Search This Blog

Friday, June 14, 2024

Immunosuppressive drug

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Immunosuppressive_drug
Prednisone
Dexamethasone

Immunosuppressive drugs, also known as immunosuppressive agents, immunosuppressants and antirejection medications, are drugs that inhibit or prevent the activity of the immune system.

Classification

Immunosuppressive drugs can be classified into five groups:

Glucocorticoids

In pharmacologic (supraphysiologic) doses, glucocorticoids, such as prednisone, dexamethasone, and hydrocortisone are used to suppress various allergic, inflammatory, and autoimmune disorders. They are also administered as posttransplantory immunosuppressants to prevent the acute transplant rejection and graft-versus-host disease. Nevertheless, they do not prevent an infection and also inhibit later reparative processes.

Immunosuppressive mechanism

Glucocorticoids suppress cell-mediated immunity. They act by inhibiting gene expression of cytokines including Interleukin 1 (IL-1), IL-2, IL-3, IL-4, IL-5, IL-6, IL-8, and TNF-alpha by binding to corticosteroid response elements on DNA. This decrease in cytokine production reduces T cell proliferation. With decreased T cell proliferation there is decreased production of IL-2. This further decreases the proliferation of T cells.

Glucocorticoids also suppress the humoral immunity, causing B cells to express smaller amounts of IL-2 and IL-2 receptors. This diminishes both B cell clone expansion and antibody synthesis.

Anti-inflammatory effects

Glucocorticoids influence all types of inflammatory events, no matter their cause. They induce the lipocortin-1 (annexin-1) synthesis, which then binds to cell membranes preventing the phospholipase A2 from coming into contact with its substrate arachidonic acid. This leads to diminished eicosanoid production. The cyclooxygenase (both COX-1 and COX-2) expression is also suppressed, potentiating the effect.

Glucocorticoids also stimulate the lipocortin-1 escaping to the extracellular space, where it binds to the leukocyte membrane receptors and inhibits various inflammatory events: epithelial adhesion, emigration, chemotaxis, phagocytosis, respiratory burst, and the release of various inflammatory mediators (lysosomal enzymes, cytokines, tissue plasminogen activator, chemokines, etc.) from neutrophils, macrophages, and mastocytes.

Cytostatics

Cytostatics inhibit cell division. In immunotherapy, they are used in smaller doses than in the treatment of malignant diseases. They affect the proliferation of both T cells and B cells. Due to their highest effectiveness, purine analogs are most frequently administered.

Alkylating agents

The alkylating agents used in immunotherapy are nitrogen mustards (cyclophosphamide), nitrosoureas, platinum compounds, and others. Cyclophosphamide (Baxter's Cytoxan) is probably the most potent immunosuppressive compound. In small doses, it is very efficient in the therapy of systemic lupus erythematosus, autoimmune hemolytic anemias, granulomatosis with polyangiitis, and other immune diseases. High doses cause pancytopenia and hemorrhagic cystitis.

Antimetabolites

Antimetabolites interfere with the synthesis of nucleic acids. These include:

Methotrexate

Methotrexate is a folic acid analogue. It binds dihydrofolate reductase and prevents synthesis of tetrahydrofolate. It is used in the treatment of autoimmune diseases (for example rheumatoid arthritis or Behcet's Disease) and in transplantations.

Azathioprine and mercaptopurine

Azathioprine (Prometheus' Imuran), is the main immunosuppressive cytotoxic substance. It is extensively used to control transplant rejection reactions. It is nonenzymatically cleaved to mercaptopurine, that acts as a purine analogue and an inhibitor of DNA synthesis. Mercaptopurine itself can also be administered directly.

By preventing the clonal expansion of lymphocytes in the induction phase of the immune response, it affects both the cell and the humoral immunity. It is also efficient in the treatment of autoimmune diseases.

Cytotoxic antibiotics

Among these, dactinomycin is the most important. It is used in kidney transplantations. Other cytotoxic antibiotics are anthracyclines, mitomycin C, bleomycin, mithramycin.

Antibodies

Antibodies are sometimes used as a quick and potent immunosuppressive therapy to prevent the acute rejection reactions as well as a targeted treatment of lymphoproliferative or autoimmune disorders (e.g., anti-CD20 monoclonals).

Polyclonal antibodies

Heterologous polyclonal antibodies are obtained from the serum of animals (e.g., rabbit, horse), and injected with the patient's thymocytes or lymphocytes. The antilymphocyte (ALG) and antithymocyte antigens (ATG) are being used. They are part of the steroid-resistant acute rejection reaction and grave aplastic anemia treatment. However, they are added primarily to other immunosuppressives to diminish their dosage and toxicity. They also allow transition to cyclosporin therapy.

Polyclonal antibodies inhibit T lymphocytes and cause their lysis, which is both complement-mediated cytolysis and cell-mediated opsonization followed by removal of reticuloendothelial cells from the circulation in the spleen and liver. In this way, polyclonal antibodies inhibit cell-mediated immune reactions, including graft rejection, delayed hypersensitivity (i.e., tuberculin skin reaction), and the graft-versus-host disease (GVHD), but influence thymus-dependent antibody production.

As of March 2005, there are two preparations available to the market: Atgam, obtained from horse serum, and Thymoglobuline, obtained from rabbit serum. Polyclonal antibodies affect all lymphocytes and cause general immunosuppression, possibly leading to post-transplant lymphoproliferative disorders (PTLD) or serious infections, especially by cytomegalovirus. To reduce these risks, treatment is provided in a hospital, where adequate isolation from infection is available. They are usually administered for five days intravenously in the appropriate quantity. Patients stay in the hospital as long as three weeks to give the immune system time to recover to a point where there is no longer a risk of serum sickness.

