Search This Blog

Monday, May 6, 2019

Wireless network

From Wikipedia, the free encyclopedia

Wireless icon
 
A wireless network is a computer network that uses wireless data connections between network nodes.

Wireless networking is a method by which homes, telecommunications networks and business installations avoid the costly process of introducing cables into a building, or as a connection between various equipment locations. Wireless telecommunications networks are generally implemented and administered using radio communication. This implementation takes place at the physical level (layer) of the OSI model network structure.

Examples of wireless networks include cell phone networks, wireless local area networks (WLANs), wireless sensor networks, satellite communication networks, and terrestrial microwave networks.

History

The first professional wireless network was developed under the brand ALOHAnet in 1969 at the University of Hawaii and became operational in June 1971. The first commercial wireless network was the WaveLAN product family, developed by NCR in 1986.
  • 1991 2G cell phone network
  • June 1997 802.11 "Wi-Fi" protocol first release
  • 1999 803.11 VoIP integration

Wireless links

Computers are very often connected to networks using wireless links, e.g. WLANs
  • Terrestrial microwave – Terrestrial microwave communication uses Earth-based transmitters and receivers resembling satellite dishes. Terrestrial microwaves are in the low gigahertz range, which limits all communications to line-of-sight. Relay stations are spaced approximately 48 km (30 mi) apart.
  • Communications satellites – Satellites communicate via microwave radio waves, which are not deflected by the Earth's atmosphere. The satellites are stationed in space, typically in geosynchronous orbit 35,400 km (22,000 mi) above the equator. These Earth-orbiting systems are capable of receiving and relaying voice, data, and TV signals.
  • Cellular and PCS systems use several radio communications technologies. The systems divide the region covered into multiple geographic areas. Each area has a low-power transmitter or radio relay antenna device to relay calls from one area to the next area.
  • Radio and spread spectrum technologies – Wireless local area networks use a high-frequency radio technology similar to digital cellular and a low-frequency radio technology. Wireless LANs use spread spectrum technology to enable communication between multiple devices in a limited area. IEEE 802.11 defines a common flavor of open-standards wireless radio-wave technology known as .
  • Free-space optical communication uses visible or invisible light for communications. In most cases, line-of-sight propagation is used, which limits the physical positioning of communicating devices.

Types of wireless networks

Wireless PAN

Wireless personal area networks (WPANs) connect devices within a relatively small area, that is generally within a person's reach. For example, both Bluetooth radio and invisible infrared light provides a WPAN for interconnecting a headset to a laptop. ZigBee also supports WPAN applications. Wi-Fi PANs are becoming commonplace (2010) as equipment designers start to integrate Wi-Fi into a variety of consumer electronic devices. Intel "My WiFi" and Windows 7 "virtual Wi-Fi" capabilities have made Wi-Fi PANs simpler and easier to set up and configure.

Wireless LAN

Wireless LANs are often used for connecting to local resources and to the Internet
 
A wireless local area network (WLAN) links two or more devices over a short distance using a wireless distribution method, usually providing a connection through an access point for internet access. The use of spread-spectrum or OFDM technologies may allow users to move around within a local coverage area, and still remain connected to the network. 

Products using the IEEE 802.11 WLAN standards are marketed under the Wi-Fi brand name . Fixed wireless technology implements point-to-point links between computers or networks at two distant locations, often using dedicated microwave or modulated laser light beams over line of sight paths. It is often used in cities to connect networks in two or more buildings without installing a wired link. To connect to Wi-Fi, sometimes are used devices like a router or connecting HotSpot using mobile smartphones.

Wireless ad hoc network

A wireless ad hoc network, also known as a wireless mesh network or mobile ad hoc network (MANET), is a wireless network made up of radio nodes organized in a mesh topology. Each node forwards messages on behalf of the other nodes and each node performs routing. Ad hoc networks can "self-heal", automatically re-routing around a node that has lost power. Various network layer protocols are needed to realize ad hoc mobile networks, such as Distance Sequenced Distance Vector routing, Associativity-Based Routing, Ad hoc on-demand Distance Vector routing, and Dynamic source routing.

Wireless MAN

Wireless metropolitan area networks are a type of wireless network that connects several wireless LANs.

Wireless WAN

Wireless wide area networks are wireless networks that typically cover large areas, such as between neighbouring towns and cities, or city and suburb. These networks can be used to connect branch offices of business or as a public Internet access system. The wireless connections between access points are usually point to point microwave links using parabolic dishes on the 2.4 GHz and 5.8Ghz band, rather than omnidirectional antennas used with smaller networks. A typical system contains base station gateways, access points and wireless bridging relays. Other configurations are mesh systems where each access point acts as a relay also. When combined with renewable energy systems such as photovoltaic solar panels or wind systems they can be stand alone systems.

Cellular network

Example of frequency reuse factor or pattern 1/4
 
A cellular network or mobile network is a radio network distributed over land areas called cells, each served by at least one fixed-location transceiver, known as a cell site or base station. In a cellular network, each cell characteristically uses a different set of radio frequencies from all their immediate neighbouring cells to avoid any interference.

