid erosion features appear to be a very recent occurrence: channels in some regions have created surprisingly little erosion, suggesting erosion on Titan is extremely slow, or some other recent phenomena may have wiped out older riverbeds and landforms.[60] Overall, the Cassini radar observations have shown that lakes cover only a few percent of the surface, making Titan much drier than Earth.[75] Although most of the lakes are concentrated near the poles (where the relative lack of sunlight prevents evaporation), a number of long-standing hydrocarbon lakes in the equatorial desert regions have also been discovered, including one near the Huygens landing site in the Shangri-La region, which is about half the size of Utah's Great Salt Lake. The equatorial lakes are probably "oases", i.e. the likely supplier is underground aquifers.[76]
 
In June 2008, the Visual and Infrared Mapping Spectrometer on Cassini confirmed the presence of liquid ethane beyond doubt in Ontario Lacus.[77] On December 21, 2008, Cassini passed directly over Ontario Lacus and observed specular reflection in radar. The strength of the reflection saturated the probe's receiver, indicating that the lake level did not vary by more than 3 mm (implying either that surface winds were minimal, or the lake's hydrocarbon fluid is viscous).[78][79]
 
Specular reflections are indicative of a smooth, mirror-like surface, so the observation corroborated the inference of the presence of a large liquid body drawn from radar imaging. The observation was made soon after the north polar region emerged from 15 years of winter darkness.
 
On July 8, 2009, Cassini's VIMS observed a specular reflection indicative of a smooth, mirror-like surface, off what today is called Jingpo Lacus, a lake in the north polar region shortly after the area emerged from 15 years of winter darkness.[80][81]
 
Radar measurements made in July 2009 and January 2010 indicate that Ontario Lacus is extremely shallow, with an average depth of 0.4–3.2 m, and a maximum depth of 2.9–7.4 m.[82] In contrast, the northern hemisphere's Ligeia Mare has depths exceeding 8 m, the maximum measurable by the radar instrument.[82]
 
During a flyby on 26 September 2012, Cassini's radar detected in Titan's northern polar region what is likely a river with a length of more than 400 kilometers. It has been compared with the much larger Nile river on Earth. This feature ends in Ligeia Mare.[71]
 
During six flybys of Titan from 2006 to 2011, Cassini gathered radiometric tracking and optical navigation data from which investigators could roughly infer Titan's changing shape. The density of Titan is consistent with a body that is about 60% rock and 40% water. The team's analyses suggest that Titan's surface can rise and fall by up to 10 metres during each orbit. That degree of warping suggests that Titan's interior is relatively deformable, and that the most likely model of Titan is one in which an icy shell dozens of kilometres thick floats atop a global ocean.[83] The team's findings, together with the results of previous studies, hint that Titan's ocean may lie no more than 100 kilometres (62 mi) below its surface.[83][84] On July 2, 2014, NASA reported the ocean inside Titan may be "as salty as the Earth's Dead Sea".[17][18]
PIA12481 Titan specular reflection.jpg
Liquid lakes on titan.jpg
Photo of infrared specular reflection off Jingpo Lacus, a lake in the north polar regionPerspective radar view of Bolsena Lacus (lower right) and other northern hemisphere hydrocarbon lakes
Titan 2009-01 ISS polar maps.jpg
Titan S. polar lake changes 2004-5.jpg
Contrasting images of the number of lakes in Titan's northern hemisphere (left) and southern hemisphere (right)Two images of Titan's southern hemisphere acquired one year apart, showing changes in south polar lakes

Impact craters

Radar image of a 139 kilometres (86 mi) diameter[85] impact crater on Titan's surface, showing a smooth floor, rugged rim, and possibly a central peak.
 
Radar, SAR and imaging data from Cassini have revealed few impact craters on Titan's surface.[60] These impacts appear to be relatively young, compared to Titan's age.[60] The few impact craters discovered include a 440 kilometres (270 mi) wide two-ring impact basin named Menrva seen by Cassini's ISS as a bright-dark concentric pattern.[86] A smaller, 60 kilometres (37 mi) wide, flat-floored crater named Sinlap[87] and a 30 kilometres (19 mi) crater with a central peak and dark floor named Ksa have also been observed.[88] Radar and Cassini imaging have also revealed a number of "crateriforms", circular features on the surface of Titan that may be impact related, but lack certain features that would make identification certain. For example, a 90 kilometres (56 mi) wide ring of bright, rough material known as Guabonito has been observed by Cassini.[89] This feature is thought to be an impact crater filled in by dark, windblown sediment. Several other similar features have been observed in the dark Shangri-la and Aaru regions. Radar observed several circular features that may be craters in the bright region Xanadu during Cassini's April 30, 2006 flyby of Titan.[90]
 
Many of Titan's craters or probable craters display evidence of extensive erosion, and all show some indication of modification.[85] Most large craters have breached or incomplete rims, despite the fact that some craters on Titan have relatively more massive rims than those anywhere else in the Solar System. However, there is little evidence of formation of palimpsests through viscoelastic crustal relaxation, unlike on other large icy moons.[85] Most craters lack central peaks and have smooth floors, possibly due to impact-generation or later eruption of cryovolcanic lava. Although infill from various geological processes is one reason for Titan's relative deficiency of craters, atmospheric shielding also plays a role; it is estimated that Titan's atmosphere reduces the number of craters on its surface by a factor of two.[91]
 
The limited high-resolution radar coverage of Titan obtained through 2007 (22%) suggested the existence of a number of nonuniformities in its crater distribution. Xanadu has 2–9 times more craters than elsewhere. The leading hemisphere has a 30% higher density than the trailing hemisphere. There are lower crater densities in areas of equatorial dunes and in the north polar region (where hydrocarbon lakes and seas are most common).[85]
 
Pre-Cassini models of impact trajectories and angles suggest that where the impactor strikes the water ice crust, a small amount of ejecta remains as liquid water within the crater. It may persist as liquid for centuries or longer, sufficient for "the synthesis of simple precursor molecules to the origin of life".[92]

Cryovolcanism and mountains

 
Near-infrared image of Tortola Facula, thought to be a possible cryovolcano
False-color VIMS image of the possible cryovolcano Sotra Patera, combined with a 3D map based on radar data, showing 1000-meter-high peaks and a 1500-meter-deep crater.
 
