Search This Blog

Sunday, August 7, 2022

Computing

From Wikipedia, the free encyclopedia
 
Computer simulation
Computer simulation, one of the main cross-computing methodologies.

Computing is any goal-oriented activity requiring, benefiting from, or creating computing machinery. It includes the study and experimentation of algorithmic processes, and development of both hardware and software. Computing has scientific, engineering, mathematical, technological and social aspects. Major computing disciplines include computer engineering, computer science, cybersecurity, data science, information systems, information technology and software engineering.

The term "computing" is also synonymous with counting and calculating. In earlier times, it was used in reference to the action performed by mechanical computing machines, and before that, to human computers.

Early vacuum tube Turing complete computer
ENIAC, the first programmable general-purpose electronic digital computer

History

The history of computing is longer than the history of computing hardware and modern computing technology, and includes the history of methods intended for pen and paper (or for chalk and slate) with or without the aid of tables. Computing is intimately tied to the representation of numbers, though mathematical concepts necessary for computing existed before numeral systems. These concepts include one-to-one correspondence (the basis of counting), comparison to a standard (used for measurement), and the 3-4-5 right triangle (a device for assuring a right angle).

The earliest known tool for use in computation is the abacus, and it is thought to have been invented in Babylon circa 2400 BC. Its original style of usage was by lines drawn in sand with pebbles. Abaci, of a more modern design, are still used as calculation tools today. This was the first known calculation aid – preceding Greek methods by 2,000 years.

The first recorded proposal for using digital electronics in computing was the 1931 paper "The Use of Thyratrons for High Speed Automatic Counting of Physical Phenomena" by C. E. Wynn-Williams. Claude Shannon's 1938 paper "A Symbolic Analysis of Relay and Switching Circuits" then introduced the idea of using electronics for Boolean algebraic operations.

The concept of a field-effect transistor was proposed by Julius Edgar Lilienfeld in 1925. John Bardeen and Walter Brattain, while working under William Shockley at Bell Labs, built the first working transistor, the point-contact transistor, in 1947. In 1953, the University of Manchester built the first transistorized computer, called the Transistor Computer. However, early junction transistors were relatively bulky devices that were difficult to mass-produce, which limited them to a number of specialised applications. The metal–oxide–silicon field-effect transistor (MOSFET, or MOS transistor) was invented by Mohamed Atalla and Dawon Kahng at Bell Labs in 1959. It was the first truly compact transistor that could be miniaturised and mass-produced for a wide range of uses. The MOSFET made it possible to build high-density integrated circuit chips, leading to what is known as the computer revolution or microcomputer revolution.

Computer

A computer is a machine that manipulates data according to a set of instructions called a computer program. The program has an executable form that the computer can use directly to execute the instructions. The same program in its human-readable source code form, enables a programmer to study and develop a sequence of steps known as an algorithm. Because the instructions can be carried out in different types of computers, a single set of source instructions converts to machine instructions according to the CPU type.

The execution process carries out the instructions in a computer program. Instructions express the computations performed by the computer. They trigger sequences of simple actions on the executing machine. Those actions produce effects according to the semantics of the instructions.

Computer hardware

Computer hardware includes the physical parts of a computer, including central processing unit, memory and input/output. Computational logic and computer architecture are key topics in the field of computer hardware.

Computer software

Computer software, or just "software", is a collection of computer programs and related data, which provides instructions to a computer. Software refers to one or more computer programs and data held in the storage of the computer. It is a set of programs, procedures, algorithms, as well as its documentation concerned with the operation of a data processing system. Program software performs the function of the program it implements, either by directly providing instructions to the computer hardware or by serving as input to another piece of software. The term was coined to contrast with the old term hardware (meaning physical devices). In contrast to hardware, software is intangible.

Software is also sometimes used in a more narrow sense, meaning application software only.

