Search This Blog

Friday, March 29, 2019

Orion (spacecraft)

From Wikipedia, the free encyclopedia

Orion
Orion with ATV SM.jpg
Artist's rendering of the Orion spacecraft

ManufacturerLockheed Martin Airbus
Country of originUnited States of America
OperatorNASA
ApplicationsBeyond LEO exploration

Specifications
Spacecraft typeSpace capsule
Design life21.1 days
Launch massCapsule: 10,387 kg (22,899 lb)
Service module: 15,461 kg (34,086 lb)
Total: 25,848 kg (56,985 lb)
Crew capacity2–6
Dimensions3.3 × 5 m (11 × 16 ft)
VolumePressurized: 19.56 m3 (691 cu ft)
Habitable: 8.95 m3 (316 cu ft)

Production
StatusIn production
Built3
Launched1
First launchExploration Flight Test 1
December 5, 2014

Related spacecraft
Derived fromCrew Exploration VehicleATV

The Orion Multi-Purpose Crew Vehicle (Orion MPCV) is an American-European interplanetary spacecraft intended to carry a crew of four astronauts to destinations at or beyond low Earth orbit (LEO). Currently under development by the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) for launch on the Space Launch System, Orion is intended to facilitate human exploration of the Moon, asteroids and of Mars and to retrieve crew or supplies from the International Space Station if needed.

The Orion MPCV was announced by NASA on May 24, 2011, and is currently under development. Its design is based on the Orion Crew Exploration Vehicle from the cancelled Constellation program. It has two main modules. The Orion command module is being built by Lockheed Martin at the Michoud Assembly Facility in New Orleans. The Orion service module, provided by the European Space Agency, is being built by Airbus Defence and Space.

The MPCV's first test flight (uncrewed), known as Exploration Flight Test 1 (EFT-1), was launched atop a Delta IV Heavy rocket on December 5, 2014, on a flight lasting 4 hours and 24 minutes, landing at its target in the Pacific Ocean at 10:29 Central (delayed from the prior day due to technical and weather problems). The first mission to carry astronauts is not expected to take place until 2023 at the earliest, although NASA officials have said that their staff is working toward an "aggressive internal goal" of 2021. However, a July 2016 Government Accountability Office report cast doubt on even the 2023 launch date, suggesting it may slip up to six months. The report gave only a 40% confidence in the 2021 launch date, and suggested the aggressive goal may be counterproductive to the program.

History

Funding history and planning

For fiscal years 2006 through 2018, the Orion program had expended funding totaling $15,983 million in nominal dollars. This is equivalent to $18,138 million adjusting to 2018 dollars using the NASA New Start Inflation Indices.

Fiscal year Funding
(USD, millions)
Line item name
2006 839.2 CEV
2007 714.5 CEV
2008 1,174.1 CEV
2009 1,747.9 CEV
2010 1,640 CEV
2011 1,196.0 MPCV
2012 1,200 Orion MPCV
2013 1,138 Orion MPCV
2014 1,197 Orion Program
2015 1,190.2 Orion Program
2016 1,270 Orion Program
2017 1,350.0 Orion
2018 1,350.0 Orion
2006-2018 Total $15,983

Excluded from the prior Orion costs are:
  1. Costs "for production, operations, or sustainment of additional crew capsules, despite plans to use and possibly enhance this capsule after 2021"
  2. Costs of the first service module and spare parts to be provided by the European Space Agency for the test flight of Orion in 2020 (about $1 billion)
  3. Costs to assemble, integrate, prepare and launch the Orion and its launcher (funded under the NASA Ground Operations Project, currently about $400M per year)
  4. Costs of the launcher, the SLS, for the Orion spacecraft
For 2019 to 2023, NASA "notional" yearly budgets for Orion range from $1.1 to $1.2 billion. As of late 2015, the Orion program has a 70% confidence level for its “first Orion mission with astronauts by 2023” according to the Associate Administrator for NASA, Robert Lightfoot.

There are no NASA estimates for the Orion program recurring yearly costs once operational, for a certain flight rate per year, or for the resulting average costs per flight. Bill Hill, NASA manager of exploration systems development has indicated “My top number for Orion, SLS, and the ground systems that support it is $2 billion or less” (annually). NASA associate administrator William H. Gerstenmaier has indicated, “[per mission] costs must be derived from the data and are not directly available. This was done by design to lower NASA's expenditures.”

Orion Crew Exploration Vehicle (CEV)

Orion CEV design as of 2009.
 
On January 14, 2004, U.S. President George W. Bush announced the Crew Exploration Vehicle (CEV) as part of the Vision for Space Exploration. The CEV was partly a reaction to the Space Shuttle Columbia accident, the subsequent findings and report by the Columbia Accident Investigation Board (CAIB), and the White House's review of the American space program. The CEV effectively replaced the conceptual Orbital Space Plane (OSP), which was proposed after the cancellation of the Lockheed Martin X-33 program to produce a replacement for the Space Shuttle. As the Vision for Space Exploration was developed into the Constellation program under NASA administrator Sean O'Keefe, the Crew Exploration Vehicle was renamed the Orion Crew Exploration Vehicle, after the stellar constellation of the same name.

Constellation proposed using the Orion CEV in both crew and cargo variants to support the International Space Station and as a crew vehicle for a return to the Moon. The Apollo-like design included a service module for life support and propulsion and the crew/command module was originally intended to land on solid ground on the US west coast using airbags, but later changed to ocean splashdown. The Orion CEV weighs about 23 tonnes, less than the 30 tonne Apollo command and service module. The crew module would weigh about 8.9 tonnes, greater than the equivalent Apollo command module at 5.8 tonnes. With a diameter of 5 metres as opposed to 3.9 metres, the Orion CEV would provide 2.5 times greater volume as compared to the Apollo CM. The service module was originally planned to use liquid methane (LCH4) as its fuel, but switched to hypergolic propellants due to the infancy of oxygen/methane-powered rocket technologies and the goal of launching the Orion CEV by 2012.

The Orion CEV design consisted of two main parts: a conical crew module (CM) and a cylindrical service module (SM) holding the spacecraft's propulsion system and expendable supplies. Both were based substantially on the Apollo command and service modules flown between 1967 and 1975.

