Search This Blog

Wednesday, June 10, 2020

Termite

From Wikipedia, the free encyclopedia

Termite
Temporal range: Cretaceous–Recent
O
S
D
C
P
T
J
K
N
Coptotermes formosanus shiraki USGov k8204-7.jpg
Formosan subterranean termite (Coptotermes formosanus)
Soldiers (red-coloured heads)
Workers (pale-coloured heads)
Scientific classification e
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Cohort: Polyneoptera
Superorder: Dictyoptera
Order: Blattodea
Infraorder: Isoptera
Brullé, 1832
Families
Cratomastotermitidae
Mastotermitidae
Termopsidae
Archotermopsidae
Hodotermitidae
Stolotermitidae
Kalotermitidae
Archeorhinotermitidae
Stylotermitidae
Rhinotermitidae
Serritermitidae
Termitidae

Termites are eusocial insects that are classified at the taxonomic rank of infraorder Isoptera, or as epifamily Termitoidae within the order Blattodea (along with cockroaches). Termites were once classified in a separate order from cockroaches, but recent phylogenetic studies indicate that they evolved from cockroaches, as sister to Cryptocercus. Previous estimates suggested the divergence took place during the Jurassic or Triassic, however more recent estimates suggest they have an origin during the early Cretaceous with the first fossil records in the mid Cretaceous. About 3,106 species are currently described, with a few hundred more left to be described. Although these insects are often called "white ants", they are not ants, and are not closely related to ants.

Like ants and some bees and wasps from the separate order Hymenoptera, termites divide as "workers" and "soldiers" that are usually sterile. All colonies have fertile males called "kings" and one or more fertile females called "queens". Termites mostly feed on dead plant material and cellulose, generally in the form of wood, leaf litter, soil, or animal dung. Termites are major detritivores, particularly in the subtropical and tropical regions, and their recycling of wood and plant matter is of considerable ecological importance.

Termites are among the most successful groups of insects on Earth, colonising most landmasses except Antarctica. Their colonies range in size from a few hundred individuals to enormous societies with several million individuals. Termite queens have the longest known lifespan of any insect, with some queens reportedly living up to 30 to 50 years. Unlike ants, which undergo a complete metamorphosis, each individual termite goes through an incomplete metamorphosis that proceeds through egg, nymph, and adult stages. Colonies are described as superorganisms because the termites form part of a self-regulating entity: the colony itself.

Termites are a delicacy in the diet of some human cultures and are used in many traditional medicines. Several hundred species are economically significant as pests that can cause serious damage to buildings, crops, or plantation forests. Some species, such as the West Indian drywood termite (Cryptotermes brevis), are regarded as invasive species.

Etymology

The infraorder name Isoptera is derived from the Greek words iso (equal) and ptera (winged), which refers to the nearly equal size of the fore and hind wings. "Termite" derives from the Latin and Late Latin word termes ("woodworm, white ant"), altered by the influence of Latin terere ("to rub, wear, erode") from the earlier word tarmes. Termite nests were commonly known as terminarium or termitaria. In earlier English, termites were known as "wood ants" or "white ants". The modern term was first used in 1781.

Taxonomy and evolution

The giant northern termite is the most primitive living termite. Its body plan has been described as a cockroach's abdomen stuck to a termite's fore part. Its wings have the same form as roach wings, and like roaches, it lays its eggs in a case.
The external appearance of the giant northern termite Mastotermes darwiniensis is suggestive of the close relationship between termites and cockroaches.
 
Termites were formerly placed in the order Isoptera. As early as 1934 suggestions were made that they were closely related to wood-eating cockroaches (genus Cryptocercus, the woodroach) based on the similarity of their symbiotic gut flagellates. In the 1960s additional evidence supporting that hypothesis emerged when F. A. McKittrick noted similar morphological characteristics between some termites and Cryptocercus nymphs. In 2008 DNA analysis from 16S rRNA sequences supported the position of termites being nested within the evolutionary tree containing the order Blattodea, which included the cockroaches. The cockroach genus Cryptocercus shares the strongest phylogenetical similarity with termites and is considered to be a sister-group to termites. Termites and Cryptocercus share similar morphological and social features: for example, most cockroaches do not exhibit social characteristics, but Cryptocercus takes care of its young and exhibits other social behaviour such as trophallaxis and allogrooming. Termites are thought to be the descendants of the genus Cryptocercus. Some researchers have suggested a more conservative measure of retaining the termites as the Termitoidae, an epifamily within the cockroach order, which preserves the classification of termites at family level and below. Termites have long been accepted to be closely related to cockroaches and mantids, and they are classified in the same superorder (Dictyoptera).

The oldest unambiguous termite fossils date to the early Cretaceous, but given the diversity of Cretaceous termites and early fossil records showing mutualism between microorganisms and these insects, they possibly originated earlier in the Jurassic or Triassic. Possible evidence of a Jurassic origin is the assumption that the extinct Fruitafossor consumed termites, judging from its morphological similarity to modern termite-eating mammals. The oldest termite nest discovered is believed to be from the Upper Cretaceous in West Texas, where the oldest known faecal pellets were also discovered. Claims that termites emerged earlier have faced controversy. For example, F. M. Weesner indicated that the Mastotermitidae termites may go back to the Late Permian, 251 million years ago, and fossil wings that have a close resemblance to the wings of Mastotermes of the Mastotermitidae, the most primitive living termite, have been discovered in the Permian layers in Kansas. It is even possible that the first termites emerged during the Carboniferous. The folded wings of the fossil wood roach Pycnoblattina, arranged in a convex pattern between segments 1a and 2a, resemble those seen in Mastotermes, the only living insect with the same pattern. Krishna et al., though, consider that all of the Paleozoic and Triassic insects tentatively classified as termites are in fact unrelated to termites and should be excluded from the Isoptera. Other studies suggest that the origin of termites is more recent, having diverged from Cryptocercus sometime during the Early Cretaceous.

Macro image of a worker.

The primitive giant northern termite (Mastotermes darwiniensis) exhibits numerous cockroach-like characteristics that are not shared with other termites, such as laying its eggs in rafts and having anal lobes on the wings. It has been proposed that the Isoptera and Cryptocercidae be grouped in the clade "Xylophagodea". Termites are sometimes called "white ants" but the only resemblance to the ants is due to their sociality which is due to convergent evolution with termites being the first social insects to evolve a caste system more than 100 million years ago. Termite genomes are generally relatively large compared to that of other insects; the first fully sequenced termite genome, of Zootermopsis nevadensis, which was published in the journal Nature Communications, consists of roughly 500Mb, while two subsequently published genomes, Macrotermes natalensis and Cryptotermes secundus, are considerably larger at around 1.3Gb.

As of 2013, about 3,106 living and fossil termite species are recognised, classified in 12 families; reproductive and/or soldier castes are usually required for identification. The infraorder Isoptera is divided into the following clade and family groups, showing the subfamilies in their respective classification:

Neoisoptera

The Neoisoptera, literally meaning "newer termites" (in an evolutionary sense), are a recently coined nanorder that include families commonly referred-to as "higher termites", although some authorities only apply this term to the largest family Termitidae. The latter characteristically do not have Pseudergate nymphs (many "lower termite" worker nymphs have the capacity to develop into reproductive castes: see below). Cellulose digestion in "higher termites" has co-evolved with eukaryotic gut microbiota and many genera have symbiotic relationships with fungi such as Termitomyces; in contrast, "lower termites" typically have flagellates and prokaryotes in their hindguts. Five families are now included here:

Distribution and diversity

Termites are found on all continents except Antarctica. The diversity of termite species is low in North America and Europe (10 species known in Europe and 50 in North America), but is high in South America, where over 400 species are known. Of the 3,000 termite species currently classified, 1,000 are found in Africa, where mounds are extremely abundant in certain regions. Approximately 1.1 million active termite mounds can be found in the northern Kruger National Park alone. In Asia, there are 435 species of termites, which are mainly distributed in China. Within China, termite species are restricted to mild tropical and subtropical habitats south of the Yangtze River. In Australia, all ecological groups of termites (dampwood, drywood, subterranean) are endemic to the country, with over 360 classified species.

Due to their soft cuticles, termites do not inhabit cool or cold habitats. There are three ecological groups of termites: dampwood, drywood and subterranean. Dampwood termites are found only in coniferous forests, and drywood termites are found in hardwood forests; subterranean termites live in widely diverse areas. One species in the drywood group is the West Indian drywood termite (Cryptotermes brevis), which is an invasive species in Australia.

Diversity of Isoptera by continent:

Asia Africa North America South America Europe Australia
Estimated number of species 435 1,000 50 400 10 360

Description

Close-up view of a worker's head
 
Termites are usually small, measuring between 4 to 15 millimetres (0.16 to 0.59 in) in length. The largest of all extant termites are the queens of the species Macrotermes bellicosus, measuring up to over 10 centimetres (4 in) in length. Another giant termite, the extinct Gyatermes styriensis, flourished in Austria during the Miocene and had a wingspan of 76 millimetres (3.0 in) and a body length of 25 millimetres (0.98 in).

Most worker and soldier termites are completely blind as they do not have a pair of eyes. However, some species, such as Hodotermes mossambicus, have compound eyes which they use for orientation and to distinguish sunlight from moonlight. The alates (winged males and females) have eyes along with lateral ocelli. Lateral ocelli, however, are not found in all termites, absent in the families Hodotermitidae, Termopsidae, and Archotermopsidae. Like other insects, termites have a small tongue-shaped labrum and a clypeus; the clypeus is divided into a postclypeus and anteclypeus. Termite antennae have a number of functions such as the sensing of touch, taste, odours (including pheromones), heat and vibration. The three basic segments of a termite antenna include a scape, a pedicel (typically shorter than the scape), and the flagellum (all segments beyond the scape and pedicel). The mouth parts contain a maxillae, a labium, and a set of mandibles. The maxillae and labium have palps that help termites sense food and handling.