Scientists have long speculated that conditions on Titan resemble those of early Earth, though at a much lower temperature. The detection of argon-40 in the atmosphere in 2004 indicated that volcanoes had spawned plumes of "lava" composed of water and ammonia.[93] Global maps of the lake distribution on Titan's surface revealed that there is not enough surface methane to account for its continued presence in its atmosphere, and thus that a significant portion must be added through volcanic processes.[94]
 
Still, there is a paucity of surface features that can be unambiguously interpreted as cryovolcanoes.[95] One of the first of such features revealed by Cassini radar observations in 2004, called Ganesa Macula, resembles the geographic features called "pancake domes" found on Venus, and was thus initially thought to be cryovolcanic in origin, although the American Geophysical Union refuted this hypothesis in December 2008. The feature was found to be not a dome at all, but appeared to result from accidental combination of light and dark patches.[96][97] In 2004 Cassini also detected an unusually bright feature (called Tortola Facula), which was interpreted as a cryovolcanic dome.[98]
No similar features have been identified as of 2010.[99] In December 2008, astronomers announced the discovery of two transient but unusually long-lived "bright spots" in Titan's atmosphere, which appear too persistent to be explained by mere weather patterns, suggesting they were the result of extended cryovolcanic episodes.[27]
 
In March 2009, structures resembling lava flows were announced in a region of Titan called Hotei Arcus, which appears to fluctuate in brightness over several months. Though many phenomena were suggested to explain this fluctuation, the lava flows were found to rise 200 metres (660 ft) above Titan's surface, consistent with it having been erupted from beneath the surface.[100]
 
A mountain range measuring 150 kilometres (93 mi) long, 30 kilometres (19 mi) wide and 1.5 kilometres (0.93 mi) high was also discovered by Cassini in 2006. This range lies in the southern hemisphere and is thought to be composed of icy material and covered in methane snow. The movement of tectonic plates, perhaps influenced by a nearby impact basin, could have opened a gap through which the mountain's material upwelled.[101] Prior to Cassini, scientists assumed that most of the topography on Titan would be impact structures, yet these findings reveal that similar to Earth, the mountains were formed through geological processes.[102] In December 2010, the Cassini mission team announced the most compelling possible cryovolcano yet found. Named Sotra Patera, it is one in a chain of at least three mountains, each between 1000 and 1500 m in height, several of which are topped by large craters. The ground around their bases appears to be overlaid by frozen lava flows.[103]
 
If volcanism on Titan really exists, the hypothesis is that it is driven by energy released from the decay of radioactive elements within the mantle, as it is on the Earth.[27] Magma on Earth is made of liquid rock, which is less dense than the solid rocky crust through which it erupts. Because ice is less dense than water, Titan's watery magma would be denser than its solid icy crust. This means that cryovolcanism on Titan would require a large amount of additional energy to operate, possibly via tidal flexing from nearby Saturn.[27] Alternatively, the pressure necessary to drive the cryovolcanoes may be caused by ice Ih "underplating" Titan's outer shell. The low-pressure ice, overlaying a liquid layer of ammonium sulfate, ascends buoyantly, and the unstable system can produce dramatic plume events. Titan is resurfaced through the process by grain-sized ice and ammonium sulfate ash, which helps produce a wind-shaped landscape and sand dune features.[104]
 
In 2008 Jeffrey Moore (planetary geologist of Ames Research Center) proposed an alternate view of Titan's geology. Noting that no volcanic features had been unambiguously identified on Titan so far, he asserted that Titan is a geologically dead world, whose surface is shaped only by impact cratering, fluvial and eolian erosion, mass wasting and other exogenic processes. According to this hypothesis, methane is not emitted by volcanoes but slowly diffuses out of Titan's cold and stiff interior. Ganesa Macula may be an eroded impact crater with a dark dune in the center. The mountainous ridges observed in some regions can be explained as heavily degraded scarps of large multi-ring impact structures or as a result of the global contraction due to the slow cooling of the interior. Even in this case Titan may still have an internal ocean made of the eutectic water–ammonia mixture with the temperature of 176 K (−97 °C), which is low enough to be explained by the decay of radioactive elements in the core. The bright Xanadu terrain may be a degraded heavily cratered terrain similar to that observed on the surface of Callisto. Indeed, were it not for its lack of an atmosphere, Callisto could serve as a model for Titan's geology in this scenario. Jeffrey Moore even called Titan Callisto with weather.[95][105]

Dark terrain

Sand dunes in Earth's Namib Desert (top), compared with dunes in Belet on Titan
 
In the first images of Titan's surface taken by Earth-based telescopes in the early 2000s, large regions of dark terrain were revealed straddling Titan's equator.[106] Prior to the arrival of Cassini, these regions were thought to be seas of organic matter like tar or liquid hydrocarbons.[107] Radar images captured by the Cassini spacecraft have instead revealed some of these regions to be extensive plains covered in longitudinal sand dunes, up to 330 ft (100 m) high[108] about a kilometer wide, and tens to hundreds of kilometers long.[109] The longitudinal (or linear) dunes are presumed to be formed by moderately variable winds that either follow one mean direction or alternate between two different directions. Dunes of this type are always aligned with average wind direction. In the case of Titan, steady zonal (eastward) winds combine with variable tidal winds (approximately 0.5 meters per second).[110] The tidal winds are the result of tidal forces from Saturn on Titan's atmosphere, which are 400 times stronger than the tidal forces of the Moon on Earth and tend to drive wind toward the equator. This wind pattern causes sand dunes to build up in long parallel lines aligned west-to-east. The dunes break up around mountains, where the wind direction shifts.
 
The sand on Titan is likely not made up of small grains of silicates like the sand on Earth,[111] but rather might have formed when liquid methane rained and eroded the ice bedrock, possibly in the form of flash floods. Alternatively, the sand could also have come from organic solids produced by photochemical reactions in Titan's atmosphere.[108][110][112] Studies of dunes' composition in May 2008 revealed that they possessed less water than the rest of Titan, and are most likely to derive from organic material clumping together after raining onto the surface.[113]

Observation and exploration

Voyager 1 view of haze on Titan's limb (1980)
 
Titan is never visible to the naked eye, but can be observed through small telescopes or strong binoculars. Amateur observation is difficult because of the proximity of Titan to Saturn's brilliant globe and ring system; an occulting bar, covering part of the eyepiece and used to block the bright planet, greatly improves viewing.[114] Titan has a maximum apparent magnitude of +8.2,[6] and mean opposition magnitude 8.4.[115] This compares to +4.6[115] for the similarly sized Ganymede, in the Jovian system.
 
Observations of Titan prior to the space age were limited. In 1907 Spanish astronomer Josep Comas Solá observed limb darkening of Titan, the first evidence that the body has an atmosphere. In 1944 Gerard P. Kuiper used a spectroscopic technique to detect an atmosphere of methane.[116]
Cassini - Titan flyby radio signal studies (artist concept; June 17, 2014)
 
The first probe to visit the Saturnian system was Pioneer 11 in 1979, which confirmed that Titan was probably too cold to support life.[117] It took images of Titan, including Titan and Saturn together in mid to late 1979.[118] The quality was soon surpassed by the two Voyagers, but Pioneer 11 provided data for everyone to prepare with.
 
