Search This Blog

Saturday, August 16, 2014

Cosmic microwave background

Cosmic microwave background

From Wikipedia, the free encyclopedia

The cosmic microwave background (CMB) is the thermal radiation assumed to be left over from the "Big Bang" of cosmology. In older literature, the CMB is also variously known as cosmic microwave background radiation (CMBR) or "relic radiation." The CMB is a cosmic background radiation that is fundamental to observational cosmology because it is the oldest light in the universe, dating to the epoch of recombination. With a traditional optical telescope, the space between stars and galaxies (the background) is completely dark. However, a sufficiently sensitive radio telescope shows a faint background glow, almost exactly the same in all directions, that is not associated with any star, galaxy, or other object. This glow is strongest in the microwave region of the radio spectrum. The accidental discovery of CMB in 1964 by American radio astronomers Arno Penzias and Robert Wilson[1][2] was the culmination of work initiated in the 1940s, and earned the discoverers the 1978 Nobel Prize.
The CMB is a snapshot of the oldest light in our Universe, imprinted on the sky when the Universe was just 380,000 years old. It shows tiny temperature fluctuations that correspond to regions of slightly different densities, representing the seeds of all future structure: the stars and galaxies of today.[3]
The CMB is well explained as radiation left over from an early stage in the development of the universe, and its discovery is considered a landmark test of the Big Bang model of the universe.
When the universe was young, before the formation of stars and planets, it was denser, much hotter, and filled with a uniform glow from a white-hot fog of hydrogen plasma. As the universe expanded, both the plasma and the radiation filling it grew cooler. When the universe cooled enough, protons and electrons combined to form neutral atoms. These atoms could no longer absorb the thermal radiation, and so the universe became transparent instead of being an opaque fog. Cosmologists refer to the time period when neutral atoms first formed as the recombination epoch, and the event shortly afterwards when photons started to travel freely through space rather than constantly being scattered by electrons and protons in plasma is referred to as photon decoupling. The photons that existed at the time of photon decoupling have been propagating ever since, though growing fainter and less energetic, since the expansion of space causes their wavelength to increase over time (and wavelength is inversely proportional to energy according to Planck's relation). This is the source of the alternative term relic radiation. The surface of last scattering refers to the set of points in space at the right distance from us so that we are now receiving photons originally emitted from those points at the time of photon decoupling.

Precise measurements of the CMB are critical to cosmology, since any proposed model of the universe must explain this radiation. The CMB has a thermal black body spectrum at a temperature of 2.72548±0.00057 K.[4] The spectral radiance dEν/dν peaks at 160.2 GHz, in the microwave range of frequencies. (Alternatively if spectral radiance is defined as dEλ/dλ then the peak wavelength is 1.063 mm.) The glow is very nearly uniform in all directions, but the tiny residual variations show a very specific pattern, the same as that expected of a fairly uniformly distributed hot gas that has expanded to the current size of the universe. In particular, the spectral radiance at different angles of observation in the sky contains small anisotropies, or irregularities, which vary with the size of the region examined. They have been measured in detail, and match what would be expected if small thermal variations, generated by quantum fluctuations of matter in a very tiny space, had expanded to the size of the observable universe we see today. This is a very active field of study, with scientists seeking both better data (for example, the Planck spacecraft) and better interpretations of the initial conditions of expansion. Although many different processes might produce the general form of a black body spectrum, no model other than the Big Bang has yet explained the fluctuations. As a result, most cosmologists consider the Big Bang model of the universe to be the best explanation for the CMB.

The high degree of uniformity throughout the observable universe and its faint but measured anisotropy lend strong support for the Big Bang model in general and the ΛCDM model in particular. Moreover, the WMAP[5] and BICEP[6] experiments have observed coherence of these fluctuations on angular scales that are larger than the apparent cosmological horizon at recombination. Either such coherence is acausally fine-tuned, or cosmic inflation occurred.[7][8]

On 17 March 2014, astronomers from the California Institute of Technology, the Harvard-Smithsonian Center for Astrophysics, Stanford University, and the University of Minnesota announced their detection of signature patterns of polarized light in the CMB, attributed to gravitational waves in the early universe, which if confirmed would provide strong evidence of cosmic inflation and the Big Bang.[9][10][11][12] However, on 19 June 2014, lowered confidence in confirming the cosmic inflation findings was reported.[13][14][15]

Features

Graph of cosmic microwave background spectrum measured by the FIRAS instrument on the COBE, the most precisely measured black body spectrum in nature.[16] The error bars are too small to be seen even in an enlarged image, and it is impossible to distinguish the observed data from the theoretical curve

The cosmic microwave background radiation is an emission of uniform, black body thermal energy coming from all parts of the sky. The radiation is isotropic to roughly one part in 100,000: the root mean square variations are only 18 µK,[17] after subtracting out a dipole anisotropy from the Doppler shift of the background radiation. The latter is caused by the peculiar velocity of the Earth relative to the comoving cosmic rest frame as the planet moves at some 371 km/s towards the constellation Leo.
The CMB dipole as well as aberration at higher multipoles have been measured, consistent with galactic motion.[18]

In the Big Bang model for the formation of the universe, Inflationary Cosmology predicts that after about 10−37 seconds[19] the nascent universe underwent exponential growth that smoothed out nearly all inhomogeneities. The remaining inhomogeneities were caused by quantum fluctuations in the inflaton field that caused the inflation event.[20] After 10−6 seconds, the early universe was made up of a hot, interacting plasma of photons, electrons, and baryons. As the universe expanded, adiabatic cooling caused the energy density of the plasma to decrease until it became favorable for electrons to combine with protons, forming hydrogen atoms. This recombination event happened when the temperature was around 3000 K or when the universe was approximately 379,000 years old.[21] At this point, the photons no longer interacted with the now electrically neutral atoms and began to travel freely through space, resulting in the decoupling of matter and radiation.[22]

The color temperature of the ensemble of decoupled photons has continued to diminish ever since; now down to 2.7260 ± 0.0013 K,[4] it will continue to drop as the universe expands. The intensity of the radiation also corresponds to black-body radiation at 2.726 K because red-shifted black-body radiation is just like black-body radiation at a lower temperature. According to the Big Bang model, the radiation from the sky we measure today comes from a spherical surface called the surface of last scattering. This represents the set of locations in space at which the decoupling event is estimated to have occurred[23] and at a point in time such that the photons from that distance have just reached observers. Most of the radiation energy in the universe is in the cosmic microwave background,[24] making up a fraction of roughly 6×10−5 of the total density of the universe.[25]