Consistent with all insects, the anatomy of the termite thorax consists of three segments: the prothorax, the mesothorax and the metathorax. Each segment contains a pair of legs. On alates, the wings are located at the mesothorax and metathorax. The mesothorax and metathorax have well-developed exoskeletal plates; the prothorax has smaller plates.

Diagram showing a wing, along with the clypeus and leg

Termites have a ten-segmented abdomen with two plates, the tergites and the sternites. The tenth abdominal segment has a pair of short cerci. There are ten tergites, of which nine are wide and one is elongated. The reproductive organs are similar to those in cockroaches but are more simplified. For example, the intromittent organ is not present in male alates, and the sperm is either immotile or aflagellate. However, Mastotermitidae termites have multiflagellate sperm with limited motility. The genitals in females are also simplified. Unlike in other termites, Mastotermitidae females have an ovipositor, a feature strikingly similar to that in female cockroaches.

The non-reproductive castes of termites are wingless and rely exclusively on their six legs for locomotion. The alates fly only for a brief amount of time, so they also rely on their legs. The appearance of the legs is similar in each caste, but the soldiers have larger and heavier legs. The structure of the legs is consistent with other insects: the parts of a leg include a coxa, trochanter, femur, tibia and the tarsus. The number of tibial spurs on an individual's leg varies. Some species of termite have an arolium, located between the claws, which is present in species that climb on smooth surfaces but is absent in most termites.

Unlike in ants, the hind-wings and fore-wings are of equal length. Most of the time, the alates are poor flyers; their technique is to launch themselves in the air and fly in a random direction. Studies show that in comparison to larger termites, smaller termites cannot fly long distances. When a termite is in flight, its wings remain at a right angle, and when the termite is at rest, its wings remain parallel to the body.

Caste system

Caste system of termites
A – King
B – Queen
C – Secondary queen
D – Tertiary queen
E – Soldiers
F – Worker

Worker termites undertake the most labour within the colony, being responsible for foraging, food storage, and brood and nest maintenance. Workers are tasked with the digestion of cellulose in food and are thus the most likely caste to be found in infested wood. The process of worker termites feeding other nestmates is known as trophallaxis. Trophallaxis is an effective nutritional tactic to convert and recycle nitrogenous components. It frees the parents from feeding all but the first generation of offspring, allowing for the group to grow much larger and ensuring that the necessary gut symbionts are transferred from one generation to another. Some termite species may rely on nymphs to perform work without differentiating as a separate caste. Workers may be male or female and are usually sterile, especially in termites that have a nest site that is separate from their foraging site. Sterile workers are sometimes termed as true workers while those that are fertile, as in the wood-nesting Archotermopsidae, are termed as false workers.

The soldier caste has anatomical and behavioural specialisations, and their sole purpose is to defend the colony. Many soldiers have large heads with highly modified powerful jaws so enlarged they cannot feed themselves. Instead, like juveniles, they are fed by workers. Fontanelles, simple holes in the forehead that exude defensive secretions, are a feature of the family Rhinotermitidae. Many species are readily identified using the characteristics of the soldiers' larger and darker head and large mandibles. Among certain termites, soldiers may use their globular (phragmotic) heads to block their narrow tunnels. Different sorts of soldiers include minor and major soldiers, and nasutes, which have a horn-like nozzle frontal projection (a nasus). These unique soldiers are able to spray noxious, sticky secretions containing diterpenes at their enemies. Nitrogen fixation plays an important role in nasute nutrition. Soldiers are usually sterile but some species of Archotermopsidae are known to have neotenic forms with soldier-like heads while also having sexual organs.

The reproductive caste of a mature colony includes a fertile female and male, known as the queen and king. The queen of the colony is responsible for egg production for the colony. Unlike in ants, the king mates with her for life. In some species, the abdomen of the queen swells up dramatically to increase fecundity, a characteristic known as physogastrism. Depending on the species, the queen starts producing reproductive winged alates at a certain time of the year, and huge swarms emerge from the colony when nuptial flight begins. These swarms attract a wide variety of predators.

Life cycle

A termite nymph looks like a smaller version of an adult but lacks the specialisations that would enable identification of its caste.
A young termite nymph. Nymphs first moult into workers, but others may further moult to become soldiers or alates.
 
Termite, and shed wings from other termites, on an interior window sill. Shedding of wings is associated with reproductive swarming.
 
Termites are often compared with the social Hymenoptera (ants and various species of bees and wasps), but their differing evolutionary origins result in major differences in life cycle. In the eusocial Hymenoptera, the workers are exclusively female. Males (drones) are haploid and develop from unfertilised eggs, while females (both workers and the queen) are diploid and develop from fertilised eggs. In contrast, worker termites, which constitute the majority in a colony, are diploid individuals of both sexes and develop from fertilised eggs. Depending on species, male and female workers may have different roles in a termite colony.

The life cycle of a termite begins with an egg, but is different from that of a bee or ant in that it goes through a developmental process called incomplete metamorphosis, with egg, nymph and adult stages. Nymphs resemble small adults, and go through a series of moults as they grow. In some species, eggs go through four moulting stages and nymphs go through three. Nymphs first moult into workers, and then some workers go through further moulting and become soldiers or alates; workers become alates only by moulting into alate nymphs.

The development of nymphs into adults can take months; the time period depends on food availability, temperature, and the general population of the colony. Since nymphs are unable to feed themselves, workers must feed them, but workers also take part in the social life of the colony and have certain other tasks to accomplish such as foraging, building or maintaining the nest or tending to the queen. Pheromones regulate the caste system in termite colonies, preventing all but a very few of the termites from becoming fertile queens.

Queens of the eusocial termite Reticulitermes speratus are capable of a long lifespan without sacrificing fecundity. These long-lived queens have a significantly lower level of oxidative damage, including oxidative DNA damage, than workers, soldiers and nymphs. The lower levels of damage appear to be due to increased catalase, an enzyme that protects against oxidative stress.

Reproduction

Hundreds of winged termite reproductives swarming after a summer rain, filling the field of the photograph.
Alates swarming during nuptial flight after rain

Termite alates only leave the colony when a nuptial flight takes place. Alate males and females pair up together and then land in search of a suitable place for a colony. A termite king and queen do not mate until they find such a spot. When they do, they excavate a chamber big enough for both, close up the entrance and proceed to mate. After mating, the pair never go outside and spend the rest of their lives in the nest. Nuptial flight time varies in each species. For example, alates in certain species emerge during the day in summer while others emerge during the winter. The nuptial flight may also begin at dusk, when the alates swarm around areas with lots of lights. The time when nuptial flight begins depends on the environmental conditions, the time of day, moisture, wind speed and precipitation. The number of termites in a colony also varies, with the larger species typically having 100–1,000 individuals. However, some termite colonies, including those with large individuals, can number in the millions.

The queen only lays 10–20 eggs in the very early stages of the colony, but lays as many as 1,000 a day when the colony is several years old. At maturity, a primary queen has a great capacity to lay eggs. In some species, the mature queen has a greatly distended abdomen and may produce 40,000 eggs a day. The two mature ovaries may have some 2,000 ovarioles each. The abdomen increases the queen's body length to several times more than before mating and reduces her ability to move freely; attendant workers provide assistance.

Egg grooming behaviour of Reticulitermes speratus workers in a nursery cell

The king grows only slightly larger after initial mating and continues to mate with the queen for life (a termite queen can live between 30 to 50 years); this is very different from ant colonies, in which a queen mates once with the male(s) and stores the gametes for life, as the male ants die shortly after mating. If a queen is absent, a termite king produces pheromones which encourage the development of replacement termite queens. As the queen and king are monogamous, sperm competition does not occur.

Termites going through incomplete metamorphosis on the path to becoming alates form a subcaste in certain species of termite, functioning as potential supplementary reproductives. These supplementary reproductives only mature into primary reproductives upon the death of a king or queen, or when the primary reproductives are separated from the colony. Supplementaries have the ability to replace a dead primary reproductive, and there may also be more than a single supplementary within a colony. Some queens have the ability to switch from sexual reproduction to asexual reproduction. Studies show that while termite queens mate with the king to produce colony workers, the queens reproduce their replacements (neotenic queens) parthenogenetically.

The neotropical termite Embiratermes neotenicus and several other related species produce colonies that contain a primary king accompanied by a primary queen or by up to 200 neotenic queens that had originated through thelytokous parthenogenesis of a founding primary queen. The form of parthenogenesis likely employed maintains heterozygosity in the passage of the genome from mother to daughter, thus avoiding inbreeding depression.

Behaviour and ecology

Diet

A dense pile of termite faecal pellets, about 10 centimeters by 20 centimeters by several centimeters in height, which have accumulated on a wooden shelf from termite activity somewhere above the frame of this photograph.
Termite faecal pellets

Termites are detritivores, consuming dead plants at any level of decomposition. They also play a vital role in the ecosystem by recycling waste material such as dead wood, faeces and plants. Many species eat cellulose, having a specialised midgut that breaks down the fibre. Termites are considered to be a major source (11%) of atmospheric methane, one of the prime greenhouse gases, produced from the breakdown of cellulose. Termites rely primarily upon symbiotic protozoa (metamonads) and other microbes such as flagellate protists in their guts to digest the cellulose for them, allowing them to absorb the end products for their own use.The microbial ecosystem present in the termite gut contains many species found nowhere else on Earth. Termites hatch without these symbionts present in their guts, and develop them after fed a culture from other termites. Gut protozoa, such as Trichonympha, in turn, rely on symbiotic bacteria embedded on their surfaces to produce some of the necessary digestive enzymes. Most higher termites, especially in the family Termitidae, can produce their own cellulase enzymes, but they rely primarily upon the bacteria. The flagellates have been lost in Termitidae. Researches have found species of spirochetes living in termite guts capable of fixing atmospheric nitrogen to a form usable by the insect. Scientists' understanding of the relationship between the termite digestive tract and the microbial endosymbionts is still rudimentary; what is true in all termite species, however, is that the workers feed the other members of the colony with substances derived from the digestion of plant material, either from the mouth or anus. Judging from closely related bacterial species, it is strongly presumed that the termites' and cockroach's gut microbiota derives from their dictyopteran ancestors.