System software

System software, or systems software, is computer software designed to operate and control computer hardware, and to provide a platform for running application software. System software includes operating systems, utility software, device drivers, window systems, and firmware. Frequently used development tools such as compilers, linkers, and debuggers are classified as system software. System software and middleware manage and integrate a computer's capabilities, but typically do not directly apply them in the performance of tasks that benefit the user, unlike application software.

Application software

Application software, also known as an "application" or an "app", is computer software designed to help the user perform specific tasks. Examples include enterprise software, accounting software, office suites, graphics software and media players. Many application programs deal principally with documents. Apps may be bundled with the computer and its system software, or may be published separately. Some users are satisfied with the bundled apps and need never install additional applications. The system software manages the hardware and serves the application, which in turn serves the user.

Application software applies the power of a particular computing platform or system software to a particular purpose. Some apps, such as Microsoft Office, are developed in multiple versions for several different platforms; others have narrower requirements and are generally referred to by the platform they run on. For example, a "geography application for Windows" or an "Android application for education" or "Linux gaming". Applications that run only on one platform and increase the desirability of that platform due to the popularity of the application, known as killer applications.

Computer network

A computer network, often simply referred to as a network, is a collection of hardware components and computers interconnected by communication channels that allow sharing of resources and information. When at least one process in one device is able to send or receive data to or from at least one process residing in a remote device, the two devices are said to be in a network. Networks may be classified according to a wide variety of characteristics such as the medium used to transport the data, communications protocol used, scale, topology, and organizational scope.

Communications protocols define the rules and data formats for exchanging information in a computer network, and provide the basis for network programming. One well-known communications protocol is Ethernet, a hardware and link layer standard that is ubiquitous in local area networks. Another common protocol is the Internet Protocol Suite, which defines a set of protocols for internetworking, i.e. for data communication between multiple networks, host-to-host data transfer, and application-specific data transmission formats.

Computer networking is sometimes considered a sub-discipline of electrical engineering, telecommunications, computer science, information technology or computer engineering, since it relies upon the theoretical and practical application of these disciplines.

Internet

The Internet is a global system of interconnected computer networks that use the standard Internet Protocol Suite (TCP/IP) to serve billions of users. This includes millions of private, public, academic, business, and government networks, ranging in scope from local to global. These networks are linked by a broad array of electronic, wireless and optical networking technologies. The Internet carries an extensive range of information resources and services, such as the inter-linked hypertext documents of the World Wide Web and the infrastructure to support email.

Computer programming

Computer programming is the process of writing, testing, debugging, and maintaining the source code and documentation of computer programs. This source code is written in a programming language, which is an artificial language that is often more restrictive than natural languages, but easily translated by the computer. Programming is used to invoke some desired behavior (customization) from the machine.

Writing high quality source code requires knowledge of both the computer science domain and the domain in which the application will be used. The highest-quality software is thus often developed by a team of domain experts, each a specialist in some area of development. However, the term programmer may apply to a range of program quality, from hacker to open source contributor to professional. It is also possible for a single programmer to do most or all of the computer programming needed to generate the proof of concept to launch a new "killer" application.

Computer programmer

A programmer, computer programmer, or coder is a person who writes computer software. The term "computer programmer" can refer to a specialist in one area of computer programming or to a generalist who writes code for many kinds of software. One who practices or professes a formal approach to programming may also be known as a programmer analyst. A programmer's primary computer language (C, C++, Java, Lisp, Python, etc.) is often prefixed to the above titles, and those who work in a web environment often prefix their titles with "Web". The term "programmer" can be used to refer to a software developer, software engineer, computer scientist, or software analyst. However, members of these professions typically possess other software engineering skills, beyond programming.

Computer industry

The computer industry is made up of businesses involved in developing computer software, designing computer hardware and computer networking infrastructures, manufacturing computer components and providing information technology services, including system administration and maintenance.

The software industry includes businesses engaged in development, maintenance and publication of software. The industry also includes software services, such as training, documentation, and consulting.