When joined together these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission.

Although originally intended for cell phones, with the development of smartphones, cellular telephone networks routinely carry data in addition to telephone conversations:
  • Global System for Mobile Communications (GSM): The GSM network is divided into three major systems: the switching system, the base station system, and the operation and support system. The cell phone connects to the base system station which then connects to the operation and support station; it then connects to the switching station where the call is transferred to where it needs to go. GSM is the most common standard and is used for a majority of cell phones.
  • Personal Communications Service (PCS): PCS is a radio band that can be used by mobile phones in North America and South Asia. Sprint happened to be the first service to set up a PCS.
  • D-AMPS: Digital Advanced Mobile Phone Service, an upgraded version of AMPS, is being phased out due to advancement in technology. The newer GSM networks are replacing the older system.

Global area network

A global area network (GAN) is a network used for supporting mobile across an arbitrary number of wireless LANs, satellite coverage areas, etc. The key challenge in mobile communications is handing off user communications from one local coverage area to the next. In IEEE Project 802, this involves a succession of terrestrial wireless LANs.

Space network

Space networks are networks used for communication between spacecraft, usually in the vicinity of the Earth. The example of this is NASA's Space Network.

Uses

Some examples of usage include cellular phones which are part of everyday wireless networks, allowing easy personal communications. Another example, Intercontinental network systems, use radio satellites to communicate across the world. Emergency services such as the police utilize wireless networks to communicate effectively as well. Individuals and businesses use wireless networks to send and share data rapidly, whether it be in a small office building or across the world.

Properties

General

In a general sense, wireless networks offer a vast variety of uses by both business and home users.
"Now, the industry accepts a handful of different wireless technologies. Each wireless technology is defined by a standard that describes unique functions at both the Physical and the Data Link layers of the OSI model. These standards differ in their specified signaling methods, geographic ranges, and frequency usages, among other things. Such differences can make certain technologies better suited to home networks and others better suited to network larger organizations."

Performance

Each standard varies in geographical range, thus making one standard more ideal than the next depending on what it is one is trying to accomplish with a wireless network. The performance of wireless networks satisfies a variety of applications such as voice and video. The use of this technology also gives room for expansions, such as from 2G to 3G and, 4G and 5G technologies, which stand for the fourth and fifth generation of cell phone mobile communications standards. As wireless networking has become commonplace, sophistication increases through configuration of network hardware and software, and greater capacity to send and receive larger amounts of data, faster, is achieved. Now the wireless network has been running on LTE, which is a 4G mobile communication standard. Users of an LTE network should have data speeds that are 10x faster than a 3G network. 

Space

Space is another characteristic of wireless networking. Wireless networks offer many advantages when it comes to difficult-to-wire areas trying to communicate such as across a street or river, a warehouse on the other side of the premises or buildings that are physically separated but operate as one. Wireless networks allow for users to designate a certain space which the network will be able to communicate with other devices through that network.

Space is also created in homes as a result of eliminating clutters of wiring. This technology allows for an alternative to installing physical network mediums such as TPs, coaxes, or fiber-optics, which can also be expensive.

Home

For homeowners, wireless technology is an effective option compared to Ethernet for sharing printers, scanners, and high-speed Internet connections. WLANs help save the cost of installation of cable mediums, save time from physical installation, and also creates mobility for devices connected to the network. Wireless networks are simple and require as few as one single wireless access point connected directly to the Internet via a router.

Wireless Network Elements

The telecommunications network at the physical layer also consists of many interconnected wireline network elements (NEs). These NEs can be stand-alone systems or products that are either supplied by a single manufacturer or are assembled by the service provider (user) or system integrator with parts from several different manufacturers. 

Wireless NEs are the products and devices used by a wireless carrier to provide support for the backhaul network as well as a mobile switching center (MSC). 

Reliable wireless service depends on the network elements at the physical layer to be protected against all operational environments and applications (see GR-3171, Generic Requirements for Network Elements Used in Wireless Networks – Physical Layer Criteria).

What are especially important are the NEs that are located on the cell tower to the base station (BS) cabinet. The attachment hardware and the positioning of the antenna and associated closures and cables are required to have adequate strength, robustness, corrosion resistance, and resistance against wind, storms, icing, and other weather conditions. Requirements for individual components, such as hardware, cables, connectors, and closures, shall take into consideration the structure to which they are attached.

Difficulties

Interference

Compared to wired systems, wireless networks are frequently subject to electromagnetic interference. This can be caused by other networks or other types of equipment that generate radio waves that are within, or close, to the radio bands used for communication. Interference can degrade the signal or cause the system to fail.

Absorption and reflection

Some materials cause absorption of electromagnetic waves, preventing it from reaching the receiver, in other cases, particularly with metallic or conductive materials reflection occurs. This can cause dead zones where no reception is available. Aluminium foiled thermal isolation in modern homes can easily reduce indoor mobile signals by 10 dB frequently leading to complaints about the bad reception of long-distance rural cell signals.

Multipath fading

In multipath fading two or more different routes taken by the signal, due to reflections, can cause the signal to cancel out at certain locations, and to be stronger in other places (upfade).