The Orion CEV was to be launched on the Ares I rocket to low Earth orbit, where it would rendezvous with the Altair lunar surface access module (LSAM) launched on a heavy-lift Ares V launch vehicle for lunar missions.

Cancellation of Constellation program

Artist's conception of the Orion spacecraft as then designed in lunar orbit.
 
On May 7, 2009, the Obama administration enlisted the Augustine Commission to perform a full independent review of the ongoing NASA space exploration program. The commission found the then current Constellation Program to be woefully under-budgeted, behind schedule by four years or more in several essential components, with significant cost overruns, and unlikely to be capable of meeting any of its scheduled goals under its current budget. As a consequence, the commission recommended a significant re-allocation of goals and resources. As one of the many outcomes based on these recommendations, on October 11, 2010, the Constellation program was cancelled, ending development of the Altair, Ares I, and Ares V. The Orion Crew Exploration Vehicle survived the cancellation and was renamed the Multi-Purpose Crew Vehicle (MPCV), to be launched on the Space Launch System.

Orion Multi-Purpose Crew Vehicle (MPCV)

Through the program restructuring from Constellation to Post Constellation, the Orion development program moved from the development of three different versions of the Orion capsule, each for a different task, to the development of a single version capable of performing multiple tasks. On October 30, 2014, the somewhat redesigned Multi-Purpose spacecraft completed its first flight readiness review (FRR), allowing the vehicle to be integrated with the Delta IV rocket and readied for launch. On December 5, 2014 it was successfully launched into space and retrieved at sea after splashdown on the Exploration Flight Test 1 (EFT-1), marking NASA's re-entry into the business of designing and producing new crewed spacecraft.

Asteroid Redirect Mission

Artist's concept of an astronaut on an EVA taking samples from a captured asteroid; Orion in the background.
 
This mission would have placed an asteroid in lunar orbit, rather than sending astronauts to an asteroid in deep space. It was a part of the FY2014 budget request. Originally planned for 2017, then 2020, and then for December 2021, the mission was given its notice of defunding in April 2017. The launch vehicle would have been either a Delta IV Heavy, SLS or Falcon Heavy. The boulder would have arrived in lunar orbit by late 2025, where it was to be further analyzed both by robotic probes and by a future crewed mission called ARCM (Asteroid Redirect Crewed Mission).

The development of advanced solar electric propulsion technology originally meant for this mission continues for its potential application on the proposed Lunar Orbital Platform-Gateway.

Design

Interactive 3D models of the spacecraft, with the spacecraft on the right in exploded view.
Interactive 3D models of Orion, with the spacecraft fully integrated on the left and in exploded view on the right.
 
The Orion MPCV takes basic design elements from the Apollo command module that took astronauts to the Moon, but its technology and capability are more advanced. It is designed to support long-duration deep space missions, with up to 21 days active crew time plus 6 months quiescent. During the quiescent period crew life support would be provided by another module such as a Deep Space Habitat. The spacecraft's life support, propulsion, thermal protection, and avionics systems are designed to be upgradeable as new technologies become available. 

The MPCV spacecraft includes both crew and service modules, and a spacecraft adaptor. 

The MPCV's crew module is larger than Apollo's and can support more crew members for short or long-duration missions. The service module fuels and propels the spacecraft as well as storing oxygen and water for astronauts. The service module's structure is also being designed to provide locations to mount scientific experiments and cargo.

Crew module (CM)

Interior of the Orion mock-up in October 2014.
 
Testing of Orion's parachute system.
 
The Orion crew module (CM) is the reusable transportation capsule that provides a habitat for the crew, provides storage for consumables and research instruments, and serves as the docking port for crew transfers. The crew module is the only part of the MPCV that returns to Earth after each mission and is a 57.5° frustum shape, similar to that of the Apollo command module. As projected, the CM will be 5.02 meters (16 ft 6 in) in diameter and 3.3 meters (10 ft 10 in) in length, with a mass of about 8.5 metric tons (19,000 lb). It was manufactured by the Lockheed Martin Corporation. It will have more than 50% more volume than the Apollo capsule, which had an interior volume of 5.9 m3 (210 cu ft), and will carry four to six astronauts. After extensive study, NASA has selected the Avcoat ablator system for the Orion crew module. Avcoat, which is composed of silica fibers with a resin in a honeycomb made of fiberglass and phenolic resin, was formerly used on the Apollo missions and on select areas of the space shuttle for early flights.

Orion's CM will use advanced technologies, including:
  • "Glass cockpit" digital control systems derived from those of the Boeing 787 Dreamliner.
  • An "autodock" feature, like those of Russian Progress spacecraft, the European Automated Transfer Vehicle, and the SpaceX Dragon 2, with provision for the flight crew to take over in an emergency. Prior American spacecraft (Gemini, Apollo, and Space Shuttle) have all needed manual piloting for docking.
  • Improved waste-management facilities, with a miniature camping-style toilet and the unisex "relief tube" used on the space shuttle (whose system was based on that used on Skylab) and the International Space Station (based on the Soyuz, Salyut, and Mir systems). This eliminates the use of the much-hated plastic "Apollo bags" used by the Apollo crews.
  • A nitrogen/oxygen (N
    2
    /O
    2
    ) mixed atmosphere at either sea level (101.3 kPa or 14.69 psi) or reduced (55.2 to 70.3 kPa or 8.01 to 10.20 psi) pressure.
  • Far more advanced computers than on prior crew vehicles.
The CM will be built of the aluminium-lithium alloy used on the Space Shuttle external tank, and the Delta IV and Atlas V rockets. The CM will be covered in the same Nomex felt-like thermal protection blankets used on parts on the shuttle not subject to critical heating, such as the payload bay doors. The reusable recovery parachutes will be based on the parachutes used on both the Apollo spacecraft and the Space Shuttle Solid Rocket Boosters, and will also use Nomex cloth for construction. Water landings will be the exclusive means of recovery for the Orion CM.