Certain species such as Gnathamitermes tubiformans have seasonal food habits. For example, they may preferentially consume Red three-awn (Aristida longiseta) during the summer, Buffalograss (Buchloe dactyloides) from May to August, and blue grama Bouteloua gracilis during spring, summer and autumn. Colonies of G. tubiformans consume less food in spring than they do during autumn when their feeding activity is high.

Various woods differ in their susceptibility to termite attack; the differences are attributed to such factors as moisture content, hardness, and resin and lignin content. In one study, the drywood termite Cryptotermes brevis strongly preferred poplar and maple woods to other woods that were generally rejected by the termite colony. These preferences may in part have represented conditioned or learned behaviour.

Some species of termite practice fungiculture. They maintain a "garden" of specialised fungi of genus Termitomyces, which are nourished by the excrement of the insects. When the fungi are eaten, their spores pass undamaged through the intestines of the termites to complete the cycle by germinating in the fresh faecal pellets. Molecular evidence suggests that the family Macrotermitinae developed agriculture about 31 million years ago. It is assumed that more than 90 percent of dry wood in the semiarid savannah ecosystems of Africa and Asia are reprocessed by these termites. Originally living in the rainforest, fungus farming allowed them to colonise the African savannah and other new environments, eventually expanding into Asia.

Depending on their feeding habits, termites are placed into two groups: the lower termites and higher termites. The lower termites predominately feed on wood. As wood is difficult to digest, termites prefer to consume fungus-infected wood because it is easier to digest and the fungi are high in protein. Meanwhile, the higher termites consume a wide variety of materials, including faeces, humus, grass, leaves and roots. The gut in the lower termites contains many species of bacteria along with protozoa, while the higher termites only have a few species of bacteria with no protozoa.

Predators

Crab spider with a captured alate

Termites are consumed by a wide variety of predators. One termite species alone, Hodotermes mossambicus, was found in the stomach contents of 65 birds and 19 mammals. Arthropods such as ants, centipedes, cockroaches, crickets, dragonflies, scorpions and spiders, reptiles such as lizards, and amphibians such as frogs and toads consume termites, with two spiders in the family Ammoxenidae being specialist termite predators. Other predators include aardvarks, aardwolves, anteaters, bats, bears, bilbies, many birds, echidnas, foxes, galagos, numbats, mice and pangolins.[ The aardwolf is an insectivorous mammal that primarily feeds on termites; it locates its food by sound and also by detecting the scent secreted by the soldiers; a single aardwolf is capable of consuming thousands of termites in a single night by using its long, sticky tongue. Sloth bears break open mounds to consume the nestmates, while chimpanzees have developed tools to "fish" termites from their nest. Wear pattern analysis of bone tools used by the early hominin Paranthropus robustus suggests that they used these tools to dig into termite mounds.

A Matabele ant (Megaponera analis) kills a Macrotermes bellicosus termite soldier during a raid.
 
Among all predators, ants are the greatest enemy to termites. Some ant genera are specialist predators of termites. For example, Megaponera is a strictly termite-eating (termitophagous) genus that perform raiding activities, some lasting several hours. Paltothyreus tarsatus is another termite-raiding species, with each individual stacking as many termites as possible in its mandibles before returning home, all the while recruiting additional nestmates to the raiding site through chemical trails. The Malaysian basicerotine ants Eurhopalothrix heliscata uses a different strategy of termite hunting by pressing themselves into tight spaces, as they hunt through rotting wood housing termite colonies. Once inside, the ants seize their prey by using their short but sharp mandibles. Tetramorium uelense is a specialised predator species that feeds on small termites. A scout recruits 10–30 workers to an area where termites are present, killing them by immobilising them with their stinger. Centromyrmex and Iridomyrmex colonies sometimes nest in termite mounds, and so the termites are preyed on by these ants. No evidence for any kind of relationship (other than a predatory one) is known. Other ants, including Acanthostichus, Camponotus, Crematogaster, Cylindromyrmex, Leptogenys, Odontomachus, Ophthalmopone, Pachycondyla, Rhytidoponera, Solenopsis and Wasmannia, also prey on termites. In contrast to all these ant species, and despite their enormous diversity of prey, Dorylus ants rarely consume termites.

Ants are not the only invertebrates that perform raids. Many sphecoid wasps and several species including Polybia Lepeletier and Angiopolybia Araujo are known to raid termite mounds during the termites' nuptial flight.

Parasites, pathogens and viruses

Termites are less likely to be attacked by parasites than bees, wasps and ants, as they are usually well protected in their mounds. Nevertheless, termites are infected by a variety of parasites. Some of these include dipteran flies, Pyemotes mites, and a large number of nematode parasites. Most nematode parasites are in the order Rhabditida; others are in the genus Mermis, Diplogaster aerivora and Harteria gallinarum. Under imminent threat of an attack by parasites, a colony may migrate to a new location. Fungal pathogens such as Aspergillus nomius and Metarhizium anisopliae are, however, major threats to a termite colony as they are not host-specific and may infect large portions of the colony; transmission usually occurs via direct physical contact. M. anisopliae is known to weaken the termite immune system. Infection with A. nomius only occurs when a colony is under great stress. 

Termites are infected by viruses including Entomopoxvirinae and the Nuclear Polyhedrosis Virus.

Locomotion and foraging

Because the worker and soldier castes lack wings and thus never fly, and the reproductives use their wings for just a brief amount of time, termites predominantly rely upon their legs to move about.

Foraging behaviour depends on the type of termite. For example, certain species feed on the wood structures they inhabit, and others harvest food that is near the nest. Most workers are rarely found out in the open, and do not forage unprotected; they rely on sheeting and runways to protect them from predators. Subterranean termites construct tunnels and galleries to look for food, and workers who manage to find food sources recruit additional nestmates by depositing a phagostimulant pheromone that attracts workers. Foraging workers use semiochemicals to communicate with each other, and workers who begin to forage outside of their nest release trail pheromones from their sternal glands. In one species, Nasutitermes costalis, there are three phases in a foraging expedition: first, soldiers scout an area. When they find a food source, they communicate to other soldiers and a small force of workers starts to emerge. In the second phase, workers appear in large numbers at the site. The third phase is marked by a decrease in the number of soldiers present and an increase in the number of workers. Isolated termite workers may engage in Lévy flight behaviour as an optimised strategy for finding their nestmates or foraging for food.

Competition

Competition between two colonies always results in agonistic behaviour towards each other, resulting in fights. These fights can cause mortality on both sides and, in some cases, the gain or loss of territory. "Cemetery pits" may be present, where the bodies of dead termites are buried.

Studies show that when termites encounter each other in foraging areas, some of the termites deliberately block passages to prevent other termites from entering. Dead termites from other colonies found in exploratory tunnels leads to the isolation of the area and thus the need to construct new tunnels. Conflict between two competitors does not always occur. For example, though they might block each other's passages, colonies of Macrotermes bellicosus and Macrotermes subhyalinus are not always aggressive towards each other. Suicide cramming is known in Coptotermes formosanus. Since C. formosanus colonies may get into physical conflict, some termites squeeze tightly into foraging tunnels and die, successfully blocking the tunnel and ending all agonistic activities.

Among the reproductive caste, neotenic queens may compete with each other to become the dominant queen when there are no primary reproductives. This struggle among the queens leads to the elimination of all but a single queen, which, with the king, takes over the colony.

Ants and termites may compete with each other for nesting space. In particular, ants that prey on termites usually have a negative impact on arboreal nesting species.

Communication

Hordes of Nasutitermes on a march for food, following and leaving trail pheromones

Most termites are blind, so communication primarily occurs through chemical, mechanical and pheromonal cues. These methods of communication are used in a variety of activities, including foraging, locating reproductives, construction of nests, recognition of nestmates, nuptial flight, locating and fighting enemies, and defending the nests. The most common way of communicating is through antennation. A number of pheromones are known, including contact pheromones (which are transmitted when workers are engaged in trophallaxis or grooming) and alarm, trail and sex pheromones. The alarm pheromone and other defensive chemicals are secreted from the frontal gland. Trail pheromones are secreted from the sternal gland, and sex pheromones derive from two glandular sources: the sternal and tergal glands. When termites go out to look for food, they forage in columns along the ground through vegetation. A trail can be identified by the faecal deposits or runways that are covered by objects. Workers leave pheromones on these trails, which are detected by other nestmates through olfactory receptors. Termites can also communicate through mechanical cues, vibrations, and physical contact. These signals are frequently used for alarm communication or for evaluating a food source.

When termites construct their nests, they use predominantly indirect communication. No single termite would be in charge of any particular construction project. Individual termites react rather than think, but at a group level, they exhibit a sort of collective cognition. Specific structures or other objects such as pellets of soil or pillars cause termites to start building. The termite adds these objects onto existing structures, and such behaviour encourages building behaviour in other workers. The result is a self-organised process whereby the information that directs termite activity results from changes in the environment rather than from direct contact among individuals.