Hidden node problem

In a hidden node problem Station A can communicate with Station B. Station C can also communicate with Station B. However, Stations A and C cannot communicate with each other, but their signals can interfere at B.
 
The hidden node problem occurs in some types of network when a node is visible from a wireless access point (AP), but not from other nodes communicating with that AP. This leads to difficulties in media access control (collisions).

Exposed terminal node problem

Exposed terminal problem.svg

The exposed terminal problem is when a node on one network is unable to send because of co-channel interference from a node that is on a different network.

Shared resource problem

The wireless spectrum is a limited resource and shared by all nodes in the range of its transmitters. Bandwidth allocation becomes complex with multiple participating users. Often users are not aware that advertised numbers (e.g., for IEEE 802.11 equipment or LTE networks) are not their capacity, but shared with all other users and thus the individual user rate is far lower. With increasing demand, the capacity crunch is more and more likely to happen. User-in-the-loop (UIL) may be an alternative solution to ever upgrading to newer technologies for over-provisioning.

Capacity

Channel

Understanding of SISO, SIMO, MISO and MIMO. Using multiple antennas and transmitting in different frequency channels can reduce fading, and can greatly increase the system capacity.
 
Shannon's theorem can describe the maximum data rate of any single wireless link, which relates to the bandwidth in hertz and to the noise on the channel.

One can greatly increase channel capacity by using MIMO techniques, where multiple aerials or multiple frequencies can exploit multiple paths to the receiver to achieve much higher throughput – by a factor of the product of the frequency and aerial diversity at each end. 

Under Linux, the Central Regulatory Domain Agent (CRDA) controls the setting of channels.

Network

The total network bandwidth depends on how dispersive the medium is (more dispersive medium generally has better total bandwidth because it minimises interference), how many frequencies are available, how noisy those frequencies are, how many aerials are used and whether a directional antenna is in use, whether nodes employ power control and so on. 

Cellular wireless networks generally have good capacity, due to their use of directional aerials, and their ability to reuse radio channels in non-adjacent cells. Additionally, cells can be made very small using low power transmitters this is used in cities to give network capacity that scales linearly with population density.

Safety

Wireless access points are also often close to humans, but the drop off in power over distance is fast, following the inverse-square law. The position of the United Kingdom's Health Protection Agency (HPA) is that “...radio frequency (RF) exposures from WiFi are likely to be lower than those from mobile phones.” It also saw “...no reason why schools and others should not use WiFi equipment.” In October 2007, the HPA launched a new “systematic” study into the effects of WiFi networks on behalf of the UK government, in order to calm fears that had appeared in the media in a recent period up to that time". Dr Michael Clark, of the HPA, says published research on mobile phones and masts does not add up to an indictment of WiFi.

Cellular network

From Wikipedia, the free encyclopedia

Top of a cellular radio tower
 
Indoor cell site in Germany
 
A cellular network or mobile network is a communication network where the last link is wireless. The network is distributed over land areas called cells, each served by at least one fixed-location transceiver, but more normally three cell sites or base transceiver stations. These base stations provide the cell with the network coverage which can be used for transmission of voice, data, and other types of content. A cell typically uses a different set of frequencies from neighboring cells, to avoid interference and provide guaranteed service quality within each cell.

When joined together, these cells provide radio coverage over a wide geographic area. This enables a large number of portable transceivers (e.g., mobile phones, tablets and laptops equipped with mobile broadband modems, pagers, etc.) to communicate with each other and with fixed transceivers and telephones anywhere in the network, via base stations, even if some of the transceivers are moving through more than one cell during transmission. 

Cellular networks offer a number of desirable features:
  • More capacity than a single large transmitter, since the same frequency can be used for multiple links as long as they are in different cells
  • Mobile devices use less power than with a single transmitter or satellite since the cell towers are closer
  • Larger coverage area than a single terrestrial transmitter, since additional cell towers can be added indefinitely and are not limited by the horizon
Major telecommunications providers have deployed voice and data cellular networks over most of the inhabited land area of Earth. This allows mobile phones and mobile computing devices to be connected to the public switched telephone network and public Internet. Private cellular networks can be used for research or for large organizations and fleets, such as dispatch for local public safety agencies or a taxicab company.

Concept

Example of frequency reuse factor or pattern 1/4
 
In a cellular radio system, a land area to be supplied with radio service is divided into cells, in a pattern which depends on terrain and reception characteristics but which can consist of roughly hexagonal, square, circular or some other regular shapes, although hexagonal cells are conventional. Each of these cells is assigned with multiple frequencies (f1f6) which have corresponding radio base stations. The group of frequencies can be reused in other cells, provided that the same frequencies are not reused in adjacent neighboring cells as that would cause co-channel interference.

The increased capacity in a cellular network, compared with a network with a single transmitter, comes from the mobile communication switching system developed by Amos Joel of Bell Labs that permitted multiple callers in the same area to use the same frequency by switching calls made using the same frequency to the nearest available cellular tower having that frequency available and from the fact that the same radio frequency can be reused in a different area for a completely different transmission. If there is a single plain transmitter, only one transmission can be used on any given frequency. Inevitably, there is some level of interference from the signal from the other cells which use the same frequency. This means that, in a standard FDMA system, there must be at least a one cell gap between cells which reuse the same frequency.