Because of a high immunogenicity of polyclonal antibodies, almost all patients have an acute reaction to the treatment. It is characterized by fever, rigor episodes, and even anaphylaxis. Later during the treatment, some patients develop serum sickness or immune complex glomerulonephritis. Serum sickness arises seven to fourteen days after the therapy has begun. The patient has fever, joint pain, and erythema that can be soothed with the use of steroids and analgesics. Urticaria (hives) can also be present. It is possible to diminish their toxicity by using highly purified serum fractions and intravenous administration in the combination with other immunosuppressants, for example, calcineurin inhibitors, cytostatics, and corticosteroids. The most frequent combination is to use antibodies and ciclosporin simultaneously in order to prevent patients from gradually developing a strong immune response to these drugs, reducing or eliminating their effectiveness.

Monoclonal antibodies

Monoclonal antibodies are directed towards exactly defined antigens. Therefore, they cause fewer side-effects. Especially significant are the IL-2 receptor- (CD25-) and CD3-directed antibodies. They are used to prevent the rejection of transplanted organs, but also to track changes in the lymphocyte subpopulations. It is reasonable to expect similar new drugs in the future.

T-cell receptor directed antibodies

Muromonab-CD3 is a murine anti-CD3 monoclonal antibody of the IgG2a type that was previously used to prevent T-cell activation and proliferation by binding the T-cell receptor complex present on all differentiated T cells. As such it was one of the first potent immunosuppressive substances and was administered to control the steroid- and/or polyclonal antibodies-resistant acute rejection episodes. As it acts more specifically than polyclonal antibodies it was also used prophylactically in transplantations. However, muromonab-CD3 is no longer produced, and this mouse monoclonal antibody has been replaced in the clinic with chimeric, humanized, or human monoclonal antibodies.

The muromonab's mechanism of action is only partially understood. It is known that the molecule binds TCR/CD3 receptor complex. In the first few administrations this binding non-specifically activates T-cells, leading to a serious syndrome 30 to 60 minutes later. It is characterized by fever, myalgia, headache, and arthralgia. Sometimes it develops in a life-threatening reaction of the cardiovascular system and the central nervous system, requiring a lengthy therapy. Past this period CD3 blocks the TCR-antigen binding and causes conformational change or the removal of the entire TCR3/CD3 complex from the T-cell surface. This lowers the number of available T-cells, perhaps by sensitizing them for the uptake by the epithelial reticular cells. The cross-binding of CD3 molecules as well activates an intracellular signal causing the T cell anergy or apoptosis, unless the cells receive another signal through a co-stimulatory molecule. CD3 antibodies shift the balance from Th1 to Th2 cells as CD3 stimulates Th1 activation.

The patient may develop neutralizing antibodies reducing the effectiveness of muromonab-CD3. Muromonab-CD3 can cause excessive immunosuppression. Although CD3 antibodies act more specifically than polyclonal antibodies, they lower the cell-mediated immunity significantly, predisposing the patient to opportunistic infections and malignancies.

IL-2 receptor directed antibodies

Interleukin-2 is an important immune system regulator necessary for the clone expansion and survival of activated lymphocytes T. Its effects are mediated by the trimer cell surface receptor IL-2a, consisting of the α, β, and γ chains. The IL-2a (CD25, T-cell activation antigen, TAC) is expressed only by the already-activated T lymphocytes. Therefore, it is of special significance to the selective immunosuppressive treatment, and research has been focused on the development of effective and safe anti-IL-2 antibodies. By the use of recombinant gene technology, the mouse anti-Tac antibodies have been modified, leading to the presentation of two chimeric mouse/human anti-Tac antibodies in the year 1998: basiliximab (Simulect) and daclizumab (Zenapax). These drugs act by binding the IL-2a receptor's α chain, preventing the IL-2 induced clonal expansion of activated lymphocytes and shortening their survival. They are used in the prophylaxis of the acute organ rejection after bilateral kidney transplantation, both being similarly effective and with only few side-effects.

Drugs acting on immunophilins

Ciclosporin

Like tacrolimus, ciclosporin (Novartis' Sandimmune) is a calcineurin inhibitor (CNI). It has been in use since 1983 and is one of the most widely used immunosuppressive drugs. It is a cyclic fungal peptide, composed of 11 amino acids.

Ciclosporin is thought to bind to the cytosolic protein cyclophilin (an immunophilin) of immunocompetent lymphocytes, especially T-lymphocytes. This complex of ciclosporin and cyclophilin inhibits the phosphatase calcineurin, which under normal circumstances induces the transcription of interleukin-2. The drug also inhibits lymphokine production and interleukin release, leading to a reduced function of effector T-cells.

Ciclosporin is used in the treatment of acute rejection reactions, but has been increasingly substituted with newer, and less nephrotoxic, immunosuppressants.

Calcineurin inhibitors and azathioprine have been linked with post-transplant malignancies and skin cancers in organ transplant recipients. Non-melanoma skin cancer (NMSC) after kidney transplantation is common and can result in significant morbidity and mortality. The results of several studies suggest that calcineurin inhibitors have oncogenic properties mainly linked to the production of cytokines that promote tumor growth, metastasis and angiogenesis.

This drug has been reported to reduce the frequency of regulatory T cells (T-Reg) and after converting from a CNI monotherapy to a mycophenolate monotherapy, patients were found to have increased graft success and T-Reg frequency.

Tacrolimus

Tacrolimus (trade names Prograf, Astagraf XL, Envarsus XR) is a product of the bacterium Streptomyces tsukubensis. It is a macrolide lactone and acts by inhibiting calcineurin.