Two of the greatest successes of the Big Bang theory are its prediction of the almost perfect black body spectrum and its detailed prediction of the anisotropies in the cosmic microwave background. The CMB spectrum has become the most precisely measured black body spectrum in nature.[16]

History

The cosmic microwave background was first predicted in 1948 by Ralph Alpher, and Robert Herman.[38][39][40] Alpher and Herman were able to estimate the temperature of the cosmic microwave background to be 5 K, though two years later they re-estimated it at 28 K. This high estimate was due to a mis-estimate of the Hubble constant by Alfred Behr, which could not be replicated and was later abandoned for the earlier estimate. Although there were several previous estimates of the temperature of space, these suffered from two flaws. First, they were measurements of the effective temperature of space and did not suggest that space was filled with a thermal Planck spectrum. Next, they depend on our being at a special spot at the edge of the Milky Way galaxy and they did not suggest the radiation is isotropic. The estimates would yield very different predictions if Earth happened to be located elsewhere in the Universe.[41]

The 1948 results of Alpher and Herman were discussed in many physics settings through about 1955, when both left the Applied Physics Laboratory at Johns Hopkins University. The mainstream astronomical community, however, was not intrigued at the time by cosmology. Alpher and Herman's prediction was rediscovered by Yakov Zel'dovich in the early 1960s, and independently predicted by Robert Dicke at the same time. The first published recognition of the CMB radiation as a detectable phenomenon appeared in a brief paper by Soviet astrophysicists A. G. Doroshkevich and Igor Novikov, in the spring of 1964.[42] In 1964, David Todd Wilkinson and Peter Roll, Dicke's colleagues at Princeton University, began constructing a Dicke radiometer to measure the cosmic microwave background.[43] In 1964, Arno Penzias and Robert Woodrow Wilson at the Crawford Hill location of Bell Telephone Laboratories in nearby Holmdel Township, New Jersey had built a Dicke radiometer that they intended to use for radio astronomy and satellite communication experiments. On 20 May 1964 they made their first measurement clearly showing the presence of the microwave background,[44] with their instrument having an excess 4.2K antenna temperature which they could not account for. After receiving a telephone call from Crawford Hill, Dicke famously quipped: "Boys, we've been scooped."[1][45][46] A meeting between the Princeton and Crawford Hill groups determined that the antenna temperature was indeed due to the microwave background. Penzias and Wilson received the 1978 Nobel Prize in Physics for their discovery.[47]

The interpretation of the cosmic microwave background was a controversial issue in the 1960s with some proponents of the steady state theory arguing that the microwave background was the result of scattered starlight from distant galaxies.[48] Using this model, and based on the study of narrow absorption line features in the spectra of stars, the astronomer Andrew McKellar wrote in 1941: "It can be calculated that the 'rotational temperature' of interstellar space is 2 K."[26] However, during the 1970s the consensus was established that the cosmic microwave background is a remnant of the big bang. This was largely because new measurements at a range of frequencies showed that the spectrum was a thermal, black body spectrum, a result that the steady state model was unable to reproduce.[49]
The Holmdel Horn Antenna on which Penzias and Wilson discovered the cosmic microwave background.

Harrison, Peebles, Yu and Zel'dovich realized that the early universe would have to have inhomogeneities at the level of 10−4 or 10−5.[50][51][52] Rashid Sunyaev later calculated the observable imprint that these inhomogeneities would have on the cosmic microwave background.[53] Increasingly stringent limits on the anisotropy of the cosmic microwave background were set by ground based experiments during the 1980s. RELIKT-1, a Soviet cosmic microwave background anisotropy experiment on board the Prognoz 9 satellite (launched 1 July 1983) gave upper limits on the large-scale anisotropy. The NASA COBE mission clearly confirmed the primary anisotropy with the
Differential Microwave Radiometer instrument, publishing their findings in 1992.[54][55] The team received the Nobel Prize in physics for 2006 for this discovery.

Inspired by the COBE results, a series of ground and balloon-based experiments measured cosmic microwave background anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the scale of the first acoustic peak, which COBE did not have sufficient resolution to resolve. This peak corresponds to large scale density variations in the early universe that are created by gravitational instabilities, resulting in acoustical oscillations in the plasma.[56] The first peak in the anisotropy was tentatively detected by the Toco experiment and the result was confirmed by the BOOMERanG and MAXIMA experiments.[57][58][59] These measurements demonstrated that the geometry of the Universe is approximately flat, rather than curved.[60] They ruled out cosmic strings as a major component of cosmic structure formation and suggested cosmic inflation was the right theory of structure formation.[61]

The second peak was tentatively detected by several experiments before being definitively detected by WMAP, which has also tentatively detected the third peak.[62] As of 2010, several experiments to improve measurements of the polarization and the microwave background on small angular scales are ongoing. These include DASI, WMAP, BOOMERanG, QUaD, Planck spacecraft, Atacama Cosmology Telescope, South Pole Telescope and the QUIET telescope.

Relationship to the Big Bang

The cosmic microwave background radiation and the cosmological redshift-distance relation are together regarded as the best available evidence for the Big Bang theory. Measurements of the CMB have made the inflationary Big Bang theory the Standard Model of Cosmology.[63] The discovery of the CMB in the mid-1960s curtailed interest in alternatives such as the steady state theory.[64]

The CMB essentially confirms the Big Bang theory. In the late 1940s Alpher and Herman reasoned that if there was a big bang, the expansion of the Universe would have stretched and cooled the high-energy radiation of the very early Universe into the microwave region and down to a temperature of about 5 K. They were slightly off with their estimate, but they had exactly the right idea. They predicted the CMB. It took another 15 years for Penzias and Wilson to stumble into discovering that the microwave background was actually there.[65]

The CMB gives a snapshot of the universe when, according to standard cosmology, the temperature dropped enough to allow electrons and protons to form hydrogen atoms, thus making the universe transparent to radiation. When it originated some 380,000 years after the Big Bang—this time is generally known as the "time of last scattering" or the period of recombination or decoupling—the temperature of the universe was about 3000 K. This corresponds to an energy of about 0.25 eV, which is much less than the 13.6 eV ionization energy of hydrogen.[66]

Since decoupling, the temperature of the background radiation has dropped by a factor of roughly 1,100[67] due to the expansion of the universe. As the universe expands, the CMB photons are redshifted, making the radiation's temperature inversely proportional to a parameter called the universe's scale length. The temperature Tr of the CMB as a function of redshift, z, can be shown to be proportional to the temperature of the CMB as observed in the present day (2.725 K or 0.235 meV):[68]
Tr = 2.725(1 + z)
For details about the reasoning that the radiation is evidence for the Big Bang, see Cosmic background radiation of the Big Bang.