In the simple case of the taxi company, each radio had a manually operated channel selector knob to tune to different frequencies. As the drivers moved around, they would change from channel to channel. The drivers knew which frequency covered approximately what area. When they did not receive a signal from the transmitter, they would try other channels until they found one that worked. The taxi drivers would only speak one at a time, when invited by the base station operator. This is, in a sense, time-division multiple access (TDMA).

The first commercial cellular network, the 1G generation, was launched in Japan by Nippon Telegraph and Telephone (NTT) in 1979, initially in the metropolitan area of Tokyo. Within five years, the NTT network had been expanded to cover the whole population of Japan and became the first nationwide 1G network.

Cell signal encoding

To distinguish signals from several different transmitters, time-division multiple access (TDMA), frequency-division multiple access (FDMA), code-division multiple access (CDMA), and orthogonal frequency-division multiple access (OFDMA) were developed.

With TDMA, the transmitting and receiving time slots used by different users in each cell are different from each other. 

With FDMA, the transmitting and receiving frequencies used by different users in each cell are different from each other. In a simple taxi system, the taxi driver manually tuned to a frequency of a chosen cell to obtain a strong signal and to avoid interference from signals from other cells. 

The principle of CDMA is more complex, but achieves the same result; the distributed transceivers can select one cell and listen to it. 

Other available methods of multiplexing such as polarization-division multiple access (PDMA) cannot be used to separate signals from one cell to the next since the effects of both vary with position and this would make signal separation practically impossible. TDMA is used in combination with either FDMA or CDMA in a number of systems to give multiple channels within the coverage area of a single cell.

Frequency reuse

The key characteristic of a cellular network is the ability to re-use frequencies to increase both coverage and capacity. As described above, adjacent cells must use different frequencies, however there is no problem with two cells sufficiently far apart operating on the same frequency, provided the masts and cellular network users' equipment do not transmit with too much power.

The elements that determine frequency reuse are the reuse distance and the reuse factor. The reuse distance, D is calculated as
,
where R is the cell radius and N is the number of cells per cluster. Cells may vary in radius from 1 to 30 kilometres (0.62 to 18.64 mi). The boundaries of the cells can also overlap between adjacent cells and large cells can be divided into smaller cells.

The frequency reuse factor is the rate at which the same frequency can be used in the network. It is 1/K (or K according to some books) where K is the number of cells which cannot use the same frequencies for transmission. Common values for the frequency reuse factor are 1/3, 1/4, 1/7, 1/9 and 1/12 (or 3, 4, 7, 9 and 12 depending on notation).

In case of N sector antennas on the same base station site, each with different direction, the base station site can serve N different sectors. N is typically 3. A reuse pattern of N/K denotes a further division in frequency among N sector antennas per site. Some current and historical reuse patterns are 3/7 (North American AMPS), 6/4 (Motorola NAMPS), and 3/4 (GSM).

If the total available bandwidth is B, each cell can only use a number of frequency channels corresponding to a bandwidth of B/K, and each sector can use a bandwidth of B/NK.

Code-division multiple access-based systems use a wider frequency band to achieve the same rate of transmission as FDMA, but this is compensated for by the ability to use a frequency reuse factor of 1, for example using a reuse pattern of 1/1. In other words, adjacent base station sites use the same frequencies, and the different base stations and users are separated by codes rather than frequencies. While N is shown as 1 in this example, that does not mean the CDMA cell has only one sector, but rather that the entire cell bandwidth is also available to each sector individually. 

Depending on the size of the city, a taxi system may not have any frequency-reuse in its own city, but certainly in other nearby cities, the same frequency can be used. In a large city, on the other hand, frequency-reuse could certainly be in use.

Recently also orthogonal frequency-division multiple access based systems such as LTE are being deployed with a frequency reuse of 1. Since such systems do not spread the signal across the frequency band, inter-cell radio resource management is important to coordinate resource allocation between different cell sites and to limit the inter-cell interference. There are various means of Inter-Cell Interference Coordination (ICIC) already defined in the standard. Coordinated scheduling, multi-site MIMO or multi-site beam forming are other examples for inter-cell radio resource management that might be standardized in the future.

Directional antennas

Cellular telephone frequency reuse pattern. See U.S. Patent 4,144,411
 
Cell towers frequently use a directional signal to improve reception in higher-traffic areas. In the United States, the Federal Communications Commission (FCC) limits omnidirectional cell tower signals to 100 watts of power. If the tower has directional antennas, the FCC allows the cell operator to broadcast up to 500 watts of effective radiated power (ERP).

Although the original cell towers created an even, omnidirectional signal, were at the centers of the cells and were omnidirectional, a cellular map can be redrawn with the cellular telephone towers located at the corners of the hexagons where three cells converge. Each tower has three sets of directional antennas aimed in three different directions with 120 degrees for each cell (totaling 360 degrees) and receiving/transmitting into three different cells at different frequencies. This provides a minimum of three channels, and three towers for each cell and greatly increases the chances of receiving a usable signal from at least one direction.