The drug is used primarily in liver and kidney transplantations, although in some clinics it is used in heart, lung, and heart/lung transplantations. It binds to the immunophilin FKBP1A, followed by the binding of the complex to calcineurin and the inhibition of its phosphatase activity. In this way, it prevents the cell from transitioning from the G0 into G1 phase of the cell cycle. Tacrolimus is more potent than ciclosporin and has less pronounced side-effects.

Sirolimus

Sirolimus (rapamycin, trade name Rapamune) is a macrolide lactone, produced by the actinomycete bacterium Streptomyces hygroscopicus. It is used to prevent rejection reactions. Although it is a structural analogue of tacrolimus, it acts somewhat differently and has different side-effects.

Contrary to ciclosporin and tacrolimus, drugs that affect the first phase of T lymphocyte activation, sirolimus affects the second phase, namely signal transduction and lymphocyte clonal proliferation. It binds to FKBP1A like tacrolimus, however the complex does not inhibit calcineurin but another protein, mTOR. Therefore, sirolimus acts synergistically with ciclosporin and, in combination with other immunosuppressants, has few side effects. Also, it indirectly inhibits several T lymphocyte-specific kinases and phosphatases, hence preventing their transition from G1 to S phase of the cell cycle. In a similar manner, Sirolimus prevents B cell differentiation into plasma cells, reducing production of IgM, IgG, and IgA antibodies.

It is also active against tumors that are PI3K/AKT/mTOR-dependent.

Everolimus

Everolimus is an analog of sirolimus and also is an mTOR inhibitor.

Zotarolimus

Zotarolimus is a semi-synthetic derivative of sirolimus used in drug-eluting stents.

Other drugs

Interferons

IFN-β suppresses the production of Th1 cytokines and the activation of monocytes. It is used to slow down the progression of multiple sclerosis. IFN-γ is able to trigger lymphocytic apoptosis.

Opioids

Prolonged use of opioids may cause immunosuppression of both innate and adaptive immunity. Decrease in proliferation as well as immune function has been observed in macrophages, as well as lymphocytes. It is thought that these effects are mediated by opioid receptors expressed on the surface of these immune cells.

TNF binding proteins

A TNF-α (tumor necrosis factor-alpha) binding protein is a monoclonal antibody or a circulating receptor such as infliximab (Remicade), etanercept (Enbrel), or adalimumab (Humira) that binds to TNF-α, preventing it from inducing the synthesis of IL-1 and IL-6 and the adhesion of lymphocyte-activating molecules. They are used in the treatment of rheumatoid arthritis, ankylosing spondylitis, Crohn's disease, and psoriasis.

These drugs may raise the risk of contracting tuberculosis or inducing a latent infection to become active. Infliximab and adalimumab have label warnings stating that patients should be evaluated for latent TB infection and treatment should be initiated prior to starting therapy with them.

TNF or the effects of TNF are also suppressed by various natural compounds, including curcumin (an ingredient in turmeric) and catechins (in green tea).

Mycophenolate

Mycophenolic acid acts as a non-competitive, selective, and reversible inhibitor of inosine-5′-monophosphate dehydrogenase (IMPDH), which is a key enzyme in the de novo guanosine nucleotide synthesis. In contrast to other human cell types, lymphocytes B and T are very dependent on this process. Mycophenolate mofetil is used in combination with ciclosporin or tacrolimus in transplant patients.

Small biological agents

Fingolimod is a synthetic immunosuppressant. It increases the expression or changes the function of certain adhesion molecules (α4/β7 integrin) in lymphocytes, so they accumulate in the lymphatic tissue (lymphatic nodes) and their number in the circulation is diminished. In this respect, it differs from all other known immunosuppressants.

Myriocin has been reported being 10 to 100 times more potent than Ciclosporin.

Therapy

Immunosuppressive drugs are used in immunosuppressive therapy to:

Side effects

A common side-effect of many immunosuppressive drugs is immunodeficiency, because the majority of them act non-selectively, resulting in increased susceptibility to infections, decreased cancer immunosurveillance and decreased ability to produce antibodies after vaccination. However, the vaccination status of patients taking immunosuppressive drugs for chronic diseases such as Rheumatoid arthritis or Inflammatory bowel disease should be investigated before starting any treatment, and patients should eventually be vaccinated against Vaccine-preventable disease. Some studies showed a low vaccination rate against some Vaccine-preventable disease among patients taking immunosuppressive drugs, despite a generally positive attitude towards vaccinations.

There are also other side-effects, such as hypertension, dyslipidemia, hyperglycemia, peptic ulcers, lipodystrophy, moon face, liver and kidney injury. The immunosuppressive drugs also interact with other medicines and affect their metabolism and action. Actual or suspected immunosuppressive agents can be evaluated in terms of their effects on lymphocyte subpopulations in tissues using immunohistochemistry.

Psychoneuroimmunology

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Psychoneuroimmunology

Psychoneuroimmunology (PNI), also referred to as psychoendoneuroimmunology (PENI) or psychoneuroendocrinoimmunology (PNEI), is the study of the interaction between psychological processes and the nervous and immune systems of the human body. It is a subfield of psychosomatic medicine. PNI takes an interdisciplinary approach, incorporating psychology, neuroscience, immunology, physiology, genetics, pharmacology, molecular biology, psychiatry, behavioral medicine, infectious diseases, endocrinology, and rheumatology.

The main interests of PNI are the interactions between the nervous and immune systems and the relationships between mental processes and health. PNI studies, among other things, the physiological functioning of the neuroimmune system in health and disease; disorders of the neuroimmune system (autoimmune diseases; hypersensitivities; immune deficiency); and the physical, chemical and physiological characteristics of the components of the neuroimmune system in vitro, in situ, and in vivo.

History

Interest in the relationship between psychiatric syndromes or symptoms and immune function has been a consistent theme since the beginning of modern medicine.