To allow Orion to mate with other vehicles, it will be equipped with the NASA Docking System, which is somewhat similar to the APAS-95 docking mechanism used on the Shuttle fleet. The spacecraft will employ a Launch Escape System (LES) like that used in Mercury and Apollo, along with an Apollo-derived "Boost Protective Cover" (made of fiberglass), to protect the Orion CM from aerodynamic and impact stresses during the first ​2 12 minutes of ascent. Its designers claim that the MPCV is designed to be 10 times safer during ascent and reentry than the Space Shuttle. The CM is designed to be refurbished and reused. In addition, all of the Orion's component parts have been designed to be as generic as possible, so that between the craft's first test flight in 2014 and its projected Mars voyage in the 2030s, the spacecraft can be upgraded as new technologies become available.

ATV-based European service module (ESM)

Artist's concept of an Orion spacecraft including the ATV-derived service module with a propulsion stage attached at the back
 
In May 2011 the ESA director general announced a possible collaboration with NASA to work on a successor to the ATV (Automated Transfer Vehicle). On June 21, 2012, Airbus Defence and Space announced that they had been awarded two separate studies, each worth €6.5 million, to evaluate the possibilities of using technology and experience gained from ATV and Columbus related work for future missions. The first looked into the possible construction of a service module which would be used in tandem with the Orion capsule. The second examined the possible production of a versatile multi purpose orbital vehicle.

On November 21, 2012, the ESA decided to develop an ATV-derived service module for the Orion MPCV. The service module is being manufactured by Airbus Defence and Space in Bremen, Germany. NASA announced on January 16, 2013 that the ESA service module will first fly on Exploration Mission 1, the debut launch of the Space Launch System.

Testing of the European service module began in February 2016, at the Space Power Facility.

On 16 February 2017 a €200m contract was signed between Airbus and the European Space Agency for the production of a second European service module for use on the first crewed Orion flight, called Exploration Mission-2 (EM-2).

Launch Abort System (LAS)

In the event of an emergency on the launch pad or during ascent, a launch escape system called the Launch Abort System (LAS) will separate the crew module from the launch vehicle using a solid rocket-powered launch abort motor (AM), which will produce more thrust (though for a much shorter duration) than the Atlas 109-D booster that launched astronaut John Glenn into orbit in 1962. There are two other propulsion systems in the LAS stack: the attitude control motor (ACM) and the jettison motor (JM). The ACM is a thruster system on the escape tower used to position and orient the capsule. The jettison motor is a solid rocket system used to separate the LAS from the crew capsule. On July 10, 2007, Orbital Sciences, the prime contractor for the LAS, awarded Alliant Techsystems (ATK) a $62.5 million sub-contract to, "design, develop, produce, test and deliver the launch abort motor." ATK, which had the prime contract for the first stage of the Ares I rocket, intended to use a "reverse flow" design for the motor. On July 9, 2008, NASA announced that ATK had completed a vertical test stand at a facility in Promontory, Utah to test launch abort motors for the Orion spacecraft. Another long-time space motor contractor, Aerojet, was awarded the jettison motor design and development contract for the LAS. As of September 2008, Aerojet has, along with team members Orbital Sciences, Lockheed Martin and NASA, successfully demonstrated two full-scale test firings of the jettison motor. This motor is important to every flight in that it functions to pull the LAS tower away from the vehicle after a successful launch. The motor also functions in the same manner for an abort scenario.

Existing craft mockups and testing

  • Space Vehicle Mockup Facility (SVMF) in Johnson Space Center, includes a full-scale Orion capsule mock-up for astronaut training.
  • Exploration Flight Test 1 (EFT-1) Orion (originally designated OFT-1), constructed at Michoud Assembly Facility, was delivered by Lockheed Martin to the Kennedy Space Center on July 2, 2012 and launched and recovered on December 5, 2014.
  • The Boilerplate Test Article (BTA) underwent splashdown testing at the Hydro Impact Basin of NASA's Langley Research Center. This same test article has been modified to support Orion Recovery Testing in the Stationary and Underway recovery tests. The BTA contains over 150 sensors to gather data on its test drops. Testing of the 18,000 pound mockup ran from July 2011 to January 6, 2012.
  • The Ground Test Article (GTA) stack, located at Lockheed Martin in Denver, is undergoing vibration testing. It is made up by the Orion Ground Test Vehicle (GTV) combined with its Launch Abort System (LAS). Further testing will see the addition of service module simulator panels and Thermal Protection System (TPS) to the GTA stack.
The Orion Drop Test Article during a test on February 29, 2012
  • The Drop Test Article (DTA), also known as the Drop Test Vehicle (DTV) is undergoing test drops at the US Army's Yuma Proving Ground in Arizona. The mock Orion parachute compartment is dropped from an altitude of 25,000 feet from a C-130. Testing began in 2007. Drogue chutes deploy around 20,000 and 15,000 feet. Testing of the reefing staged parachutes includes partial failure instances including partial opening and complete failure of one of the three main parachutes. With only two chutes deployed the DTA lands at 33 feet per second, the maximum touchdown speed for Orion's design. Other related test vehicles include the now-defunct Orion Parachute Test Vehicle (PTV) and its replacement the Generation II Parachute Test Vehicle (PTV2). The drop test program has had several failures in 2007, 2008, and 2010. The new PTV was successfully tested February 29, 2012 deploying from a C-17. Ten drag chutes will drag the mockup's pallet from the aircraft for the drop at 25,000 feet. The landing parachute set of eight is known as the Capsule Parachute Assembly System (CPAS). The test examined air flow disturbance behind the mimicked full size vehicle and its effects on the parachute system. The PTV landed on the desert floor at 17 mph (7.6 m/s). A third test vehicle, the PCDTV3, was successfully tested in a drop on April 17, 2012. "The test examined how Orion's wake, the disturbance of the air flow behind the vehicle, would affect the performance of the parachute system."

Environmental testing

NASA performed environmental testing of Orion from 2007 to 2011 at the Glenn Research Center Plum Brook Station in Sandusky, Ohio. The Center's Space Power Facility is the world's largest thermal vacuum chamber.

Launch abort system (LAS) testing

ATK Aerospace successfully completed the first Orion Launch Abort System (LAS) test on November 20, 2008. The LAS motor could provide 500,000 lbf (2,200 kN) of thrust in case an emergency situation should arise on the launch pad or during the first 300,000 feet (91 km) of the rocket's climb to orbit. The 2008 test firing of the LAS was the first time a motor with reverse flow propulsion technology of this scale had ever been tested.

