Search This Blog

Monday, August 26, 2024

Neuroscience of sleep

 

From Wikipedia, the free encyclopedia
Sleeping Princess: An early 20th-century painting by Victor Vasnetsov

The neuroscience of sleep is the study of the neuroscientific and physiological basis of the nature of sleep and its functions. Traditionally, sleep has been studied as part of psychology and medicine. The study of sleep from a neuroscience perspective grew to prominence with advances in technology and the proliferation of neuroscience research from the second half of the twentieth century.

The importance of sleep is demonstrated by the fact that organisms daily spend hours of their time in sleep, and that sleep deprivation can have disastrous effects ultimately leading to death in animals. For a phenomenon so important, the purposes and mechanisms of sleep are only partially understood, so much so that as recently as the late 1990s it was quipped: "The only known function of sleep is to cure sleepiness". However, the development of improved imaging techniques like EEG, PET and fMRI, along with high computational power have led to an increasingly greater understanding of the mechanisms underlying sleep.

The fundamental questions in the neuroscientific study of sleep are:

  1. What are the correlates of sleep i.e. what are the minimal set of events that could confirm that the organism is sleeping?
  2. How is sleep triggered and regulated by the brain and the nervous system?
  3. What happens in the brain during sleep?
  4. How can we understand sleep function based on physiological changes in the brain?
  5. What causes various sleep disorders and how can they be treated?

Other areas of modern neuroscience sleep research include the evolution of sleep, sleep during development and aging, animal sleep, mechanism of effects of drugs on sleep, dreams and nightmares, and stages of arousal between sleep and wakefulness.

Introduction

Rapid eye movement sleep (REM), non-rapid eye movement sleep (NREM or non-REM), and waking represent the three major modes of consciousness, neural activity, and physiological regulation. NREM sleep itself is divided into multiple stages – N1, N2 and N3. Sleep proceeds in 90-minute cycles of REM and NREM, the order normally being N1 → N2 → N3 → N2 → REM. As humans fall asleep, body activity slows down. Body temperature, heart rate, breathing rate, and energy use all decrease. Brain waves slow down. The excitatory neurotransmitter acetylcholine becomes less available in the brain. Humans often maneuver to create a thermally friendly environment—for example, by curling up into a ball if cold. Reflexes remain fairly active.

REM sleep is considered closer to wakefulness and is characterized by rapid eye movement and muscle atonia. NREM is considered to be deep sleep (the deepest part of NREM is called slow wave sleep), and is characterized by lack of prominent eye movement, or muscle paralysis. Especially during non-REM sleep, the brain uses significantly less energy during sleep than it does in waking. In areas with reduced activity, the brain restores its supply of adenosine triphosphate (ATP), the molecule used for short-term storage and transport of energy. (Since in quiet waking the brain is responsible for 20% of the body's energy use, this reduction has an independently noticeable impact on overall energy consumption.) During slow-wave sleep, humans secrete bursts of growth hormone. All sleep, even during the day, is associated with the secretion of prolactin.

According to the Hobson & McCarley activation-synthesis hypothesis, proposed in 1975–1977, the alternation between REM and non-REM can be explained in terms of cycling, reciprocally influential neurotransmitter systems. Sleep timing is controlled by the circadian clock, and in humans, to some extent by willed behavior. The term circadian comes from the Latin circa, meaning "around" (or "approximately"), and diem or dies, meaning "day". The circadian clock refers to a biological mechanism that governs multiple biological processes causing them to display an endogenous, entrainable oscillation of about 24 hours. These rhythms have been widely observed in plants, animals, fungi and cyanobacteria.

Correlates of sleep

One of the important questions in sleep research is clearly defining the sleep state. This problem arises because sleep was traditionally defined as a state of consciousness and not as a physiological state, thus there was no clear definition of what minimum set of events constitute sleep and distinguish it from other states of partial or no consciousness. The problem of making such a definition is complicated because it needs to include a variety of modes of sleep found across different species.

At a symptomatic level, sleep is characterized by lack of reactivity to sensory inputs, low motor output, diminished conscious awareness and rapid reversibility to wakefulness. However, to translate these into a biological definition is difficult because no single pathway in the brain is responsible for the generation and regulation of sleep. One of the earliest proposals was to define sleep as the deactivation of the cerebral cortex and the thalamus because of near lack of response to sensory inputs during sleep. However, this was invalidated because both regions are active in some phases of sleep. In fact, it appears that the thalamus is only deactivated in the sense of transmitting sensory information to the cortex.

Some of the other observations about sleep included decrease of sympathetic activity and increase of parasympathetic activity in non-REM sleep, and increase of heart rate and blood pressure accompanied by decrease in homeostatic response and muscle tone during REM sleep. However, these symptoms are not limited to sleep situations and do not map to specific physiological definitions.

More recently, the problem of definition has been addressed by observing overall brain activity in the form of characteristic EEG patterns. Each stage of sleep and wakefulness has a characteristic pattern of EEG which can be used to identify the stage of sleep. Waking is usually characterized by beta (12–30 Hz) and gamma (25–100 Hz) depending on whether there was a peaceful or stressful activity. The onset of sleep involves slowing down of this frequency to the drowsiness of alpha (8–12 Hz) and finally to theta (4–10 Hz) of Stage 1 NREM sleep. This frequency further decreases progressively through the higher stages of NREM and REM sleep. On the other hand, the amplitude of sleep waves is lowest during wakefulness (10–30μV) and shows a progressive increase through the various stages of sleep. Stage 2 is characterized by sleep spindles (intermittent clusters of waves at sigma frequency i.e. 12–14 Hz) and K complexes (sharp upward deflection followed by slower downward deflection). Stage 3 sleep has more sleep spindles. Stage 3 has very high amplitude delta waves (0–4 Hz) and is known as slow wave sleep. REM sleep is characterized by low amplitude, mixed frequency waves. A sawtooth wave pattern is often present.

Ontogeny and phylogeny of sleep

Animal Sleep: Sleeping white tiger

The questions of how sleep evolved in the animal kingdom and how it developed in humans are especially important because they might provide a clue to the functions and mechanisms of sleep respectively.

Sleep evolution

The evolution of different types of sleep patterns is influenced by a number of selective pressures, including body size, relative metabolic rate, predation, type and location of food sources, and immune function. Sleep (especially deep SWS and REM) is tricky behavior because it steeply increases predation risk. This means that, for sleep to have evolved, the functions of sleep should have provided a substantial advantage over the risk it entails. In fact, studying sleep in different organisms shows how they have balanced this risk by evolving partial sleep mechanisms or by having protective habitats. Thus, studying the evolution of sleep might give a clue not only to the developmental aspects and mechanisms, but also to an adaptive justification for sleep.

One challenge studying sleep evolution is that adequate sleep information is known only for two phyla of animals- chordata and arthropoda. With the available data, comparative studies have been used to determine how sleep might have evolved. One question that scientists try to answer through these studies is whether sleep evolved only once or multiple times. To understand this, they look at sleep patterns in different classes of animals whose evolutionary histories are fairly well-known and study their similarities and differences.

Humans possess both slow wave and REM sleep, in both phases both eyes are closed and both hemispheres of the brain involved. Sleep has also been recorded in mammals other than humans. One study showed that echidnas possess only slow wave sleep (non-REM). This seems to indicate that REM sleep appeared in evolution only after therians. But this has later been contested by studies that claim that sleep in echidna combines both modes into a single sleeping state. Other studies have shown a peculiar form of sleep in odontocetes (like dolphins and porpoises). This is called the unihemispherical slow wave sleep (USWS). At any time during this sleep mode, the EEG of one brain hemisphere indicates sleep while that of the other is equivalent to wakefulness. In some cases, the corresponding eye is open. This might allow the animal to reduce predator risk and sleep while swimming in water, though the animal may also be capable of sleeping at rest.