Termites can distinguish nestmates and non-nestmates through chemical communication and gut symbionts: chemicals consisting of hydrocarbons released from the cuticle allow the recognition of alien termite species. Each colony has its own distinct odour. This odour is a result of genetic and environmental factors such as the termites' diet and the composition of the bacteria within the termites' intestines.

Defence

To demonstrate termite repair behaviour, a hole was bored into a termite nest. Over a dozen worker termites with pale heads are visible in this close-up photo, most facing the camera as they engage in repair activities from the inside of the hole. About a dozen soldier termites with orange heads are also visible, some facing outwards from the hole, others patrolling the surrounding area.
Termites rush to a damaged area of the nest.

Termites rely on alarm communication to defend a colony. Alarm pheromones can be released when the nest has been breached or is being attacked by enemies or potential pathogens. Termites always avoid nestmates infected with Metarhizium anisopliae spores, through vibrational signals released by infected nestmates. Other methods of defence include intense jerking and secretion of fluids from the frontal gland and defecating faeces containing alarm pheromones.

In some species, some soldiers block tunnels to prevent their enemies from entering the nest, and they may deliberately rupture themselves as an act of defence. In cases where the intrusion is coming from a breach that is larger than the soldier's head, soldiers form a phalanx-like formation around the breach and bite at intruders. If an invasion carried out by Megaponera analis is successful, an entire colony may be destroyed, although this scenario is rare.

To termites, any breach of their tunnels or nests is a cause for alarm. When termites detect a potential breach, the soldiers usually bang their heads, apparently to attract other soldiers for defence and to recruit additional workers to repair any breach. Additionally, an alarmed termite bumps into other termites which causes them to be alarmed and to leave pheromone trails to the disturbed area, which is also a way to recruit extra workers.

Nasute termite soldiers on rotten wood

The pantropical subfamily Nasutitermitinae has a specialised caste of soldiers, known as nasutes, that have the ability to exude noxious liquids through a horn-like frontal projection that they use for defence. Nasutes have lost their mandibles through the course of evolution and must be fed by workers. A wide variety of monoterpene hydrocarbon solvents have been identified in the liquids that nasutes secrete. Similarly, Formosan subterranean termites have been known to secrete naphthalene to protect their nests.

Soldiers of the species Globitermes sulphureus commit suicide by autothysis – rupturing a large gland just beneath the surface of their cuticles. The thick, yellow fluid in the gland becomes very sticky on contact with the air, entangling ants or other insects that are trying to invade the nest. Another termite, Neocapriterme taracua, also engages in suicidal defence. Workers physically unable to use their mandibles while in a fight form a pouch full of chemicals, then deliberately rupture themselves, releasing toxic chemicals that paralyse and kill their enemies. The soldiers of the neotropical termite family Serritermitidae have a defence strategy which involves front gland autothysis, with the body rupturing between the head and abdomen. When soldiers guarding nest entrances are attacked by intruders, they engage in autothysis, creating a block that denies entry to any attacker.

Workers use several different strategies to deal with their dead, including burying, cannibalism, and avoiding a corpse altogether. To avoid pathogens, termites occasionally engage in necrophoresis, in which a nestmate carries away a corpse from the colony to dispose of it elsewhere. Which strategy is used depends on the nature of the corpse a worker is dealing with (i.e. the age of the carcass).

Relationship with other organisms

The Western Underground Orchid lives completely underground. It is unable to photosynthesize, and it is dependent on underground insects such as termites for pollination. The flower head shown is only about 1.5 centimetres across. Dozens of tiny rose-coloured florets are arranged in a tight cluster, surrounded by petals that give the flower the appearance of a pale miniature tulip.
Rhizanthella gardneri is the only orchid known to be pollinated by termites.

A species of fungus is known to mimic termite eggs, successfully avoiding its natural predators. These small brown balls, known as "termite balls", rarely kill the eggs, and in some cases the workers tend to them [DJS -- ?]. This fungus mimics these eggs by producing a cellulose-digesting enzyme known as glucosidases. A unique mimicking behaviour exists between various species of Trichopsenius beetles and certain termite species within Reticulitermes. The beetles share the same cuticle hydrocarbons as the termites and even biosynthesize them. This chemical mimicry allows the beetles to integrate themselves within the termite colonies. The developed appendages on the physogastric abdomen of Austrospirachtha mimetes allows the beetle to mimic a termite worker.

Some species of ant are known to capture termites to use as a fresh food source later on, rather than killing them. For example, Formica nigra captures termites, and those who try to escape are immediately seized and driven underground. Certain species of ants in the subfamily Ponerinae conduct these raids although other ant species go in alone to steal the eggs or nymphs. Ants such as Megaponera analis attack the outside of mounds and Dorylinae ants attack underground. Despite this, some termites and ants can coexist peacefully. Some species of termite, including Nasutitermes corniger, form associations with certain ant species to keep away predatory ant species. The earliest known association between Azteca ants and Nasutitermes termites date back to the Oligocene to Miocene period.

An ant raiding party collecting Pseudocanthotermes militaris termites after a successful raid

54 species of ants are known to inhabit Nasutitermes mounds, both occupied and abandoned ones. One reason many ants live in Nasutitermes mounds is due to the termites' frequent occurrence in their geographical range; another is to protect themselves from floods. Iridomyrmex also inhabits termite mounds although no evidence for any kind of relationship (other than a predatory one) is known. In rare cases, certain species of termites live inside active ant colonies. Some invertebrate organisms such as beetles, caterpillars, flies and millipedes are termitophiles and dwell inside termite colonies (they are unable to survive independently). As a result, certain beetles and flies have evolved with their hosts. They have developed a gland that secrete a substance that attracts the workers by licking them. Mounds may also provide shelter and warmth to birds, lizards, snakes and scorpions.

Termites are known to carry pollen and regularly visit flowers, so are regarded as potential pollinators for a number of flowering plants. One flower in particular, Rhizanthella gardneri, is regularly pollinated by foraging workers, and it is perhaps the only Orchidaceae flower in the world to be pollinated by termites.

Many plants have developed effective defences against termites. However, seedlings are vulnerable to termite attacks and need additional protection, as their defence mechanisms only develop when they have passed the seedling stage. Defence is typically achieved by secreting antifeedant chemicals into the woody cell walls. This reduces the ability of termites to efficiently digest the cellulose. A commercial product, "Blockaid", has been developed in Australia that uses a range of plant extracts to create a paint-on nontoxic termite barrier for buildings. An extract of a species of Australian figwort, Eremophila, has been shown to repel termites; tests have shown that termites are strongly repelled by the toxic material to the extent that they will starve rather than consume the food. When kept close to the extract, they become disoriented and eventually die.

Relationship with the environment

Termite populations can be substantially impacted by environmental changes including those caused by human intervention. A Brazilian study investigated the termite assemblages of three sites of Caatinga under different levels of anthropogenic disturbance in the semi-arid region of northeastern Brazil were sampled using 65 x 2 m transects. A total of 26 species of termites were present in the three sites, and 196 encounters were recorded in the transects. The termite assemblages were considerably different among sites, with a conspicuous reduction in both diversity and abundance with increased disturbance, related to the reduction of tree density and soil cover, and with the intensity of trampling by cattle and goats. The wood-feeders were the most severely affected feeding group.

Nests

Termite workers at work
 
Photograph of an arboreal termite nest built on a tree trunk high above ground. It has an ovoid shape and appears to be larger than a basketball. It is dark brown in colour, and it is made of carton, a mixture of digested wood and termite faeces that is strong and resistant to rain. Covered tunnels constructed of carton can be seen leading down the shaded side of the tree from the nest to the ground.
An arboreal termite nest in Mexico
 
Termite nest in a Banksia, Palm Beach, Sydney.
 
A termite nest can be considered as being composed of two parts, the inanimate and the animate. The animate is all of the termites living inside the colony, and the inanimate part is the structure itself, which is constructed by the termites. Nests can be broadly separated into three main categories: subterranean (completely below ground), epigeal (protruding above the soil surface), and arboreal (built above ground, but always connected to the ground via shelter tubes). Epigeal nests (mounds) protrude from the earth with ground contact and are made out of earth and mud. A nest has many functions such as providing a protected living space and providing shelter against predators. Most termites construct underground colonies rather than multifunctional nests and mounds. Primitive termites of today nest in wooden structures such as logs, stumps and the dead parts of trees, as did termites millions of years ago.

To build their nests, termites primarily use faeces, which have many desirable properties as a construction material. Other building materials include partly digested plant material, used in carton nests (arboreal nests built from faecal elements and wood), and soil, used in subterranean nest and mound construction. Not all nests are visible, as many nests in tropical forests are located underground. Species in the subfamily Apicotermitinae are good examples of subterranean nest builders, as they only dwell inside tunnels. Other termites live in wood, and tunnels are constructed as they feed on the wood. Nests and mounds protect the termites' soft bodies against desiccation, light, pathogens and parasites, as well as providing a fortification against predators. Nests made out of carton are particularly weak, and so the inhabitants use counter-attack strategies against invading predators.

Arboreal carton nests of mangrove swamp-dwelling Nasutitermes are enriched in lignin and depleted in cellulose and xylans. This change is caused by bacterial decay in the gut of the termites: they use their faeces as a carton building material. Arboreal termites nests can account for as much as 2% of above ground carbon storage in Puerto Rican mangrove swamps. These Nasutitermes nests are mainly composed of partially biodegraded wood material from the stems and branches of mangrove trees, namely, Rhizophora mangle (red mangrove), Avicennia germinans (black mangrove) and Laguncularia racemose (white mangrove).

Some species build complex nests called polycalic nests; this habitat is called polycalism. Polycalic species of termites form multiple nests, or calies, connected by subterranean chambers. The termite genera Apicotermes and Trinervitermes are known to have polycalic species. Polycalic nests appear to be less frequent in mound-building species although polycalic arboreal nests have been observed in a few species of Nasutitermes.