Claude Bernard, the father of modern physiology, with his pupils

Claude Bernard, a French physiologist of the Muséum national d'Histoire naturelle (National Museum of Natural History in English), formulated the concept of the milieu interieur in the mid-1800s. In 1865, Bernard described the perturbation of this internal state: "... there are protective functions of organic elements holding living materials in reserve and maintaining without interruption humidity, heat and other conditions indispensable to vital activity. Sickness and death are only a dislocation or perturbation of that mechanism" (Bernard, 1865). Walter Cannon, a professor of physiology at Harvard University coined the commonly used term, homeostasis, in his book The Wisdom of the Body, 1932, from the Greek word homoios, meaning similar, and stasis, meaning position. In his work with animals, Cannon observed that any change of emotional state in the beast, such as anxiety, distress, or rage, was accompanied by total cessation of movements of the stomach (Bodily Changes in Pain, Hunger, Fear and Rage, 1915). These studies looked into the relationship between the effects of emotions and perceptions on the autonomic nervous system, namely the sympathetic and parasympathetic responses that initiated the recognition of the freeze, fight or flight response. His findings were published from time to time in professional journals, then summed up in book form in The Mechanical Factors of Digestion, published in 1911.

Bust of Hans Selye at Selye János University, Komárno, Slovakia

Hans Selye, a student of Johns Hopkins University and McGill University, and a researcher at Université de Montréal, experimented with animals by putting them under different physical and mental adverse conditions and noted that under these difficult conditions the body consistently adapted to heal and recover. Several years of experimentation that formed the empiric foundation of Selye's concept of the General Adaptation Syndrome. This syndrome consists of an enlargement of the adrenal gland, atrophy of the thymus, spleen, and other lymphoid tissue, and gastric ulcerations.

Selye describes three stages of adaptation, including an initial brief alarm reaction, followed by a prolonged period of resistance, and a terminal stage of exhaustion and death. This foundational work led to a rich line of research on the biological functioning of glucocorticoids.

Mid-20th century studies of psychiatric patients reported immune alterations in psychotic individuals, including lower numbers of lymphocytes and poorer antibody response to pertussis vaccination, compared with nonpsychiatric control subjects. In 1964, George F. Solomon, from the University of California in Los Angeles, and his research team coined the term "psychoimmunology" and published a landmark paper: "Emotions, immunity, and disease: a speculative theoretical integration."

Origins

In 1975, Robert Ader and Nicholas Cohen, at the University of Rochester, advanced PNI with their demonstration of classic conditioning of immune function, and they subsequently coined the term "psychoneuroimmunology". Ader was investigating how long conditioned responses (in the sense of Pavlov's conditioning of dogs to drool when they heard a bell ring) might last in laboratory rats. To condition the rats, he used a combination of saccharin-laced water (the conditioned stimulus) and the drug Cytoxan, which unconditionally induces nausea and taste aversion and suppression of immune function. Ader was surprised to discover that after conditioning, just feeding the rats saccharin-laced water was associated with the death of some animals and he proposed that they had been immunosuppressed after receiving the conditioned stimulus. Ader (a psychologist) and Cohen (an immunologist) directly tested this hypothesis by deliberately immunizing conditioned and unconditioned animals, exposing these and other control groups to the conditioned taste stimulus, and then measuring the amount of antibody produced. The highly reproducible results revealed that conditioned rats exposed to the conditioned stimulus were indeed immunosuppressed. In other words, a signal via the nervous system (taste) was affecting immune function. This was one of the first scientific experiments that demonstrated that the nervous system can affect the immune system.

In the 1970s, Hugo Besedovsky, Adriana del Rey and Ernst Sorkin, working in Switzerland, reported multi-directional immune-neuro-endocrine interactions, since they show that not only the brain can influence immune processes but also the immune response itself can affect the brain and neuroendocrine mechanisms. They found that the immune responses to innocuous antigens triggers an increase in the activity of hypothalamic neurons and hormonal and autonomic nerve responses that are relevant for immunoregulation and are integrated at brain levels (see review). On these bases, they proposed that the immune system acts as a sensorial receptor organ that, besides its peripheral effects, can communicate to the brain and associated neuro-endocrine structures its state of activity. These investigators also identified products from immune cells, later characterized as cytokines, that mediate this immune-brain communication.

In 1981, David L. Felten, then working at the Indiana University School of Medicine, and his colleague JM Williams, discovered a network of nerves leading to blood vessels as well as cells of the immune system. The researchers also found nerves in the thymus and spleen terminating near clusters of lymphocytes, macrophages, and mast cells, all of which help control immune function. This discovery provided one of the first indications of how neuro-immune interaction occurs.

Ader, Cohen, and Felten went on to edit the groundbreaking book Psychoneuroimmunology in 1981, which laid out the underlying premise that the brain and immune system represent a single, integrated system of defense.

In 1985, research by neuropharmacologist Candace Pert, of the National Institutes of Health at Georgetown University, revealed that neuropeptide-specific receptors are present on the cell walls of both the brain and the immune system. The discovery that neuropeptides and neurotransmitters act directly upon the immune system shows their close association with emotions and suggests mechanisms through which emotions, from the limbic system, and immunology are deeply interdependent. Showing that the immune and endocrine systems are modulated not only by the brain but also by the central nervous system itself affected the understanding of emotions, as well as disease.

Contemporary advances in psychiatry, immunology, neurology, and other integrated disciplines of medicine has fostered enormous growth for PNI. The mechanisms underlying behaviorally induced alterations of immune function, and immune alterations inducing behavioral changes, are likely to have clinical and therapeutic implications that will not be fully appreciated until more is known about the extent of these interrelationships in normal and pathophysiological states.

The immune-brain loop

PNI research looks for the exact mechanisms by which specific neuroimmune effects are achieved. Evidence for nervous-immunological interactions exist at multiple biological levels.