The correlates of sleep found for mammals are valid for birds as well i.e. bird sleep is very similar to mammals and involves both SWS and REM sleep with similar features, including closure of both eyes, lowered muscle tone, etc. However, the proportion of REM sleep in birds is much lower. Also, some birds can sleep with one eye open if there is high predation risk in the environment. This gives rise to the possibility of sleep in flight; considering that sleep is very important and some bird species can fly for weeks continuously, this seems to be the obvious result. However, sleep in flight has not been recorded, and is so far unsupported by EEG data. Further research may explain whether birds sleep during flight or if there are other mechanisms which ensure their remaining healthy during long flights in the absence of sleep.

Unlike in birds, very few consistent features of sleep have been found among reptile species. The only common observation is that reptiles do not have REM sleep.

Sleep in some invertebrates has also been extensively studied, e.g., sleep in fruitflies (Drosophila) and honeybees. Some of the mechanisms of sleep in these animals have been discovered while others remain quite obscure. The features defining sleep have been identified for the most part, and like mammals, this includes reduced reaction to sensory input, lack of motor response in the form of antennal immobility, etc.

The fact that both the forms of sleep are found in mammals and birds, but not in reptiles (which are considered to be an intermediate stage) indicates that sleep might have evolved separately in both. Substantiating this might be followed by further research on whether the EEG correlates of sleep are involved in its functions or if they are merely a feature. This might further help in understanding the role of sleep in long term plasticity.

According to Tsoukalas (2012), REM sleep is an evolutionary transformation of a well-known defensive mechanism, the tonic immobility reflex. This reflex, also known as animal hypnosis or death feigning, functions as the last line of defense against an attacking predator and consists of the total immobilization of the animal: the animal appears dead (cf. "playing possum"). The neurophysiology and phenomenology of this reaction show striking similarities to REM sleep, a fact which betrays a deep evolutionary kinship. For example, both reactions exhibit brainstem control, paralysis, sympathetic activation, and thermoregulatory changes. This theory integrates many earlier findings into a unified, and evolutionary well informed, framework.

Sleep development and aging

The ontogeny of sleep is the study of sleep across different age groups of a species, particularly during development and aging. Among mammals, infants sleep the longest. Human babies have 8 hours of REM sleep and 8 hours of NREM sleep on an average. The percentage of time spent on each mode of sleep varies greatly in the first few weeks of development and some studies have correlated this to the degree of precociality of the child. Within a few months of postnatal development, there is a marked reduction in percentage of hours spent in REM sleep. By the time the child becomes an adult, he spends about 6–7 hours in NREM sleep and only about an hour in REM sleep. This is true not only of humans, but of many animals dependent on their parents for food. The observation that the percentage of REM sleep is very high in the first stages of development has led to the hypothesis that REM sleep might facilitate early brain development. However, this theory has been contested by other studies.

Sleep behavior undergoes substantial changes during adolescence. Some of these changes may be societal in humans, but other changes are hormonal. Another important change is the decrease in the number of hours of sleep, as compared to childhood, which gradually becomes identical to an adult. It is also being speculated that homeostatic regulation mechanisms may be altered during adolescence. Apart from this, the effect of changing routines of adolescents on other behavior such as cognition and attention is yet to be studied. Ohayon et al., for example, have stated that the decline in total sleep time from childhood to adolescence seems to be more associated with environmental factors rather than biological feature.

In adulthood, the sleep architecture has been showing that the sleep latency and the time spent in NREM stages 1 and 2 may increase with aging, while the time spent in REM and SWS sleep seem to decrease. These changes have been frequently associated with brain atrophy, cognitive impairment and neurodegenerative disorders in old age. For instance, Backhaus et al. have pointed out that a decline in declarative memory consolidation in midlife (in their experiment: 48 to 55 years old) is due to a lower amount of SWS, which might already start to decrease around age of 30 years old. According to Mander et al., atrophy in the medial prefrontal cortex (mPFC) gray matter is a predictor of disruption in slow activity during NREM sleep that may impair memory consolidation in older adults. And sleep disturbances, such as excessive daytime sleepiness and nighttime insomnia, have been often referred as factor risk of progressive functional impairment in Alzheimer's disease (AD) or Parkinson's disease (PD).

Therefore, sleep in aging is another equally important area of research. A common observation is that many older adults spend time awake in bed after sleep onset in an inability to fall asleep and experience marked decrease in sleep efficiency. There may also be some changes in circadian rhythms. Studies are ongoing about what causes these changes and how they may be reduced to ensure comfortable sleep of old adults.

Brain activity during sleep

Slow Wave Sleep
 
REM Sleep
EEG waveforms of brain activity during sleep
Hypnogram showing sleep cycles from midnight to morning.
Hypnogram showing sleep architecture from midnight to 6:30 am, with deep sleep early on. There is more REM (marked red) before waking. (Current hypnograms reflect the recent decision to combine NREM stages 3 and 4 into a single stage 3.)

Understanding the activity of different parts of the brain during sleep can give a clue to the functions of sleep. It has been observed that mental activity is present during all stages of sleep, though from different regions in the brain. So, contrary to popular understanding, the brain never completely shuts down during sleep. Also, sleep intensity of a particular region is homeostatically related to the corresponding amount of activity before sleeping. The use of imaging modalities like PET, fMRI and MEG, combined with EEG recordings, gives a clue to which brain regions participate in creating the characteristic wave signals and what their functions might be.

Historical development of the stages model

The stages of sleep were first described in 1937 by Alfred Lee Loomis and his coworkers, who separated the different electroencephalography (EEG) features of sleep into five levels (A to E), representing the spectrum from wakefulness to deep sleep. In 1953, REM sleep was discovered as distinct, and thus William C. Dement and Nathaniel Kleitman reclassified sleep into four NREM stages and REM. The staging criteria were standardized in 1968 by Allan Rechtschaffen and Anthony Kales in the "R&K sleep scoring manual."

In the R&K standard, NREM sleep was divided into four stages, with slow-wave sleep comprising stages 3 and 4. In stage 3, delta waves made up less than 50% of the total wave patterns, while they made up more than 50% in stage 4. Furthermore, REM sleep was sometimes referred to as stage 5. In 2004, the AASM commissioned the AASM Visual Scoring Task Force to review the R&K scoring system. The review resulted in several changes, the most significant being the combination of stages 3 and 4 into Stage N3. The revised scoring was published in 2007 as The AASM Manual for the Scoring of Sleep and Associated Events. Arousals, respiratory, cardiac, and movement events were also added.

NREM sleep activity

NREM sleep is characterized by decreased global and regional cerebral blood flow. It constitutes ~80% of all sleep in adult humans.[68] Initially, it was expected that the brainstem, which was implicated in arousal would be inactive, but this was later on found to have been due to low resolution of PET studies and it was shown that there is some slow wave activity in the brainstem as well. However, other parts of the brain, including the precuneus, basal forebrain and basal ganglia are deactivated during sleep. Many areas of the cortex are also inactive, but to different levels. For example, the ventromedial prefrontal cortex is considered the least active area while the primary cortex, the least deactivated.

NREM sleep is characterized by slow oscillations, spindles and delta waves. The slow oscillations have been shown to be from the cortex, as lesions in other parts of the brain do not affect them, but lesions in the cortex do. The delta waves have been shown to be generated by recurrent connections within the cerebral cortex. During slow wave sleep, the cortex generates brief periods of activity and inactivity at 0.5–4 Hz, resulting in the generation of the delta waves of slow wave sleep. During this period, the thalamus stops relaying sensory information to the brain, however it continues to produce signals, such as spindle waves, that are sent to its cortical projections. Sleep spindles of slow wave sleep are generated as an interaction of the thalamic reticular nucleus with thalamic relay neurons. The sleep spindles have been predicted to play a role in disconnecting the cortex from sensory input and allowing entry of calcium ions into cells, thus potentially playing a role in plasticity.