The numbers in the illustration are channel numbers, which repeat every 3 cells. Large cells can be subdivided into smaller cells for high volume areas.

Cell phone companies also use this directional signal to improve reception along highways and inside buildings like stadiums and arenas.

Broadcast messages and paging

Practically every cellular system has some kind of broadcast mechanism. This can be used directly for distributing information to multiple mobiles. Commonly, for example in mobile telephony systems, the most important use of broadcast information is to set up channels for one-to-one communication between the mobile transceiver and the base station. This is called paging. The three different paging procedures generally adopted are sequential, parallel and selective paging. 

The details of the process of paging vary somewhat from network to network, but normally we know a limited number of cells where the phone is located (this group of cells is called a Location Area in the GSM or UMTS system, or Routing Area if a data packet session is involved; in LTE, cells are grouped into Tracking Areas). Paging takes place by sending the broadcast message to all of those cells. Paging messages can be used for information transfer. This happens in pagers, in CDMA systems for sending SMS messages, and in the UMTS system where it allows for low downlink latency in packet-based connections.

Movement from cell to cell and handing over

In a primitive taxi system, when the taxi moved away from a first tower and closer to a second tower, the taxi driver manually switched from one frequency to another as needed. If a communication was interrupted due to a loss of a signal, the taxi driver asked the base station operator to repeat the message on a different frequency. 

In a cellular system, as the distributed mobile transceivers move from cell to cell during an ongoing continuous communication, switching from one cell frequency to a different cell frequency is done electronically without interruption and without a base station operator or manual switching. This is called the handover or handoff. Typically, a new channel is automatically selected for the mobile unit on the new base station which will serve it. The mobile unit then automatically switches from the current channel to the new channel and communication continues. 

The exact details of the mobile system's move from one base station to the other varies considerably from system to system (see the example below for how a mobile phone network manages handover).

Mobile phone network

GSM network architecture
 
The most common example of a cellular network is a mobile phone (cell phone) network. A mobile phone is a portable telephone which receives or makes calls through a cell site (base station), or transmitting tower. Radio waves are used to transfer signals to and from the cell phone.

Modern mobile phone networks use cells because radio frequencies are a limited, shared resource. Cell-sites and handsets change frequency under computer control and use low power transmitters so that the usually limited number of radio frequencies can be simultaneously used by many callers with less interference.

A cellular network is used by the mobile phone operator to achieve both coverage and capacity for their subscribers. Large geographic areas are split into smaller cells to avoid line-of-sight signal loss and to support a large number of active phones in that area. All of the cell sites are connected to telephone exchanges (or switches), which in turn connect to the public telephone network.

In cities, each cell site may have a range of up to approximately 12 mile (0.80 km), while in rural areas, the range could be as much as 5 miles (8.0 km). It is possible that in clear open areas, a user may receive signals from a cell site 25 miles (40 km) away. 

Since almost all mobile phones use cellular technology, including GSM, CDMA, and AMPS (analog), the term "cell phone" is in some regions, notably the US, used interchangeably with "mobile phone". However, satellite phones are mobile phones that do not communicate directly with a ground-based cellular tower, but may do so indirectly by way of a satellite.

There are a number of different digital cellular technologies, including: Global System for Mobile Communications (GSM), General Packet Radio Service (GPRS), cdmaOne, CDMA2000, Evolution-Data Optimized (EV-DO), Enhanced Data Rates for GSM Evolution (EDGE), Universal Mobile Telecommunications System (UMTS), Digital Enhanced Cordless Telecommunications (DECT), Digital AMPS (IS-136/TDMA), and Integrated Digital Enhanced Network (iDEN). The transition from existing analog to the digital standard followed a very different path in Europe and the US. As a consequence, multiple digital standards surfaced in the US, while Europe and many countries converged towards the GSM standard.

Structure of the mobile phone cellular network

A simple view of the cellular mobile-radio network consists of the following:
This network is the foundation of the GSM system network. There are many functions that are performed by this network in order to make sure customers get the desired service including mobility management, registration, call set-up, and handover

Any phone connects to the network via an RBS (Radio Base Station) at a corner of the corresponding cell which in turn connects to the Mobile switching center (MSC). The MSC provides a connection to the public switched telephone network (PSTN). The link from a phone to the RBS is called an uplink while the other way is termed downlink.

Radio channels effectively use the transmission medium through the use of the following multiplexing and access schemes: frequency division multiple access (FDMA), time division multiple access (TDMA), code division multiple access (CDMA), and space division multiple access (SDMA).

Small cells

Small cells, which have a smaller coverage area than base stations, are categorised as follows:

Cellular handover in mobile phone networks

As the phone user moves from one cell area to another cell while a call is in progress, the mobile station will search for a new channel to attach to in order not to drop the call. Once a new channel is found, the network will command the mobile unit to switch to the new channel and at the same time switch the call onto the new channel.