Titan was examined by both Voyager 1 and 2 in 1980 and 1981, respectively. Voyager 1's course was diverted specifically to make a closer pass of Titan. Unfortunately, the craft did not possess any instruments that could penetrate Titan's haze, an unforeseen factor. Many years later, intensive digital processing of images taken through Voyager 1's orange filter did reveal hints of the light and dark features now known as Xanadu and Shangri-la,[119] but by then they had already been observed in the infrared by the Hubble Space Telescope. Voyager 2 took only a cursory look at Titan. The Voyager 2 team had the option of steering the spacecraft to take a detailed look at Titan or to use another trajectory that would allow it to visit Uranus and Neptune. Given the lack of surface features seen by Voyager 1, the latter plan was implemented.

Cassini–Huygens

Cassini image of Titan in front of the rings of Saturn
Cassini image of Titan, behind Epimetheus and the rings
Even with the data provided by the Voyagers, Titan remained a body of mystery—a planet-like satellite shrouded in an atmosphere that makes detailed observation difficult. The intrigue that had surrounded Titan since the 17th-century observations of Christiaan Huygens and Giovanni Cassini was gratified by a spacecraft named in their honor.
The Cassini–Huygens spacecraft reached Saturn on July 1, 2004, and began the process of mapping Titan's surface by radar. A joint project of the European Space Agency (ESA) and NASA, Cassini–Huygens has proved a very successful mission. The Cassini probe flew by Titan on October 26, 2004, and took the highest-resolution images ever of Titan's surface, at only 1,200 kilometres (750 mi), discerning patches of light and dark that would be invisible to the human eye. Huygens landed[120] on Titan on January 14, 2005, discovering that many of its surface features seem to have been formed by fluids at some point in the past.[121] On July 22, 2006, Cassini made its first targeted, close fly-by at 950 kilometres (590 mi) from Titan; the closest flyby was at 880 kilometres (550 mi) on June 21, 2010.[122] Present liquid on the surface has been found in abundance in the north polar region, in the form of many lakes and seas discovered by Cassini.[73] Titan is the most distant body from Earth[123] and the second moon in the Solar System to have a space probe land on its surface.

Huygens landing site

Huygens in situ image from Titan's surface—the only image from the surface of an object farther away than Mars
Same with different data processing
The Huygens probe landed just off the easternmost tip of a bright region now called Adiri. The probe photographed pale hills with dark "rivers" running down to a dark plain. Current understanding is that the hills (also referred to as highlands) are composed mainly of water ice. Dark organic compounds, created in the upper atmosphere by the ultraviolet radiation of the Sun, may rain from Titan's atmosphere. They are washed down the hills with the methane rain and are deposited on the plains over geological time scales.[124]
 
After landing, Huygens photographed a dark plain covered in small rocks and pebbles, which are composed of water ice.[124] The two rocks just below the middle of the image on the right are smaller than they may appear: the left-hand one is 15 centimeters across, and the one in the center is 4 centimeters across, at a distance of about 85 centimeters from Huygens. There is evidence of erosion at the base of the rocks, indicating possible fluvial activity. The surface is darker than originally expected, consisting of a mixture of water and hydrocarbon ice. The assumption is that the "soil" visible in the images is precipitation from the hydrocarbon haze above.
 
In March 2007, NASA, ESA, and COSPAR decided to name the Huygens landing site the Hubert Curien Memorial Station in memory of the former president of the ESA.[125]

Proposed or conceptual missions

The balloon proposed for the Titan Saturn System Mission (artistic rendition)
 
There have been several conceptual missions proposed in recent years for returning a robotic space probe to Titan. Initial conceptual work has been completed for such missions by NASA, the ESA and JPL. At present, none of these proposals have become funded missions.
The Titan Saturn System Mission (TSSM) was a joint NASA/ESA proposal for exploration of Saturn's moons.[126] It envisions a hot-air balloon floating in Titan's atmosphere for six months. It was competing against the Europa Jupiter System Mission (EJSM) proposal for funding. In February 2009 it was announced that ESA/NASA had given the EJSM mission priority ahead of the TSSM.[127]
There was also a notional concept for a Titan Mare Explorer (TiME), which would be a low-cost lander that would splash down in a lake in Titan's northern hemisphere and float on the surface of the lake for 3 to 6 months.[128][129][130]
 
Another mission to Titan proposed in early 2012 by Jason Barnes, a scientist at a University of Idaho, is the Aerial Vehicle for In-situ and Airborne Titan Reconnaissance (AVIATR): an unmanned plane (or drone) that would fly through Titan's atmosphere and take high-definition images of the surface of Titan. NASA did not approve the requested $715 million, and the future of the project is uncertain.[131][132][133]
 
Another lake lander project was proposed in late 2012 by the Spanish-based private engineering firm SENER and the Centro de Astrobiología in Madrid. The concept probe is called Titan Lake In-situ Sampling Propelled Explorer (TALISE).[134][135] The major difference compared to the TiME probe would be that TALISE is envisioned with its own propulsion system and would therefore not be limited to simply floating on the lake it splashes down on.

Prebiotic conditions and search for life

 
Titan is thought to be a prebiotic environment rich in complex organic chemistry[47] with a possible subsurface liquid ocean serving as a biotic environment.[136][137][138]
Although the Cassini–Huygens mission was not equipped to provide evidence for biosignatures or complex organic compounds, it showed an environment on Titan that is similar, in some ways, to ones theorized for the primordial Earth.[139] Scientists surmise that the atmosphere of early Earth was similar in composition to the current atmosphere on Titan, with the important exception of a lack of water vapor on Titan.[140]

Formation of complex molecules

The Miller–Urey experiment and several following experiments have shown that with an atmosphere similar to that of Titan and the addition of UV radiation, complex molecules and polymer substances like tholins can be generated. The reaction starts with dissociation of nitrogen and methane, forming hydrogen cyanide and acetylene. Further reactions have been studied extensively.[141]
In October 2010, Sarah Horst of the University of Arizona reported finding the five nucleotide bases—building blocks of DNA and RNA—among the many compounds produced when energy was applied to a combination of gases like those in Titan's atmosphere. Horst also found amino acids, the building blocks of protein. She said it was the first time nucleotide bases and amino acids had been found in such an experiment without liquid water being present.[142]
 
On April 3, 2013, NASA reported that complex organic chemicals could arise on Titan based on studies simulating the atmosphere of Titan.[47]

Possible subsurface habitats

Laboratory simulations have led to the suggestion that enough organic material exists on Titan to start a chemical evolution analogous to what is thought to have started life on Earth. Although the analogy assumes the presence of liquid water for longer periods than is currently observable, several theories suggest that liquid water from an impact could be preserved under a frozen isolation layer.[143] It has also been theorized that liquid-ammonia oceans could exist deep below the surface.[136][144] Another model suggests an ammonia–water solution as much as 200 kilometres (120 mi) deep beneath a water-ice crust with conditions that, although extreme by terrestrial standards, are such that life could indeed survive.[137] Heat transfer between the interior and upper layers would be critical in sustaining any subsurface oceanic life.[136] Detection of microbial life on Titan would depend on its biogenic effects. That the atmospheric methane and nitrogen might be of biological origin has been examined, for example.[137]