Sub-disciplines of computing

Computer engineering

Computer engineering is a discipline that integrates several fields of electrical engineering and computer science required to develop computer hardware and software. Computer engineers usually have training in electronic engineering (or electrical engineering), software design, and hardware-software integration, rather than just software engineering or electronic engineering. Computer engineers are involved in many hardware and software aspects of computing, from the design of individual microprocessors, personal computers, and supercomputers, to circuit design. This field of engineering includes not only the design of hardware within its own domain, but also the interactions between hardware and the context in which it operates.

Software engineering

Software engineering (SE) is the application of a systematic, disciplined and quantifiable approach to the design, development, operation, and maintenance of software, and the study of these approaches. That is, the application of engineering to software. It is the act of using insights to conceive, model and scale a solution to a problem. The first reference to the term is the 1968 NATO Software Engineering Conference, and was intended to provoke thought regarding the perceived "software crisis" at the time. Software development, a widely-used and more generic term, does not necessarily subsume the engineering paradigm. The generally accepted concepts of Software Engineering as an engineering discipline have been specified in the Guide to the Software Engineering Body of Knowledge (SWEBOK). The SWEBOK has become an internationally accepted standard in ISO/IEC TR 19759:2015.

Computer science

Computer science or computing science (abbreviated CS or Comp Sci) is the scientific and practical approach to computation and its applications. A computer scientist specializes in the theory of computation and the design of computational systems.

Its subfields can be divided into practical techniques for its implementation and application in computer systems, and purely theoretical areas. Some, such as computational complexity theory, which studies fundamental properties of computational problems, are highly abstract, while others, such as computer graphics, emphasize real-world applications. Others focus on the challenges in implementing computations. For example, programming language theory studies approaches to description of computations, while the study of computer programming investigates the use of programming languages and complex systems. The field of human–computer interaction focuses on the challenges in making computers and computations useful, usable, and universally accessible to humans.

Cybersecurity

The field of cybersecurity pertains to the protection of computer systems and networks. This includes information and data privacy, preventing disruption of IT services and prevention of theft of and damage to hardware, software and data.

Data science

Data science is a field that uses scientific and computing tools to extract information and insights from data, driven by the increasing volume and availability of data. Data mining, big data, statistics and machine learning are all interwoven with data science.

Information systems

Information systems (IS) is the study of complementary networks of hardware and software (see information technology) that people and organizations use to collect, filter, process, create, and distribute data. The ACM's Computing Careers describes IS as:

"A majority of IS [degree] programs are located in business schools; however, they may have different names such as management information systems, computer information systems, or business information systems. All IS degrees combine business and computing topics, but the emphasis between technical and organizational issues varies among programs. For example, programs differ substantially in the amount of programming required."

The study of IS bridges business and computer science, using the theoretical foundations of information and computation to study various business models and related algorithmic processes within a computer science discipline. The field of Computer Information Systems (CIS) studies computers and algorithmic processes, including their principles, their software and hardware designs, their applications, and their impact on society while IS emphasizes functionality over design.

Information technology

Information technology (IT) is the application of computers and telecommunications equipment to store, retrieve, transmit and manipulate data, often in the context of a business or other enterprise. The term is commonly used as a synonym for computers and computer networks, but also encompasses other information distribution technologies such as television and telephones. Several industries are associated with information technology, including computer hardware, software, electronics, semiconductors, internet, telecom equipment, e-commerce and computer services.

Research and emerging technologies

DNA-based computing and quantum computing are areas of active research for both computing hardware and software, such as the development of quantum algorithms. Potential infrastructure for future technologies includes DNA origami on photolithography and quantum antennae for transferring information between ion traps. By 2011, researchers had entangled 14 qubits. Fast digital circuits, including those based on Josephson junctions and rapid single flux quantum technology, are becoming more nearly realizable with the discovery of nanoscale superconductors.

Fiber-optic and photonic (optical) devices, which already have been used to transport data over long distances, are starting to be used by data centers, along with CPU and semiconductor memory components. This allows the separation of RAM from CPU by optical interconnects. IBM has created an integrated circuit with both electronic and optical information processing in one chip. This is denoted "CMOS-integrated nanophotonics" or (CINP). One benefit of optical interconnects is that motherboards, which formerly required a certain kind of system on a chip (SoC), can now move formerly dedicated memory and network controllers off the motherboards, spreading the controllers out onto the rack. This allows standardization of backplane interconnects and motherboards for multiple types of SoCs, which allows more timely upgrades of CPUs.