Mounds

Nests are considered mounds if they protrude from the earth's surface. A mound provides termites the same protection as a nest but is stronger. Mounds located in areas with torrential and continuous rainfall are at risk of mound erosion due to their clay-rich construction. Those made from carton can provide protection from the rain, and in fact can withstand high precipitation. Certain areas in mounds are used as strong points in case of a breach. For example, Cubitermes colonies build narrow tunnels used as strong points, as the diameter of the tunnels is small enough for soldiers to block. A highly protected chamber, known as the "queens cell", houses the queen and king and is used as a last line of defence.

Species in the genus Macrotermes arguably build the most complex structures in the insect world, constructing enormous mounds. These mounds are among the largest in the world, reaching a height of 8 to 9 metres (26 to 29 feet), and consist of chimneys, pinnacles and ridges. Another termite species, Amitermes meridionalis, can build nests 3 to 4 metres (9 to 13 feet) high and 2.5 metres (8 feet) wide. The tallest mound ever recorded was 12.8 metres (42 ft) long found in the Democratic Republic of the Congo.

The sculptured mounds sometimes have elaborate and distinctive forms, such as those of the compass termite (Amitermes meridionalis and A. laurensis), which builds tall, wedge-shaped mounds with the long axis oriented approximately north–south, which gives them their common name. This orientation has been experimentally shown to assist thermoregulation. The north-south orientation causes the internal temperature of a mound to increase rapidly during the morning while avoiding overheating from the midday sun. The temperature then remains at a plateau for the rest of the day until the evening.

Shelter tubes

Photo taken upwards from ground level of shelter tubes going up the shaded side of a tree. Where the main trunk of the tree divides into separate major branches, the shelter tube also branches. Although the nests are not visible in this photo, the branches of the shelter tube presumably lead up to polycalic sister colonies of the arboreal termites that built these tubes.
Nasutiterminae shelter tubes on a tree trunk provide cover for the trail from nest to forest floor.

Termites construct shelter tubes, also known as earthen tubes or mud tubes, that start from the ground. These shelter tubes can be found on walls and other structures. Constructed by termites during the night, a time of higher humidity, these tubes provide protection to termites from potential predators, especially ants. Shelter tubes also provide high humidity and darkness and allow workers to collect food sources that cannot be accessed in any other way. These passageways are made from soil and faeces and are normally brown in colour. The size of these shelter tubes depends on the number of food sources that are available. They range from less than 1 cm to several cm in width, but may be dozens of metres in length.

Relationship with humans

As pests

Termite mound as an obstacle on a runway at Khorixas (Namibia)
 
Termite damage on external structure
 
Owing to their wood-eating habits, many termite species can do significant damage to unprotected buildings and other wooden structures. Termites play an important role as decomposers of wood and vegetative material, and the conflict with humans occurs where structures and landscapes containing structural wood components, cellulose derived structural materials and ornamental vegetation provide termites with a reliable source of food and moisture. Their habit of remaining concealed often results in their presence being undetected until the timbers are severely damaged, with only a thin exterior layer of wood remaining, which protects them from the environment. Of the 3,106 species known, only 183 species cause damage; 83 species cause significant damage to wooden structures. In North America, 18 subterranean species are pests; in Australia, 16 species have an economic impact; in the Indian subcontinent 26 species are considered pests, and in tropical Africa, 24. In Central America and the West Indies, there are 17 pest species. Among the termite genera, Coptotermes has the highest number of pest species of any genus, with 28 species known to cause damage. Less than 10% of drywood termites are pests, but they infect wooden structures and furniture in tropical, subtropical and other regions. Dampwood termites only attack lumber material exposed to rainfall or soil.

Drywood termites thrive in warm climates, and human activities can enable them to invade homes since they can be transported through contaminated goods, containers and ships. Colonies of termites have been seen thriving in warm buildings located in cold regions. Some termites are considered invasive species. Cryptotermes brevis, the most widely introduced invasive termite species in the world, has been introduced to all the islands in the West Indies and to Australia.

Termite damage in wooden house stumps
In addition to causing damage to buildings, termites can also damage food crops. Termites may attack trees whose resistance to damage is low but generally ignore fast-growing plants. Most attacks occur at harvest time; crops and trees are attacked during the dry season.

The damage caused by termites costs the southwestern United States approximately $1.5 billion each year in wood structure damage, but the true cost of damage worldwide cannot be determined. Drywood termites are responsible for a large proportion of the damage caused by termites. The goal of termite control is to keep structures and susceptible ornamental plants free from termites. Structures may be homes or business, or elements such as wooden fence posts and telephone poles. Regular and thorough inspections by a trained professional may be necessary to detect termite activity in the absence of more obvious signs like termite swarmers or alates inside or adjacent to a structure. Termite monitors made of wood or cellulose adjacent to a structure may also provide indication of termite foraging activity where it will be in conflict with humans. Termites can be controlled by application of Bordeaux mixture or other substances that contain copper such as chromated copper arsenate.

To better control the population of termites, various methods have been developed to track termite movements. One early method involved distributing termite bait laced with immunoglobulin G (IgG) marker proteins from rabbits or chickens. Termites collected from the field could be tested for the rabbit-IgG markers using a rabbit-IgG-specific assay. More recently developed, less expensive alternatives include tracking the termites using egg white, cow milk, or soy milk proteins, which can be sprayed on termites in the field. Termites bearing these proteins can be traced using a protein-specific ELISA test.

As food

Mozambican boys from the Yawo tribe collecting flying termites
 
These flying alates were collected as they came out of their nests in the ground during the early days of the rainy season.
 
43 termite species are used as food by humans or are fed to livestock. These insects are particularly important in impoverished countries where malnutrition is common, as the protein from termites can help improve the human diet. Termites are consumed in many regions globally, but this practice has only become popular in developed nations in recent years.

Termites are consumed by people in many different cultures around the world. In many parts of Africa, the alates are an important factor in the diets of native populations. Groups have different ways of collecting or cultivating insects; sometimes collecting soldiers from several species. Though harder to acquire, queens are regarded as a delicacy. Termite alates are high in nutrition with adequate levels of fat and protein. They are regarded as pleasant in taste, having a nut-like flavour after they are cooked.

Alates are collected when the rainy season begins. During a nuptial flight, they are typically seen around lights to which they are attracted, and so nets are set up on lamps and captured alates are later collected. The wings are removed through a technique that is similar to winnowing. The best result comes when they are lightly roasted on a hot plate or fried until crisp. Oil is not required as their bodies usually contain sufficient amounts of oil. Termites are typically eaten when livestock is lean and tribal crops have not yet developed or produced any food, or if food stocks from a previous growing season are limited.

In addition to Africa, termites are consumed in local or tribal areas in Asia and North and South America. In Australia, Indigenous Australians are aware that termites are edible but do not consume them even in times of scarcity; there are few explanations as to why. Termite mounds are the main sources of soil consumption (geophagy) in many countries including Kenya, Tanzania, Zambia, Zimbabwe and South Africa. Researchers have suggested that termites are suitable candidates for human consumption and space agriculture, as they are high in protein and can be used to convert inedible waste to consumable products for humans.

In agriculture

Scientists have developed a more affordable method of tracing the movement of termites using traceable proteins.
 
Termites can be major agricultural pests, particularly in East Africa and North Asia, where crop losses can be severe (3–100% in crop loss in Africa). Counterbalancing this is the greatly improved water infiltration where termite tunnels in the soil allow rainwater to soak in deeply, which helps reduce runoff and consequent soil erosion through bioturbation. In South America, cultivated plants such as eucalyptus, upland rice and sugarcane can be severely damaged by termite infestations, with attacks on leaves, roots and woody tissue. Termites can also attack other plants, including cassava, coffee, cotton, fruit trees, maize, peanuts, soybeans and vegetables. Mounds can disrupt farming activities, making it difficult for farmers to operate farming machinery; however, despite farmers' dislike of the mounds, it is often the case that no net loss of production occurs. Termites can be beneficial to agriculture, such as by boosting crop yields and enriching the soil. Termites and ants can re-colonise untilled land that contains crop stubble, which colonies use for nourishment when they establish their nests. The presence of nests in fields enables larger amounts of rainwater to soak into the ground and increases the amount of nitrogen in the soil, both essential for the growth of crops.

In science and technology

The termite gut has inspired various research efforts aimed at replacing fossil fuels with cleaner, renewable energy sources. Termites are efficient bioreactors, capable of producing two litres of hydrogen from a single sheet of paper. Approximately 200 species of microbes live inside the termite hindgut, releasing the hydrogen that was trapped inside wood and plants that they digest. Through the action of unidentified enzymes in the termite gut, lignocellulose polymers are broken down into sugars and are transformed into hydrogen. The bacteria within the gut turns the sugar and hydrogen into cellulose acetate, an acetate ester of cellulose on which termites rely for energy. Community DNA sequencing of the microbes in the termite hindgut has been employed to provide a better understanding of the metabolic pathway. Genetic engineering may enable hydrogen to be generated in bioreactors from woody biomass.

The development of autonomous robots capable of constructing intricate structures without human assistance has been inspired by the complex mounds that termites build. These robots work independently and can move by themselves on a tracked grid, capable of climbing and lifting up bricks. Such robots may be useful for future projects on Mars, or for building levees to prevent flooding.