Methane and life at the surface

 
It has been suggested that life could exist in the lakes of liquid methane on Titan, just as organisms on Earth live in water.[145] Such creatures would inhale H2 in place of O2, metabolize it with acetylene instead of glucose, and exhale methane instead of carbon dioxide.[138][145]
 
Although all living things on Earth (including methanogens) use liquid water as a solvent, it is speculated that life on Titan might instead use a liquid hydrocarbon, such as methane or ethane.[146] Water is a stronger solvent than methane.[147] However, water is also more chemically reactive, and can break down large organic molecules through hydrolysis.[146] A life-form whose solvent was a hydrocarbon would not face the risk of its biomolecules being destroyed in this way.[146]
 
In 2005, astrobiologist Chris McKay argued that if methanogenic life did exist on the surface of Titan, it would likely have a measurable effect on the mixing ratio in the Titan troposphere: levels of hydrogen and acetylene would be measurably lower than otherwise expected.[145]
 
In 2010, Darrell Strobel, from Johns Hopkins University, identified a greater abundance of molecular hydrogen in the upper atmospheric layers of Titan compared to the lower layers, arguing for a downward flow at a rate of roughly 1025 molecules per second and disappearance of hydrogen near Titan's surface; as Strobel noted, his findings were in line with the effects McKay had predicted if methanogenic life-forms were present.[145][147][148] The same year, another study showed low levels of acetylene on Titan's surface, which were interpreted by McKay as consistent with the hypothesis of organisms consuming hydrocarbons.[147] Although restating the biological hypothesis, he cautioned that other explanations for the hydrogen and acetylene findings are more likely: the possibilities of yet unidentified physical or chemical processes (e.g., a surface catalyst accepting hydrocarbons or hydrogen), or flaws in the current models of material flow.[138] Composition data and transport models need to be substantiated, etc. Even so, despite saying that a non-biological catalytic explanation would be less startling than a biological one, McKay noted that the discovery of a catalyst effective at 95 K (−180 °C) would still be significant.[138]
 
As NASA notes in its news article on the June 2010 findings: "To date, methane-based life forms are only hypothetical. Scientists have not yet detected this form of life anywhere".[147] As the NASA statement also says: "some scientists believe these chemical signatures bolster the argument for a primitive, exotic form of life or precursor to life on Titan's surface".[147]

Obstacles

Despite these biological possibilities, there are formidable obstacles to life on Titan, and any analogy to Earth is inexact. At a vast distance from the Sun, Titan is frigid, and its atmosphere lacks CO2. At Titan's surface, water exists only in solid form. Because of these difficulties, scientists such as Jonathan Lunine have viewed Titan less as a likely habitat for life, than as an experiment for examining theories on the conditions that prevailed prior to the appearance of life on Earth.[149] Although life itself may not exist, the prebiotic conditions on Titan and the associated organic chemistry remain of great interest in understanding the early history of the terrestrial biosphere.[139]
Using Titan as a prebiotic experiment involves not only observation through spacecraft, but laboratory experiment, and chemical and photochemical modeling on Earth.[141]

Panspermia hypothesis

It is hypothesized that large asteroid and cometary impacts on Earth's surface may have caused fragments of microbe-laden rock to escape Earth's gravity, suggesting the possibility of transpermia.
Calculations indicate that a number of these would encounter many of the bodies in the Solar System, including Titan.[150][151] On the other hand, Jonathan Lunine has argued that any living things in Titan's cryogenic hydrocarbon lakes would need to be so different chemically from Earth life that it would not be possible for one to be the ancestor of the other.[152]

Future conditions

Conditions on Titan could become far more habitable in the far future. Five billion years from now, as the Sun becomes a red giant, surface temperatures could rise enough for Titan to support liquid water on its surface making it habitable.[153] As the Sun's ultraviolet output decreases, the haze in Titan's upper atmosphere will be depleted, lessening the anti-greenhouse effect on the surface and enabling the greenhouse created by atmospheric methane to play a far greater role. These conditions together could create a habitable environment, and could persist for several hundred million years.
This was sufficient time for simple life to evolve on Earth, although the presence of ammonia on Titan would cause chemical reactions to proceed more slowly.[154]

Big Bang

Big Bang

Condensed from Wikipedia, the free encyclopedia
 
According to the Big Bang model, the universe expanded from an extremely dense and hot state and continues to expand today. The graphic scheme above is an artist's concept illustrating the expansion of a portion of a flat universe.

The Big Bang theory is the prevailing cosmological model for the early development of the universe.[1] The key idea is that the universe is expanding. Consequently, the universe was denser and hotter in the past. Moreover, the Big Bang model suggests that at some moment all matter in the universe was contained in a single point, which is considered the beginning of the universe. Modern measurements place this moment at approximately 13.8 billion years ago, which is thus considered the age of the universe.[2] After the initial expansion, the universe cooled sufficiently to allow the formation of subatomic particles, including protons, neutrons, and electrons. Though simple atomic nuclei formed within the first three minutes after the Big Bang, thousands of years passed before the first electrically neutral atoms formed. The majority of atoms that were produced by the Big Bang are hydrogen, along with helium and traces of lithium. Giant clouds of these primordial elements later coalesced through gravity to form stars and galaxies, and the heavier elements were synthesized either within stars or during supernovae.

The Big Bang theory offers a comprehensive explanation for a broad range of observed phenomena, including the abundance of light elements, the cosmic microwave background, large scale structure, and Hubble's Law.[3] As the distance between galaxies increases today, in the past galaxies were closer together. The known laws of nature can be used to calculate the characteristics of the universe in detail back in time to extreme densities and temperatures.[4][5][6] While large particle accelerators can replicate such conditions, resulting in confirmation and refinement of the details of the Big Bang model, these accelerators can only probe so far into high energy regimes. Consequently, the state of the universe in the earliest instants of the Big Bang expansion is poorly understood and still an area of open investigation. The Big Bang theory does not provide any explanation for the initial conditions of the universe; rather, it describes and explains the general evolution of the universe going forward from that point on.

Georges Lemaître proposed what became the Big Bang theory in 1927. Over time, scientists built on his initial idea of cosmic expansion, which, his theory went, could be traced back to the origin of the cosmos and which led to formation of the modern universe. The framework for the Big Bang model relies on Albert Einstein's theory of general relativity and on simplifying assumptions such as homogeneity and isotropy of space. The governing equations were formulated by Alexander Friedmann, and similar solutions were worked on by Willem de Sitter. In 1929, Edwin Hubble discovered that the distances to far away galaxies were strongly correlated with their redshifts. Hubble's observation was taken to indicate that all distant galaxies and clusters have an apparent velocity directly away from our vantage point: that is, the farther away, the higher the apparent velocity, regardless of direction.[7] Assuming that we are not at the center of a giant explosion, the only remaining interpretation is that all observable regions of the universe are receding from each other.