Another field of research is spintronics. Spintronics can provide computing power and storage, without heat buildup. Some research is being done on hybrid chips, which combine photonics and spintronics. There is also research ongoing on combining plasmonics, photonics, and electronics.

Cloud computing

Cloud computing is a model that allows for the use of computing resources, such as servers or applications, without the need for interaction between the owner of these resources and the end user. It is typically offered as a service, making it an example of Software as a Service, Platforms as a Service, and Infrastructure as a Service, depending on the functionality offered. Key characteristics include on-demand access, broad network access, and the capability of rapid scaling. It allows individual users or small business to benefit from economies of scale.

One area of interest in this field is its potential to support energy efficiency. Allowing thousands of instances of computation to occur on one single machine instead of thousands of individual machines could help save energy. It could also ease the transition to renewable energy source, since it would suffice to power one server farm with renewable energy, rather than millions of homes and offices.

However, this centralized computing model poses several challenges, especially in security and privacy. Current legislation does not sufficiently protect users from companies mishandling their data on company servers. This suggests potential for further legislative regulations on cloud computing and tech companies.

Quantum computing

Quantum computing is an area of research that brings together the disciplines of computer science, information theory, and quantum physics. While the idea of information as part of physics is relatively new, there appears to be a strong tie between information theory and quantum mechanics. Whereas traditional computing operates on a binary system of ones and zeros, quantum computing uses qubits. Qubits are capable of being in a superposition, i.e. in both states of one and zero, simultaneously. Thus, the value of the qubit is not between 1 and 0, but changes depending on when it is measured. This trait of qubits is known as quantum entanglement, and is the core idea of quantum computing that allows quantum computers to do large scale computations. Quantum computing is often used for scientific research in cases where traditional computers do not have the computing power to do the necessary calculations, such in molecular modeling. Large molecules and their reactions are far too complex for traditional computers to calculate, but the computational power of quantum computers could provide a tool to perform such calculations.

Satellite navigation

From Wikipedia, the free encyclopedia

The U.S. Space Force's Global Positioning System was the first global satellite navigation system and was the first to be provided as a free global service.

A satellite navigation or satnav system is a system that uses satellites to provide autonomous geo-spatial positioning. It allows satellite navigation devices to determine their location (longitude, latitude, and altitude/elevation) to high precision (within a few centimetres to metres) using time signals transmitted along a line of sight by radio from satellites. The system can be used for providing position, navigation or for tracking the position of something fitted with a receiver (satellite tracking). The signals also allow the electronic receiver to calculate the current local time to high precision, which allows time synchronisation. These uses are collectively known as Positioning, Navigation and Timing (PNT). Satnav systems operate independently of any telephonic or internet reception, though these technologies can enhance the usefulness of the positioning information generated.

A satellite navigation system with global coverage may be termed a global navigation satellite system (GNSS). As of September 2020, the United States' Global Positioning System (GPS), Russia's Global Navigation Satellite System (GLONASS), China's BeiDou Navigation Satellite System, and the European Union's Galileo are fully operational GNSSs. Japan's Quasi-Zenith Satellite System (QZSS) is a (US) GPS satellite-based augmentation system to enhance the accuracy of GPS, with satellite navigation independent of GPS scheduled for 2023. The Indian Regional Navigation Satellite System (IRNSS) plans to expand to a global version in the long term.

Global coverage for each system is generally achieved by a satellite constellation of 18–30 medium Earth orbit (MEO) satellites spread between several orbital planes. The actual systems vary, but all use orbital inclinations of >50° and orbital periods of roughly twelve hours (at an altitude of about 20,000 kilometres or 12,000 miles).