With CDMA, multiple CDMA handsets share a specific radio channel. The signals are separated by using a pseudonoise code (PN code) that is specific to each phone. As the user moves from one cell to another, the handset sets up radio links with multiple cell sites (or sectors of the same site) simultaneously. This is known as "soft handoff" because, unlike with traditional cellular technology, there is no one defined point where the phone switches to the new cell.

In IS-95 inter-frequency handovers and older analog systems such as NMT it will typically be impossible to test the target channel directly while communicating. In this case other techniques have to be used such as pilot beacons in IS-95. This means that there is almost always a brief break in the communication while searching for the new channel followed by the risk of an unexpected return to the old channel.

If there is no ongoing communication or the communication can be interrupted, it is possible for the mobile unit to spontaneously move from one cell to another and then notify the base station with the strongest signal.

Cellular frequency choice in mobile phone networks

The effect of frequency on cell coverage means that different frequencies serve better for different uses. Low frequencies, such as 450 MHz NMT, serve very well for countryside coverage. GSM 900 (900 MHz) is a suitable solution for light urban coverage. GSM 1800 (1.8 GHz) starts to be limited by structural walls. UMTS, at 2.1 GHz is quite similar in coverage to GSM 1800.

Higher frequencies are a disadvantage when it comes to coverage, but it is a decided advantage when it comes to capacity. Pico cells, covering e.g. one floor of a building, become possible, and the same frequency can be used for cells which are practically neighbours. 

Cell service area may also vary due to interference from transmitting systems, both within and around that cell. This is true especially in CDMA based systems. The receiver requires a certain signal-to-noise ratio, and the transmitter should not send with too high transmission power in view to not cause interference with other transmitters. As the receiver moves away from the transmitter, the power received decreases, so the power control algorithm of the transmitter increases the power it transmits to restore the level of received power. As the interference (noise) rises above the received power from the transmitter, and the power of the transmitter cannot be increased any more, the signal becomes corrupted and eventually unusable. In CDMA-based systems, the effect of interference from other mobile transmitters in the same cell on coverage area is very marked and has a special name, cell breathing

One can see examples of cell coverage by studying some of the coverage maps provided by real operators on their web sites or by looking at independently crowdsourced maps such as OpenSignal. In certain cases they may mark the site of the transmitter, in others it can be calculated by working out the point of strongest coverage. 

A cellular repeater is used to extend cell coverage into larger areas. They range from wideband repeaters for consumer use in homes and offices to smart or digital repeaters for industrial needs.

Coverage comparison of different frequencies

The following table shows the dependency of the coverage area of one cell on the frequency of a CDMA2000 network:

Frequency (MHz) Cell radius (km) Cell area (km2) Relative Cell Count
450 48.9 7521 1
950 26.9 2269 3.3
1800 14.0 618 12.2
2100 12.0 449 16.2

Electrolysis

From Wikipedia, the free encyclopedia

Illustration of an electrolysis apparatus used in a school laboratory
 
In chemistry and manufacturing, electrolysis is a technique that uses a direct electric current (DC) to drive an otherwise non-spontaneous chemical reaction. Electrolysis is commercially important as a stage in the separation of elements from naturally occurring sources such as ores using an electrolytic cell. The voltage that is needed for electrolysis to occur is called the decomposition potential.

History

The word "electrolysis" was introduced by Michael Faraday in the 19th century, on the suggestion of the Rev. William Whewell, using the Greek words ἤλεκτρον [ɛ̌ːlektron] "amber", which since the 17th century was associated with electric phenomena, and λύσις [lýsis] meaning "dissolution". Nevertheless, electrolysis, as a tool to study chemical reactions and obtain pure elements, precedes the coinage of the term and formal description by Faraday.

Overview

Electrolysis is the passing of a direct electric current through an ionic substance that is either molten or dissolved in a suitable solvent, producing chemical reactions at the electrodes and a decomposition of the materials. 

The main components required to achieve electrolysis are:
Electrodes of metal, graphite and semiconductor material are widely used. Choice of suitable electrode depends on chemical reactivity between the electrode and electrolyte and manufacturing cost.

Process of electrolysis

The key process of electrolysis is the interchange of atoms and ions by the removal or addition of electrons from the external circuit. The desired products of electrolysis are often in a different physical state from the electrolyte and can be removed by some physical processes. For example, in the electrolysis of brine to produce hydrogen and chlorine, the products are gaseous. These gaseous products bubble from the electrolyte and are collected.
2 NaCl + 2 H2O → 2 NaOH + H2 + Cl2
A liquid containing electrolyte is produced by:
An electrical potential is applied across a pair of electrodes immersed in the electrolyte. 

Each electrode attracts ions that are of the opposite charge. Positively charged ions (cations) move towards the electron-providing (negative) cathode. Negatively charged ions (anions) move towards the electron-extracting (positive) anode. 

In this process electrons are either absorbed or released. Neutral atoms gain or lose electrons and become charged ions that then pass into the electrolyte. The formation of uncharged atoms from ions is called discharging. When an ion gains or loses enough electrons to become uncharged (neutral) atoms, the newly formed atoms separate from the electrolyte. Positive metal ions like Cu2+deposit onto the cathode in a layer. The terms for this are electroplating, electrowinning, and electrorefining. When an ion gains or loses electrons without becoming neutral, its electronic charge is altered in the process. In chemistry, the loss of electrons is called oxidation, while electron gain is called reduction.