NREM 1

NREM Stage 1 (N1 – light sleep, somnolence, drowsy sleep – 5–10% of total sleep in adults): This is a stage of sleep that usually occurs between sleep and wakefulness, and sometimes occurs between periods of deeper sleep and periods of REM. The muscles are active, and the eyes roll slowly, opening and closing moderately. The brain transitions from alpha waves having a frequency of 8–13 Hz (common in the awake state) to theta waves having a frequency of 4–7 Hz. Sudden twitches and hypnic jerks, also known as positive myoclonus, may be associated with the onset of sleep during N1. Some people may also experience hypnagogic hallucinations during this stage. During Non-REM1, humans lose some muscle tone and most conscious awareness of the external environment.

NREM 2

NREM Stage 2 (N2 – 45–55% of total sleep in adults): In this stage, theta activity is observed and sleepers become gradually harder to awaken; the alpha waves of the previous stage are interrupted by abrupt activity called sleep spindles (or thalamocortical spindles) and K-complexes. Sleep spindles range from 11 to 16 Hz (most commonly 12–14 Hz). During this stage, muscular activity as measured by EMG decreases, and conscious awareness of the external environment disappears.

NREM 3

30 seconds of N3 – deep sleep.

NREM Stage 3 (N3 – 15–25% of total sleep in adults): Formerly divided into stages 3 and 4, this stage is called slow-wave sleep (SWS) or deep sleep. SWS is initiated in the preoptic area and consists of delta activity, high amplitude waves at less than 3.5 Hz. The sleeper is less responsive to the environment; many environmental stimuli no longer produce any reactions. Slow-wave sleep is thought to be the most restful form of sleep, the phase which most relieves subjective feelings of sleepiness and restores the body.

This stage is characterized by the presence of a minimum of 20% delta waves ranging from 0.5–2 Hz and having a peak-to-peak amplitude >75 μV. (EEG standards define delta waves to be from 0 to 4 Hz, but sleep standards in both the original R&K model (Allan Rechtschaffen and Anthony Kales in the "R&K sleep scoring manual."), as well as the new 2007 AASM guidelines have a range of 0.5–2 Hz.) This is the stage in which parasomnias such as night terrors, nocturnal enuresis, sleepwalking, and somniloquy occur. Many illustrations and descriptions still show a stage N3 with 20–50% delta waves and a stage N4 with greater than 50% delta waves; these have been combined as stage N3.

REM sleep activity

30 seconds of REM sleep. Eye movements highlighted by red box.

REM Stage (REM Sleep – 20–25% of total sleep in adults): REM sleep is where most muscles are paralyzed, and heart rate, breathing and body temperature become unregulated. REM sleep is turned on by acetylcholine secretion and is inhibited by neurons that secrete monoamines including serotonin. REM is also referred to as paradoxical sleep because the sleeper, although exhibiting high-frequency EEG waves similar to a waking state, is harder to arouse than at any other sleep stage. Vital signs indicate arousal and oxygen consumption by the brain is higher than when the sleeper is awake. REM sleep is characterized by high global cerebral blood flow, comparable to wakefulness. In fact, many areas in the cortex have been recorded to have more blood flow during REM sleep than even wakefulness- this includes the hippocampus, temporal-occipital areas, some parts of the cortex, and basal forebrain. The limbic and paralimbic system including the amygdala are other active regions during REM sleep. Though the brain activity during REM sleep appears very similar to wakefulness, the main difference between REM and wakefulness is that, arousal in REM is more effectively inhibited. This, along with the virtual silence of monoaminergic neurons in the brain, may be said to characterize REM.

A newborn baby spends 8 to 9 hours a day just in REM sleep. By the age of five or so, only slightly over two hours is spent in REM. The function of REM sleep is uncertain but a lack of it impairs the ability to learn complex tasks. Functional paralysis from muscular atonia in REM may be necessary to protect organisms from self-damage through physically acting out scenes from the often-vivid dreams that occur during this stage.

In EEG recordings, REM sleep is characterized by high frequency, low amplitude activity and spontaneous occurrence of beta and gamma waves. The best candidates for generation of these fast frequency waves are fast rhythmic bursting neurons in corticothalamic circuits. Unlike in slow wave sleep, the fast frequency rhythms are synchronized over restricted areas in specific local circuits between thalamocortical and neocortical areas. These are said to be generated by cholinergic processes from brainstem structures.

Apart from this, the amygdala plays a role in REM sleep modulation, supporting the hypothesis that REM sleep allows internal information processing. The high amygdalar activity may also cause the emotional responses during dreams. Similarly, the bizarreness of dreams may be due to the decreased activity of prefrontal regions, which are involved in integrating information as well as episodic memory.

Ponto-geniculo-occipital waves

REM sleep is also related to the firing of ponto-geniculo-occipital waves (also called phasic activity or PGO waves) and activity in the cholinergic ascending arousal system. PGO waves have been recorded in the lateral geniculate nucleus and occipital cortex during the pre-REM period and are thought to represent dream content. The greater signal-to-noise ratio in the LG cortical channel suggests that visual imagery in dreams may appear before full development of REM sleep, but this has not yet been confirmed. PGO waves may also play a role in development and structural maturation of brain, as well as long term potentiation in immature animals, based on the fact that there is high PGO activity during sleep in the developmental brain.

Network reactivation

The other form of activity during sleep is reactivation. Some electrophysiological studies have shown that neuronal activity patterns found during a learning task before sleep are reactivated in the brain during sleep. This, along with the coincidence of active areas with areas responsible for memory have led to the theory that sleep might have some memory consolidation functions. In this relation, some studies have shown that after a sequential motor task, the pre-motor and visual cortex areas involved are most active during REM sleep, but not during NREM. Similarly, the hippocampal areas involved in spatial learning tasks are reactivated in NREM sleep, but not in REM. Such studies suggest a role of sleep in consolidation of specific memory types. It is, however, still unclear whether other types of memory are also consolidated by these mechanisms.

Hippocampal neocortical dialog

The hippocampal neocortical dialog refers to the very structured interactions during SWS between groups of neurons called ensembles in the hippocampus and neocortex. Sharp wave patterns (SPW) dominate the hippocampus during SWS and neuron populations in the hippocampus participate in organized bursts during this phase. This is done in synchrony with state changes in the cortex (DOWN/UP state) and coordinated by the slow oscillations in cortex. These observations, coupled with the knowledge that the hippocampus plays a role in short to medium term memory whereas the cortex plays a role in long-term memory, have led to the hypothesis that the hippocampal neocortical dialog might be a mechanism through which the hippocampus transfers information to the cortex. Thus, the hippocampal neocortical dialog is said to play a role in memory consolidation.

Sleep regulation

Sleep regulation refers to the control of when an organism transitions between sleep and wakefulness. The key questions here are to identify which parts of the brain are involved in sleep onset and what their mechanisms of action are. In humans and most animals sleep and wakefulness seems to follow an electronic flip-flop model i.e. both states are stable, but the intermediate states are not. Of course, unlike in the flip-flop, in the case of sleep, there seems to be a timer ticking away from the minute of waking so that after a certain period one must sleep, and in such a case even waking becomes an unstable state. The reverse may also be true to a lesser extent.

Sleep onset

Sleep onset can be negatively influenced from lesions in the preoptic area and anterior hypothalamus leading to insomnia while lesions in the posterior hypothalamus lead to sleepiness. This was further narrowed down to show that the central midbrain tegmentum is the region that plays a role in cortical activation. Thus, sleep onset seems to arise from activation of the anterior hypothalamus along with inhibition of the posterior regions and the central midbrain tegmentum. Further research has shown that the hypothalamic region called ventrolateral preoptic nucleus produces the inhibitory neurotransmitter GABA that inhibits the arousal system during sleep onset.