Classification

GNSS systems that provide enhanced accuracy and integrity monitoring usable for civil navigation are classified as follows:

  • GNSS-1 is the first generation system and is the combination of existing satellite navigation systems (GPS and GLONASS), with Satellite Based Augmentation Systems (SBAS) or Ground Based Augmentation Systems (GBAS). In the United States, the satellite based component is the Wide Area Augmentation System (WAAS), in Europe it is the European Geostationary Navigation Overlay Service (EGNOS), and in Japan it is the Multi-Functional Satellite Augmentation System (MSAS). Ground based augmentation is provided by systems like the Local Area Augmentation System (LAAS).
  • GNSS-2 is the second generation of systems that independently provides a full civilian satellite navigation system, exemplified by the European Galileo positioning system. These systems will provide the accuracy and integrity monitoring necessary for civil navigation; including aircraft. Initially, this system consisted of only Upper L Band frequency sets (L1 for GPS, E1 for Galileo, G1 for GLONASS). In recent years, GNSS systems have begun activating Lower L-Band frequency sets (L2 and L5 for GPS, E5a and E5b for Galileo, G3 for GLONASS) for civilian use; they feature higher aggregate accuracy and fewer problems with signal reflection. As of late 2018, a few consumer grade GNSS devices are being sold that leverage both, and are typically called "Dual band GNSS" or "Dual band GPS" devices.

By their roles in the navigation system, systems can be classified as:

  • Core Satellite navigation systems, currently GPS (United States), GLONASS (Russian Federation), Beidou (China) and Galileo (European Union).
  • Global Satellite Based Augmentation Systems (SBAS) such as OmniSTAR and StarFire.
  • Regional SBAS including WAAS (US), EGNOS (EU), MSAS (Japan), GAGAN (India), SDCM (Russia).
  • Regional Satellite Navigation Systems such as India's NAVIC, and Japan's QZSS.
  • Continental scale Ground Based Augmentation Systems (GBAS) for example the Australian GRAS and the joint US Coast Guard, Canadian Coast Guard, US Army Corps of Engineers and US Department of Transportation National Differential GPS (DGPS) service.
  • Regional scale GBAS such as CORS networks.
  • Local GBAS typified by a single GPS reference station operating Real Time Kinematic (RTK) corrections.

As many of the global GNSS systems (and augmentation systems) use similar frequencies and signals around L1, many "Multi-GNSS" receivers capable of using multiple systems have been produced. While some systems strive to interoperate with GPS as well as possible by providing the same clock, others do not.

History

Accuracy of Navigation Systems.svg

Ground based radio navigation is decades old. The DECCA, LORAN, GEE and Omega systems used terrestrial longwave radio transmitters which broadcast a radio pulse from a known "master" location, followed by a pulse repeated from a number of "slave" stations. The delay between the reception of the master signal and the slave signals allowed the receiver to deduce the distance to each of the slaves, providing a fix.

The first satellite navigation system was Transit, a system deployed by the US military in the 1960s. Transit's operation was based on the Doppler effect: the satellites travelled on well-known paths and broadcast their signals on a well-known radio frequency. The received frequency will differ slightly from the broadcast frequency because of the movement of the satellite with respect to the receiver. By monitoring this frequency shift over a short time interval, the receiver can determine its location to one side or the other of the satellite, and several such measurements combined with a precise knowledge of the satellite's orbit can fix a particular position. Satellite orbital position errors are caused by radio-wave refraction, gravity field changes (as the Earth's gravitational field is not uniform), and other phenomena. A team, led by Harold L Jury of Pan Am Aerospace Division in Florida from 1970-1973, found solutions and/or corrections for many error sources. Using real-time data and recursive estimation, the systematic and residual errors were narrowed down to accuracy sufficient for navigation.

Principles

Part of an orbiting satellite's broadcast includes its precise orbital data. Originally, the US Naval Observatory (USNO) continuously observed the precise orbits of these satellites. As a satellite's orbit deviated, the USNO sent the updated information to the satellite. Subsequent broadcasts from an updated satellite would contain its most recent ephemeris.