Primary anisotropy

The power spectrum of the cosmic microwave background radiation temperature anisotropy in terms of the angular scale (or multipole moment). The data shown come from the WMAP (2006), Acbar (2004) Boomerang (2005), CBI (2004), and VSA (2004) instruments. Also shown is a theoretical model (solid line).

The anisotropy of the cosmic microwave background is divided into two types: primary anisotropy, due to effects which occur at the last scattering surface and before; and secondary anisotropy, due to effects such as interactions of the background radiation with hot gas or gravitational potentials, which occur between the last scattering surface and the observer.

The structure of the cosmic microwave background anisotropies is principally determined by two effects: acoustic oscillations and diffusion damping (also called collisionless damping or Silk damping). The acoustic oscillations arise because of a conflict in the photonbaryon plasma in the early universe. The pressure of the photons tends to erase anisotropies, whereas the gravitational attraction of the baryons—moving at speeds much slower than light—makes them tend to collapse to form dense haloes. These two effects compete to create acoustic oscillations which give the microwave background its characteristic peak structure. The peaks correspond, roughly, to resonances in which the photons decouple when a particular mode is at its peak amplitude.

The peaks contain interesting physical signatures. The angular scale of the first peak determines the curvature of the universe (but not the topology of the universe). The next peak—ratio of the odd peaks to the even peaks—determines the reduced baryon density.[69] The third peak can be used to get information about the dark matter density.[70]

The locations of the peaks also give important information about the nature of the primordial density perturbations. There are two fundamental types of density perturbations—called adiabatic and isocurvature. A general density perturbation is a mixture of both, and different theories that purport to explain the primordial density perturbation spectrum predict different mixtures.
  • Adiabatic density perturbations
the fractional additional density of each type of particle (baryons, photons ...) is the same. That is, if at one place there is 1% more energy in baryons than average, then at that place there is also 1% more energy in photons (and 1% more energy in neutrinos) than average. Cosmic inflation predicts that the primordial perturbations are adiabatic.
  • Isocurvature density perturbations
in each place the sum (over different types of particle) of the fractional additional densities is zero. That is, a perturbation where at some spot there is 1% more energy in baryons than average, 1% more energy in photons than average, and 2% less energy in neutrinos than average, would be a pure isocurvature perturbation. Cosmic strings would produce mostly isocurvature primordial perturbations.
The CMB spectrum can distinguish between these two because these two types of perturbations produce different peak locations. Isocurvature density perturbations produce a series of peaks whose angular scales (l-values of the peaks) are roughly in the ratio 1:3:5:..., while adiabatic density perturbations produce peaks whose locations are in the ratio 1:2:3:...[71] Observations are consistent with the primordial density perturbations being entirely adiabatic, providing key support for inflation, and ruling out many models of structure formation involving, for example, cosmic strings.

Collisionless damping is caused by two effects, when the treatment of the primordial plasma as fluid begins to break down:
  • the increasing mean free path of the photons as the primordial plasma becomes increasingly rarefied in an expanding universe
  • the finite depth of the last scattering surface (LSS), which causes the mean free path to increase rapidly during decoupling, even while some Compton scattering is still occurring.
These effects contribute about equally to the suppression of anisotropies at small scales, and give rise to the characteristic exponential damping tail seen in the very small angular scale anisotropies.

The depth of the LSS refers to the fact that the decoupling of the photons and baryons does not happen instantaneously, but instead requires an appreciable fraction of the age of the Universe up to that era. One method of quantifying how long this process took uses the photon visibility function (PVF). This function is defined so that, denoting the PVF by P(t), the probability that a CMB photon last scattered between time t and t+dt is given by P(t)dt.

The maximum of the PVF (the time when it is most likely that a given CMB photon last scattered) is known quite precisely. The first-year WMAP results put the time at which P(t) is maximum as 372,000 years.[72] This is often taken as the "time" at which the CMB formed. However, to figure out how long it took the photons and baryons to decouple, we need a measure of the width of the PVF.
The WMAP team finds that the PVF is greater than half of its maximum value (the "full width at half maximum", or FWHM) over an interval of 115,000 years. By this measure, decoupling took place over roughly 115,000 years, and when it was complete, the universe was roughly 487,000 years old.

Late time anisotropy

Since the CMB came into existence, it has apparently been modified by several subsequent physical processes, which are collectively referred to as late-time anisotropy, or secondary anisotropy. When the CMB photons became free to travel unimpeded, ordinary matter in the universe was mostly in the form of neutral hydrogen and helium atoms. However, observations of galaxies today seem to indicate that most of the volume of the intergalactic medium (IGM) consists of ionized material (since there are few absorption lines due to hydrogen atoms). This implies a period of reionization during which some of the material of the universe was broken into hydrogen ions.

The CMB photons are scattered by free charges such as electrons that are not bound in atoms. In an ionized universe, such charged particles have been liberated from neutral atoms by ionizing (ultraviolet) radiation. Today these free charges are at sufficiently low density in most of the volume of the Universe that they do not measurably affect the CMB. However, if the IGM was ionized at very early times when the universe was still denser, then there are two main effects on the CMB:
  1. Small scale anisotropies are erased. (Just as when looking at an object through fog, details of the object appear fuzzy.)
  2. The physics of how photons are scattered by free electrons (Thomson scattering) induces polarization anisotropies on large angular scales. This broad angle polarization is correlated with the broad angle temperature perturbation.
Both of these effects have been observed by the WMAP spacecraft, providing evidence that the universe was ionized at very early times, at a redshift more than 17.[clarification needed] The detailed provenance of this early ionizing radiation is still a matter of scientific debate. It may have included starlight from the very first population of stars (population III stars), supernovae when these first stars reached the end of their lives, or the ionizing radiation produced by the accretion disks of massive black holes.

The time following the emission of the cosmic microwave background—and before the observation of the first stars—is semi-humorously referred to by cosmologists as the dark age, and is a period which is under intense study by astronomers (See 21 centimeter radiation).