Oxidation and reduction at the electrodes

Oxidation of ions or neutral molecules occurs at the anode. For example, it is possible to oxidize ferrous ions to ferric ions at the anode:
Fe2+(aq) → Fe3+(aq) + e
Reduction of ions or neutral molecules occurs at the cathode

It is possible to reduce ferricyanide ions to ferrocyanide ions at the cathode:
Fe(CN)3-
6
+ e → Fe(CN)4-
6
Neutral molecules can also react at either of the electrodes. For example: p-Benzoquinone can be reduced to hydroquinone at the cathode: 

P-Benzochinon.svg + 2 e + 2 H+ Hydrochinon2.svg

In the last example, H+ ions (hydrogen ions) also take part in the reaction, and are provided by an acid in the solution, or by the solvent itself (water, methanol etc.). Electrolysis reactions involving H+ ions are fairly common in acidic solutions. In aqueous alkaline solutions, reactions involving OH (hydroxide ions) are common. 

Sometimes the solvents themselves (usually water) are oxidized or reduced at the electrodes. It is even possible to have electrolysis involving gases. Such as when using a Gas diffusion electrode.

Energy changes during electrolysis

The amount of electrical energy that must be added equals the change in Gibbs free energy of the reaction plus the losses in the system. The losses can (in theory) be arbitrarily close to zero, so the maximum thermodynamic efficiency equals the enthalpy change divided by the free energy change of the reaction. In most cases, the electric input is larger than the enthalpy change of the reaction, so some energy is released in the form of heat. In some cases, for instance, in the electrolysis of steam into hydrogen and oxygen at high temperature, the opposite is true and heat energy is absorbed. This heat is absorbed from the surroundings, and the heating value of the produced hydrogen is higher than the electric input.

Related techniques

The following techniques are related to electrolysis:
  • Electrochemical cells, including the hydrogen fuel cell, use differences in Standard electrode potential to generate an electrical potential that provides useful power. Though related via the interaction of ions and electrolysis and the operation of electrochemical cells are quite distinct. However, a chemical cell should not be seen as performing electrolysis in reverse.

Faraday's laws of electrolysis

First law of electrolysis

In 1832, Michael Faraday reported that the quantity of elements separated by passing an electric current through a molten or dissolved salt is proportional to the quantity of electric charge passed through the circuit. This became the basis of the first law of electrolysis. The mass of the substance (m) deposited or liberated at any electrode is directly proportional to the quantity of electricity or charge (Q) passed. In this equation k is equal to the electromechanical constant.
or
where; e is known as electrochemical equivalent of the metal deposited or of the gas liberated at the electrode.

Second law of electrolysis

Faraday discovered that when the same amount of current is passed through different electrolytes/elements connected in series, the mass of substance liberated/deposited at the electrodes is directly proportional to their equivalent weight.

Industrial uses

Electrolysis has many other uses:
Electrolysis is also used in the cleaning and preservation of old artifacts. Because the process separates the non-metallic particles from the metallic ones, it is very useful for cleaning a wide variety of metallic objects, from old coins to even larger objects including rusted cast iron cylinder blocks and heads when rebuilding automobile engines. Rust removal from small iron or steel objects by electrolysis can be done in a home workshop using simple materials such as a plastic bucket, tap water, lengths of rebar, washing soda, baling wire, and a battery charger.

Manufacturing processes

In manufacturing, electrolysis can be used for:
  • Electroplating, where a thin film of metal is deposited over a substrate material. Electroplating is used in many industries for either functional or decorative purposes, as in vehicle bodies and nickel coins.
  • Electrochemical machining (ECM), where an electrolytic cathode is used as a shaped tool for removing material by anodic oxidation from a workpiece. ECM is often used as technique for deburring or for etching metal surfaces like tools or knives with a permanent mark or logo.

Competing half-reactions in solution electrolysis

Using a cell containing inert platinum electrodes, electrolysis of aqueous solutions of some salts leads to reduction of the cations (e.g., metal deposition with, e.g., zinc salts) and oxidation of the anions (e.g. evolution of bromine with bromides). However, with salts of some metals (e.g. sodium) hydrogen is evolved at the cathode, and for salts containing some anions (e.g. sulfate SO42−) oxygen is evolved at the anode. In both cases this is due to water being reduced to form hydrogen or oxidized to form oxygen. In principle the voltage required to electrolyze a salt solution can be derived from the standard electrode potential for the reactions at the anode and cathode. The standard electrode potential is directly related to the Gibbs free energy, ΔG, for the reactions at each electrode and refers to an electrode with no current flowing.