Modern systems are more direct. The satellite broadcasts a signal that contains orbital data (from which the position of the satellite can be calculated) and the precise time the signal was transmitted. Orbital data include a rough almanac for all satellites to aid in finding them, and a precise ephemeris for this satellite. The orbital ephemeris is transmitted in a data message that is superimposed on a code that serves as a timing reference. The satellite uses an atomic clock to maintain synchronization of all the satellites in the constellation. The receiver compares the time of broadcast encoded in the transmission of three (at sea level) or four (which allows an altitude calculation also) different satellites, measuring the time-of-flight to each satellite. Several such measurements can be made at the same time to different satellites, allowing a continual fix to be generated in real time using an adapted version of trilateration: see GNSS positioning calculation for details.

Each distance measurement, regardless of the system being used, places the receiver on a spherical shell at the measured distance from the broadcaster. By taking several such measurements and then looking for a point where they meet, a fix is generated. However, in the case of fast-moving receivers, the position of the signal moves as signals are received from several satellites. In addition, the radio signals slow slightly as they pass through the ionosphere, and this slowing varies with the receiver's angle to the satellite, because that changes the distance through the ionosphere. The basic computation thus attempts to find the shortest directed line tangent to four oblate spherical shells centred on four satellites. Satellite navigation receivers reduce errors by using combinations of signals from multiple satellites and multiple correlators, and then using techniques such as Kalman filtering to combine the noisy, partial, and constantly changing data into a single estimate for position, time, and velocity.

Einstein's theory of general relativity is applied to GPS time correction, the net result is that time on a GPS satellite clock advances faster than a clock on the ground by about 38 microseconds per day. 

Applications

GNSS satellites used for navigation on a smartphone in 2021
 

The original motivation for satellite navigation was for military applications. Satellite navigation allows precision in the delivery of weapons to targets, greatly increasing their lethality whilst reducing inadvertent casualties from mis-directed weapons. (See Guided bomb). Satellite navigation also allows forces to be directed and to locate themselves more easily, reducing the fog of war.

Now a global navigation satellite system, such as Galileo, is used to determine users location and the location of other people or objects at any given moment. The range of application of satellite navigation in the future is enormous, including both the public and private sectors across numerous market segments such as science, transport, agriculture etc.

The ability to supply satellite navigation signals is also the ability to deny their availability. The operator of a satellite navigation system potentially has the ability to degrade or eliminate satellite navigation services over any territory it desires.

Global navigation satellite systems

In order of first launch year:

Orbit size comparison of GPS, GLONASS, Galileo, BeiDou-2, and Iridium constellations, the International Space Station, the Hubble Space Telescope, and geostationary orbit (and its graveyard orbit), with the Van Allen radiation belts and the Earth to scale.
Launched GNSS satellites 1978 to 2014

GPS

First launch year: 1978

The United States' Global Positioning System (GPS) consists of up to 32 medium Earth orbit satellites in six different orbital planes. The exact number of satellites varies as older satellites are retired and replaced. Operational since 1978 and globally available since 1994, GPS is the world's most utilized satellite navigation system.

GLONASS

First launch year: 1982

The formerly Soviet, and now Russian, Global'naya Navigatsionnaya Sputnikovaya Sistema, (GLObal NAvigation Satellite System or GLONASS), is a space-based satellite navigation system that provides a civilian radionavigation-satellite service and is also used by the Russian Aerospace Defence Forces. GLONASS has full global coverage since 1995 and with 24 active satellites.

BeiDou

First launch year: 2000

BeiDou started as the now-decommissioned Beidou-1, an Asia-Pacific local network on the geostationary orbits. The second generation of the system BeiDou-2 became operational in China in December 2011. The BeiDou-3 system is proposed to consist of 30 MEO satellites and five geostationary satellites (IGSO). A 16-satellite regional version (covering Asia and Pacific area) was completed by December 2012. Global service was completed by December 2018. On 23 June 2020, the BDS-3 constellation deployment is fully completed after the last satellite was successfully launched at the Xichang Satellite Launch Center.