While the scientific community was once divided between supporters of two different expanding universe theories—the Big Bang and the Steady State theory,[8] observational confirmation of the Big Bang scenario came with the discovery of the cosmic microwave background radiation in 1964, and later when its spectrum (i.e., the amount of radiation measured at each wavelength) was found to match that of thermal radiation from a black body. Since then, astrophysicists have incorporated observational and theoretical additions into the Big Bang model, and its parametrization as the Lambda-CDM model serves as the framework for current investigations of theoretical cosmology.

Timeline of the Big Bang

Singularity

Extrapolation of the expansion of the universe backwards in time using general relativity yields an infinite density and temperature at a finite time in the past.[13] This singularity signals the breakdown of general relativity. How closely we can extrapolate towards the singularity is debated—certainly no closer than the end of the Planck epoch. This singularity is sometimes called "the Big Bang",[14] but the term can also refer to the early hot, dense phase itself,[15][notes 1] which can be considered the "birth" of our universe. Based on measurements of the expansion using Type Ia supernovae, measurements of temperature fluctuations in the cosmic microwave background, and measurements of the correlation function of galaxies, the universe has a calculated age of 13.798 ± 0.037 billion years.[17] The agreement of these three independent measurements strongly supports the ΛCDM model that describes in detail the contents of the universe.

Inflation and baryogenesis

The earliest phases of the Big Bang are subject to much speculation. In the most common models the universe was filled homogeneously and isotropically with an incredibly high energy density and huge temperatures and pressures and was very rapidly expanding and cooling. Approximately 10−37 seconds into the expansion, a phase transition caused a cosmic inflation, during which the universe grew exponentially.[18] After inflation stopped, the universe consisted of a quark–gluon plasma, as well as all other elementary particles.[19] Temperatures were so high that the random motions of particles were at relativistic speeds, and particle–antiparticle pairs of all kinds were being continuously created and destroyed in collisions. At some point an unknown reaction called baryogenesis violated the conservation of baryon number, leading to a very small excess of quarks and leptons over antiquarks and antileptons—of the order of one part in 30 million. This resulted in the predominance of matter over antimatter in the present universe.[20]

Cooling

Panoramic view of the entire near-infrared sky reveals the distribution of galaxies beyond the Milky Way. Galaxies are color-coded by redshift.

The universe continued to decrease in density and fall in temperature, hence the typical energy of each particle was decreasing. Symmetry breaking phase transitions put the fundamental forces of physics and the parameters of elementary particles into their present form.[21] After about 10−11 seconds, the picture becomes less speculative, since particle energies drop to values that can be attained in particle physics experiments. At about 10−6 seconds, quarks and gluons combined to form baryons such as protons and neutrons. The small excess of quarks over antiquarks led to a small excess of baryons over antibaryons. The temperature was now no longer high enough to create new proton–antiproton pairs (similarly for neutrons–antineutrons), so a mass annihilation immediately followed, leaving just one in 1010 of the original protons and neutrons, and none of their antiparticles.
A similar process happened at about 1 second for electrons and positrons. After these annihilations, the remaining protons, neutrons and electrons were no longer moving relativistically and the energy density of the universe was dominated by photons (with a minor contribution from neutrinos).

A few minutes into the expansion, when the temperature was about a billion (one thousand million; 109; SI prefix giga-) kelvin and the density was about that of air, neutrons combined with protons to form the universe's deuterium and helium nuclei in a process called Big Bang nucleosynthesis.[22] Most protons remained uncombined as hydrogen nuclei. As the universe cooled, the rest mass energy density of matter came to gravitationally dominate that of the photon radiation. After about 379,000 years the electrons and nuclei combined into atoms (mostly hydrogen); hence the radiation decoupled from matter and continued through space largely unimpeded. This relic radiation is known as the cosmic microwave background radiation.[23]

Structure formation

Over a long period of time, the slightly denser regions of the nearly uniformly distributed matter gravitationally attracted nearby matter and thus grew even denser, forming gas clouds, stars, galaxies, and the other astronomical structures observable today. The details of this process depend on the amount and type of matter in the universe. The four possible types of matter are known as cold dark matter, warm dark matter, hot dark matter, and baryonic matter. The best measurements available (from WMAP) show that the data is well-fit by a Lambda-CDM model in which dark matter is assumed to be cold (warm dark matter is ruled out by early reionization[24]), and is estimated to make up about 23% of the matter/energy of the universe, while baryonic matter makes up about 4.6%.[25] In an "extended model" which includes hot dark matter in the form of neutrinos, then if the "physical baryon density" Ωbh2 is estimated at about 0.023 (this is different from the 'baryon density' Ωb expressed as a fraction of the total matter/energy density, which as noted above is about 0.046), and the corresponding cold dark matter density Ωch2 is about 0.11, the corresponding neutrino density Ωvh2 is estimated to be less than 0.0062.[25]

Cosmic acceleration


Independent lines of evidence from Type Ia supernovae and the CMB imply that the universe today is dominated by a mysterious form of energy known as dark energy, which apparently permeates all of space. The observations suggest 73% of the total energy density of today's universe is in this form.
When the universe was very young, it was likely infused with dark energy, but with less space and everything closer together, gravity predominated, and it was slowly braking the expansion. But eventually, after numerous billion years of expansion, the growing abundance of dark energy caused the expansion of the universe to slowly begin to accelerate. Dark energy in its simplest formulation takes the form of the cosmological constant term in Einstein's field equations of general relativity, but its composition and mechanism are unknown and, more generally, the details of its equation of state and relationship with the Standard Model of particle physics continue to be investigated both observationally and theoretically.[27]

All of this cosmic evolution after the inflationary epoch can be rigorously described and modeled by the ΛCDM model of cosmology, which uses the independent frameworks of quantum mechanics and Einstein's General Relativity. As noted above, there is no well-supported model describing the action prior to 10−15 seconds or so. Apparently a new unified theory of quantum gravitation is needed to break this barrier. Understanding this earliest of eras in the history of the universe is currently one of the greatest unsolved problems in physics.

Underlying assumptions

The Big Bang theory depends on two major assumptions: the universality of physical laws and the cosmological principle. The cosmological principle states that on large scales the universe is homogeneous and isotropic.