Two other effects which occurred between reionization and our observations of the cosmic microwave background, and which appear to cause anisotropies, are the Sunyaev–Zel'dovich effect, where a cloud of high-energy electrons scatters the radiation, transferring some of its energy to the CMB photons, and the Sachs–Wolfe effect, which causes photons from the Cosmic Microwave Background to be gravitationally redshifted or blueshifted due to changing gravitational fields.

Polarization

The cosmic microwave background is polarized at the level of a few microkelvin. There are two types of polarization, called E-modes and B-modes. This is in analogy to electrostatics, in which the electric field (E-field) has a vanishing curl and the magnetic field (B-field) has a vanishing divergence. The E-modes arise naturally from Thomson scattering in a heterogeneous plasma. The B-modes are not sourced by standard scalar type perturbations. Instead they can be sourced by two mechanisms: first one is by gravitational lensing of E-modes, which has been measured by South Pole Telescope in 2013.[73] Second one is from gravitational waves arising from cosmic inflation.
Detecting the B-modes is extremely difficult, particularly as the degree of foreground contamination is unknown, and the weak gravitational lensing signal mixes the relatively strong E-mode signal with the B-mode signal.[74]

Microwave background observations

Subsequent to the discovery of the CMB, hundreds of cosmic microwave background experiments have been conducted to measure and characterize the signatures of the radiation. The most famous experiment is probably the NASA Cosmic Background Explorer (COBE) satellite that orbited in 1989–1996 and which detected and quantified the large scale anisotropies at the limit of its detection capabilities. Inspired by the initial COBE results of an extremely isotropic and homogeneous background, a series of ground- and balloon-based experiments quantified CMB anisotropies on smaller angular scales over the next decade. The primary goal of these experiments was to measure the angular scale of the first acoustic peak, for which COBE did not have sufficient resolution. These measurements were able to rule out cosmic strings as the leading theory of cosmic structure formation, and suggested cosmic inflation was the right theory. During the 1990s, the first peak was measured with increasing sensitivity and by 2000 the BOOMERanG experiment reported that the highest power fluctuations occur at scales of approximately one degree. Together with other cosmological data, these results implied that the geometry of the Universe is flat. A number of ground-based interferometers provided measurements of the fluctuations with higher accuracy over the next three years, including the Very Small Array, Degree Angular Scale Interferometer (DASI), and the Cosmic Background Imager (CBI). DASI made the first detection of the polarization of the CMB and the CBI provided the first E-mode polarization spectrum with compelling evidence that it is out of phase with the T-mode spectrum.

In June 2001, NASA launched a second CMB space mission, WMAP, to make much more precise measurements of the large scale anisotropies over the full sky. WMAP used symmetric, rapid-multi-modulated scanning, rapid switching radiometers to minimize non-sky signal noise.[67] The first results from this mission, disclosed in 2003, were detailed measurements of the angular power spectrum at a scale of less than one degree, tightly constraining various cosmological parameters. The results are broadly consistent with those expected from cosmic inflation as well as various other competing theories, and are available in detail at NASA's data bank for Cosmic Microwave Background (CMB) (see links below). Although WMAP provided very accurate measurements of the large scale angular fluctuations in the CMB (structures about as broad in the sky as the moon), it did not have the angular resolution to measure the smaller scale fluctuations which had been observed by former ground-based interferometers.

All-sky map

Ilc 9yr moll4096.png
All-sky map of the CMB, created from 9 years of WMAP data
A third space mission, the ESA (European Space Agency) Planck Surveyor, was launched in May 2009 and is currently performing an even more detailed investigation. Planck employs both HEMT radiometers and bolometer technology and will measure the CMB at a smaller scale than WMAP. Its detectors were trialled in the Antarctic Viper telescope as ACBAR (Arcminute Cosmology Bolometer Array Receiver) experiment—which has produced the most precise measurements at small angular scales to date—and in the Archeops balloon telescope.
Comparison of CMB results from COBE, WMAP and Planck – March 21, 2013.

On 21 March 2013, the European-led research team behind the Planck cosmology probe released the mission's all-sky map (565x318 jpeg, 3600x1800 jpeg) of the cosmic microwave background.[75][76]
The map suggests the universe is slightly older than researchers thought. According to the map, subtle fluctuations in temperature were imprinted on the deep sky when the cosmos was about 370,000 years old. The imprint reflects ripples that arose as early, in the existence of the universe, as the first nonillionth of a second. Apparently, these ripples gave rise to the present vast cosmic web of galaxy clusters and dark matter. According to the team, the universe is 13.798 ± 0.037 billion years old,[77] and contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. Also, the Hubble constant was measured to be 67.80 ± 0.77 (km/s)/Mpc.[75][78][79][80]

Additional ground-based instruments such as the South Pole Telescope in Antarctica and the proposed Clover Project, Atacama Cosmology Telescope and the QUIET telescope in Chile will provide additional data not available from satellite observations, possibly including the B-mode polarization.

Data reduction and analysis

Raw CMBR data from the space vehicle (i.e. WMAP) contain foreground effects that completely obscure the fine-scale structure of the cosmic microwave background. The fine-scale structure is superimposed on the raw CMBR data but is too small to be seen at the scale of the raw data. The most prominent of the foreground effects is the dipole anisotropy caused by the Sun's motion relative to the CMBR background. The dipole anisotropy and others due to Earth's annual motion relative to the Sun and numerous microwave sources in the galactic plane and elsewhere must be subtracted out to reveal the extremely tiny variations characterizing the fine-scale structure of the CMBR background.

The detailed analysis of CMBR data to produce maps, an angular power spectrum, and ultimately cosmological parameters is a complicated, computationally difficult problem. Although computing a power spectrum from a map is in principle a simple Fourier transform, decomposing the map of the sky into spherical harmonics, in practice it is hard to take the effects of noise and foreground sources into account. In particular, these foregrounds are dominated by galactic emissions such as Bremsstrahlung, synchrotron, and dust that emit in the microwave band; in practice, the galaxy has to be removed, resulting in a CMB map that is not a full-sky map. In addition, point sources like galaxies and clusters represent another source of foreground which must be removed so as not to distort the short scale structure of the CMB power spectrum.

Constraints on many cosmological parameters can be obtained from their effects on the power spectrum, and results are often calculated using Markov Chain Monte Carlo sampling techniques.