On March 2, 2009, a full size, full weight command module mockup (pathfinder) began its journey from the Langley Research Center to the White Sands Missile Range, New Mexico, for at-gantry launch vehicle assembly training and for LAS testing. On May 10, 2010, NASA successfully executed the LAS PAD-Abort-1 test at White Sands New Mexico, launching a boilerplate (mock-up) Orion capsule to an altitude of approximately 6000 feet. The test used three solid-fuel rocket motors – a main thrust motor, an attitude control motor and the jettison motor.

Future LAS test plans: As of April 2018, NASA planned to launch the Orion Multi Purpose Crew Vehicle Ascent Abort 2 test flight (AA‑2) from the Spaceport Florida Launch Complex 46 in 2019.

Pre-launch Orion splashdown recovery testing

Before the first test flight and recovery of the Orion space vehicle at sea in December 2014, several preparatory vehicle recovery tests were performed. In 2009 during the Constellation phase of the program, the Post-landing Orion Recovery Test (PORT) was designed to determine and evaluate methods of crew rescue and what kind of motions the astronaut crew could expect after landing. This would include conditions outside the capsule for the recovery team. The evaluation process supported NASA's design of landing recovery operations including equipment, ship and crew needs. 

The PORT Test used a full-scale boilerplate (mock-up) of NASA's Orion crew module and was tested in water under simulated and real weather conditions. Tests began March 23, 2009 with a Navy-built, 18,000-pound boilerplate when it was placed in a test pool at the Naval Surface Warfare Center's Carderock Division in West Bethesda, Md. Full sea testing ran April 6–30, 2009, at various locations off the coast of NASA's Kennedy Space Center with media coverage.

Under the Orion program testing, Orion continued the "crawl, walk, run" approach used in PORT testing. The "crawl" phase was performed August 12–16, 2013 with the Stationary Recovery Test (SRT). The Stationary Recovery Test demonstrated the recovery hardware and techniques that were to be employed for the recovery of the Orion crew module in the protected waters of Naval Station Norfolk utilizing the USS Arlington as the recovery ship. The USS Arlington is a LPD 17 amphibious assault ship. The recovery of the Orion crew module will utilize unique features of the LPD 17 class ship to safely and economically recover the Orion crew module and eventually its astronaut crew.

The "walk" and "run" phases were performed with the Underway Recovery Test (URT). Also utilizing the LPD 17 class ship, the URT were performed in more realistic sea conditions off the coast of California in early 2014 to prepare the US Navy / NASA team for recovering the Exploration Flight Test 1 (EFT-1) Orion crew module. The URT tests completed the pre-launch test phase of the Orion recovery system.

Exploration Flight Test 1

EFT-1
 
At 7:05 AM EST on December 5, 2014 the Orion capsule was launched atop a Delta IV Heavy rocket for its first test flight, and splashed down in the Pacific Ocean about 4.5 hours later. Although it was not crewed, the two-orbit flight was NASA's first launch of a human-rated vehicle since the retirement of the Space Shuttle fleet in 2011. Orion reached an altitude of 3,600 mi (5,800 km) and speeds of up to 20,000 mph (8,900 m/s) on a flight that tested Orion's heat shield, parachutes, jettisoning components, and on-board computers. Orion was recovered by USS Anchorage and brought to San Diego, California for its return to Kennedy Space Center in Florida.

Orion program mission schedule

Artist's concept of the Lunar Orbital Platform-Gateway orbiting the Moon. The Orion MPCV is docked on the left.
 
As of July 2018, the first flight of NASA's next-generation heavy-lift rocket, the Space Launch System (SLS), is scheduled for mid-2020 for an Orion lunar flyby mission called Exploration Mission-1 (EM-1), but it will not include a human crew. Although NASA has always planned for the first flight of the SLS to take place without a crew on board, the Trump administration's transition team asked, in early 2017, for an internal evaluation of the possibility of making it a crewed flight. Robert Lightfoot, then NASA's acting administrator, said "based on the results of this internal evaluation, a crewed flight would be technically feasible, but the agency will proceed with its initial plan to make the rocket's first flight uncrewed." 

The Lunar Orbital Platform-Gateway (LOP-G) is a proposed space station in lunar orbit intended to serve as an all-in-one solar-powered communications hub, science laboratory, short-term habitation module, and staging area for rovers and other robots. Various components of the Gateway would be launched on commercial launch vehicles and on the Space Launch System as Orion co-manifested payloads on the flights EM-3 through EM-9.\

Mars missions

The Orion capsule is designed to support future missions to send astronauts to Mars, probably to take place in the 2030s. Since the Orion capsule provides only about 2.25 m3 (79 cu ft) of living space per crew member, the use of an additional Deep Space Habitat module will be needed for long duration missions. The habitat module will provide additional space and supplies, as well as facilitate spacecraft maintenance, mission communications, exercise, training, and personal recreation. Some plans for DSH modules would provide approximately 70.0 m3 (2,472 cu ft) of living space per crew member, though the DSH module is currently only in its early planning stages. DSH sizes and configurations may vary slightly, depending on crew and mission needs. The mission is planned to launch in 2033.

BFR (rocket -- updated)

From Wikipedia, the free encyclopedia

1st stage: "Super Heavy"
2nd stage: Starship
BFR in flight (cropped).png
Artistic rendition of the SpaceX Super Heavy booster lifting the Starship vehicle during ascent
Function
ManufacturerSpaceX
Country of originUnited States
Project costUS$5 billion, estimated
Size
Height118 m (387 ft)
Diameter9 m (30 ft)
Mass4,400,000 kg (9,700,000 lb)
Stages2
Capacity
Payload to LEO100,000+ kg (220,000+ lb)
(fully reusable)
Payload to Moon100,000+ kg (220,000+ lb)
(with orbital refueling)
Payload to Mars100,000+ kg (220,000+ lb)
(with orbital refueling)
Launch history
StatusIn development
Launch sitesTest flights: Operational flights:
Planned: Other options include:
Transcontinental shuttle:
First flight2020 (planned)