Models of sleep regulation

Sleep is regulated by two parallel mechanisms, homeostatic regulation and circadian regulation, controlled by the hypothalamus and the suprachiasmatic nucleus (SCN), respectively. Although the exact nature of sleep drive is unknown, homeostatic pressure builds up during wakefulness and this continues until the person goes to sleep. Adenosine is thought to play a critical role in this and many people have proposed that the pressure build-up is partially due to adenosine accumulation. However, some researchers have shown that accumulation alone does not explain this phenomenon completely. The circadian rhythm is a 24-hour cycle in the body, which has been shown to continue even in the absence of environmental cues. This is caused by projections from the SCN to the brain stem.

This two process model was first proposed in 1982 by Borbely, who called them Process S (homeostatic) and Process C (Circadian) respectively. He showed how the slow wave density increases through the night and then drops off at the beginning of the day while the circadian rhythm is like a sinusoid. He proposed that the pressure to sleep was the maximum when the difference between the two was highest.

In 1993, a different model called the opponent process model was proposed. This model explained that these two processes opposed each other to produce sleep, as against Borbely's model. According to this model, the SCN, which is involved in the circadian rhythm, enhances wakefulness and opposes the homeostatic rhythm. In opposition is the homeostatic rhythm, regulated via a complex multisynaptic pathway in the hypothalamus that acts like a switch and shuts off the arousal system. Both effects together produce a see-saw like effect of sleep and wakefulness. More recently, it has been proposed that both models have some validity to them, while new theories hold that inhibition of NREM sleep by REM could also play a role. In any case, the two process mechanism adds flexibility to the simple circadian rhythm and could have evolved as an adaptive measure.

Thalamic regulation

Much of the brain activity in sleep has been attributed to the thalamus and it appears that the thalamus may play a critical role in SWS. The two primary oscillations in slow wave sleep, delta and the slow oscillation, can be generated by both the thalamus and the cortex. However, sleep spindles can only be generated by the thalamus, making its role very important. The thalamic pacemaker hypothesis holds that these oscillations are generated by the thalamus but the synchronization of several groups of thalamic neurons firing simultaneously depends on the thalamic interaction with the cortex. The thalamus also plays a critical role in sleep onset when it changes from tonic to phasic mode, thus acting like a mirror for both central and decentral elements and linking distant parts of the cortex to co-ordinate their activity.

Ascending reticular activating system

The ascending reticular activating system consists of a set of neural subsystems that project from various thalamic nuclei and a number of dopaminergic, noradrenergic, serotonergic, histaminergic, cholinergic, and glutamatergic brain nuclei. When awake, it receives all kinds of non-specific sensory information and relays them to the cortex. It also modulates fight or flight responses and is hence linked to the motor system. During sleep onset, it acts via two pathways: a cholinergic pathway that projects to the cortex via the thalamus and a set of monoaminergic pathways that projects to the cortex via the hypothalamus. During NREM sleep this system is inhibited by GABAergic neurons in the ventrolateral preoptic area and parafacial zone, as well as other sleep-promoting neurons in distinct brain regions.

Sleep function

Sleep deprivation studies show that sleep is particularly important to normal brain function. Sleep is needed to remove reactive oxygen species caused by oxidative stress (and generally autophagy) and to repair DNA. REM sleep also decrease concentration of noradrenaline, which when in excess amount causes the cell to undergo apoptosis.

It is likely that sleep evolved to fulfill some primeval function and took on multiple functions over time (analogous to the larynx, which controls the passage of food and air, but descended over time to develop speech capabilities).

The multiple hypotheses proposed to explain the function of sleep reflect the incomplete understanding of the subject. While some functions of sleep are known, others have been proposed but not completely substantiated or understood. Some of the early ideas about sleep function were based on the fact that most (if not all) external activity is stopped during sleep. Initially, it was thought that sleep was simply a mechanism for the body to "take a break" and reduce wear. Later observations of the low metabolic rates in the brain during sleep seemed to indicate some metabolic functions of sleep. This theory is not fully adequate as sleep only decreases metabolism by about 5–10%. With the development of EEG, it was found that the brain has almost continuous internal activity during sleep, leading to the idea that the function could be that of reorganization or specification of neuronal circuits or strengthening of connections. These hypotheses are still being explored. Other proposed functions of sleep include- maintaining hormonal balance, temperature regulation and maintaining heart rate.

According to a recent sleep disruption and insomnia review study, there are short-term and long-term negative consequences on healthy individuals. The short term consequences include increased stress responsivity and psychosocial issues such as impaired cognitive or academic performance and depression. Experiments indicated that, in healthy children and adults, episodes of fragmented sleep or insomnia increased sympathetic activation, which can disrupt mood and cognition. The long term consequences include metabolic issues such as glucose homeostasis disruption and even tumor formation and increased risks of cancer.

Preservation

The "Preservation and Protection" theory holds that sleep serves an adaptive function. It protects the animal during that portion of the 24-hour day in which being awake, and hence roaming around, would place the individual at greatest risk. Organisms do not require 24 hours to feed themselves and meet other necessities. From this perspective of adaptation, organisms are safer by staying out of harm's way, where potentially they could be prey to other, stronger organisms. They sleep at times that maximize their safety, given their physical capacities and their habitats.

This theory fails to explain why the brain disengages from the external environment during normal sleep. However, the brain consumes a large proportion of the body's energy at any one time and preservation of energy could only occur by limiting its sensory inputs. Another argument against the theory is that sleep is not simply a passive consequence of removing the animal from the environment, but is a "drive"; animals alter their behaviors in order to obtain sleep.

Therefore, circadian regulation is more than sufficient to explain periods of activity and quiescence that are adaptive to an organism, but the more peculiar specializations of sleep probably serve different and unknown functions. Moreover, the preservation theory needs to explain why carnivores like lions, which are on top of the food chain and thus have little to fear, sleep the most. It has been suggested that they need to minimize energy expenditure when not hunting.

Waste clearance from the brain

During sleep, metabolic waste products, such as immunoglobulins, protein fragments or intact proteins like beta-amyloid, may be cleared from the interstitium via a glymphatic system of lymph-like channels coursing along perivascular spaces and the astrocyte network of the brain. According to this model, hollow tubes between the blood vessels and astrocytes act like a spillway allowing drainage of cerebrospinal fluid carrying wastes out of the brain into systemic blood. Such mechanisms, which remain under preliminary research as of 2017, indicate potential ways in which sleep is a regulated maintenance period for brain immune functions and clearance of beta-amyloid, a risk factor for Alzheimer's disease.

Restoration

Wound healing has been shown to be affected by sleep.

It has been shown that sleep deprivation affects the immune system. It is now possible to state that "sleep loss impairs immune function and immune challenge alters sleep," and it has been suggested that sleep increases white blood cell counts. A 2014 study found that depriving mice of sleep increased cancer growth and dampened the immune system's ability to control cancers.

The effect of sleep duration on somatic growth is not completely known. One study recorded growth, height, and weight, as correlated to parent-reported time in bed in 305 children over a period of nine years (age 1–10). It was found that "the variation of sleep duration among children does not seem to have an effect on growth." It is well established that slow-wave sleep affects growth hormone levels in adult men. During eight hours' sleep, Van Cauter, Leproult, and Plat found that the men with a high percentage of SWS (average 24%) also had high growth hormone secretion, while subjects with a low percentage of SWS (average 9%) had low growth hormone secretion.

There is some supporting evidence of the restorative function of sleep. The sleeping brain has been shown to remove metabolic waste products at a faster rate than during an awake state. While awake, metabolism generates reactive oxygen species, which are damaging to cells. In sleep, metabolic rates decrease and reactive oxygen species generation is reduced allowing restorative processes to take over. It is theorized that sleep helps facilitate the synthesis of molecules that help repair and protect the brain from these harmful elements generated during waking. The metabolic phase during sleep is anabolic; anabolic hormones such as growth hormones (as mentioned above) are secreted preferentially during sleep.