These ideas were initially taken as postulates, but today there are efforts to test each of them. For example, the first assumption has been tested by observations showing that largest possible deviation of the fine structure constant over much of the age of the universe is of order 10−5.[28] Also, general relativity has passed stringent tests on the scale of the Solar System and binary stars.[notes 2]
If the large-scale universe appears isotropic as viewed from Earth, the cosmological principle can be derived from the simpler Copernican principle, which states that there is no preferred (or special) observer or vantage point. To this end, the cosmological principle has been confirmed to a level of 10−5 via observations of the CMB.[notes 3][citation needed] The universe has been measured to be homogeneous on the largest scales at the 10% level.[29]

Expansion of space

General relativity describes spacetime by a metric, which determines the distances that separate nearby points. The points, which can be galaxies, stars, or other objects, themselves are specified using a coordinate chart or "grid" that is laid down over all spacetime. The cosmological principle implies that the metric should be homogeneous and isotropic on large scales, which uniquely singles out the Friedmann–Lemaître–Robertson–Walker metric (FLRW metric). This metric contains a scale factor, which describes how the size of the universe changes with time. This enables a convenient choice of a coordinate system to be made, called comoving coordinates. In this coordinate system the grid expands along with the universe, and objects that are moving only due to the expansion of the universe remain at fixed points on the grid. While their coordinate distance (comoving distance) remains constant, the physical distance between two such comoving points expands proportionally with the scale factor of the universe.[30]

The Big Bang is not an explosion of matter moving outward to fill an empty universe. Instead, space itself expands with time everywhere and increases the physical distance between two comoving points. Because the FLRW metric assumes a uniform distribution of mass and energy, it applies to our universe only on large scales—local concentrations of matter such as our galaxy are gravitationally bound and as such do not experience the large-scale expansion of space.

Horizons

An important feature of the Big Bang spacetime is the presence of horizons. Since the universe has a finite age, and light travels at a finite speed, there may be events in the past whose light has not had time to reach us. This places a limit or a past horizon on the most distant objects that can be observed. Conversely, because space is expanding, and more distant objects are receding ever more quickly, light emitted by us today may never "catch up" to very distant objects. This defines a future horizon, which limits the events in the future that we will be able to influence. The presence of either type of horizon depends on the details of the FLRW model that describes our universe. Our understanding of the universe back to very early times suggests that there is a past horizon, though in practice our view is also limited by the opacity of the universe at early times. So our view cannot extend further backward in time, though the horizon recedes in space. If the expansion of the universe continues to accelerate, there is a future horizon as well.[31]

Observational evidence

Artist's depiction of the WMAP satellite gathering data to help scientists understand the Big Bang

The earliest and most direct observational evidence of the validity of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang nucleosynthesis. More recent evidence includes observations of galaxy formation and evolution, and the distribution of large-scale cosmic structures,[58] These are sometimes called the "four pillars" of the Big Bang theory.[59]

Precise modern models of the Big Bang appeal to various exotic physical phenomena that have not been observed in terrestrial laboratory experiments or incorporated into the Standard Model of particle physics. Of these features, dark matter is currently subjected to the most active laboratory investigations.[60] Remaining issues include the cuspy halo problem and the dwarf galaxy problem of cold dark matter. Dark energy is also an area of intense interest for scientists, but it is not clear whether direct detection of dark energy will be possible.[61] Inflation and baryogenesis remain more speculative features of current Big Bang models.[notes 5][citation needed] Viable, quantitative explanations for such phenomena are still being sought. These are currently unsolved problems in physics.

Hubble's law and the expansion of space

Observations of distant galaxies and quasars show that these objects are redshifted—the light emitted from them has been shifted to longer wavelengths. This can be seen by taking a frequency spectrum of an object and matching the spectroscopic pattern of emission lines or absorption lines corresponding to atoms of the chemical elements interacting with the light. These redshifts are uniformly isotropic, distributed evenly among the observed objects in all directions. If the redshift is interpreted as a Doppler shift, the recessional velocity of the object can be calculated. For some galaxies, it is possible to estimate distances via the cosmic distance ladder. When the recessional velocities are plotted against these distances, a linear relationship known as Hubble's law is observed:[7]
v = H0D,
where
Hubble's law has two possible explanations. Either we are at the center of an explosion of galaxies—which is untenable given the Copernican principle—or the universe is uniformly expanding everywhere. This universal expansion was predicted from general relativity by Alexander Friedmann in 1922[38] and Georges Lemaître in 1927,[39] well before Hubble made his 1929 analysis and observations, and it remains the cornerstone of the Big Bang theory as developed by Friedmann, Lemaître, Robertson, and Walker.

The theory requires the relation v = HD to hold at all times, where D is the comoving distance, v is the recessional velocity, and v, H, and D vary as the universe expands (hence we write H0 to denote the present-day Hubble "constant"). For distances much smaller than the size of the observable universe, the Hubble redshift can be thought of as the Doppler shift corresponding to the recession velocity v. However, the redshift is not a true Doppler shift, but rather the result of the expansion of the universe between the time the light was emitted and the time that it was detected.[62]

That space is undergoing metric expansion is shown by direct observational evidence of the Cosmological principle and the Copernican principle, which together with Hubble's law have no other explanation. Astronomical redshifts are extremely isotropic and homogeneous,[7] supporting the Cosmological principle that the universe looks the same in all directions, along with much other evidence. If the redshifts were the result of an explosion from a center distant from us, they would not be so similar in different directions.

Measurements of the effects of the cosmic microwave background radiation on the dynamics of distant astrophysical systems in 2000 proved the Copernican principle, that, on a cosmological scale, the Earth is not in a central position.[63] Radiation from the Big Bang was demonstrably warmer at earlier times throughout the universe. Uniform cooling of the cosmic microwave background over billions of years is explainable only if the universe is experiencing a metric expansion, and excludes the possibility that we are near the unique center of an explosion.

Cosmic microwave background radiation

9 year WMAP image of the cosmic microwave background radiation (2012).[64][65] The radiation is isotropic to roughly one part in 100,000.[66]

In 1964 Arno Penzias and Robert Wilson serendipitously discovered the cosmic background radiation, an omnidirectional signal in the microwave band.[54] Their discovery provided substantial confirmation of the general CMB predictions: the radiation was found to be consistent with an almost perfect black body spectrum in all directions; this spectrum has been redshifted by the expansion of the universe, and today corresponds to approximately 2.725 K. This tipped the balance of evidence in favor of the Big Bang model, and Penzias and Wilson were awarded a Nobel Prize in 1978.
The cosmic microwave background spectrum measured by the FIRAS instrument on the COBE satellite is the most-precisely measured black body spectrum in nature.[67] The data points and error bars on this graph are obscured by the theoretical curve.

The surface of last scattering corresponding to emission of the CMB occurs shortly after recombination, the epoch when neutral hydrogen becomes stable. Prior to this, the universe comprised a hot dense photon-baryon plasma sea where photons were quickly scattered from free charged particles. Peaking at around 372±14 kyr,[24] the mean free path for a photon becomes long enough to reach the present day and the universe becomes transparent.