Termites use sophisticated means to control the temperatures of their mounds. As discussed above, the shape and orientation of the mounds of the Australian compass termite stabilises their internal temperatures during the day. As the towers heat up, the solar chimney effect (stack effect) creates an updraft of air within the mound. Wind blowing across the tops of the towers enhances the circulation of air through the mounds, which also include side vents in their construction. The solar chimney effect has been in use for centuries in the Middle East and Near East for passive cooling, as well as in Europe by the Romans. It is only relatively recently, however, that climate responsive construction techniques have become incorporated into modern architecture. Especially in Africa, the stack effect has become a popular means to achieve natural ventilation and passive cooling in modern buildings.

In culture

The pink-hued Eastgate Centre

The Eastgate Centre is a shopping centre and office block in central Harare, Zimbabwe, whose architect, Mick Pearce, used passive cooling inspired by that used by the local termites. It was the first major building exploiting termite-inspired cooling techniques to attract international attention. Other such buildings include the Learning Resource Center at the Catholic University of Eastern Africa and the Council House 2 building in Melbourne, Australia.

Few zoos hold termites, due to the difficulty in keeping them captive and to the reluctance of authorities to permit potential pests. One of the few that do, the Zoo Basel in Switzerland, has two thriving Macrotermes bellicosus populations – resulting in an event very rare in captivity: the mass migrations of young flying termites. This happened in September 2008, when thousands of male termites left their mound each night, died, and covered the floors and water pits of the house holding their exhibit.

African tribes in several countries have termites as totems, and for this reason tribe members are forbidden to eat the reproductive alates. Termites are widely used in traditional popular medicine; they are used as treatments for diseases and other conditions such as asthma, bronchitis, hoarseness, influenza, sinusitis, tonsillitis and whooping cough. In Nigeria, Macrotermes nigeriensis is used for spiritual protection and to treat wounds and sick pregnant women. In Southeast Asia, termites are used in ritual practices. In Malaysia, Singapore and Thailand, termite mounds are commonly worshiped among the populace. Abandoned mounds are viewed as structures created by spirits, believing a local guardian dwells within the mound; this is known as Keramat and Datok Kong. In urban areas, local residents construct red-painted shrines over mounds that have been abandoned, where they pray for good health, protection and luck.

Pest (organism)

From Wikipedia, the free encyclopedia
 
Carpet beetle larvae damaging a specimen of Sceliphron destillatorius in an entomological collection

A pest is any animal or plant detrimental to humans or human concerns. The term is particularly used for creatures that damage crops, livestock and forestry, or cause a nuisance to people, especially in their homes. Humans have modified the environment for their own purposes and are intolerant of other creatures occupying the same space when their activities impact adversely on human objectives. Thus, an elephant is unobjectionable in its natural habitat but a pest if it tramples crops.

Some animals are disliked because they bite or sting; snakes, wasps, ants, bed bugs, fleas and ticks belong in this category. Others enter the home thus invading our own private space; these include houseflies, which land on and contaminate food, beetles which tunnel into the woodwork, and other animals that scuttle about on the floor at night, like cockroaches, rats and mice, which are often associated with insanitary conditions.

Agricultural and horticultural crops are attacked by a wide variety of pests, the most important being insects, mites, nematodes and gastropod molluscs. The damage they do results both from the direct injury they cause to the plants, and from the indirect consequences of the fungal, bacterial or viral infections they transmit. Plants have their own defences against these attacks but these may be overwhelmed, especially in habitats where the plants are already stressed, or where the pests have been accidentally introduced and may have no natural enemies. The pests affecting trees are predominantly insects, and many of these have also been introduced inadvertently and lack natural enemies, and some have transmitted novel fungal diseases with devastating results. Humans have traditionally attempted to control the agricultural and forestry pests by the use of pesticides; however, they have gradually come to appreciate that many of these have unwanted consequences for the environment, and have tried to substitute integrated pest management strategies with biological pest controls.

Concept

Pests, such as these termites, often occur in high densities, making the damage they do even more detrimental.

A pest is any living thing, whether animal, plant or fungus, which humans consider troublesome to themselves, their possessions or the environment. It is a loose concept, as an organism can be a pest in one setting but beneficial, domesticated or acceptable in another. Microorganisms, whether bacteria, microscopic fungi, protists, or viruses that cause trouble, on the other hand, are generally thought of as causes of disease (pathogens) rather than as pests. An older usage of the word "pest" is of a deadly epidemic disease, specifically plague. In its broadest sense, a pest is a competitor to humanity.

Animals as pests

Feral pigeons can become very numerous in cities.
 
Animals are considered pests or vermin when they injure people or damage crops, forestry or buildings. Elephants are regarded as pests by the farmers whose crops they raid and trample. Mosquitoes and ticks are vectors that can transmit diseases, but are also pests because of the distress caused by their bites. Grasshoppers are usually solitary herbivores of little economic importance until the conditions are met for them to enter a swarming phase, become locusts and cause enormous damage. Many people appreciate birds in the countryside and their gardens, but when these accumulate in large masses, they can be a nuisance. Flocks of starlings can consist of hundreds of thousands of individual birds, their roosts can be noisy and their droppings voluminous; the droppings are acidic and can cause corrosion of metals, stonework and brickwork as well as being unsightly. Pigeons in urban settings may be a health hazard, and gulls near the coast can become a nuisance, especially if they become bold enough to snatch food from passers-by. All birds are a risk at airfields where they can be sucked into aircraft engines. Woodpeckers sometimes excavate holes in buildings, fencing and utility poles, causing structural damage; they also drum on various reverberatory structures on buildings such as gutters, down-spouts, chimneys, vents and aluminium sheeting. Jellyfish can form vast swarms which may be responsible for damage to fishing gear, and sometimes clog the cooling systems of power and desalination plants which draw their water from the sea.

Many of the animals that we regard as pests live in our homes. Before humans built dwellings, these creatures lived in the wider environment, but co-evolved with humans, adapting to the warm, sheltered conditions that a house provides, the wooden timbers, the furnishings, the food supplies and the rubbish dumps. Many no longer exist as free-living organisms in the outside world, and can therefore be considered to be domesticated. The St Kilda house mouse rapidly became extinct when the last islander left the island of St Kilda, Scotland in 1930, but the St Kilda field mouse survived.

Plants as pests

Caltrop, Tribulus terrestris, is sometimes considered a pest plant because of its sharp spiny burrs, shown here in a person's foot.
 
Plants may be considered pests, for example if they are invasive species. There is no universal definition of what makes a plant a pest. Some governments, such as that of Western Australia, permit their authorities to prescribe as a pest plant "any plant that, in the local government authority's opinion, is likely to adversely affect the environment of the district, the value of property in the district, or the health, comfort or convenience of the district’s inhabitants." An example of such a plant prescribed under this regulation is caltrop, Tribulus terrestris, which can cause poisoning in sheep and goats, but is mainly a nuisance around buildings, roadsides and recreation areas because of its uncomfortably sharp spiny burrs.

Ecology

The term "plant pest", mainly applied to insect micropredators of plants, has a specific definition in terms of the International Plant Protection Convention and phytosanitary measures worldwide. A pest is any species, strain or biotype of plant, animal, or pathogenic agent injurious to plants or plant products.

Plant defences against pests

The large and directly defensive thorn-like stipules of Vachellia collinsii are hollow, offering shelter for ants, which further protect the plant against herbivores.
 
Plants have developed strategies that they use in their own defence, be they thorns (modified stems) or spines (modified leaves), stings, a thick cuticle or waxy deposits, with a second line of defence being toxic or distasteful secondary metabolites. Mechanical injury to the plant tissues allows entry of pathogens and stimulates the plant to mobilise its chemical defences. The plant soon seals off the wound to reduce further damage.

Plants sometimes take active steps to reduce herbivory. Macaranga triloba for example has adapted its thin-walled stems to create ideal housing for an ant Crematogaster spp., which, in turn, protects the plant from herbivores. In addition to providing housing, the plant also provides the ant with its exclusive food source in the form of food bodies located on the leaf stipules. Similarly, several Acacia tree species have developed stout spines that are swollen at the base, forming a hollow structure that provides housing for ants which protect the plant. These Acacia trees also produce nectar in nectaries on their leaves as food for the ants.

Economic impact

In agriculture and horticulture

Caterpillars such as those of the cotton bollworm moth Helicoverpa armigera can devastate crops.
 
The animal groups of the greatest importance as agricultural pests are (in order of economic importance) insects, mites, nematodes and gastropod molluscs.

Insects are responsible for two major forms of damage to crops. First there is the direct injury they cause to the plants as they feed on the tissues; a reduction in leaf surface available for photosynthesis, distortion of growing shoots, a diminution of the plant's growth and vigour, and the wilting of shoots and branches caused by the insects' tunnelling activities. Secondly there is the indirect damage, where the insects do little direct harm, but either transmit or allow entry of fungal, bacterial or viral infections. Although some insects are polyphagous, many are restricted to one specific crop, or group of crops. In many cases it is the larva that feeds on the plant, building up a nutritional store that will be used by the short-lived adult; sawfly and lepidopteran larvae feed mainly on the aerial portions of plants while beetle larvae tend to live underground, feeding on roots, or tunnel into the stem or under the bark. The true bugs, Hemiptera, have piercing and sucking mouthparts and live by sucking sap from plants. These include aphids, whiteflies and scale insects. Apart from weakening the plant, they encourage the growth of sooty mould on the honeydew the insects produce, which cuts out the light and reduces photosynthesis, stunting the plant's growth. They often transmit serious viral diseases between plants.