Energy conservation could as well have been accomplished by resting quiescent without shutting off the organism from the environment, potentially a dangerous situation. A sedentary nonsleeping animal is more likely to survive predators, while still preserving energy. Sleep, therefore, seems to serve another purpose, or other purposes, than simply conserving energy. Another potential purpose for sleep could be to restore signal strength in synapses that are activated while awake to a "baseline" level, weakening unnecessary connections that to better facilitate learning and memory functions again the next day; this means the brain is forgetting some of the things we learn each day.

Entropy reduction

This theory is related to the restorative role of sleep but distinct enough since it deals with a very specific quantify: entropy. In a very simplified way, wakefulness can be associated with increased disorder in the nervous system and this disorder can threaten the high order that is needed for proper function of the nervous system. Entropy is related to order and disorder, but it is not necessarily the same. Cortical activity gets progressively disrupted during wakefulness and sleep restores the levels of cortical activity close to criticality. Signal noise affects many aspect of the central nervous system. Understanding the relationship between wakefulness and entropy can be approached from the field of statistical mechanics. At a substratum level, interactions with the environment increase the number of possible micro states of the nervous system and this leads to an increase in entropy.

The reduction in entropy can also be approached from the perspective of classic and non-equilibrium thermodynamics. The central nervous system uses a disproportionate amount of the available energy supply. Most of the energy usage of the nervous system is devoted to electric neuronal activity and synaptic processes. Energy is used in large amounts by the Na+/K + -ATPase pump to move sodium and potassium in the generation of action potentials; this process is highly efficient but entropy is still generated.

Endocrine function

The secretion of many hormones is affected by sleep-wake cycles. For example, melatonin, a hormonal timekeeper, is considered a strongly circadian hormone, whose secretion increases at dim light and peaks during nocturnal sleep, diminishing with bright light to the eyes. In some organisms melatonin secretion depends on sleep, but in humans it is independent of sleep and depends only on light level. Of course, in humans as well as other animals, such a hormone may facilitate coordination of sleep onset. Similarly, cortisol and thyroid stimulating hormone (TSH) are strongly circadian and diurnal hormones, mostly independent of sleep. In contrast, other hormones like growth hormone (GH) & prolactin are critically sleep-dependent, and are suppressed in the absence of sleep. GH has maximum increase during SWS while prolactin is secreted early after sleep onset and rises through the night. In some hormones whose secretion is controlled by light level, sleep seems to increase secretion. Almost in all cases, sleep deprivation has detrimental effects. For example, cortisol, which is essential for metabolism (it is so important that animals can die within a week of its deficiency) and affects the ability to withstand noxious stimuli, is increased by waking and during REM sleep. Similarly, TSH increases during nocturnal sleep and decreases with prolonged periods of reduced sleep, but increases during total acute sleep deprivation.

Because hormones play a major role in energy balance and metabolism, and sleep plays a critical role in the timing and amplitude of their secretion, sleep has a sizable effect on metabolism. This could explain some of the early theories of sleep function that predicted that sleep has a metabolic regulation role.

Memory processing

According to Plihal & Born, sleep generally increases recalling of previous learning and experiences, and its benefit depends on the phase of sleep and the type of memory. For example, studies based on declarative and procedural memory tasks applied over early and late nocturnal sleep, as well as wakefulness controlled conditions, have been shown that declarative memory improves more during early sleep (dominated by SWS) while procedural memory during late sleep (dominated by REM sleep).

Regarding to declarative memory, the functional role of SWS has been associated with hippocampal replays of previously encoded neural patterns that seem to facilitate long-term memories consolidation. This assumption is based on the active system consolidation hypothesis, which states that repeated reactivations of newly encoded information in hippocampus during slow oscillations in NREM sleep mediate the stabilization and gradually integration of declarative memory with pre-existing knowledge networks on the cortical level. It assumes the hippocampus might hold information only temporarily and in fast-learning rate, whereas the neocortex is related to long-term storage and slow-learning rate. This dialogue between hippocampus and neocortex occurs in parallel with hippocampal sharp-wave ripples and thalamo-cortical spindles, synchrony that drives the formation of spindle-ripple event which seems to be a prerequisite for the formation of long-term memories.

Reactivation of memory also occurs during wakefulness and its function is associated with serving to update the reactivated memory with new encoded information, whereas reactivations during SWS are presented as crucial for memory stabilization. Based on targeted memory reactivation (TMR) experiments that use associated memory cues to triggering memory traces during sleep, several studies have been reassuring the importance of nocturnal reactivations for the formation of persistent memories in neocortical networks, as well as highlighting the possibility of increasing people's memory performance at declarative recalls.

Furthermore, nocturnal reactivation seems to share the same neural oscillatory patterns as reactivation during wakefulness, processes which might be coordinated by theta activity. During wakefulness, theta oscillations have been often related to successful performance in memory tasks, and cued memory reactivations during sleep have been showing that theta activity is significantly stronger in subsequent recognition of cued stimuli as compared to uncued ones, possibly indicating a strengthening of memory traces and lexical integration by cuing during sleep. However, the beneficial effect of TMR for memory consolidation seems to occur only if the cued memories can be related to prior knowledge.

Other studies have been also looking at the specific effects of different stages of sleep on different types of memory. For example, it has been found that sleep deprivation does not significantly affect recognition of faces, but can produce a significant impairment of temporal memory (discriminating which face belonged to which set shown). Sleep deprivation was also found to increase beliefs of being correct, especially if they were wrong. Another study reported that the performance on free recall of a list of nouns is significantly worse when sleep deprived (an average of 2.8 ± 2 words) compared to having a normal night of sleep (4.7 ± 4 words). These results reinforce the role of sleep on declarative memory formation. This has been further confirmed by observations of low metabolic activity in the prefrontal cortex and temporal and parietal lobes for the temporal learning and verbal learning tasks respectively. Data analysis has also shown that the neural assemblies during SWS correlated significantly more with templates than during waking hours or REM sleep. Also, post-learning, post-SWS reverberations lasted 48 hours, much longer than the duration of novel object learning (1 hour), indicating long term potentiation.

Moreover, observations include the importance of napping: improved performance in some kinds of tasks after a 1-hour afternoon nap; studies of performance of shift workers, showing that an equal number of hours of sleep in the day is not the same as in the night. Current research studies look at the molecular and physiological basis of memory consolidation during sleep. These, along with studies of genes that may play a role in this phenomenon, together promise to give a more complete picture of the role of sleep in memory.

Renormalizing the synaptic strength

Sleep can also serve to weaken synaptic connections that were acquired over the course of the day but which are not essential to optimal functioning. In doing so, the resource demands can be lessened, since the upkeep and strengthening of synaptic connections constitutes a large portion of energy consumption by the brain and tax other cellular mechanisms such as protein synthesis for new channels. Without a mechanism like this taking place during sleep, the metabolic needs of the brain would increase over repeated exposure to daily synaptic strengthening, up to a point where the strains become excessive or untenable.

Behavior change with sleep deprivation

One approach to understanding the role of sleep is to study the deprivation of it. Sleep deprivation is common and sometimes even necessary in modern societies because of occupational and domestic reasons like round-the-clock service, security or media coverage, cross-time-zone projects etc. This makes understanding the effects of sleep deprivation very important.

Many studies have been done from the early 1900s to document the effect of sleep deprivation. The study of REM deprivation began with William C. Dement around 1960. He conducted a sleep and dream research project on eight subjects, all male. For a span of up to 7 days, he deprived the participants of REM sleep by waking them each time they started to enter the stage. He monitored this with small electrodes attached to their scalp and temples. As the study went on, he noticed that the more he deprived the men of REM sleep, the more often he had to wake them. Afterwards, they showed more REM sleep than usual, later named REM rebound.

The neurobehavioral basis for these has been studied only recently. Sleep deprivation has been strongly correlated with increased probability of accidents and industrial errors. Many studies have shown the slowing of metabolic activity in the brain with many hours of sleep debt. Some studies have also shown that the attention network in the brain is particularly affected by lack of sleep, and though some of the effects on attention may be masked by alternate activities (like standing or walking) or caffeine consumption, attention deficit cannot be completely avoided.