In 1989 NASA launched the Cosmic Background Explorer satellite (COBE). Its findings were consistent with predictions regarding the CMB, finding a residual temperature of 2.726 K (more recent measurements have revised this figure down slightly to 2.725 K) and providing the first evidence for fluctuations (anisotropies) in the CMB, at a level of about one part in 105.[55] John C. Mather and George Smoot were awarded the Nobel Prize for their leadership in this work. During the following decade, CMB anisotropies were further investigated by a large number of ground-based and balloon experiments. In 2000–2001 several experiments, most notably BOOMERanG, found the shape of the universe to be spatially almost flat by measuring the typical angular size (the size on the sky) of the anisotropies.

In early 2003 the first results of the Wilkinson Microwave Anisotropy Probe (WMAP) were released, yielding what were at the time the most accurate values for some of the cosmological parameters. The results disproved several specific cosmic inflation models, but are consistent with the inflation theory in general.[56] The Planck space probe was launched in May 2009. Other ground and balloon based cosmic microwave background experiments are ongoing.

Abundance of primordial elements

Using the Big Bang model it is possible to calculate the concentration of helium-4, helium-3, deuterium, and lithium-7 in the universe as ratios to the amount of ordinary hydrogen.[22] The relative abundances depend on a single parameter, the ratio of photons to baryons. This value can be calculated independently from the detailed structure of CMB fluctuations. The ratios predicted (by mass, not by number) are about 0.25 for 4He/H, about 10−3 for 2H/H, about 10−4 for 3He/H and about 10−9 for 7Li/H.[22]

The measured abundances all agree at least roughly with those predicted from a single value of the baryon-to-photon ratio. The agreement is excellent for deuterium, close but formally discrepant for 4He, and off by a factor of two 7Li; in the latter two cases there are substantial systematic uncertainties. Nonetheless, the general consistency with abundances predicted by Big Bang nucleosynthesis is strong evidence for the Big Bang, as the theory is the only known explanation for the relative abundances of light elements, and it is virtually impossible to "tune" the Big Bang to produce much more or less than 20–30% helium.[68] Indeed there is no obvious reason outside of the Big Bang that, for example, the young universe (i.e., before star formation, as determined by studying matter supposedly free of stellar nucleosynthesis products) should have more helium than deuterium or more deuterium than 3He, and in constant ratios, too.

Galactic evolution and distribution

Detailed observations of the morphology and distribution of galaxies and quasars are in agreement with the current state of the Big Bang theory. A combination of observations and theory suggest that the first quasars and galaxies formed about a billion years after the Big Bang, and since then larger structures have been forming, such as galaxy clusters and superclusters. Populations of stars have been aging and evolving, so that distant galaxies (which are observed as they were in the early universe) appear very different from nearby galaxies (observed in a more recent state). Moreover, galaxies that formed relatively recently appear markedly different from galaxies formed at similar distances but shortly after the Big Bang. These observations are strong arguments against the steady-state model. Observations of star formation, galaxy and quasar distributions and larger structures agree well with Big Bang simulations of the formation of structure in the universe and are helping to complete details of the theory.[69][70]

Primordial gas clouds

Focal plane of BICEP2 telescope under a microscope - may have detected gravitational waves from the infant universe.[9][10][11][12]

In 2011 astronomers found what they believe to be pristine clouds of primordial gas, by analyzing absorption lines in the spectra of distant quasars. Before this discovery, all other astronomical objects have been observed to contain heavy elements that are formed in stars. These two clouds of gas contain no elements heavier than hydrogen and deuterium.[71][72] Since the clouds of gas have no heavy elements, they likely formed in the first few minutes after the Big Bang, during Big Bang nucleosynthesis. Their composition matches the composition predicted from Big Bang nucleosynthesis. This provides direct evidence that there was a period in the history of the universe before the formation of the first stars, when most ordinary matter existed in the form of clouds of neutral hydrogen.

Other lines of evidence

The age of universe as estimated from the Hubble expansion and the CMB is now in good agreement with other estimates using the ages of the oldest stars, both as measured by applying the theory of stellar evolution to globular clusters and through radiometric dating of individual Population II stars.[73]

The prediction that the CMB temperature was higher in the past has been experimentally supported by observations of very low temperature absorption lines in gas clouds at high redshift.[74] This prediction also implies that the amplitude of the Sunyaev–Zel'dovich effect in clusters of galaxies does not depend directly on redshift. Observations have found this to be roughly true, but this effect depends on cluster properties that do change with cosmic time, making precise measurements difficult.[75][76]

On 17 March 2014, astronomers at the Harvard-Smithsonian Center for Astrophysics announced the apparent detection of primordial gravitational waves, which, if confirmed, may provide strong evidence for inflation and the Big Bang.[9][10][11][12] However, on 19 June 2014, lowered confidence in confirming the findings was reported.[77][78][79]
 

Addiction showcases the brain’s flexibility

Addiction showcases the brain’s flexibility

The brain has remarkable plasticity in response to drugs of abuse

Each addicted brain is different, depending on the drug of abuse, genetics, activity and more. Addiction is a difficult and highly individualistic disease that shows just how much our brains can change. 
   
Every day sees a new research article on addiction, be it cocaine, heroin, food or porn. Each one takes a specific angle on how addiction works in the brain. Perhaps it’s a disorder of reward, with drugs hijacking a natural system that is meant to respond to food, sex and friendship. Possibly addiction is a disorder of learning, where our brains learn bad habits and responses. Maybe we should think of addiction as a combination of an environmental stimulus and vulnerable genes.  Or perhaps it’s an inappropriate response to stress, where bad days trigger a relapse to the cigarette, syringe or bottle.
None of these views are wrong. But none of them are complete, either. Addiction is a disorder of reward, a disorder of learning. It has genetic, epigenetic and environmental influences. It is all of that and more. Addiction is a display of the brain’s astounding ability to change — a feature called plasticity  — and it showcases what we know and don’t yet know about how brains adapt to all that we throw at them. 

“A lot of people think addiction is what happens when someone finds a drug to be the most rewarding thing they’ve ever experienced,” says neuroscientist George Koob, director of the National Institute on Alcohol Abuse and Alcoholism in Bethesda, Md. “But drug abuse is not just feeling good about drugs. Your brain is changed when you misuse drugs. It is changed in ways that perpetuate the problem.” The changes associated with drug use affect how addicts respond to drug cues, like the smell of a cigarette or the sight of a shot of vodka. Drug abuse also changes how other rewards, such as money or food are processed, decreasing their relative value.

Before researchers began to focus on long-term brain changes, they focused on dopamine, a chemical messenger in the brain that is released from neurons. It plays an important role in movement control, but also increases in response to pleasurable things such as food, sex or drugs. “I think initially back in the mid-‘80s we believed that drug reward occurred because all addictive drugs increase dopamine,” explains Paul Kenny, a neurobiologist at the Icahn School of Medicine at Mount Sinai in New York City.