The immune system and the brain communicate through signaling pathways. The brain and the immune system are the two major adaptive systems of the body. Two major pathways are involved in this cross-talk: the Hypothalamic-pituitary-adrenal axis (HPA axis), and the sympathetic nervous system (SNS), via the sympathetic-adrenal-medullary axis (SAM axis). The activation of SNS during an immune response might be aimed to localize the inflammatory response.

The body's primary stress management system is the HPA axis. The HPA axis responds to physical and mental challenge to maintain homeostasis in part by controlling the body's cortisol level. Dysregulation of the HPA axis is implicated in numerous stress-related diseases, with evidence from meta-analyses indicating that different types/duration of stressors and unique personal variables can shape the HPA response. HPA axis activity and cytokines are intrinsically intertwined: inflammatory cytokines stimulate adrenocorticotropic hormone (ACTH) and cortisol secretion, while, in turn, glucocorticoids suppress the synthesis of proinflammatory cytokines.

Molecules called pro-inflammatory cytokines, which include interleukin-1 (IL-1), Interleukin-2 (IL-2), interleukin-6 (IL-6), Interleukin-12 (IL-12), Interferon-gamma (IFN-Gamma) and tumor necrosis factor alpha (TNF-alpha) can affect brain growth as well as neuronal function. Circulating immune cells such as macrophages, as well as glial cells (microglia and astrocytes) secrete these molecules. Cytokine regulation of hypothalamic function is an active area of research for the treatment of anxiety-related disorders.

Cytokines mediate and control immune and inflammatory responses. Complex interactions exist between cytokines, inflammation and the adaptive responses in maintaining homeostasis. Like the stress response, the inflammatory reaction is crucial for survival. Systemic inflammatory reaction results in stimulation of four major programs:

These are mediated by the HPA axis and the SNS. Common human diseases such as allergy, autoimmunity, chronic infections and sepsis are characterized by a dysregulation of the pro-inflammatory versus anti-inflammatory and T helper (Th1) versus (Th2) cytokine balance. Recent studies show pro-inflammatory cytokine processes take place during depression, mania and bipolar disease, in addition to autoimmune hypersensitivity and chronic infections.

Chronic secretion of stress hormones, glucocorticoids (GCs) and catecholamines (CAs), as a result of disease, may reduce the effect of neurotransmitters, including serotonin, norepinephrine and dopamine, or other receptors in the brain, thereby leading to the dysregulation of neurohormones. Under stimulation, norepinephrine is released from the sympathetic nerve terminals in organs, and the target immune cells express adrenoreceptors. Through stimulation of these receptors, locally released norepinephrine, or circulating catecholamines such as epinephrine, affect lymphocyte traffic, circulation, and proliferation, and modulate cytokine production and the functional activity of different lymphoid cells.

Glucocorticoids also inhibit the further secretion of corticotropin-releasing hormone from the hypothalamus and ACTH from the pituitary (negative feedback). Under certain conditions stress hormones may facilitate inflammation through induction of signaling pathways and through activation of the corticotropin-releasing hormone.

These abnormalities and the failure of the adaptive systems to resolve inflammation affect the well-being of the individual, including behavioral parameters, quality of life and sleep, as well as indices of metabolic and cardiovascular health, developing into a "systemic anti-inflammatory feedback" and/or "hyperactivity" of the local pro-inflammatory factors which may contribute to the pathogenesis of disease.

This systemic or neuro-inflammation and neuroimmune activation have been shown to play a role in the etiology of a variety of neurodegenerative disorders such as Parkinson's and Alzheimer's disease, multiple sclerosis, pain, and AIDS-associated dementia. However, cytokines and chemokines also modulate central nervous system (CNS) function in the absence of overt immunological, physiological, or psychological challenges.

Psychoneuroimmunological effects

There are now sufficient data to conclude that immune modulation by psychosocial stressors and/or interventions can lead to actual health changes. Although changes related to infectious disease and wound healing have provided the strongest evidence to date, the clinical importance of immunological dysregulation is highlighted by increased risks across diverse conditions and diseases. For example, stressors can produce profound health consequences. In one epidemiological study, all-cause mortality increased in the month following a severe stressor – the death of a spouse. Theorists propose that stressful events trigger cognitive and affective responses which, in turn, induce sympathetic nervous system and endocrine changes, and these ultimately impair immune function. Potential health consequences are broad, but include rates of infection HIV progression cancer incidence and progression, and high rates of infant mortality.

Understanding stress and immune function

Stress is thought to affect immune function through emotional and/or behavioral manifestations such as anxiety, fear, tension, anger and sadness and physiological changes such as heart rate, blood pressure, and sweating. Researchers have suggested that these changes are beneficial if they are of limited duration, but when stress is chronic, the system is unable to maintain equilibrium or homeostasis; the body remains in a state of arousal, where digestion is slower to reactivate or does not reactivate properly, often resulting in indigestion. Furthermore, blood pressure stays at higher levels.

In one of the earlier PNI studies, which was published in 1960, subjects were led to believe that they had accidentally caused serious injury to a companion through misuse of explosives. Since then decades of research resulted in two large meta-analyses, which showed consistent immune dysregulation in healthy people who are experiencing stress.

In the first meta-analysis by Herbert and Cohen in 1993, they examined 38 studies of stressful events and immune function in healthy adults. They included studies of acute laboratory stressors (e.g. a speech task), short-term naturalistic stressors (e.g. medical examinations), and long-term naturalistic stressors (e.g. divorce, bereavement, caregiving, unemployment). They found consistent stress-related increases in numbers of total white blood cells, as well as decreases in the numbers of helper T cells, suppressor T cells, and cytotoxic T cells, B cells, and natural killer cells (NK). They also reported stress-related decreases in NK and T cell function, and T cell proliferative responses to phytohaemagglutinin [PHA] and concanavalin A [Con A]. These effects were consistent for short-term and long-term naturalistic stressors, but not laboratory stressors.