Galls on cherry caused by a mite, Eriophyes cerasicrumena

The mites that cause most trouble in the field are the spider mites. These are less than 1 mm (0.04 in) in diameter, can be very numerous, and thrive in hot, dry conditions. They mostly live on the underside of leaves and puncture the plant cells to feed, with some species forming webbing. They occur on nearly all important food crops and ornamental plants, both outdoors and under glass, and include some of the most economically important pests. Another important group of mites is the gall mites which affect a wide range of plants, several mite species being major pests causing substantial economic damage to crops. They can feed on the roots or the aerial parts of plants and transmit viruses. Some examples are the big bud mite that transmits the reversion virus of blackcurrants,[23] the coconut mite which can devastate coconut production, and the cereal rust mite which transmits several grass and cereal viruses. Being exceedingly minute, many plant mites are spread by wind, although others use insects or other arthropods as a means to disperse.

The potato cyst nematode can cause serious reductions in crop yield.
 
The nematodes (eelworms) that attack plants are minute, often too small to be seen with the naked eye, but their presence is often apparent in the galls or "knots" they form in plant tissues. Vast numbers of nematodes are found in soil and attack roots, but others affect stems, buds, leaves, flowers and fruits. High infestations cause stunting, deformation and retardation of plant growth, and the nematodes can transmit virus diseases from one plant to another. When its populations are high, the potato cyst nematode can cause reductions of 80% in yield of susceptible potato varieties. The nematode eggs survive in the soil for many years, being stimulated to hatch by chemical cues produced by roots of susceptible plants.

Slugs and snails are terrestrial gastropod molluscs which typically chew leaves, stems, flowers, fruit and vegetable debris. Slugs differ from snails in having shells that are too small for the animal to retract inside; the shell-less state has evolved on multiple occasions during the evolutionary development of molluscs, so there is little taxonomic difference between the two, and both slugs and snails do considerable damage to plants. With novel crops being grown and with insect pests having been brought more under control by biological and other means, the damage done by molluscs becomes of greater significance. Terrestrial molluscs need moist environments; snails may be more noticeable because their shells provide protection from dessication, while most slugs live in soil and only come out to feed at night. They devour seedlings, damage developing shoots and feed on salad crops and cabbages, and some species tunnel into potatoes and other tubers.

Weeds

Alligator weed, a native of South America, is an invasive species in many other countries and is considered a noxious weed as it is harmful to aquatic ecosystems, recreational activities, and favours the spread of mosquitoes. Control is difficult.
 
A weed is a plant considered undesirable in a particular situation; the term has no botanical significance. Often, weeds are simply those native plants that are adapted to grow in disturbed ground, the disturbance caused by ploughing and cultivation favouring them over other species. Any plant is a weed if it appears in a location where it is unwanted; Bermuda grass makes a good lawn plant under hot dry conditions but become a bad weed when it out-competes cultivated plants.

A different group of weeds consists of those that are invasive, introduced, often unintentionally, to habitats to which they are not native but in which they thrive. Without their original competitors, herbivores, and diseases, they may increase and become a serious nuisance. One such plant is purple loosestrife, a native of Europe and Asia where it occurs in ditches, wet meadows and marshes; introduced into North America, it has no natural enemies to keep it in check, and has taken over vast tracts of wetlands to the exclusion of native species.

In forestry

A green ash tree killed by emerald ash borer beetles

In forestry, pests may affect various parts of the tree, from its roots and trunk to the canopy far overhead. The accessibility of the part of the tree affected may make detection difficult, so that a pest problem may already be far advanced before it is first observed from the ground. The larch sawfly and spruce budworm are two insect pests prevalent in Alaska and aerial surveys can show which sections of forest are being defoliated in any given year so that appropriate remedial action can be taken.

Some pests may not be present on the tree all year round, either because of their life cycle or because they rotate between different host species at different times of year. The larvae of wood-boring beetles may spend years excavating tunnels under the bark of trees, and only emerge into the open for brief periods as adults, to mate and disperse. The import and export of timber has inadvertently assisted some insect pests to establish themselves far from their country of origin. An insect may be of little importance in its native range, being kept under control by parasitoid wasps, predators and the natural resistance of the host trees, but be a serious pest in a region into which it has been introduced. This is the case with the emerald ash borer, an insect native to north-eastern Asia, which, since its arrival in North America, has killed millions of ash trees.

In buildings

Termites can cause serious structural damage.
 
Animals able to live in the dry conditions found in buildings include many arthropods such as beetles, cockroaches, moths, and mites. Another group, including termites, woodworm, longhorn beetles, and wood ants cause structural damage to buildings and furniture. The natural habitat of these is the decaying parts of trees. The deathwatch beetle infests the structural timbers of old buildings, mostly attacking hardwood, especially oak. The initial attack usually follows the entry of water into a building and the subsequent decay of damp timber. Furniture beetles mainly attack the sapwood of both hard and soft wood, only attacking the heartwood when it is modified by fungal decay. The presence of the beetles only becomes apparent when the larvae gnaw their way out, leaving small circular holes in the timber.

Carpet beetles and clothes moths cause non-structural damage to property such as clothing and carpets. It is the larvae that are destructive, feeding on wool, hair, fur, feathers and down. The moth larvae live where they feed, but the beetle larvae may hide behind skirting boards or in other similar locations between meals. They may be introduced to the home in any product containing animal fibres including upholstered furniture; the moths are feeble fliers but the carpet beetles may also enter houses through open windows. Furniture beetles, carpet beetles and clothes moths are also capable of creating great damage to museum exhibits, zoological and botanical collections, and other cultural heritage items. Constant vigilance is required to prevent attack, and newly acquired items, and those that have been out on loan, may need quarantining before being added to the general collection.

There are over four thousand species of cockroach worldwide, but only four species are commonly regarded as pests, having adapted to live permanently in buildings. Considered to be a sign of unsanitary conditions, they feed on almost anything, reproduce rapidly and are difficult to eradicate. They can passively transport pathogenic microbes on their body surfaces, particularly in environments such as hospitals, and are linked with allergic reactions in humans.

Flour beetles are important commercial pests of grain storage.

Various insects attack dry food products, with flour beetles, the drugstore beetle, the sawtoothed grain beetle and the Indianmeal moth being found worldwide. The insects may be present in the warehouse or may be introduced during shipping, in retail outlets or in the home; they may enter packets through tiny cracks or may chew holes in the packaging. The longer a product is stored, the more likely it is to become contaminated, with the insects often originating from dry pet foods.

Some mites, too, infest foodstuffs and other stored products. Each substance has its own specific mite, and they multiply with great rapidity. One of the most damaging is the flour mite, which is found in grain and may become exceedingly abundant in poorly stored material. In time, predatory mites usually move in and control the flour mites.

Countermeasures

Pest control in agriculture and horticulture

A row-crop sprayer applying pesticide to a young crop of maize

The control of pests in crops is as old as civilisation. The earliest approach was mechanical, from ploughing to picking off insects by hand. Early methods included the use of sulphur compounds, before 2500 BC in Sumeria. In ancient China, insecticides derived from plants were in use by 1200 BC to treat seeds and to fumigate plants. Chinese agronomy recognised biological control by natural enemies of pests and the varying of planting time to reduce pests before the first century AD. The agricultural revolution in Europe saw the introduction of effective plant-based insecticides such as pyrethrum, derris, quassia, and tobacco extract. The phylloxera (a powdery mildew) damage to the wine industry in the 19th century resulted in the development of resistant varieties and grafting, and the accidental discovery of effective chemical pesticides, Bordeaux mixture (lime and copper sulphate) and Paris Green (an arsenic compound), both very widely used. Biological control also became established as an effective measure in the second half of the 19th century, starting with the vedalia beetle against cottony cushion scale. All these methods have been refined and developed since their discovery.

Pest control in forestry

Forest pests inflict costly damage, but treating them is often unaffordable, given the relatively low value of forest products compared to agricultural crops. It is also generally impossible to eradicate forest pests, given the difficulty of examining entire trees, and the certainty that pesticides would damage many forest organisms other than the intended pests. Forest integrated pest management therefore aims to use a combination of prevention, cultural control measures, and direct control (such as pesticide use). Cultural measures include choosing appropriate species, keeping competing vegetation under control, ensuring a suitable stocking density, and minimizing injury and stress to trees.

Pest control in buildings

Pest control in buildings can be approached in several ways, depending on the type of pest and the area affected. Methods include improving sanitation and garbage control, modifying the habitat, and using repellents, growth regulators, traps, baits and pesticides. For example, the pesticide Boron can be impregnated into the fibres of cellulose insulation to kill self-grooming insects such as ants and cockroaches. Clothes moths can be controlled with airtight containers for storage, periodic laundering of garments, trapping, freezing, heating and the use of chemicals. Traditional mothballs deter adult moths with strong-smelling naphthalene; modern ones use volatile repellents such as 1,4-Dichlorobenzene. Moth larvae can be killed with insecticides such as permethrin or pyrethroids. However, insecticides cannot safely be used in food storage areas; alternative treatments include freezing foods for four days at 0 °F (−18 °C) or baking for half an hour at 130 °F (54 °C) to kill any insects present.

In mythology, religion, folklore and culture

Locust detail from a hunt mural in the grave-chamber of Horemhab, Ancient Egypt, 1422–1411 BC

Pests have attracted human attention from the birth of civilisation. Plagues of locusts caused devastation in the ancient Middle East, and were recorded in tombs in Ancient Egypt from as early as 2470 BC, and in the Book of Exodus in the Bible, as taking place in Egypt around 1446 BC. Homer's Iliad mentions locusts taking to the wing to escape fire. Given the impact of agricultural pests on human lives, people have prayed for deliverance. For example, the 10th century Greek monk Tryphon of Constantinople is said to have prayed "Snails, earwigs and all other creatures, hurt not the vines, nor the land nor the fruit of the trees, nor the vegetables ... but depart into the wild mountains." The 11th-century Old English medical text Lacnunga contained charms and spells to ward off or treat pests such as wid smeogan wyrme, "penetrating worms", in this case requiring a charm to be sung, accompanied by covering the wound with spittle, pounded green centaury, and hot cow's urine. The 20th century "prayer against pests" including the words "By Your power may these injurious animals be driven off so that they will do no harm to any one and will leave our fields and meadows unharmed" was printed in the 1956 Rural Life Prayerbook.