Sleep deprivation has been shown to have a detrimental effect on cognitive tasks, especially involving divergent functions or multitasking. It also has effects on mood and emotion, and there have been multiple reports of increased tendency for rage, fear or depression with sleep debt. However, some of the higher cognitive functions seem to remain unaffected albeit slower. Many of these effects vary from person to person i.e. while some individuals have high degrees of cognitive impairment with lack of sleep, in others, it has minimal effects. The exact mechanisms for the above are still unknown and the exact neural pathways and cellular mechanisms of sleep debt are still being researched.

Sleep disorders

A sleep disorder, or somnipathy, is a medical disorder of the sleep patterns of a person or animal. Polysomnography is a test commonly used for diagnosing some sleep disorders. Sleep disorders are broadly classified into dyssomnias, parasomnias, circadian rhythm sleep disorders (CRSD), and other disorders including ones caused by medical or psychological conditions and sleeping sickness. Some common sleep disorders include insomnia (chronic inability to sleep), sleep apnea (abnormally low breathing during sleep), narcolepsy (excessive sleepiness at inappropriate times), cataplexy (sudden and transient loss of muscle tone), and sleeping sickness (disruption of sleep cycle due to infection). Other disorders that are being studied include sleepwalking, sleep terror and bed wetting.

Studying sleep disorders is particularly useful as it gives some clues as to which parts of the brain may be involved in the modified function. This is done by comparing the imaging and histological patterns in normal and affected subjects. Treatment of sleep disorders typically involves behavioral and psychotherapeutic methods though other techniques may also be used. The choice of treatment methodology for a specific patient depends on the patient's diagnosis, medical and psychiatric history, and preferences, as well as the expertise of the treating clinician. Often, behavioral or psychotherapeutic and pharmacological approaches are compatible and can effectively be combined to maximize therapeutic benefits.

Frequently, sleep disorders have been also associated with neurodegenerative diseases, mainly when they are characterized by abnormal accumulation of alpha-synuclein, such as multiple system atrophy (MSA), Parkinson's disease (PD) and Lewy body disease (LBD). For instance, people diagnosed with PD have often presented different kinds of sleep concerns, commonly regard to insomnia (around 70% of the PD population), hypersomnia (more than 50% of the PD population), and REM sleep behavior disorder (RBD) - that may affect around 40% of the PD population and it is associated with increased motor symptoms. Furthermore, RBD has been also highlighted as a strong precursor of future development of those neurodegenerative diseases over several years in prior, which seems to be a great opportunity for improving treatments.

Sleep disturbances have been also observed in Alzheimer's disease (AD), affecting about 45% of its population. Moreover, when it is based on caregiver reports this percentage is even higher, about 70%. As well as in PD population, insomnia and hypersomnia are frequently recognized in AD patients, which are associated with accumulation of Beta-amyloid, circadian rhythm sleep disorders (CRSD) and melatonin alteration. Additionally, changes in sleep architecture are observed in AD too. Even though with ageing the sleep architecture seems to change naturally, in AD patients it is aggravated. SWS is potentially decreased (sometimes totally absent), spindles and the time spent in REM sleep are also reduced, while its latency is increased. The poorly sleep onset in AD has been also associated with dream-related hallucination, increased restlessness, wandering and agitation, that seem to be related with sundowning - a typical chronobiological phenomenon presented in the disease.

The neurodegenerative conditions are commonly related to brain structures impairments, which might disrupt the states of sleep and wakefulness, circadian rhythm, motor or non motor functioning. On the other hand, sleep disturbances are also frequently related to worsening patient's cognitive functioning, emotional state and quality of life. Furthermore, these abnormal behavioural symptoms negatively contribute to overwhelming their relatives and caregivers. Therefore, a deeper understanding of the relationship between sleep disorders and neurodegenerative diseases seems to be extremely important, mainly considering the limited research related to it and the increasing expectancy of life.

A related field is that of sleep medicine which involves the diagnosis and therapy of sleep disorders and sleep deprivation, which is a major cause of accidents. This involves a variety of diagnostic methods including polysomnography, sleep diary, multiple sleep latency test, etc. Similarly, treatment may be behavioral such as cognitive behavioral therapy or may include pharmacological medication or bright light therapy.

Dreaming

"The Knight's Dream", a 1655 painting by Antonio de Pereda

Dreams are successions of images, ideas, emotions, and sensations that occur involuntarily in the mind during certain stages of sleep (mainly the REM stage). The content and purpose of dreams are not yet clearly understood though various theories have been proposed. The scientific study of dreams is called oneirology.

There are many theories about the neurological basis of dreaming. This includes the activation synthesis theory—the theory that dreams result from brain stem activation during REM sleep; the continual activation theory—the theory that dreaming is a result of activation and synthesis but dreams and REM sleep are controlled by different structures in the brain; and dreams as excitations of long-term memory—a theory which claims that long-term memory excitations are prevalent during waking hours as well but are usually controlled and become apparent only during sleep.

There are multiple theories about dream function as well. Some studies claim that dreams strengthen semantic memories. This is based on the role of hippocampal neocortical dialog and general connections between sleep and memory. One study surmises that dreams erase junk data in the brain. Emotional adaptation and mood regulation are other proposed functions of dreaming.

From an evolutionary standpoint, dreams might simulate and rehearse threatening events, that were common in the organism's ancestral environment, hence increasing a person's ability to tackle everyday problems and challenges in the present. For this reason these threatening events may have been passed on in the form of genetic memories. This theory accords well with the claim that REM sleep is an evolutionary transformation of a well-known defensive mechanism, the tonic immobility reflex.

Most theories of dream function appear to be conflicting, but it is possible that many short-term dream functions could act together to achieve a bigger long-term function. It may be noted that evidence for none of these theories is entirely conclusive.

The incorporation of waking memory events into dreams is another area of active research and some researchers have tried to link it to the declarative memory consolidation functions of dreaming.

A related area of research is the neuroscience basis of nightmares. Many studies have confirmed a high prevalence of nightmares and some have correlated them with high stress levels. Multiple models of nightmare production have been proposed including neo-Freudian models as well as other models such as image contextualization model, boundary thickness model, threat simulation model etc. Neurotransmitter imbalance has been proposed as a cause of nightmares, as also affective network dysfunction- a model which claims that nightmare is a product of dysfunction of circuitry normally involved in dreaming. As with dreaming, none of the models have yielded conclusive results and studies continue about these questions.

Myocardial infarction

From Wikipedia, the free encyclopedia
 
Myocardial infarction
Other namesAcute myocardial infarction (AMI), heart attack
A myocardial infarction occurs when an atherosclerotic plaque slowly builds up in the inner lining of a coronary artery and then suddenly ruptures, causing catastrophic thrombus formation, totally occluding the artery and preventing blood flow downstream to the heart muscle.
SpecialtyCardiology, emergency medicine
SymptomsChest pain, shortness of breath, nausea/vomiting, dizziness or lightheadedness, cold sweat, feeling tired; arm, neck, back, jaw, or stomach pain, decreased level or total loss of consciousness
ComplicationsHeart failure, irregular heartbeat, cardiogenic shock, coma, cardiac arrest
CausesUsually coronary artery disease
Risk factorsHigh blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol
Diagnostic methodElectrocardiograms (ECGs), blood tests, coronary angiography
TreatmentPercutaneous coronary intervention, thrombolysis
MedicationAspirin, nitroglycerin, heparin
PrognosisSTEMI 10% risk of death (developed world)
Frequency15.9 million (2015)

A myocardial infarction (MI), commonly known as a heart attack, occurs when blood flow decreases or stops in one of the coronary arteries of the heart, causing infarction (tissue death) to the heart muscle. The most common symptom is retrosternal chest pain or discomfort that classically radiates to the left shoulder, arm, or jaw. The pain may occasionally feel like heartburn.