CMBR dipole anisotropy

From the CMB data it is seen that our local group of galaxies (the galactic cluster that includes the Solar System's Milky Way Galaxy) appears to be moving at 369±0.9 km/s relative to the reference frame of the CMB (also called the CMB rest frame, or the frame of reference in which there is no motion through the CMB) in the direction of galactic longitude l = 263.99±0.14°, b = 48.26±0.03°.[81][82] This motion results in an anisotropy of the data (CMB appearing slightly warmer in the direction of movement than in the opposite direction).[83] The standard interpretation of this temperature variation is a simple velocity red shift and blue shift due to motion relative to the CMB, but alternative cosmological models can explain some fraction of the observed dipole temperature distribution in the CMB.[84]

Low multipoles and other anomalies

With the increasingly precise data provided by WMAP, there have been a number of claims that the CMB exhibits anomalies, such as very large scale anisotropies, anomalous alignments, and non-Gaussian distributions.[85][86][87][88] The most longstanding of these is the low-l multipole controversy. Even in the COBE map, it was observed that the quadrupole (l =2, spherical harmonic) has a low amplitude compared to the predictions of the Big Bang. In particular, the quadrupole and octupole (l =3) modes appear to have an unexplained alignment with each other and with both the ecliptic plane and equinoxes,[89][90][91] an alignment sometimes referred to as the axis of evil.[86] A number of groups have suggested that this could be the signature of new physics at the greatest observable scales; other groups suspect systematic errors in the data.[92][93][94] Ultimately, due to the foregrounds and the cosmic variance problem, the greatest modes will never be as well measured as the small angular scale modes. The analyses were performed on two maps that have had the foregrounds removed as far as possible: the "internal linear combination" map of the WMAP collaboration and a similar map prepared by Max Tegmark and others.[62][67][95] Later analyses have pointed out that these are the modes most susceptible to foreground contamination from synchrotron, dust, and Bremsstrahlung emission, and from experimental uncertainty in the monopole and dipole. A full Bayesian analysis of the WMAP power spectrum demonstrates that the quadrupole prediction of Lambda-CDM cosmology is consistent with the data at the 10% level and that the observed octupole is not remarkable.[96] Carefully accounting for the procedure used to remove the foregrounds from the full sky map further reduces the significance of the alignment by ~5%.[97][98][99][100]

Recent observations with the Planck telescope, which is very much more sensitive than WMAP and has a larger angular resolution, confirm the observation of the axis of evil. Since two different instruments recorded the same anomaly, instrumental error (but not foreground contamination) appears to be ruled out.[101] Coincidence is a possible explanation, chief scientist from WMAP, Charles L. Bennett suggested coincidence and human psychology were involved, "I do think there is a bit of a psychological effect; people want to find unusual things." [102]

In popular culture

  • In the Stargate Universe TV series, an Ancient spaceship, Destiny, was built to study patterns in the CMBR which indicate that the universe as we know it might have been created by some form of sentient intelligence.[103]
  • In Wheelers, a novel by Ian Stewart & Jack Cohen, CMBR is explained as the encrypted transmissions of an ancient civilization. This allows the Jovian "blimps" to have a society older than the currently-observed age of the universe. 

Dark energy

Dark energy

From Wikipedia, the free encyclopedia
 
In physical cosmology and astronomy, dark energy is a hypothetical form of energy which permeates all of space and tends to accelerate the expansion of the universe.[1] Dark energy is the most accepted hypothesis to explain the observations since the 1990s indicating that the universe is expanding at an accelerating rate. According to the Planck mission team, and based on the standard model of cosmology, on a mass–energy equivalence basis, the observable universe contains 26.8% dark matter, 68.3% dark energy (for a total of 95.1%) and 4.9% ordinary matter.[2][3][4][5] Again on a mass–energy equivalence basis, the density of dark energy (1.67 × 10−27 kg/m3) is very low: in the solar system, it is estimated only 6 tons of dark energy would be found within the radius of Pluto's orbit. However, it comes to dominate the mass–energy of the universe because it is uniform across space.[6]

Two proposed forms for dark energy are the cosmological constant, a constant energy density filling space homogeneously,[7] and scalar fields such as quintessence or moduli, dynamic quantities whose energy density can vary in time and space. Contributions from scalar fields that are constant in space are usually also included in the cosmological constant. The cosmological constant can be formulated to be equivalent to vacuum energy. Scalar fields that do change in space can be difficult to distinguish from a cosmological constant because the change may be extremely slow.

High-precision measurements of the expansion of the universe are required to understand how the expansion rate changes over time. In general relativity, the evolution of the expansion rate is parameterized by the cosmological equation of state (the relationship between temperature, pressure, and combined matter, energy, and vacuum energy density for any region of space). Measuring the equation of state for dark energy is one of the biggest efforts in observational cosmology today.

Adding the cosmological constant to cosmology's standard FLRW metric leads to the Lambda-CDM model, which has been referred to as the "standard model" of cosmology because of its precise agreement with observations. Dark energy has been used as a crucial ingredient in a recent attempt to formulate a cyclic model for the universe.[8]

Nature of dark energy

Many things about the nature of dark energy remain matters of speculation. The evidence for dark energy is indirect but comes from three independent sources:
  • Distance measurements and their relation to redshift, which suggest the universe has expanded more in the last half of its life.[9]
  • The theoretical need for a type of additional energy that is not matter or dark matter to form the observationally flat universe (absence of any detectable global curvature).
  • It can be inferred from measures of large scale wave-patterns of mass density in the universe.
Dark energy is thought to be very homogeneous, not very dense and is not known to interact through any of the fundamental forces other than gravity. Since it is quite rarefied—roughly 10−29 g/cm3—it is unlikely to be detectable in laboratory experiments. Dark energy can have such a profound effect on the universe, making up 68% of universal density, only because it uniformly fills otherwise empty space. The two leading models are a cosmological constant and quintessence. Both models include the common characteristic that dark energy must have negative pressure.

Effect of dark energy: a small constant negative pressure of vacuum

Independently of its actual nature, dark energy would need to have a strong negative pressure (acting repulsively) in order to explain the observed acceleration of the expansion of the universe.

According to General Relativity, the pressure within a substance contributes to its gravitational attraction for other things just as its mass density does. This happens because the physical quantity that causes matter to generate gravitational effects is the stress–energy tensor, which contains both the energy (or matter) density of a substance and its pressure and viscosity.