Galileo

First launch year: 2011

The European Union and European Space Agency agreed in March 2002 to introduce their own alternative to GPS, called the Galileo positioning system. Galileo became operational on 15 December 2016 (global Early Operational Capability, EOC). At an estimated cost of €10 billion, the system of 30 MEO satellites was originally scheduled to be operational in 2010. The original year to become operational was 2014. The first experimental satellite was launched on 28 December 2005. Galileo is expected to be compatible with the modernized GPS system. The receivers will be able to combine the signals from both Galileo and GPS satellites to greatly increase the accuracy. The full Galileo constellation consists of 24 active satellites, the last of which was launched in December 2021. The main modulation used in Galileo Open Service signal is the Composite Binary Offset Carrier (CBOC) modulation.

Regional navigation satellite systems

NavIC

The NavIC or NAVigation with Indian Constellation is an autonomous regional satellite navigation system developed by Indian Space Research Organisation (ISRO). The government approved the project in May 2006, and consists of a constellation of 7 navigational satellites. Three of the satellites are placed in the Geostationary orbit (GEO) and the remaining four in the Geosynchronous orbit (GSO) to have a larger signal footprint and lower number of satellites to map the region. It is intended to provide an all-weather absolute position accuracy of better than 7.6 metres (25 ft) throughout India and within a region extending approximately 1,500 km (930 mi) around it. An Extended Service Area lies between the primary service area and a rectangle area enclosed by the 30th parallel south to the 50th parallel north and the 30th meridian east to the 130th meridian east, 1,500–6,000 km beyond borders. A goal of complete Indian control has been stated, with the space segment, ground segment and user receivers all being built in India.

The constellation was in orbit as of 2018, and the system was available for public use in early 2018. NavIC provides two levels of service, the "standard positioning service", which will be open for civilian use, and a "restricted service" (an encrypted one) for authorized users (including military). There are plans to expand NavIC system by increasing constellation size from 7 to 11.

QZSS

The Quasi-Zenith Satellite System (QZSS) is a four-satellite regional time transfer system and enhancement for GPS covering Japan and the Asia-Oceania regions. QZSS services were available on a trial basis as of January 12, 2018, and were started in November 2018. The first satellite was launched in September 2010. An independent satellite navigation system (from GPS) with 7 satellites is planned for 2023.

Comparison of systems

System BeiDou Galileo GLONASS GPS NavIC QZSS
Owner China European Union Russia United States India Japan
Coverage Global Global Global Global Regional Regional
Coding CDMA CDMA FDMA & CDMA CDMA CDMA CDMA
Altitude 21,150 km (13,140 mi) 23,222 km (14,429 mi) 19,130 km (11,890 mi) 20,180 km (12,540 mi) 36,000 km (22,000 mi) 32,600 km (20,300 mi) –
39,000 km (24,000 mi)
Period 12.63 h (12 h 38 min) 14.08 h (14 h  5 min) 11.26 h (11 h 16 min) 11.97 h (11 h 58 min) 23.93 h (23 h 56 min) 23.93 h (23 h 56 min)
Rev./S. day 17/9 (1.888...) 17/10 (1.7) 17/8 (2.125) 2 1 1
Satellites BeiDou-3:
28 operational
(24 MEO, 3 IGSO, 1 GSO)
5 in orbit validation
2 GSO planned 20H1
BeiDou-2:
15 operational
1 in commissioning
By design:

27 operational + 3 spares

Currently:

26 in orbit
24 operational

2 inactive
6 to be launched

24 by design
24 operational
1 commissioning
1 in flight tests
24 by design
30 operational
8 operational
(3 GEO, 5 GSO MEO)
4 operational (3 GSO, 1 GEO)
7 in the future
Frequency 1.561098 GHz (B1)
1.589742 GHz (B1-2)
1.20714 GHz (B2)
1.26852 GHz (B3)
1.559–1.592 GHz (E1)