Other symptoms may include shortness of breath, nausea, feeling faint, a cold sweat, feeling tired, and decreased level of consciousness.[1] About 30% of people have atypical symptoms. Women more often present without chest pain and instead have neck pain, arm pain or feel tired. Among those over 75 years old, about 5% have had an MI with little or no history of symptoms. An MI may cause heart failure, an irregular heartbeat, cardiogenic shock or cardiac arrest.

Most MIs occur due to coronary artery disease. Risk factors include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, and excessive alcohol intake. The complete blockage of a coronary artery caused by a rupture of an atherosclerotic plaque is usually the underlying mechanism of an MI. MIs are less commonly caused by coronary artery spasms, which may be due to cocaine, significant emotional stress (often known as Takotsubo syndrome or broken heart syndrome) and extreme cold, among others. Many tests are helpful to help with diagnosis, including electrocardiograms (ECGs), blood tests and coronary angiography. An ECG, which is a recording of the heart's electrical activity, may confirm an ST elevation MI (STEMI), if ST elevation is present. Commonly used blood tests include troponin and less often creatine kinase MB.

Treatment of an MI is time-critical. Aspirin is an appropriate immediate treatment for a suspected MI. Nitroglycerin or opioids may be used to help with chest pain; however, they do not improve overall outcomes. Supplemental oxygen is recommended in those with low oxygen levels or shortness of breath. In a STEMI, treatments attempt to restore blood flow to the heart and include percutaneous coronary intervention (PCI), where the arteries are pushed open and may be stented, or thrombolysis, where the blockage is removed using medications. People who have a non-ST elevation myocardial infarction (NSTEMI) are often managed with the blood thinner heparin, with the additional use of PCI in those at high risk. In people with blockages of multiple coronary arteries and diabetes, coronary artery bypass surgery (CABG) may be recommended rather than angioplasty. After an MI, lifestyle modifications, along with long-term treatment with aspirin, beta blockers and statins, are typically recommended.

Worldwide, about 15.9 million myocardial infarctions occurred in 2015. More than 3 million people had an ST elevation MI, and more than 4 million had an NSTEMI. STEMIs occur about twice as often in men as women. About one million people have an MI each year in the United States. In the developed world, the risk of death in those who have had a STEMI is about 10%. Rates of MI for a given age have decreased globally between 1990 and 2010. In 2011, an MI was one of the top five most expensive conditions during inpatient hospitalizations in the US, with a cost of about $11.5 billion for 612,000 hospital stays.

Terminology

Myocardial infarction (MI) refers to tissue death (infarction) of the heart muscle (myocardium) caused by ischemia, the lack of oxygen delivery to myocardial tissue. It is a type of acute coronary syndrome, which describes a sudden or short-term change in symptoms related to blood flow to the heart. Unlike the other type of acute coronary syndrome, unstable angina, a myocardial infarction occurs when there is cell death, which can be estimated by measuring by a blood test for biomarkers (the cardiac protein troponin). When there is evidence of an MI, it may be classified as an ST elevation myocardial infarction (STEMI) or Non-ST elevation myocardial infarction (NSTEMI) based on the results of an ECG.

The phrase "heart attack" is often used non-specifically to refer to myocardial infarction. An MI is different from—but can cause—cardiac arrest, where the heart is not contracting at all or so poorly that all vital organs cease to function, thus leading to death. It is also distinct from heart failure, in which the pumping action of the heart is impaired. However, an MI may lead to heart failure.

Signs and symptoms

View of the chest with common areas of MI coloured
View of the back with common areas of MI coloured
Areas where pain is experienced in myocardial infarction, showing common (dark red) and less common (light red) areas on the chest (top) and back (bottom).

Chest pain that may or may not radiate to other parts of the body is the most typical and significant symptom of myocardial infarction. It might be accompanied by other symptoms such as sweating.

Pain

Chest pain is one of the most common symptoms of acute myocardial infarction and is often described as a sensation of tightness, pressure, or squeezing. Pain radiates most often to the left arm, but may also radiate to the lower jaw, neck, right arm, back, and upper abdomen. The pain most suggestive of an acute MI, with the highest likelihood ratio, is pain radiating to the right arm and shoulder. Similarly, chest pain similar to a previous heart attack is also suggestive. The pain associated with MI is usually diffuse, does not change with position, and lasts for more than 20 minutes. It might be described as pressure, tightness, knifelike, tearing, burning sensation (all these are also manifested during other diseases). It could be felt as an unexplained anxiety, and pain might be absent altogether. Levine's sign, in which a person localizes the chest pain by clenching one or both fists over their sternum, has classically been thought to be predictive of cardiac chest pain, although a prospective observational study showed it had a poor positive predictive value.

Typically, chest pain because of ischemia, be it unstable angina or myocardial infarction, lessens with the use of nitroglycerin, but nitroglycerin may also relieve chest pain arising from non-cardiac causes.

Other

Chest pain may be accompanied by sweating, nausea or vomiting, and fainting, and these symptoms may also occur without any pain at all. Dizziness or lightheadedness is common and occurs due to reduction in oxygen and blood to the brain. In women, the most common symptoms of myocardial infarction include shortness of breath, weakness, and fatigue. Women are more likely to have unusual or unexplained tiredness and nausea or vomiting as symptoms. Women having heart attacks are more likely to have palpitations, back pain, labored breath, vomiting, and left arm pain than men, although the studies showing these differences had high variability. Women are less likely to report chest pain during a heart attack and more likely to report nausea, jaw pain, neck pain, cough, and fatigue, although these findings are inconsistent across studies. Women with heart attacks also had more indigestion, dizziness, loss of appetite, and loss of consciousness. Shortness of breath is a common, and sometimes the only symptom, occurring when damage to the heart limits the output of the left ventricle, with breathlessness arising either from low oxygen in the blood or pulmonary edema.

Other less common symptoms include weakness, light-headedness, palpitations, and abnormalities in heart rate or blood pressure. These symptoms are likely induced by a massive surge of catecholamines from the sympathetic nervous system, which occurs in response to pain and, where present, low blood pressure. Loss of consciousness can occur in myocardial infarctions due to inadequate blood flow to the brain and cardiogenic shock, and sudden death, frequently due to the development of ventricular fibrillation. When the brain was without oxygen for too long due to a myocardial infarction, coma and persistent vegetative state can occur. Cardiac arrest, and atypical symptoms such as palpitations, occur more frequently in women, the elderly, those with diabetes, in people who have just had surgery, and in critically ill patients.

Absence

"Silent" myocardial infarctions can happen without any symptoms at all. These cases can be discovered later on electrocardiograms, using blood enzyme tests, or at autopsy after a person has died. Such silent myocardial infarctions represent between 22 and 64% of all infarctions, and are more common in the elderly, in those with diabetes mellitus and after heart transplantation. In people with diabetes, differences in pain threshold, autonomic neuropathy, and psychological factors have been cited as possible explanations for the lack of symptoms. In heart transplantation, the donor heart is not fully innervated by the nervous system of the recipient.

Risk factors

The most prominent risk factors for myocardial infarction are older age, actively smoking, high blood pressure, diabetes mellitus, and total cholesterol and high-density lipoprotein levels. Many risk factors of myocardial infarction are shared with coronary artery disease, the primary cause of myocardial infarction, with other risk factors including male sex, low levels of physical activity, a past family history, obesity, and alcohol use. Risk factors for myocardial disease are often included in risk factor stratification scores, such as the Framingham Risk Score. At any given age, men are more at risk than women for the development of cardiovascular disease. High levels of blood cholesterol is a known risk factor, particularly high low-density lipoprotein, low high-density lipoprotein, and high triglycerides.

Many risk factors for myocardial infarction are potentially modifiable, with the most important being tobacco smoking (including secondhand smoke). Smoking appears to be the cause of about 36% and obesity the cause of 20% of coronary artery disease. Lack of physical activity has been linked to 7–12% of cases. Less common causes include stress-related causes such as job stress, which accounts for about 3% of cases, and chronic high stress levels.