Mating disruption

From Wikipedia, the free encyclopedia
 
Mating disruption (MD) is a pest management technique designed to control certain insect pests by introducing artificial stimuli that confuse the individuals and disrupt mate localization and/or courtship, thus preventing mating and blocking the reproductive cycle. It usually involves the use of synthetic sex pheromones, although other approaches, such as interfering with vibrational communication, are also being developed.

History

La confusion sexuelle or mating disruption, was first discussed by the Institut national de la recherche agronomique in 1974 in Bordeaux, France.

Winemakers in France, Switzerland, Spain, Germany, and Italy were the first to use the method to treat vines against the larvae of the moth genus Cochylis.

Mechanism

In many insect species of interest to agriculture, such as those in the order Lepidoptera, females emit an airborne trail of a specific chemical blend constituting that species' sex pheromone. This aerial trail is referred to as a pheromone plume.

Males of that species use the information contained in the pheromone plume to locate the emitting female (known as a “calling” female). Mating disruption exploits the male insects' natural response to follow the plume by introducing a synthetic pheromone into the insects’ habitat. The synthetic pheromone is a volatile organic chemical designed to mimic the species-specific sex pheromone produced by the female insect. The general effect of mating disruption is to confuse the male insects by masking the natural pheromone plumes, causing the males to follow “false pheromone trails” at the expense of finding mates, and affecting the males’ ability to respond to “calling" females. Consequently, the male population experiences a reduced probability of successfully locating and mating with females, which leads to the eventual cessation of breeding and collapse of the insect infestation. The California Department of Pesticide Regulation, the California Department of Food and Agriculture, and the United States Environmental Protection Agency consider mating disruption to be among the most environmentally friendly treatments used to eradicate pest infestations. Mating disruption works best if large areas are treated with pheromones. Ten acres is a good minimum size for a successful MD program, but larger areas are preferable.

Advantages of mating disruption

Pheromone programs are most effective when controlling low to moderate pest population densities. MD has also been identified as a pest control method in which the insect does not become resistant. The scientific community, together with governmental agencies throughout the world, understands the benefits of mating disruption using species-specific sex pheromones, and consider sex-pheromone-based insect control programs among the most environmentally friendly treatments to be used to manage and control insect pest populations. Insect pheromone has been successfully used as an effective tool to slow the spread and to eradicate pests from very large areas in the US; for example to control the Gypsy moth (Lymantria dispar), a devastating forestry pest, and to eradicate the boll weevil and pink bollworm, two of the most damaging pest of cotton. Conventional pesticide based control methods, kill insects directly, whereas mating disruption confuses male insects from accurately locating a mating partner, leading to the eventual collapse of the mating cycle. Mating disruption, due to the specificity of the sex pheromone of the insect species, has the benefit of only affecting the males of that species, while leaving other non target species unaffected. This allows for very targeted pest management, promoting the suppression of a single pest species, leaving the populations of beneficial insects (pollinators and natural enemies) intact. Mating disruption, like most pest management strategies, is a useful technique, but should not be considered a stand-alone treatment program for it targets only a single species in plant production systems that usually have several pests of concern. Mating disruption is a valuable tool that should be used in Integrated Pest Management(IPM) programs. 

Pheromone programs have been used for several decades around the globe and to date (2009) there is no documented public health evidence to suggest that agricultural use of synthetic pheromones is harmful to humans or to any other non-target species. However, continuing research is being conducted.

Disadvantages of mating disruption

Over the decades that pheromone pest programs have been used several disadvantages have been argued when compared to the use of conventional pesticides. Most pheromones target a single species, so a specific mating disruption formulation controls only the species that uses that pheromone blend; whereas pesticides usually kill indiscriminately a plethora of species, including multiple species with a single application. Some synthetic pheromones have high developmental and production costs, causing the mating disruption technique to be too costly to be adopted by conventional commercial growers. Furthermore most commercial pheromone mating disruption formulations must be applied by hand, which can be an expensive and time consuming. Novel pheromone formulations recently developed to be mechanically applied provide long lasting mating disruption effects (e.g., depending on the target pest a single application of SPLAT controls the target pest for a complete reproductive cycle, or for the entire season.

Methods of dispersal

Microencapsulated pheromones

Microencapsulated pheromones (MECs) are small droplets of pheromone enclosed within polymer capsules. The capsules control the release rate of the pheromone into the surrounding environment. The capsules are small enough to be applied in the same method as used to spray insecticides. The effective field longevity of the microencapsulated pheromone formulations ranges from a few days to slightly more than a week, depending on climatic conditions, capsule size and chemical properties. Microcapsules in the pheromone formulations are usually kept above a prescribed diameter to avoid the risk of inhalation by humans.

Hand applied dispensers

  • Hollow tube dispensers are plastic twist-tie type dispensers, plastic hollow fibers or plastic hollow microfibers fibers, filled with synthetic sex pheromone and placed throughout the area to be protected.
  • Pheromone Baits and Stations are a stationary, attract and kill type of dispensers. Some are relatively large platform, containing a pheromone lure inside a glue board that ensnares the attracted insect. Other pheromone bait stations contain a pheromone lure in conjunction with a surface containing a dose of insecticide that reduces the attracted insect's fitness, thus reducing its ability to mate and reproduce.
  • High-emission dispensers There are several very high dose pheromone dispensers, some do it passively, like pheromone sachets and large dollops of SPLAT pheromone formulations, others do it be actively releasing bursts of sex pheromone at timed intervals.

Monolithic Flowable dispensers

A new, effective and economical concept in pheromone delivery using a flowable formulation to create long lasting monolithic pheromone dispensers has been brought to the market in the past decade. These novel SPLAT pheromone mating disruption formulations can provide effective season long suppression effect (e.g., depending on the target pest a single application of SPLAT controls the target pest for a complete reproductive cycle, or for the entire season) and can be manually or mechanically applied. Although mechanical dispersal techniques require specialized off-the-shelf application technology and/or equipment, once the application system is made to work it allows protection of extensive areas using pheromones, one of the most benign and effective pest management techniques available today. A benefit of SPLAT is that the dollop anchors where it lands, avoiding unwanted drift of the formulation once applied in the field, and, depending on the mode of application, the cured dollops are retrievable.

Aerial dispersal

In November 2007, a controversial aerial approach was used to spray microencapsulated LBAM pheromone in urban and rural areas of the counties of Santa Cruz and Monterey California to combat the invasive light brown apple moth. Usually the effect of disruption of orientation of the male moths to females (or monitoring pheromone traps) can be detected by the reduction in moth capture in monitoring pheromone traps. The government campaign using areawide aerial microencapsulated pheromone applications failed to show any sign of mating disruption on the light brown apple moth populations in the treated area. It was found that the first aerial campaign was performed using an incomplete (the wrong) pheromone blend of the light brown apple moth (the wrong blend decreased tremendously the likelihood of success of the mating disruption program), and the LBAM microencapsulated formulation was untested, and finally, microencapsule formulations are notoriously known for their short field life, weak and erratic performance. Furthermore it is possible that the LBAM microencapsulated formulation used in the government campaign was unfit for aerial delivery in urban areas; although pheromone is safe, the formulation used had microcapsules of very small diameter which made it into a possible inhalation hazard that seems to be linked to an increase in allergenic reactions of the population in the target area. This set of LBAM mating disruption aerial applications done by the government has created tremendous dissent of the public in general as well as of several sectors of the scientific community. Now, several years later, the affected communities as well as the nascent US pheromone industry (which provides safer, yet very effective, alternatives to the use of conventional pesticides) are still suffering the ripple effects of these disastrous Bay Area LBAM eradication campaigns.

But there are numerous, successful pest suppression programs that rely on aerial dispersal of pheromone mating disruptants. One of the largest pheromone mating disruption programs in the globe is the Gypsy Moth Slow the Spread. Gypsy Moth Slow the Spread has been implemented across the 1,200-mile (1,900 km) gypsy moth frontier from Wisconsin to North Carolina. The program area is located ahead of the advancing front of the gypsy moth population. The STS program focuses on early detection and suppression of the low–level populations along this advancing front, disrupting the natural progress of population buildup and spread. Every year hundreds of thousands of acres are aerially sprayed with two pheromone Gypsy moth pheromone mating disruption formulations, Flakes and SPLAT. A single mating disruption formulation application promotes season-long suppression of gypsy moth in the treated areas. With a crew of 8 people it was possible to aerially treat with SPLAT GM over 20,000 acres (81 km2) of forest in a single day. The consortium of Federal and State participants have been able to do the following: 

• decrease the new territory invaded by the gypsy moth each year from 15,600 square miles (40,000 km2) to 6,000 square miles (16,000 km2);
• protect forests, forest–based industries, urban and rural parks, and private property; and
• avoid at least $22 million per year in damage and management costs.
It seems that the tremendous success of the Gypsy Moth Slow the Spread program is related to extremely well planned campaigns, which involves communication, transparency and clarity of objectives: in advance to an application STS holds meetings that include the area population in general, concerned citizens, public officials, scientists and technical personnel to discuss strategies of management of Gypsy moth in the areas of concern. There is a movement requesting that new government invasive species eradication campaigns model their pest suppression actions on the existing successful suppression programs like GM STS, and embrace a more effective policy of communication, transparency and clarity of objectives. With the involvement and education of the public, areawide eradication campaigns will be better planned and more able to deliver decisive end effective pest eradication actions.

Green development

From Wikipedia, the free encyclopedia https://en.wikipedia.org/w...