In the second meta-analysis by Zorrilla et al. in 2001, they replicated Herbert and Cohen's meta-analysis. Using the same study selection procedures, they analyzed 75 studies of stressors and human immunity. Naturalistic stressors were associated with increases in number of circulating neutrophils, decreases in number and percentages of total T cells and helper T cells, and decreases in percentages of natural killer cell (NK) cells and cytotoxic T cell lymphocytes. They also replicated Herbert and Cohen's finding of stress-related decreases in NKCC and T cell mitogen proliferation to phytohaemagglutinin (PHA) and concanavalin A (Con A).

A study done by the American Psychological Association did an experiment on rats, where they applied electrical shocks to a rat, and saw how interleukin-1 was released directly into the brain. Interleukin-1 is the same cytokine released when a macrophage chews on a bacterium, which then travels up the vagus nerve, creating a state of heightened immune activity, and behavioral changes.

More recently, there has been increasing interest in the links between interpersonal stressors and immune function. For example, marital conflict, loneliness, caring for a person with a chronic medical condition, and other forms on interpersonal stress dysregulate immune function.

Communication between the brain and immune system

  • Stimulation of brain sites alters immunity (stressed animals have altered immune systems).
  • Damage to brain hemispheres alters immunity (hemispheric lateralization effects).
  • Immune cells produce cytokines that act on the CNS.
  • Immune cells respond to signals from the CNS.

Communication between neuroendocrine and immune system

  • Glucocorticoids and catecholamines influence immune cells.
  • Hypothalamic Pituitary Adrenal axis releases the needed hormones to support the immune system.
  • Activity of the immune system is correlated with neurochemical/neuroendocrine activity of brain cells.

Connections between glucocorticoids and immune system

  • Anti-inflammatory hormones that enhance the organism's response to a stressor.
  • Prevent the overreaction of the body's own defense system.
  • Overactivation of glucocorticoid receptors can lead to health risks.
  • Regulators of the immune system.
  • Affect cell growth, proliferation and differentiation.
  • Cause immunosuppression which can lead to an extended amount of time fighting off infections.
  • High basal levels of cortisol are associated with a higher risk of infection.
  • Suppress cell adhesion, antigen presentation, chemotaxis and cytotoxicity.
  • Increase apoptosis.

Corticotropin-releasing hormone (CRH)

Release of corticotropin-releasing hormone (CRH) from the hypothalamus is influenced by stress.

Furthermore, stressors that enhance the release of CRH suppress the function of the immune system; conversely, stressors that depress CRH release potentiate immunity.

  • Central mediated since peripheral administration of CRH antagonist does not affect immunosuppression.
  • HPA axis/stress axis responds consistently to stressors that are new, unpredictable and that have low-perceived control.
  • As cortisol reaches an appropriate level in response to the stressor, it deregulates the activity of the hippocampus, hypothalamus, and pituitary gland which results in less production of cortisol.

Relationships between prefrontal cortex activation and cellular senescence

  • Psychological stress is regulated by the prefrontal cortex (PFC)
  • The PFC modulates vagal activity
  • Prefrontally modulated and vagally mediated cholinergic input to the spleen reduces inflammatory responses

Pharmaceutical advances

Glutamate agonists, cytokine inhibitors, vanilloid-receptor agonists, catecholamine modulators, ion-channel blockers, anticonvulsants, GABA agonists (including opioids and cannabinoids), COX inhibitors, acetylcholine modulators, melatonin analogs (such as Ramelton), adenosine receptor antagonists and several miscellaneous drugs (including biologics like Passiflora edulis) are being studied for their psychoneuroimmunological effects.

For example, SSRIs, SNRIs and tricyclic antidepressants acting on serotonin, norepinephrine, dopamine and cannabinoid receptors have been shown to be immunomodulatory and anti-inflammatory against pro-inflammatory cytokine processes, specifically on the regulation of IFN-gamma and IL-10, as well as TNF-alpha and IL-6 through a psychoneuroimmunological process. Antidepressants have also been shown to suppress TH1 upregulation.

Tricyclic and dual serotonergic-noradrenergic reuptake inhibition by SNRIs (or SSRI-NRI combinations), have also shown analgesic properties additionally. According to recent evidences antidepressants also seem to exert beneficial effects in experimental autoimmune neuritis in rats by decreasing Interferon-beta (IFN-beta) release or augmenting NK activity in depressed patients.

These studies warrant investigation of antidepressants for use in both psychiatric and non-psychiatric illness and that a psychoneuroimmunological approach may be required for optimal pharmacotherapy in many diseases. Future antidepressants may be made to specifically target the immune system by either blocking the actions of pro-inflammatory cytokines or increasing the production of anti-inflammatory cytokines.

The endocannabinoid system appears to play a significant role in the mechanism of action of clinically effective and potential antidepressants and may serve as a target for drug design and discovery. The endocannabinoid-induced modulation of stress-related behaviors appears to be mediated, at least in part, through the regulation of the serotoninergic system, by which cannabinoid CB1 receptors modulate the excitability of dorsal raphe serotonin neurons. Data suggest that the endocannabinoid system in cortical and subcortical structures is differentially altered in an animal model of depression and that the effects of chronic, unpredictable stress (CUS) on CB1 receptor binding site density are attenuated by antidepressant treatment while those on endocannabinoid content are not.