First stage – Super Heavy
Length63 m (207 ft)
Diameter9 m (30 ft)
Gross mass3,065,000 kg (6,757,000 lb) 
Engines31 × Raptor
Thrust61.8 MN (13,900,000 lbf)
Specific impulse330 s (3.2 km/s)
FuelSubcooled CH
4
 / LOX
Second stage – Starship
Length55 m (180 ft)
Diameter9 m (30 ft)
Empty mass85,000 kg (187,000 lb)
Gross mass1,335,000 kg (2,943,000 lb) 
Propellant mass
  • 240,000 kg (530,000 lb) CH
    4
     
  • 860,000 kg (1,900,000 lb) LOX 
Engines7 × Raptor
Thrust13.9 MN (3,100,000 lbf)
Specific impulse380 s (3.7 km/s) (vacuum)
FuelSubcooled CH
4
 / LOX

The Big Falcon Rocket (officially shortened to BFR) is a privately-funded, fully-reusable launch vehicle and spacecraft system in development by SpaceX. In November 2018 the second stage and ship was renamed by Elon Musk to Starship, while the first stage was given the moniker "Super Heavy". The overall space vehicle architecture includes both launch vehicle and spacecraft, as well as ground infrastructure for rapid launch and relaunch, and zero-gravity propellant transfer technology to be deployed in low Earth orbit (LEO). The payload capacity to Earth orbit of at least 100,000 kg (220,000 lb) makes BFR a super heavy-lift launch vehicle. However, if the pattern seen in previous iterations holds, the full Starship-Super Heavy stack could be capable of launching 150 tons or more to low Earth orbit, more than any other launch vehicle currently planned. The first orbital flight is tentatively planned for 2020.

SpaceX has been developing a super heavy-lift launch vehicle for many years, with the design (and nomenclature) of the vehicle undergoing several revisions over time. Before 2016, the vehicle was referred to as the Mars Colonial Transporter (MCT), then in 2016, Musk presented the vehicle as the ITS launch vehicle, forming a core part of the SpaceX comprehensive vision for an Interplanetary Transport System (ITS). In September 2017, the design changed to a much smaller 9 m (30 ft)-diameter vehicle and was given the code name BFR.

The launch vehicle design is dependent on the concurrent development work on the Raptor rocket engines, which are cryogenic methalox-fueled engines to be used for both stages of the BFR launch vehicle. Development on the Raptor began in 2012, leading to engine testing which began in 2016.

The BFR system is intended to completely replace all of SpaceX's existing space hardware (the Falcon 9 and Falcon Heavy launch vehicles, and the Dragon spacecraft), initially aiming at the Earth-orbit launch market, but explicitly adding substantial capability to support long-duration spaceflight in the cislunar and Mars transport flight environments.

History

The development of the BFR started in 2012, when in March, news accounts asserted that a Raptor upper-stage engine had begun development, although no details were released at that time. In October 2012, Musk publicly stated a high-level plan to build a second reusable rocket system with capabilities substantially beyond the Falcon 9/Falcon Heavy launch vehicles on which SpaceX had by then spent several billion US dollars. This new vehicle was to be "an evolution of SpaceX's Falcon 9 booster ... 'much bigger'." But he indicated that SpaceX would not be speaking publicly about it until 2013.

In June 2013, Musk stated that he intended to hold off any potential initial public offering of SpaceX shares on the stock market until after the "Mars Colonial Transporter is flying regularly."

In August 2014, media sources speculated that the initial flight test of the Raptor-driven super-heavy launch vehicle could occur as early as 2020, in order to fully test the engines under orbital spaceflight conditions; however, any colonization effort was reported to be "deep into the future".

In early 2015, Musk said that he hoped to release details in late 2015 of the "completely new architecture" for the system that would enable the colonization of Mars. Those plans were delayed, following a launch failure in June 2015 until after SpaceX returned to flight in late December 2015.

In September 2016, at the 67th annual meeting of the International Astronautical Congress, Musk unveiled substantial details of a SpaceX design concept for a much larger transport vehicle, 12 meters (39 ft) in diameter, the ITS launch vehicle, aimed specifically at the interplanetary transport use case. At the time, the system architecture was referred to as the "Interplanetary Transport System" (ITS) and included detailed discussion of the overall SpaceX Mars transportation mission architecture. This included the launch vehicle (the very large size 12-meter core diameter, vehicle construction material, number and type of engines, thrust, cargo and passenger payload capabilities) but also on-orbit propellant-tanker refills, representative transit times, and various portions of the Mars-side and Earth-side infrastructure that SpaceX would require to support a set of three flight vehicles. The three distinct vehicles that made up the 2016 ITS launch vehicle concept were the:
  • ITS booster, the first-stage of the launch vehicle
  • ITS spaceship, a second-stage and long-duration in-space spacecraft
  • ITS tanker, an alternative second-stage designed to carry more propellant for refueling other vehicles in space
The talk included presentation of a larger systemic vision, aspirationally hoping that other interested parties (whether companies, individuals, or governments) would utilize the new and significantly lower-cost transport infrastructure that SpaceX hoped to build in order enable a sustainable human civilization on Mars.

In July 2017, Musk indicated that the architecture had "evolved quite a bit" since the 2016 articulation of the Mars architecture. A key driver of the updated architecture was to be making the system useful for substantial Earth-orbit and cislunar launches so that the system might pay for itself, in part, through economic spaceflight activities in the near-Earth space zone. In September 2018, a less drastic redesign was announced, stretching the second stage slightly and adding radially-steerable forward canards and aft fins, used for pitch control in a new reentry profile resembling a descending skydiver. The aft fins act as landing legs, with a third leg on the top that looks identical but serves no aerodynamic purpose.

Unveiling

In September 2017, at the 68th annual meeting of the International Astronautical Congress, SpaceX unveiled the updated vehicle architecture. Musk said "we are searching for the right name, but the code name, at least, is BFR." The 2017 revised design concept was a 9-meter (30 ft) diameter carbon-composite technology set of vehicles, using methalox-fueled Raptor rocket engine technology directed initially at the Earth-orbit and cislunar environment, later, being used for flights to Mars.

2017 BFR design, carbon-composite construction with a delta wing on the reusable second stage.
 
The 2017 design was cylindrical and included a small delta wing at the rear end which included a split flap for pitch and roll control. The delta wing and split flaps were said to be needed to expand the flight envelope to allow the ship to land in a variety of atmospheric densities (none, thin, or heavy atmosphere) with a wide range of payloads (small, heavy, or none) in the nose of the ship. Three versions of the ship were described: BFS cargo, BFS tanker, and BFS crew. The cargo version will be used to launch satellites to low Earth orbit—delivering "significantly more satellites at a time than anything that has been done before"—as well as for cargo transport to the Moon and Mars. After retanking in a high-elliptic Earth orbit the spaceship is being designed to be able to land on the Moon and return to Earth without further refueling.