In the Friedmann–Lemaître–Robertson–Walker metric, it can be shown that a strong constant negative pressure in all the universe causes an acceleration in universe expansion if the universe is already expanding, or a deceleration in universe contraction if the universe is already contracting. More exactly, the second derivative of the universe scale factor, \ddot{a}, is positive if the equation of state of the universe is such that \! w<-1/3 (see Friedmann equations).

This accelerating expansion effect is sometimes labeled "gravitational repulsion", which is a colorful but possibly confusing expression. In fact a negative pressure does not influence the gravitational interaction between masses—which remains attractive—but rather alters the overall evolution of the universe at the cosmological scale, typically resulting in the accelerating expansion of the universe despite the attraction among the masses present in the universe.

The acceleration is simply a function of dark energy density. Dark energy is persistent: its density remains constant (experimentally, within a factor of 1:10), i.e. it does not get diluted when space expands.

Evidence of existence

Supernovae

In 1998, published observations of Type Ia supernovae ("one-A") by the High-Z Supernova Search Team[10] followed in 1999 by the Supernova Cosmology Project[11] suggested that the expansion of the universe is accelerating.[12] The 2011 Nobel Prize in Physics was awarded to Saul Perlmutter, Brian P. Schmidt and Adam G. Riess for this work.[13][14]

Since then, these observations have been corroborated by several independent sources. Measurements of the cosmic microwave background, gravitational lensing, and the large-scale structure of the cosmos as well as improved measurements of supernovae have been consistent with the Lambda-CDM model.[15] Some people argue that the only indication for the existence of dark energy is observations of distance measurements and associated redshifts. Cosmic microwave background anisotropies and baryon acoustic oscillations are only observations that redshifts are larger than expected from a "dusty" Friedmann–Lemaître universe and the local measured Hubble constant.[16]

Supernovae are useful for cosmology because they are excellent standard candles across cosmological distances. They allow the expansion history of the Universe to be measured by looking at the relationship between the distance to an object and its redshift, which gives how fast it is receding from us. The relationship is roughly linear, according to Hubble's law. It is relatively easy to measure redshift, but finding the distance to an object is more difficult. Usually, astronomers use standard candles: objects for which the intrinsic brightness, the absolute magnitude, is known. This allows the object's distance to be measured from its actual observed brightness, or apparent magnitude. Type Ia supernovae are the best-known standard candles across cosmological distances because of their extreme and extremely consistent luminosity.

Recent observations of supernovae are consistent with a universe made up 71.3% of dark energy and 27.4% of a combination of dark matter and baryonic matter.[17]

Cosmic microwave background

Estimated distribution of matter and energy in the universe

The existence of dark energy, in whatever form, is needed to reconcile the measured geometry of space with the total amount of matter in the universe. Measurements of cosmic microwave background (CMB) anisotropies indicate that the universe is close to flat. For the shape of the universe to be flat, the mass/energy density of the universe must be equal to the critical density. The total amount of matter in the universe (including baryons and dark matter), as measured from the CMB spectrum, accounts for only about 30% of the critical density. This implies the existence of an additional form of energy to account for the remaining 70%.[15] The Wilkinson Microwave Anisotropy Probe (WMAP) spacecraft seven-year analysis estimated a universe made up of 72.8% dark energy, 22.7% dark matter and 4.5% ordinary matter.[4] Work done in 2013 based on the Planck spacecraft observations of the CMB gave a more accurate estimate of 68.3% of dark energy, 26.8% of dark matter and 4.9% of ordinary matter.[18]

Large-scale structure

The theory of large-scale structure, which governs the formation of structures in the universe (stars, quasars, galaxies and galaxy groups and clusters), also suggests that the density of matter in the universe is only 30% of the critical density.

A 2011 survey, the WiggleZ galaxy survey of more than 200,000 galaxies, provided further evidence towards the existence of dark energy, although the exact physics behind it remains unknown.[19][20]
The WiggleZ survey from Australian Astronomical Observatory scanned the galaxies to determine their redshift. Then, by exploiting the fact that baryon acoustic oscillations have left voids regularly of ~150 Mpc diameter, surrounded by the galaxies, the voids were used as standard rulers to determine distances to galaxies as far as 2,000 Mpc (redshift 0.6), which allowed astronomers to determine more accurately the speeds of the galaxies from their redshift and distance. The data confirmed cosmic acceleration up to half of the age of the universe (7 billion years) and constrain its inhomogeneity to 1 part in 10.[20] This provides a confirmation to cosmic acceleration independent of supernovae.

Late-time integrated Sachs-Wolfe effect

Accelerated cosmic expansion causes gravitational potential wells and hills to flatten as photons pass through them, producing cold spots and hot spots on the CMB aligned with vast supervoids and superclusters. This so-called late-time Integrated Sachs–Wolfe effect (ISW) is a direct signal of dark energy in a flat universe.[21] It was reported at high significance in 2008 by Ho et al.[22] and Giannantonio et al.[23]

Observational Hubble constant data

A new approach to test evidence of dark energy through observational Hubble constant (H(z)) data (OHD) has gained significant attention in recent years.[24][25][26][27] The Hubble constant is measured as a function of cosmological redshift. OHD directly tracks the expansion history of the universe by taking passively evolving early-type galaxies as “cosmic chronometers”.[28] From this point, this approach provides standard clocks in the universe. The core of this idea is the measurement of the differential age evolution as a function of redshift of these cosmic chronometers. Thus, it provides a direct estimate of the Hubble parameter H(z)=-1/(1+z)dz/dt≈-1/(1+z)Δz/Δt. The merit of this approach is clear: the reliance on a differential quantity, Δz/Δt, can minimize many common issues and systematic effects; and as a direct measurement of the Hubble parameter instead of its integral, like supernovae and baryon acoustic oscillations (BAO), it brings more information and is appealing in computation. For these reasons, it has been widely used to examine the accelerated cosmic expansion and study properties of dark energy.

Theories of explanation

Cosmological constant

The simplest explanation for dark energy is that it is simply the "cost of having space": that is, a volume of space has some intrinsic, fundamental energy. This is the cosmological constant, sometimes called Lambda (hence Lambda-CDM model) after the Greek letter Λ, the symbol used to represent this quantity mathematically. Since energy and mass are related by E = mc2, Einstein's theory of general relativity predicts that this energy will have a gravitational effect. It is sometimes called a vacuum energy because it is the energy density of empty vacuum. In fact, most theories of particle physics predict vacuum fluctuations that would give the vacuum this sort of energy. This is related to the Casimir effect, in which there is a small suction into regions where virtual particles are geometrically inhibited from forming (e.g. between plates with tiny separation). The cosmological constant is estimated by cosmologists to be on the order of 10−29 g/cm3, or about 10−120 in reduced Planck units[citation needed]. Particle physics predicts a natural value of 1 in reduced Planck units, leading to a large discrepancy.