The increase in amygdalar CB1 receptor binding following imipramine treatment is consistent with prior studies which collectively demonstrate that several treatments which are beneficial to depression, such as electroconvulsive shock and tricyclic antidepressant treatment, increase CB1 receptor activity in subcortical limbic structures, such as the hippocampus, amygdala and hypothalamus. And preclinical studies have demonstrated the CB1 receptor is required for the behavioral effects of noradrenergic based antidepressants but is dispensable for the behavioral effect of serotonergic based antidepressants.

Extrapolating from the observations that positive emotional experiences boost the immune system, Roberts speculates that intensely positive emotional experiences—sometimes brought about during mystical experiences occasioned by psychedelic medicines—may boost the immune system powerfully. Research on salivary IgA supports this hypothesis, but experimental testing has not been done.

Environmental conflict

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Environmental_conflict

Hambach Forest protest against coal mine expansion

Environmental conflicts, socio-environmental conflict or ecological distribution conflicts (EDCs) are social conflicts caused by environmental degradation or by unequal distribution of environmental resources. The Environmental Justice Atlas documented 3,100 environmental conflicts worldwide as of April 2020 and emphasised that many more conflicts remained undocumented.

Parties involved in these conflicts include locally affected communities, states, companies and investors, and social or environmental movements; typically environmental defenders are protecting their homelands from resource extraction or hazardous waste disposal. Resource extraction and hazardous waste activities often create resource scarcities (such as by overfishing or deforestation), pollute the environment, and degrade the living space for humans and nature, resulting in conflict. A particular case of environmental conflicts are forestry conflicts, or forest conflicts which "are broadly viewed as struggles of varying intensity between interest groups, over values and issues related to forest policy and the use of forest resources". In the last decades, a growing number of these have been identified globally.

Frequently environmental conflicts focus on environmental justice issues, the rights of indigenous people, the rights of peasants, or threats to communities whose livelihoods are dependent on the ocean. Outcomes of local conflicts are increasingly influenced by trans-national environmental justice networks that comprise the global environmental justice movement.

Environmental conflict can complicate response to natural disaster or exacerbate existing conflicts – especially in the context of geopolitical disputes or where communities have been displaced to create environmental migrants. The study of these conflicts is related to the fields of ecological economics, political ecology, and environmental justice.

Causes

The origin of environmental conflicts can be directly linked to the industrial economy. As less than 10% of materials and energy are recycled, the industrial economy is constantly expanding energy and material extraction at commodity frontiers through two main processes:

  1. Appropriating new natural resources through territorial claims and land grabs.
  2. Making exploitation of existing sites more efficient through investments or social and technical innovation.

EDCs are caused by the unfair distribution of environmental costs and benefits. These conflicts arise from social inequality, contested claims over territory, the proliferation of extractive industries, and the impacts of the economic industrialization over the past centuries. Oil, mining, and agriculture industries are focal points of environmental conflicts.

Types of conflicts

Environmental defenders use a wide range of tactics
Most environmental conflicts are in the mining, energy, and waste disposal sectors.

A 2020 paper mapped the arguments and concerns of environmental defenders in over 2743 conflicts found in the Environmental Justice Atlas (EJAtlas). The analysis found that the industrial sectors most frequently challenged by environmental conflicts were mining (21%), fossil energy (17%), biomass and land uses (15%), and water management (14%). Killings of environmental defenders happened in 13% of the reported cases.

There was also a distinct difference in the types of conflict found in high and low income countries. There were more conflicts around conservation, water management, and biomass and land use in low income countries; while in high income countries almost half of conflicts focused on waste management, tourism, nuclear power, industrial zones, and other infrastructure projects. The study also found that most conflicts start with self-organized local groups defending against infringement, with a focus on non-violent tactics.

Water protectors and land defenders who defend indigenous rights are criminalized at a much higher rate than in other conflicts.

Environmental conflicts can be classified based on the different stages of the commodity chain: during the extraction of energy sources or materials, in the transportation and production of goods, or at the final disposal of waste.

EJAtlas Categories

The EJAtlas was founded and is co-directed by Leah Temper and Joan Martinez-Alier, and it is coordinated by Daniela Del Bene. Its aim is “to document, understand and analyse the political outcomes that emerge or that may emerge” from ecological distribution conflicts. It is housed at the ICTA of the Universitat Autonoma de Barcelona. Since 2012, academics and activists have collaborated to write the entries, reaching 3,500 by July 2021.

The EJ Atlas identifies ten categories of ecological distribution conflicts:

  1. Biodiversity conservation conflicts:
  2. Biomass and land conflicts (Forests, Agriculture, Fisheries and Livestock Management)
  3. Fossil Fuels and Climate Justice/Energy
  4. Industrial and Utilities Conflicts
  5. Infrastructure and Built Environment
  6. Mineral Ores and Building Materials Extraction
  7. Nuclear
  8. Tourism Recreation
  9. Waste Management
  10. Water Management

Ecological distribution conflicts

Ecological Distribution Conflicts (EDCs) were introduced as a concept in 1995 by Joan Martínez-Alier and Martin O'Connor to facilitate more systematic documentation and analysis of environmental conflicts and to produce a more coherent body of academic, activist, and legal work around them. EDCs arise from the unfair access to natural resources, unequally distributed burdens of environmental pollution, and relate to the exercise of power by different social actors when they enter into disputes over access to or impacts on natural resources. For example, a factory may pollute a river thus affecting the community whose livelihood depends on the water of the river. The same can apply to the climate crisis, which may cause sea level rise on some Pacific islands. This type of damage is often not valued by the market, preventing those affected from being compensated.

Ecological conflicts occur at both global and local scales. Often conflicts take place between the global South and the global North, e.g. a Finnish forest company operating in Indonesia, or in econonomic peripheries, although there is a growing emergence of conflicts in Europe, including violent ones. There are also local conflicts that occur within a short commodity chain (e.g. local extraction of sand and gravel for a nearby cement factory).