In terms of electrolysis, this should be interpreted as follows:
  • Oxidized species (often a cation) with a more negative cell potential are more difficult to reduce than oxidized species with a more positive cell potential. For example, it is more difficult to reduce a sodium ion to a sodium metal than it is to reduce a zinc ion to a zinc metal.
  • Reduced species (often an anion) with a more positive cell potential are more difficult to oxidize than reduced species with a more negative cell potential. For example, it is more difficult to oxidize sulfate anions than it is to oxidize bromide anions.
Using the Nernst equation the electrode potential can be calculated for a specific concentration of ions, temperature and the number of electrons involved. For pure water (pH 7):
  • the electrode potential for the reduction producing hydrogen is −0.41 V
  • the electrode potential for the oxidation producing oxygen is +0.82 V.
Comparable figures calculated in a similar way, for 1M zinc bromide, ZnBr2, are −0.76 V for the reduction to Zn metal and +1.10 V for the oxidation producing bromine. The conclusion from these figures is that hydrogen should be produced at the cathode and oxygen at the anode from the electrolysis of water—which is at variance with the experimental observation that zinc metal is deposited and bromine is produced. The explanation is that these calculated potentials only indicate the thermodynamically preferred reaction. In practice many other factors have to be taken into account such as the kinetics of some of the reaction steps involved. These factors together mean that a higher potential is required for the reduction and oxidation of water than predicted, and these are termed overpotentials. Experimentally it is known that overpotentials depend on the design of the cell and the nature of the electrodes. 

For the electrolysis of a neutral (pH 7) sodium chloride solution, the reduction of sodium ion is thermodynamically very difficult and water is reduced evolving hydrogen leaving hydroxide ions in solution. At the anode the oxidation of chlorine is observed rather than the oxidation of water since the overpotential for the oxidation of chloride to chlorine is lower than the overpotential for the oxidation of water to oxygen. The hydroxide ions and dissolved chlorine gas react further to form hypochlorous acid. The aqueous solutions resulting from this process is called electrolyzed water and is used as a disinfectant and cleaning agent.

Research trends

Electrolysis of carbon dioxide

The electrochemical reduction or electrocatalytic conversion of CO2 can produce value-added chemicals such methane, ethylene, ethane, etc. The electrolysis of carbon dioxide gives formate or carbon monoxide, but sometimes more elaborate organic compounds such as ethylene. This technology is under research as a carbon-neutral route to organic compounds.

Electrolysis of acidified water

Electrolysis of water produces hydrogen.
2 H2O(l) → 2 H2(g) + O2(g); E0 = +1.229 V
The energy efficiency of water electrolysis varies widely. The efficiency of an electrolyser is a measure of the enthalpy contained in the hydrogen (to undergo combustion with oxygen, or some other later reaction), compared with the input electrical energy. Heat/enthalpy values for hydrogen are well published in science and engineering texts, as 144 MJ/kg. Note that fuel cells (not electrolysers) cannot use this full amount of heat/enthalpy, which has led to some confusion when calculating efficiency values for both types of technology. In the reaction, some energy is lost as heat. Some reports quote efficiencies between 50% and 70% for alkaline electrolysers; however, much higher practical efficiencies are available with the use of PEM (Polymer Electrolyte Membrane electrolysis) and catalytic technology, such as 95% efficiency.

NREL estimated that 1 kg of hydrogen (roughly equivalent to 3 kg, or 4 L, of petroleum in energy terms) could be produced by wind powered electrolysis for between $5.55 in the near term and $2.27 in the long term.

About 4% of hydrogen gas produced worldwide is generated by electrolysis, and normally used onsite. Hydrogen is used for the creation of ammonia for fertilizer via the Haber process, and converting heavy petroleum sources to lighter fractions via hydrocracking.

Carbon/hydrocarbon assisted water electrolysis (CAWE)

Recently, to reduce the energy input, the utilization of carbon (coal), alcohols (hydrocarbon solution), and organic solution (glycerol, formic acid, ethylene glycol, etc.) with co-electrolysis of water has been proposed as a viable option. The carbon/hydrocarbon assisted water electrolysis (so-called CAWE) process for hydrogen generation would perform this operation in a single electrochemical reactor. This system energy balance can be required only around 40% electric input with 60% coming from the chemical energy of carbon or hydrocarbon. This process utilizes solid coal/carbon particles or powder as fuels dispersed in acid/alkaline electrolyte in the form of slurry and the carbon contained source co-assist in the electrolysis process as following theoretical overall reactions:

Carbon/Coal slurry (C + 2H2O) -> CO2 + 2H2 E' = 0.21 V (reversible voltage) / E' = 0.46 V (thermo-neutral voltage)

or

Carbon/Coal slurry (C + H2O) -> CO + H2 E' = 0.52 V reversible voltage) / E' = 0.91 V (thermo-neutral voltage)

Thus, this CAWE approach is that the actual cell overpotential can be significantly reduced to below 1 V as compared to 1.5 V for conventional water electrolysis.

Electrocrystallization

A specialized application of electrolysis involves the growth of conductive crystals on one of the electrodes from oxidized or reduced species that are generated in situ. The technique has been used to obtain single crystals of low-dimensional electrical conductors, such as charge-transfer salts.

History

Scientific pioneers of electrolysis include:
Pioneers of batteries:

Roman citizenship

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rom...