The cosmological constant has negative pressure equal to its energy density and so causes the expansion of the universe to accelerate. The reason why a cosmological constant has negative pressure can be seen from classical thermodynamics; Energy must be lost from inside a container to do work on the container. A change in volume dV requires work done equal to a change of energy −P dV, where P is the pressure. But the amount of energy in a container full of vacuum actually increases when the volume increases (dV is positive), because the energy is equal to ρV, where ρ (rho) is the energy density of the cosmological constant. Therefore, P is negative and, in fact, P = −ρ.
A major outstanding problem is that most quantum field theories predict a huge cosmological constant from the energy of the quantum vacuum, more than 100 orders of magnitude too large.[7]
This would need to be cancelled almost, but not exactly, by an equally large term of the opposite sign. Some supersymmetric theories require a cosmological constant that is exactly zero,[citation needed] which does not help because supersymmetry must be broken. The present scientific consensus amounts to extrapolating the empirical evidence where it is relevant to predictions, and fine-tuning theories until a more elegant solution is found. Technically, this amounts to checking theories against macroscopic observations. Unfortunately, as the known error-margin in the constant predicts the fate of the universe more than its present state, many such "deeper" questions remain unknown.

In spite of its problems, the cosmological constant is in many respects the most economical solution to the problem of cosmic acceleration. One number successfully explains a multitude of observations.
Thus, the current standard model of cosmology, the Lambda-CDM model, includes the cosmological constant as an essential feature.

Quintessence

In quintessence models of dark energy, the observed acceleration of the scale factor is caused by the potential energy of a dynamical field, referred to as quintessence field. Quintessence differs from the cosmological constant in that it can vary in space and time. In order for it not to clump and form structure like matter, the field must be very light so that it has a large Compton wavelength.

No evidence of quintessence is yet available, but it has not been ruled out either. It generally predicts a slightly slower acceleration of the expansion of the universe than the cosmological constant. Some scientists think that the best evidence for quintessence would come from violations of Einstein's equivalence principle and variation of the fundamental constants in space or time.[citation needed] Scalar fields are predicted by the standard model and string theory, but an analogous problem to the cosmological constant problem (or the problem of constructing models of cosmic inflation) occurs: renormalization theory predicts that scalar fields should acquire large masses.

The cosmic coincidence problem asks why the cosmic acceleration began when it did. If cosmic acceleration began earlier in the universe, structures such as galaxies would never have had time to form and life, at least as we know it, would never have had a chance to exist. Proponents of the anthropic principle view this as support for their arguments. However, many models of quintessence have a so-called tracker behavior, which solves this problem. In these models, the quintessence field has a density which closely tracks (but is less than) the radiation density until matter-radiation equality, which triggers quintessence to start behaving as dark energy, eventually dominating the universe. This naturally sets the low energy scale of the dark energy.[citation needed]

In 2004, when scientists fit the evolution of dark energy with the cosmological data, they found that the equation of state had possibly crossed the cosmological constant boundary (w=−1) from above to below. A No-Go theorem has been proved that gives this scenario at least two degrees of freedom as required for dark energy models. This scenario is so-called Quintom scenario.

Some special cases of quintessence are phantom energy, in which the energy density of quintessence actually increases with time, and k-essence (short for kinetic quintessence) which has a non-standard form of kinetic energy. They can have unusual properties: phantom energy, for example, can cause a Big Rip.

Alternative ideas

Some alternatives to dark energy aim to explain the observational data by a more refined use of established theories, focusing, for example, on the gravitational effects of density inhomogeneities, or on consequences of electroweak symmetry breaking in the early universe. If we are located in an emptier-than-average region of space, the observed cosmic expansion rate could be mistaken for a variation in time, or acceleration.[29][30][31][32] A different approach uses a cosmological extension of the equivalence principle to show how space might appear to be expanding more rapidly in the voids surrounding our local cluster. While weak, such effects considered cumulatively over billions of years could become significant, creating the illusion of cosmic acceleration, and making it appear as if we live in a Hubble bubble.[33][34][35]

Another class of theories attempts to come up with an all-encompassing theory of both dark matter and dark energy as a single phenomenon that modifies the laws of gravity at various scales. An example of this type of theory is the theory of dark fluid. Another class of theories that unifies dark matter and dark energy are suggested to be covariant theories of modified gravities. These theories alter the dynamics of the space-time such that the modified dynamic stems what have been assigned to the presence of dark energy and dark matter.[36]

A 2011 paper in the journal Physical Review D by Christos Tsagas, a cosmologist at Aristotle University of Thessaloniki in Greece, argued that it is likely that the accelerated expansion of the universe is an illusion caused by the relative motion of us to the rest of the universe. The paper cites data showing that the 2.5 billion ly wide region of space we are inside of is moving very quickly relative to everything around it. If the theory is confirmed, then dark energy would not exist (but the "dark flow" still might).[37][38]

Some theorists think that dark energy and cosmic acceleration are a failure of general relativity on very large scales, larger than superclusters.[citation needed] However most attempts at modifying general relativity have turned out to be either equivalent to theories of quintessence, or inconsistent with observations.[citation needed] Other ideas for dark energy have come from string theory, brane cosmology and the holographic principle, but have not yet proved[citation needed] as compellingly as quintessence and the cosmological constant.

On string theory, an article in the journal Nature described:
String theories, popular with many particle physicists, make it possible, even desirable, to think that the observable universe is just one of 10500 universes in a grander multiverse, says Leonard Susskind, a cosmologist at Stanford University in California. The vacuum energy will have different values in different universes, and in many or most it might indeed be vast. But it must be small in ours because it is only in such a universe that observers such as ourselves can evolve.
[39]
Paul Steinhardt in the same article criticizes string theory's explanation of dark energy stating "...Anthropics and randomness don't explain anything... I am disappointed with what most theorists are willing to accept".[39]

Another set of proposals is based on the possibility of a double metric tensor for space-time.[40][41] It has been argued that time reversed solutions in general relativity require such double metric for consistency, and that both dark matter and dark energy can be understood in terms of time reversed solutions of general relativity.[42]

Implications for the fate of the universe

Cosmologists estimate that the acceleration began roughly 5 billion years ago. Before that, it is thought that the expansion was decelerating, due to the attractive influence of dark matter and baryons. The density of dark matter in an expanding universe decreases more quickly than dark energy, and eventually the dark energy dominates. Specifically, when the volume of the universe doubles, the density of dark matter is halved, but the density of dark energy is nearly unchanged (it is exactly constant in the case of a cosmological constant).