1.164–1.215 GHz (E5a/b)
1.260–1.300 GHz (E6)

1.593–1.610 GHz (G1)
1.237–1.254 GHz (G2)

1.189–1.214 GHz (G3)

1.563–1.587 GHz (L1)
1.215–1.2396 GHz (L2)

1.164–1.189 GHz (L5)

1.17645 GHz(L5)
2.492028 GHz (S)
1.57542 GHz (L1C/A,L1C,L1S)
1.22760 GHz (L2C)
1.17645 GHz (L5,L5S)
1.27875 GHz (L6)
Status Operational Operating since 2016
2020 completion
Operational Operational Operational Operational
Accuracy 3.6 m or 12 ft (public)
0.1 m or 3.9 in (encrypted)
1 m or 3 ft 3 in (public)
0.01 m or 0.39 in (encrypted)
2–4 m or 6 ft 7 in – 13 ft 1 in 0.3–5 m or 1 ft 0 in – 16 ft 5 in (no DGPS or WAAS) 1 m or 3 ft 3 in (public)
0.1 m or 3.9 in (encrypted)
1 m or 3 ft 3 in (public)
0.1 m or 3.9 in (encrypted)
System BeiDou Galileo GLONASS GPS NavIC QZSS

Using multiple GNSS systems for user positioning increases the number of visible satellites, improves precise point positioning (PPP) and shortens the average convergence time. The signal-in-space ranging error (SISRE) in November 2019 were 1.6 cm for Galileo, 2.3 cm for GPS, 5.2 cm for GLONASS and 5.5 cm for BeiDou when using real-time corrections for satellite orbits and clocks.

Augmentation

GNSS augmentation is a method of improving a navigation system's attributes, such as accuracy, reliability, and availability, through the integration of external information into the calculation process, for example, the Wide Area Augmentation System, the European Geostationary Navigation Overlay Service, the Multi-functional Satellite Augmentation System, Differential GPS, GPS-aided GEO augmented navigation (GAGAN) and inertial navigation systems.

Related techniques

DORIS

Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS) is a French precision navigation system. Unlike other GNSS systems, it is based on static emitting stations around the world, the receivers being on satellites, in order to precisely determine their orbital position. The system may be used also for mobile receivers on land with more limited usage and coverage. Used with traditional GNSS systems, it pushes the accuracy of positions to centimetric precision (and to millimetric precision for altimetric application and also allows monitoring very tiny seasonal changes of Earth rotation and deformations), in order to build a much more precise geodesic reference system.

LEO satellites

The two current operational low Earth orbit (LEO) satellite phone networks are able to track transceiver units with accuracy of a few kilometres using doppler shift calculations from the satellite. The coordinates are sent back to the transceiver unit where they can be read using AT commands or a graphical user interface. This can also be used by the gateway to enforce restrictions on geographically bound calling plans.

International regulation

The International Telecommunication Union (ITU) defines a radionavigation-satellite service (RNSS) as "a radiodetermination-satellite service used for the purpose of radionavigation. This service may also include feeder links necessary for its operation".

RNSS is regarded as a safety-of-life service and an essential part of navigation which must be protected from interferences.

Classification

ITU Radio Regulations (article 1) classifies radiocommunication services as:

Examples of RNSS use

Frequency allocation

The allocation of radio frequencies is provided according to Article 5 of the ITU Radio Regulations (edition 2012).

To improve harmonisation in spectrum utilisation, most service allocations are incorporated in national Tables of Frequency Allocations and Utilisations within the responsibility of the appropriate national administration. Allocations are:

  • primary: indicated by writing in capital letters
  • secondary: indicated by small letters
  • exclusive or shared utilization: within the responsibility of administrations.
Allocation to services
Region 1      Region 2           Region 3     
5 000–5 010 MHz
AERONAUTICAL MOBILE-SATELLITE (R)
AERONAUTICAL RADIONAVIGATION
RADIONAVIGATION-SATELLITE (Earth-to-space)

Politics of Europe

From Wikipedia, the free encyclopedia ...