Additionally, the BFR system was shown to theoretically have the capability to carry passengers and/or cargo in rapid Earth-to-Earth transport, delivering its payload anywhere on Earth within 90 minutes.

By September 2017, Raptor engines had been tested for a combined total of 1200 seconds of test firing time over 42 main engine tests. The longest test was 100 seconds, which is limited by the size of the propellant tanks at the SpaceX ground test facility. The test engine operates at 20 MPa (200 bar; 2,900 psi) pressure. The flight engine is aimed for 25 MPa (250 bar; 3,600 psi), and SpaceX expects to achieve 30 MPa (300 bar; 4,400 psi) in later iterations. In November 2017, SpaceX president and COO Gwynne Shotwell indicated that approximately half of all development work on BFR was then focused on the Raptor engine.

The aspirational goal in 2017 was to send the first two cargo missions to Mars in 2022, with the goal to "confirm water resources and identify hazards" while putting "power, mining, and life support infrastructure" in place for future flights, followed by four ships in 2024, two crewed BFR spaceships plus two cargo-only ships bringing additional equipment and supplies with the goal of setting up the propellant production plant.

In a subsequent announcement held at SpaceX's Hawthorne headquarters in September 2018, Elon Musk showed a redesign concept of the BFS with three rear fins and two front canard fins added for atmospheric entry, replacing the delta wing with split flaps showed a year earlier. The revised BFR design utilizes seven identically-sized Raptor engines in the second stage; the same engine model as will be used on the first stage. The second stage design has two small actuating fins near the nose of the ship, and three large fins at the base, two of which actuate, and all three doubling as landing legs. Additionally, an initial 2023 lunar circumnavigation mission was announced. The spaceship is to be used for a proposed private mission to fly space tourists around the Moon, sponsored by Yusaku Maezawa along with several artists of various disciplines.

SpaceX also stated in the second half of the month that they were "no longer planning to upgrade Falcon 9 second stage for reusability." The two major parts of the BFR launch vehicle were also given their own descriptive names in November: Starship for the spaceship/upper stage and "Super Heavy" for the booster stage "needed to escape Earth’s deep gravity well (not needed for other planets or moons)."

Construction begins

By early 2018, the first ship was under construction, and SpaceX had begun constructing a new permanent production facility to build the 9-meter vehicles at the Port of Los Angeles. Manufacture of the first ship was underway by March 2018 in a temporary facility at the port, with first suborbital test flights planned for no earlier than 2019. The company continued to state publicly its aspirational goal for initial Mars-bound cargo flights of BFR launching as early as 2022, followed by the first crewed flight to Mars one synodic period later, in 2024, consistent with the no-earlier-than dates mentioned in late-2017. 

Back in 2015, SpaceX had been scouting for manufacturing facility locations to build the large rocket, with locations being investigated in California, Texas, Louisiana, and Florida. By September 2017, SpaceX had already started building launch vehicle components. "The tooling for the main tanks has been ordered, the facility is being built, we will start construction of the first ship [in the second quarter of 2018.]"

In March 2018, SpaceX publicly announced that it would manufacture its next-generation, 9-meter-diameter (30 ft) launch vehicle and spaceship at a new facility the company is constructing in 2018–2019 on Seaside Drive at the Port of Los Angeles. The company had leased an 18-acre site for 10 years, with multiple renewals possible, and will use the site for manufacturing, recovery from shipborne landings, and refurbishment of both the booster and the spaceship. Final regulatory approval of the new manufacturing facility came from the Board of Harbor Commissioners in April 2018, and the Los Angeles City Council in May. By that time, approximately 40 SpaceX employees were working on the design and construction of BFR. Over time, the project was expected to have 700 technical jobs. The permanent Port of Los Angeles facility was projected to be a 203,500-square-foot (18,910 m2) building that would be 105 feet (32 m) tall. The fully assembled launch vehicle was expected at that time to be "transported by barge, through the Panama Canal, to Cape Canaveral in Florida for launch."

Nine months after starting construction of some parts of the first test article carbon composite Starship low-altitude test vehicle, SpaceX CEO Musk announced that the "counterintuitive new design approach" he had been mentioning for a month was that the primary construction material for the rocket's structure and propellant tanks would be "fairly heavy...but extremely strong" metal, subsequently revealed to be stainless steel. Just three months later, March 2019, SpaceX had scrapped millions of dollars worth of carbon-composite production tooling they had purchased from Ascent Aerospace that had been delivered to SpaceX for use only the previous April, abandoned all Port of Los Angeles production plans, and shut down their composite port-side manufacturing facility.

Following a personal trip to the South Texas Launch Site in Boca Chica, Texas, Elon Musk revealed on 23 December 2018 that the first test article Starship had been under construction there for several weeks, out in the open on SpaceX property. The "hopper" was being built from a special alloy of stainless steel—not carbon composite as previously thought. According to Musk, the reason for using this material is that "it’s [stainless steel] obviously cheap, it’s obviously fast—but it’s not obviously the lightest. But it is actually the lightest. If you look at the properties of a high-quality stainless steel, the thing that isn’t obvious is that at cryogenic temperatures, the strength is boosted by 50 percent." Starship would be used on the initial test flights to characterize the vehicle and develop the landing and low-altitude/low-velocity reentry control algorithms. The initial test vehicle will fly with only three of the seven possible Raptor methalox engines installed, and the initial flight is expected no earlier than the first half of 2019.

In January 2019, SpaceX changed course and said it would also build the second test vehicle—the Starship orbital prototype—in Texas, after having earlier said that it would be built in the Port of Los Angeles.

Super Heavy prototype assembly is planned to start NET April 2019. The first Super Heavy flights will likely fly with fewer than all 31 Raptor engines, simply because they will not be needed for the early test flights, and it will reduce the cost to SpaceX in the event of a booster failure during the early flights.