If the acceleration continues indefinitely, the ultimate result will be that galaxies outside the local supercluster will have a line-of-sight velocity that continually increases with time, eventually far exceeding the speed of light.[43] This is not a violation of special relativity because the notion of "velocity" used here is different from that of velocity in a local inertial frame of reference, which is still constrained to be less than the speed of light for any massive object (see Uses of the proper distance for a discussion of the subtleties of defining any notion of relative velocity in cosmology).
Because the Hubble parameter is decreasing with time, there can actually be cases where a galaxy that is receding from us faster than light does manage to emit a signal which reaches us eventually.[44][45] However, because of the accelerating expansion, it is projected that most galaxies will eventually cross a type of cosmological event horizon where any light they emit past that point will never be able to reach us at any time in the infinite future[46] because the light never reaches a point where its "peculiar velocity" toward us exceeds the expansion velocity away from us (these two notions of velocity are also discussed in Uses of the proper distance). Assuming the dark energy is constant (a cosmological constant), the current distance to this cosmological event horizon is about 16 billion light years, meaning that a signal from an event happening at present would eventually be able to reach us in the future if the event were less than 16 billion light years away, but the signal would never reach us if the event were more than 16 billion light years away.[45]

As galaxies approach the point of crossing this cosmological event horizon, the light from them will become more and more redshifted, to the point where the wavelength becomes too large to detect in practice and the galaxies appear to disappear completely[47][48] (see Future of an expanding universe). The Earth, the Milky Way, and the Virgo Supercluster, however, would remain virtually undisturbed while the rest of the universe recedes and disappears from view. In this scenario, the local supercluster would ultimately suffer heat death, just as was thought for the flat, matter-dominated universe before measurements of cosmic acceleration.

There are some very speculative ideas about the future of the universe. One suggests that phantom energy causes divergent expansion, which would imply that the effective force of dark energy continues growing until it dominates all other forces in the universe. Under this scenario, dark energy would ultimately tear apart all gravitationally bound structures, including galaxies and solar systems, and eventually overcome the electrical and nuclear forces to tear apart atoms themselves, ending the universe in a "Big Rip". On the other hand, dark energy might dissipate with time or even become attractive. Such uncertainties leave open the possibility that gravity might yet rule the day and lead to a universe that contracts in on itself in a "Big Crunch". Some scenarios, such as the cyclic model, suggest this could be the case. It is also possible the universe may never have an end and continue in its present state forever (see The Second Law as a law of disorder). While these ideas are not supported by observations, they are not ruled out.

History of discovery and previous speculation

The cosmological constant was first proposed by Einstein as a mechanism to obtain a solution of the gravitational field equation that would lead to a static universe, effectively using dark energy to balance gravity.[49] Not only was the mechanism an inelegant example of fine-tuning but it was also later realized that Einstein's static universe would actually be unstable because local inhomogeneities would ultimately lead to either the runaway expansion or contraction of the universe. The equilibrium is unstable: If the universe expands slightly, then the expansion releases vacuum energy, which causes yet more expansion. Likewise, a universe which contracts slightly will continue contracting. These sorts of disturbances are inevitable, due to the uneven distribution of matter throughout the universe. More importantly, observations made by Edwin Hubble in 1929 showed that the universe appears to be expanding and not static at all. Einstein reportedly referred to his failure to predict the idea of a dynamic universe, in contrast to a static universe, as his greatest blunder.[50]

Alan Guth and Alexei Starobinsky proposed in 1980 that a negative pressure field, similar in concept to dark energy, could drive cosmic inflation in the very early universe. Inflation postulates that some repulsive force, qualitatively similar to dark energy, resulted in an enormous and exponential expansion of the universe slightly after the Big Bang. Such expansion is an essential feature of most current models of the Big Bang. However, inflation must have occurred at a much higher energy density than the dark energy we observe today and is thought to have completely ended when the universe was just a fraction of a second old. It is unclear what relation, if any, exists between dark energy and inflation. Even after inflationary models became accepted, the cosmological constant was thought to be irrelevant to the current universe.

Nearly all inflation models predict that the total (matter+energy) density of the universe should be very close to the critical density. During the 1980s, most cosmological research focused on models with critical density in matter only, usually 95% cold dark matter and 5% ordinary matter (baryons). These models were found to be successful at forming realistic galaxies and clusters, but some problems appeared in the late 1980s: notably, the model required a value for the Hubble constant lower than preferred by observations, and the model under-predicted observations of large-scale galaxy clustering. These difficulties became stronger after the discovery of anisotropy in the cosmic microwave background by the COBE spacecraft in 1992, and several modified CDM models came under active study through the mid-1990s: these included the Lambda-CDM model and a mixed cold/hot dark matter model. The first direct evidence for dark energy came from supernova observations in 1998 of accelerated expansion in Riess et al.[10] and in Perlmutter et al.,[11] and the Lambda-CDM model then became the leading model. Soon after, dark energy was supported by independent observations: in 2000, the BOOMERanG and Maxima cosmic microwave background experiments observed the first acoustic peak in the CMB, showing that the total (matter+energy) density is close to 100% of critical density. Then in 2001, the 2dF Galaxy Redshift Survey gave strong evidence that the matter density is around 30% of critical. The large difference between these two supports a smooth component of dark energy making up the difference. Much more precise measurements from WMAP in 2003-2010 have continued to support the standard model and give more accurate measurements of the key parameters.

The term "dark energy", echoing Fritz Zwicky's "dark matter" from the 1930s, was coined by Michael Turner in 1998.[51]

As of 2013, the Lambda-CDM model is consistent with a series of increasingly rigorous cosmological observations, including the Planck spacecraft and the Supernova Legacy Survey. First results from the SNLS reveal that the average behavior (i.e., equation of state) of dark energy behaves like Einstein's cosmological constant to a precision of 10%.[52] Recent results from the Hubble Space Telescope Higher-Z Team indicate that dark energy has been present for at least 9 billion years and during the period preceding cosmic acceleration.

Cryogenics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cryogenics...