Kenny says that at first “it was a small leap to say a drug is pleasurable because it increases dopamine, and we therefore understand addiction.” But more research has shown that “dopamine is not really a measure for pleasure. Instead, it might be a measure of value. Now, scientists are willing to admit we have no idea where reward comes from or how we experience pleasure.”

But this doesn’t mean that dopamine doesn’t have a place in addiction. As someone takes a drug over and over, dopamine and other systems in the brain respond with plasticity — that is, those systems adapt to the presence of the drug. Receptors that control the response to chemicals like dopamine change concentration. Connections between brain cells and between different areas of the brain strengthen and weaken.  The birth of new neurons decreases. The initial effects of that first hit are also crucial, Koob says, causing “a whole series of plastic changes to those receptors, to the brain cells that connect with them. The more you do it, the more it becomes ingrained and permanent.”

Some of the changes, notes Shannon Gourley, a neuroscientist at Emory University in Atlanta, “accelerate habit formation, which is a form of learning.” A habit can be a good thing. Making a habit out of brushing your teeth means you can focus on other things. But, Gourley says, “habit formation can also be maladaptive if the habit is ingesting a drug of abuse.”

Learning has been a focus of addiction research for more than a decade. Marina Wolf, a neuroscientist at Rosalind Franklin University of Medicine and Science in North Chicago  is one of a group of scientists who pioneered the idea of addiction as a form of maladaptive plasticity — the brain “learning” differently in the presence of addictive substances. But learning, Wolf says, is a loose term. “Let’s say a person learns about riding a unicycle and also learns about taking cocaine.
Cocaine’s effects in the brain may lead to stronger learning about the drug, although there are undoubtedly similarities at some levels. Later, when presented with a cue about unicycles or about cocaine, the person will retrieve the specific memory. The important question is: What does the individual do with the memory that is retrieved? The critical difference may lie in the ease with which a memory or cue is translated in to action.” So while memories of your unicycle riding days might merely be pleasant, memories associated with cocaine might trigger powerful cravings.

In this way, Kenny explains, “any behavioral disorder is exactly the same: It involves learning and plasticity. The problem we have with addiction is that we still don’t understand what connections in the brain are doing.” Addiction and other disorders are made more complex by genetics: Certain genes may make some people more vulnerable to addiction than others. The genetic differences are further complicated by the environment and stresses that people are exposed to throughout their lives.

Scientists are slowly learning more about how addicts’ brains differ from those of people without drug addictions. “People think about addiction in a very simplistic way, like a blood test or a urine test could tell you if someone was addicted or not,” says Rita Goldstein, an addiction neuroimaging researcher at Mount Sinai. “But it’s such a complex disorder I don’t think there ever will be one test that will be 100 percent accurate.” She does note that addicts to have some reliable and replicable decreases in gray matter in brain regions important to learning and reward processes. Some deficits in decision-making and emotional self-awareness are present even when there are no drugs available.
But, Goldstein notes, “it’s always the chicken-and-egg question: Are these deficits there before addiction developed or did they develop with addiction?”

Addiction involves pleasure and pain, motivation and impulsivity. It has roots in genetics and in environment. Every addict is different, and there are many, many things that scientists do not yet know. But one thing is certain: The only overall explanation for addiction is that the brain is adapting to its environment. This plasticity takes place on many levels and impacts many behaviors, whether it is learning, reward or emotional processing.  If the question is how we should think of addiction, the answer is from every angle possible.

Power Company CEO Makes Stunning Admission

Power Company CEO Makes Stunning Admission

NRG Energy David Crane
Image source: CNN
 
The existing electrical grid is becoming an “antiquated” system that will soon be made obsolete by technological progress. That’s the surprising admission from the CEO of NRG Energy, one of the nation’s largest power companies.

“There will come a day, in a generation or so, when the grid is at best an antiquated system to a completely different way of buying electricity,” David Crane said at the ARPA-E Energy Innovation Summit.

Crane told an audience at the Summit that he thinks most homes will generate their own electricity within 30 years.

Not only does Crane think the grid is antiquated, but he also believes the primary challenge facing the energy industry is to get rid of it.

Energy companies, he said, should develop a new business model in which they provide solutions that allow people to generate their own electricity in homes and businesses.

Energy Company CEO: Current System Can’t Continue

“Everyone just stop a moment and think how shockingly stupid it is to build a 21st-century electric system based on a system of 130 million wooden poles,” Crane told the audience. “Stop trying to rearrange the deck chairs on the Titanic, and start talking about, ‘How do we get rid of the grid?”

Harness the power of the sun when the power goes out…

That would seem to confirm many Off the Grid News stories about the gird’s unreliability. Even the man who runs a power company believes that we can no longer depend on the grid.
Off the Grid News has reported that a number of large corporations, including Walmart, Safeway, Coca-Cola, Verizon and Google, are deploying off-grid sources of electricity.

Walmart just signed a contract to purchase 1,738 hydrogen-electric fuel cell units from a company called Plug Power Inc. Fuel cells are devices that convert hydrogen gas directly into electricity. The retail giant plans to use the fuel cells to power forklifts and other machines at its distribution centers. In other words, Walmart wants to keep its merchandise moving when the grid goes down.

Walmart, which already owns 535 Plug Power units, might spend up to $50 million on the new units, Reuters reported. PlugPower’s other customers include BMW, FedEx, Proctor & Gamble and Sprint. Plug Power is developing a fuel cell powered delivery truck for FedEx.

Report Card: Grid Unreliable 

Last year, the grid’s reliability barely passed in a report card issued by the American Society of Civil Engineers (ASCE).

The overall rating on the reliability of America’s antiquated electrical system was a D+. Major power outages in the United States have grown from 76 in 2007 to 307 in 2011, according to ASCE. The major outage figures do not take into account all of the smaller outages which routinely occur due to seasonal storms.

The American Society of Civil Engineers power grid grade card rating means the energy infrastructure is in “poor to fair condition and mostly below standard, with many elements approaching the end of their service life.” It further means a “large portion of the system exhibits significant deterioration” with a “strong risk of failure.”

“America relies on an aging electrical grid and pipeline distribution systems, some of which originated in the 1880s,” the report read. “Investment in power transmission has increased since 2005, but ongoing permitting issues, weather events, and limited maintenance have contributed to an increasing number of failures and power interruptions. While demand for electricity has remained level, the availability of energy in the form of electricity, natural gas, and oil will become a greater challenge after 2020 as the population increases. Although about 17,000 miles of additional high-voltage transmission lines and significant oil and gas pipelines are planned over the next five years, permitting and siting issues threaten their completion. The electric grid in the United States consists of a system of interconnected power generation, transmission facilities, and distribution facilities.”

Sign up for Off The Grid News’ weekly email and stay informed about the issues important to you

Classical radicalism

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cla...