Testing

Testing began at the subsystem level, as it does with most launch vehicles, with rocket engine component tests, followed by tests of the complete rocket engine in ground test facilities. Raptor engine component-level testing began in May 2014 with the first full-engine test in September 2016. By September 2017, the development Raptor engine had undergone 1200 seconds of hotfire testing in ground-test stands across 42 main engine tests, with the longest test at that time being 100 seconds.

SpaceX indicated in November 2018 that they were considering testing a heavily-modified Falcon 9 second stage that would look like a "mini-BFR Ship" and be used for atmospheric reentry testing of a number of technologies needed for the full-scale spaceship, including a high-Mach control surfaces. Several weeks later, Musk clarified that SpaceX would not build a mini-BFR but would accelerate development of the full-sized BFR instead.

From as early as October 2017, the month after the BFR concept was unveiled, flight tests at the launch vehicle subsystem level of the Big Falcon Rocket were expected to begin with short suborbital hops of the full-scale reusable second stage—subsequently named Starship—likely to be no more than few hundred kilometers altitude and lateral distance, with initial test flights projected to be as early as 2019. By September 2018, it was clear that hops of the upper stage spaceship were to be conducted from the SpaceX South Texas Launch Site near Brownsville, Texas. SpaceX filed an application with the FCC in November 2018 for an experimental radio communications license to support the test flight program, with all test flights on that permit slated to remain under 5 kilometers (16,000 ft) in altitude. Both the test article Starship and the launch site were under construction in South Texas by late 2018 and the primary structure of the first test "hopper" was complete by 10 January 2019. On 15 January 2019, SpaceX technicians separated the nose and tail sections of the Starship hopper so fuel and oxidizer tank bulkheads could start being installed on 21 January 2019. Unfortunately, on 23 January 2019, the Starship hopper's nose section was toppled over by strong winds. According to Musk, the propellant systems needed for flight were undamaged, but the nose section will take a few weeks to repair.

Nomenclature

At least as early as 2005, SpaceX had used the descriptor "BFR" for a conceptual heavy-lift vehicle "far larger than the Falcon family of vehicles," with a goal of 100 t (220,000 lb) to orbit. Beginning in mid-2013, SpaceX referred to both the mission architecture and the vehicle as the Mars Colonial Transporter. By the time the large 12-meter diameter design was unveiled in September 2016, SpaceX had begun referring to the overall system as the Interplanetary Transport System and the launch vehicle itself as the ITS launch vehicle

With the announcement of a new 9-meter design in September 2017, SpaceX resumed referring to the vehicle as "BFR". Musk said in the announcement "we are searching for the right name, but the code name, at least, is BFR." SpaceX President Gwynne Shotwell subsequently stated that BFR stands for "Big Falcon Rocket". However, Elon Musk had explained in the past that although BFR is the official name, he drew inspiration from the BFG weapon in the Doom video games. The BFR has also occasionally been referred to informally by the media and internally at SpaceX as "Big Fucking Rocket". The upper stage is also the spaceship, or for a time in 2017–18 was referred to as "BFS". The booster first stage was also at times referred to as the "BFB". In November 2018, the spaceship was renamed Starship, and the first stage booster was named Super Heavy.

Notably, in the fashion of SpaceX, even that term super heavy had been previously used by SpaceX in a different context. In February 2018, at about the time of the first Falcon Heavy launch, Musk had "suggested the possibility of a Falcon Super Heavy—a Falcon Heavy with extra boosters. 'We could really dial it up to as much performance as anyone could ever want. If we wanted to we could actually add two more side boosters and make it Falcon Super Heavy.'"

Description

The SpaceX next-generation launch vehicle design combines several elements that, according to Musk, will make long-duration, beyond Earth orbit (BEO) spaceflights possible. The design is projected by SpaceX to reduce the per-ton cost of launches to low Earth orbit (LEO) and of transportation between BEO destinations. It will also serve all use cases for the conventional LEO market. This will allow SpaceX to focus the majority of their development resources on the next-generation launch vehicle.

The fully reusable super-heavy-lift Big Falcon Rocket (BFR) will consist of two main parts: a reusable booster stage, named Super Heavy and a reusable second stage with an integrated payload section, named Starship.

Combining the second-stage of a launch vehicle with a long-duration spaceship will be a unique type of space mission architecture. This architecture is dependent on the success of orbital refueling.

Major characteristics of the launch vehicle include:

First stage: Super Heavy

Super Heavy, the first stage, or booster, of the SpaceX next-generation launch vehicle is 63 meters (207 ft) long and 9 m (30 ft) in diameter and expected to have a gross liftoff mass of 3,065,000 kg (6,757,000 lb) It is to be constructed of stainless steel tanks and structure, holding subcooled liquid methane and liquid oxygen (CH
4
/LOX) propellants, powered by 31 Raptor rocket engines providing 61.8 MN (13,900,000 lbf) total liftoff thrust. The booster is projected to return to land on the launch mount, although it might land on legs initially.

Starship-Super Heavy separation.
Artistic rendition of Starship separating from Super Heavy during launch.

Second stage and spaceship: Starship

Starship is a reusable spacecraft that also serves as the launch vehicle second stage with an integrated payload section. It is planned to be built in at least three operational versions, with a number of limited-function prototype test articles will also be built. The operational version will include:
  • spaceship: a large, long-duration spacecraft capable of carrying passengers or cargo to interplanetary destinations, to LEO, or between destinations on Earth.
  • tanker: a cargo-only propellant tanker to support the refilling of propellants in Earth orbit. The tanker will enable launching a heavy spacecraft to interplanetary space as the spacecraft being refueled can use its tanks twice, first to reach LEO and afterwards to leave Earth orbit. This design reaches a Delta-v similar to three-stage rockets without needing the corresponding large mass fractions.
  • satellite delivery spacecraft: a vehicle with a large cargo bay door that can open in space to facilitate the placement of spacecraft into orbit, or the recovery of spacecraft and space debris.
Major characteristics of the operational Starships will include:
  • full and rapid reusability of the vehicle
  • automated Rendezvous and docking operations
  • on-orbit propellant transfers from Starship tankers to Starship spaceships or cargo spaceships
  • stainless steel structure and tank construction
  • a novel thermal protection system for hypersonic atmospheric reentry utilizing a double stainless-steel skin with active transpiration cooling
  • a pressurized volume of approximately 1,000 m3 (35,000 cu ft), which could be configured for up to 40 cabins, large common areas, central storage, a galley, and a solar storm shelter for Mars missions plus 12 unpressurized aft cargo containers of 88 m3 (3,100 cu ft) total.