Intellectual history

Since its conception, the term Ecological Distribution Conflict has been linked to research from the fields of political ecology, ecological economics, and ecofeminism. It has also been adopted into a non-academic setting through the environmental justice movement, where it branches academia and activism to assist social movements in legal struggles.

In his 1874 lecture ‘Wage Labour and Capital’, Karl Marx introduced the idea that economic relations under capitalism are inherently exploitative, meaning economic inequality is an inevitability of the system. He theorised that this is because capitalism expands through capital accumulation, an ever-increasing process which requires the economic subjugation of parts of the population in order to function.

Building on this theory, academics in the field of political economy created the term ‘economic distribution conflicts’ to describe the conflicts that occur from this inherent economic inequality. This type of conflict typically occurs between parties with an economic relationship but unequal power dynamic, such as buyers and sellers, or debtors and creditors.

However, Martinez Allier and Martin O’Connor noticed that this term focuses solely on the economy, omitting the conflicts that do not occur from economic inequality but from the unequal distribution of environmental resources. In response, in 1995, they coined the term ‘ecological distribution conflict’. This type of conflict occurs at commodity frontiers, which are constantly being moved and reframed due to society's unsustainable social metabolism. These conflicts might occur between extractive industries and Indigenous populations, or between polluting actors and those living on marginalised land. Its roots can still be seen in Marxian theory, as it is based on the idea that capitalism's need for expansion drives inequality and conflict.

Unfair ecological distribution can be attributed to capitalism as a system of cost-shifting. Neoclassical economics usually consider these impacts as “market failures” or “externalities” that can be valued in monetary terms and internalized into the price system. Ecological economics and political ecology scholars oppose the idea of economic commensuration that could form the basis of eco-compensation mechanisms for impacted communities. Instead, they advocate for different valuation languages such as sacredness, livelihood, rights of nature, Indigenous territorial rights, archaeological values, and ecological or aesthetic value.

Social movements

Ecological distribution conflicts have given rise to many environmental justice movements around the globe. Environmental justice scholars conclude that these conflicts are a force for sustainability. These scholars study the dynamics that drive these conflicts towards an environmental justice success or a failure.

Globally, around 17% of all environmental conflicts registered in the EJAtlas report environmental justices 'successes', such as stopping an unsustainable project or redistributing resources in a more egalitarian way.

Movements usually shape their repertoires of contention as protest forms and direct actions, which are influenced by national and local backgrounds. In environmental justice struggles, the biophysical characteristics of the conflict can further shape the forms of mobilization and direct action. Resistance strategies can take advantage of ‘biophysical opportunity structures’, where they attempt to identify, change or disrupt the damaging ecological processes they are confronting.

Finally, the ‘collective action frames’ of movements emerging in response to environmental conflicts becomes very powerful when they challenge the mainstream relationship of human societies with the environment. These frames are often expressed through pithy protest slogans, that scholars refer to as the ‘vocabulary of environmental justice’ and which includes concepts and phrases such as ‘environmental racism’, ‘tree plantations are not forests’, ‘keep the oil in the soil’, ‘keep the coal in the hole’ and the like, resonating and empathizing with those communities affected by EDC.

Environmentalism of the poor

Some scholars make a distinction between environmentalist conflicts that have an objective of sustainability or resource conservation and environmental conflicts more broadly (which are any conflict over a natural resource). The former type of conflict gives rise to environmentalism of the poor, in which environmental defenders protect their land from degradation by industrial economic forces. Environmentalist conflicts tend to be intermodal conflicts in which peasant or agricultural land uses are in conflict with industrial uses (such as mining). Intramodal conflicts, in which peasants dispute amongst themselves about land use may not be environmentalist.

In this division movement such as La Via Campesina (LVC), or the International Planning Committee for Food Sovereignty (IPC) can be considered in the halfway between these two approaches. In their defense of peasant agriculture and against large-scale capitalist industrial agriculture, both LVC and the IPC have fundamentally contributed to promoting agroecology as a sustainable agriculture model across the globe, adopting an intermodal approach against industrial agriculture and providing new sources of education to poor communities that could incentive an aware integration in the redistribution of resources. A similar attitude has shaped the action of the Brazilian Landless Farmworkers movement (MST) in the way it has struggled with the idea of productivity and the use of chemical products by several agribusiness realities that destroy resources rich in fertility and biodiversity.

Such movements often question the dominant form of valuation of resource uses (i.e. monetary values and cost-benefit analyses) and renegotiate the values deemed relevant for sustainability. Sometimes, particularly when the resistance weakens, demands for monetary compensation are made (in a framework of ‘weak sustainability’). The same groups, at other times or when feeling stronger, might argue in terms of values which are not commensurate with money, such as indigenous territorial rights, irreversible ecological values, human right to health or the sacredness of redefining the very economic, ecological and social principles behind particular uses of the Mother Earth, implicitly defending a conception of ‘strong sustainability’. In contesting and environment, such intermodal conflicts are those that are most clearly forced towards broader sustainability transitions.

Conflict resolution

A distinct field of conflict resolution called Environmental Conflict Resolution, focuses on developing collaborative methods for deescalating and resolving environmental conflicts. As a field of practice, people working on conflict resolution focus on the collaboration, and consensus building among stakeholders. An analysis of such resolution processes found that the best predictor of successful resolution was sufficient consultation with all parties involved.

A new tool with certain potential in this regard is the development of video games proposing distinct options to the gamers for handling conflicts over environmental resources, for instance in the fishery sector.

Critique

Some scholars critique the focus on natural resources used in descriptions of environmental conflict. Often these approaches focus on the commercialization of the natural environment that doesn't acknowledge the underlying value of a healthy environment.

Technoself studies

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Technoself_studies Technoself studies , commonly referred to as ...