Launch vehicle specifications and performance

Specifications
Component

Attribute
Overall launch vehicle
(booster + ship)
Super Heavy (booster) Starship (spaceship/tanker/
sat-delivery vehicle)
LEO payload 100,000+ kg (220,000+ lb)

Return payload

50,000 kg (110,000 lb)
Cargo volume 1,088+ m3 (38,400+ cu ft) N/A 1,000+ m3 (35,000+ cu ft)
(pressurized)
88 m3 (3,100 cu ft)
(unpressurized)
Diameter 9 m (30 ft)
Length 118 m (387 ft) 63 m (207 ft) 55 m (180 ft)
Maximum mass 4,400,000 kg (9,700,000 lb)
1,335,000 kg (2,943,000 lb)
Propellant capacity

CH
4
– 240,000 kg (530,000 lb)
O
2
– 860,000 kg (1,900,000 lb)
Empty mass

85,000 kg (187,000 lb)
Engines
31 × Sea level Raptors 7 × Sea level Raptors
Thrust
52.7 MN (11,800,000 lbf) 11.9 MN (2,700,000 lbf) total

The Raptor engine design chamber pressure is 25 MPa (250 bar; 3,600 psi), although SpaceX plans to increase that to 30 MPa (300 bar; 4,400 psi) in later iterations of the engine. The engine will be designed with an extreme focus on reliability for any single engine and "seven engines means it's definitely capable of [mitigating] engine out at any time, including two engine out, in almost all circumstances. So you could lose two engines and still be totally safe. In fact, [in] some cases you can lose up to four engines and still be totally fine. So it only needs three engines for landing; three out of seven." In this way, the ship is being designed to achieve "landing reliability that is on par with the safest commercial airliners."

Starship prototypes

SpaceX is building at least two Starship prototype vehicles to use as test articles for integrated system testing of various aspects of the technology that makes up Starship. The low-altitude, low-velocity Starship test flight rocket will be used for initial integrated testing of the Raptor rocket engine with a flight-capable propellant structure, and will test the newly-designed autogenous pressurization system that is replacing traditional helium tank pressurization as well as initial launch and landing algorithms for the much larger 9-meter-diameter rocket. SpaceX originally developed their reusable booster technology for the 3-meter-diameter Falcon 9 in 2012–2018. It will also be the platform for the first flight tests of the full-flow staged combustion methalox Raptor engines, where the hopper vehicle is expected to be flight tested with up to three engines to facilitate engine-out tolerance testing. 

The high-altitude, high-velocity Starship orbital prototype will be used to develop and flight test novel thermal protection systems and hypersonic reentry control surfaces. The orbital prototype is expected to be outfitted with more than three Raptor engines.
Starship test flight rocket
The construction of the initial test article—the "Starship test flight rocket" or "test hopper" or "Starhopper"—was begun in early December 2018 and the external frame and skin was complete by 10 January 2019. The test article will be used to flight test a number of subsystems of the Starship and will be used to expand the flight envelope as this radically unusual reusable Starship second stage and spaceship continues in design, build and test for the next several years. Testing will commence at the SpaceX South Texas Launch Site near Boca Chica, Texas, with the initial testing of the low-velocity prototype anticipated as early as March, approximately one year ahead of schedule. All test flights of the "test hopper" will be low altitude, under 5 kilometers (16,000 ft).
Starship orbital prototype
A Starship orbital prototype test article, also referred to as the "Starship Mk I orbital design," is currently being built, with component build starting in December 2018, and vehicle structure construction starting in February 2019. Planned for high-altitude and high-velocity testing, it is expected to be completed by June 2019. The orbital prototype will be taller than the suborbital hopper, have thicker skins, and a smoothly curving nose section.

Applications

The Big Falcon Rocket launch vehicle is designed to replace all existing SpaceX vehicles and spacecraft: Falcon 9 and Falcon Heavy launch vehicles, and also the Dragon capsule. SpaceX estimates that BFR launches will be cheaper than the existing fleet, and even cheaper than the retired Falcon 1, due to full reusability and precision landing of the booster on its launch mount for simplified launch logistics. SpaceX intends to fully replace its vehicle fleet with BFRs during the early 2020s.

BFR is planned to execute five diverse flight use cases:
  • legacy Earth-orbit satellite delivery market
  • long-duration spaceflights in the cislunar region
  • Mars transportation, both as cargo ships as well as passenger-carrying transport
  • long-duration flights to the outer planets, for cargo and astronauts
  • commercial long-haul transport on Earth, competing with long-range aircraft. Although both CEO Musk and COO Shotwell have mentioned the potential ability of BFR to carry passengers on suborbital flights between any two points on Earth in under one hour, SpaceX have announced no concrete plans to pursue this use case. Nevertheless, the technology possibilities shown by SpaceX have surfaced theoretical transportation options that could potentially fill previously unfilled niches of transport across the globe, and analysts continue to debate the economic value of such high-speed, high-capacity cargo and passenger transportation means.

Lunar flyby tour

Artistic rendition of the BFS firing all 7 of its engines while passing by the Moon
Artistic rendition of Starship firing all 7 of its engines while passing by the Moon
 
In September 2018, SpaceX announced that it signed a contract to fly a group of private passengers around the Moon aboard Starship. In addition of the pilots, this lunar flyby will be crewed by Yusaku Maezawa, who will invite 6 to 8 artists to travel with him around the Moon in 2023. The expected travel time would be about 6 days.

Transport to Mars and Mars surface ship use

SpaceX plans to eventually build a crewed base on Mars for an extended surface presence, which they hope will grow one day into a self-sufficient colony.

Any Mars expeditions would refuel Starships in low Earth orbit before departing for Mars. Early ships would be left on Mars to house equipment, store propellant, or provide spare parts. Eventually, once humans travel to Mars, at least one of the reusable Starships from earlier flights would be capable of being refueled to provide a redundant spare spacecraft for a return journey to Earth.

Phalanx

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Phalanx Sumerian phalanx-like forma...