Diet

There is varying evidence about the importance of saturated fat in the development of myocardial infarctions. Eating polyunsaturated fat instead of saturated fats has been shown in studies to be associated with a decreased risk of myocardial infarction, while other studies find little evidence that reducing dietary saturated fat or increasing polyunsaturated fat intake affects heart attack risk. Dietary cholesterol does not appear to have a significant effect on blood cholesterol and thus recommendations about its consumption may not be needed. Trans fats do appear to increase risk. Acute and prolonged intake of high quantities of alcoholic drinks (3–4 or more daily) increases the risk of a heart attack.

Genetics

Family history of ischemic heart disease or MI, particularly if one has a male first-degree relative (father, brother) who had a myocardial infarction before age 55 years, or a female first-degree relative (mother, sister) less than age 65 increases a person's risk of MI.

Genome-wide association studies have found 27 genetic variants that are associated with an increased risk of myocardial infarction. The strongest association of MI has been found with chromosome 9 on the short arm p at locus 21, which contains genes CDKN2A and 2B, although the single nucleotide polymorphisms that are implicated are within a non-coding region. The majority of these variants are in regions that have not been previously implicated in coronary artery disease. The following genes have an association with MI: PCSK9, SORT1, MIA3, WDR12, MRAS, PHACTR1, LPA, TCF21, MTHFDSL, ZC3HC1, CDKN2A, 2B, ABO, PDGF0, APOA5, MNF1ASM283, COL4A1, HHIPC1, SMAD3, ADAMTS7, RAS1, SMG6, SNF8, LDLR, SLC5A3, MRPS6, KCNE2.

Other

The risk of having a myocardial infarction increases with older age, low physical activity, and low socioeconomic status. Heart attacks appear to occur more commonly in the morning hours, especially between 6AM and noon. Evidence suggests that heart attacks are at least three times more likely to occur in the morning than in the late evening. Shift work is also associated with a higher risk of MI. One analysis has found an increase in heart attacks immediately following the start of daylight saving time.

Women who use combined oral contraceptive pills have a modestly increased risk of myocardial infarction, especially in the presence of other risk factors. The use of non-steroidal anti inflammatory drugs (NSAIDs), even for as short as a week, increases risk.

Endometriosis in women under the age of 40 is an identified risk factor.

Air pollution is also an important modifiable risk. Short-term exposure to air pollution such as carbon monoxide, nitrogen dioxide, and sulfur dioxide (but not ozone) has been associated with MI and other acute cardiovascular events. For sudden cardiac deaths, every increment of 30 units in Pollutant Standards Index correlated with an 8% increased risk of out-of-hospital cardiac arrest on the day of exposure. Extremes of temperature are also associated.

A number of acute and chronic infections including Chlamydophila pneumoniae, influenza, Helicobacter pylori, and Porphyromonas gingivalis among others have been linked to atherosclerosis and myocardial infarction. As of 2013, there is no evidence of benefit from antibiotics or vaccination, however, calling the association into question. Myocardial infarction can also occur as a late consequence of Kawasaki disease.

Calcium deposits in the coronary arteries can be detected with CT scans. Calcium seen in coronary arteries can provide predictive information beyond that of classical risk factors. High blood levels of the amino acid homocysteine is associated with premature atherosclerosis; whether elevated homocysteine in the normal range is causal is controversial.

In people without evident coronary artery disease, possible causes for the myocardial infarction are coronary spasm or coronary artery dissection.

Mechanism

Atherosclerosis

The most common cause of a myocardial infarction is the rupture of an atherosclerotic plaque on an artery supplying heart muscle. Plaques can become unstable, rupture, and additionally promote the formation of a blood clot that blocks the artery; this can occur in minutes. Blockage of an artery can lead to tissue death in tissue being supplied by that artery. Atherosclerotic plaques are often present for decades before they result in symptoms.

The gradual buildup of cholesterol and fibrous tissue in plaques in the wall of the coronary arteries or other arteries, typically over decades, is termed atherosclerosis. Atherosclerosis is characterized by progressive inflammation of the walls of the arteries. Inflammatory cells, particularly macrophages, move into affected arterial walls. Over time, they become laden with cholesterol products, particularly LDL, and become foam cells. A cholesterol core forms as foam cells die. In response to growth factors secreted by macrophages, smooth muscle and other cells move into the plaque and act to stabilize it. A stable plaque may have a thick fibrous cap with calcification. If there is ongoing inflammation, the cap may be thin or ulcerate. Exposed to the pressure associated with blood flow, plaques, especially those with a thin lining, may rupture and trigger the formation of a blood clot (thrombus). The cholesterol crystals have been associated with plaque rupture through mechanical injury and inflammation.

Other causes

Atherosclerotic disease is not the only cause of myocardial infarction, but it may exacerbate or contribute to other causes. A myocardial infarction may result from a heart with a limited blood supply subject to increased oxygen demands, such as in fever, a fast heart rate, hyperthyroidism, too few red blood cells in the bloodstream, or low blood pressure. Damage or failure of procedures such as percutaneous coronary intervention (PCI) or coronary artery bypass grafts (CABG) may cause a myocardial infarction. Spasm of coronary arteries, such as Prinzmetal's angina may cause blockage.

Tissue death

Cross section showing anterior left ventricle wall infarction

If impaired blood flow to the heart lasts long enough, it triggers a process called the ischemic cascade; the heart cells in the territory of the blocked coronary artery die (infarction), chiefly through necrosis, and do not grow back. A collagen scar forms in their place. When an artery is blocked, cells lack oxygen, needed to produce ATP in mitochondria. ATP is required for the maintenance of electrolyte balance, particularly through the Na/K ATPase. This leads to an ischemic cascade of intracellular changes, necrosis and apoptosis of affected cells.

Cells in the area with the worst blood supply, just below the inner surface of the heart (endocardium), are most susceptible to damage. Ischemia first affects this region, the subendocardial region, and tissue begins to die within 15–30 minutes of loss of blood supply. The dead tissue is surrounded by a zone of potentially reversible ischemia that progresses to become a full-thickness transmural infarct. The initial "wave" of infarction can take place over 3–4 hours. These changes are seen on gross pathology and cannot be predicted by the presence or absence of Q waves on an ECG. The position, size and extent of an infarct depends on the affected artery, totality of the blockage, duration of the blockage, the presence of collateral blood vessels, oxygen demand, and success of interventional procedures.

Tissue death and myocardial scarring alter the normal conduction pathways of the heart and weaken affected areas. The size and location put a person at risk of abnormal heart rhythms (arrhythmias) or heart block, aneurysm of the heart ventricles, inflammation of the heart wall following infarction, and rupture of the heart wall that can have catastrophic consequences.

Injury to the myocardium also occurs during re-perfusion. This might manifest as ventricular arrhythmia. The re-perfusion injury is a consequence of the calcium and sodium uptake from the cardiac cells and the release of oxygen radicals during reperfusion. No-reflow phenomenon—when blood is still unable to be distributed to the affected myocardium despite clearing the occlusion—also contributes to myocardial injury. Topical endothelial swelling is one of many factors contributing to this phenomenon.

Diagnosis

Criteria

Diagram showing the blood supply to the heart by the two major blood vessels, the left and right coronary arteries (labelled LCA and RCA). A myocardial infarction (2) has occurred with blockage of a branch of the left coronary artery (1).

A myocardial infarction, according to current consensus, is defined by elevated cardiac biomarkers with a rising or falling trend and at least one of the following:

Types

A myocardial infarction is usually clinically classified as an ST-elevation MI (STEMI) or a non-ST elevation MI (NSTEMI). These are based on ST elevation, a portion of a heartbeat graphically recorded on an ECG. STEMIs make up about 25–40% of myocardial infarctions. A more explicit classification system, based on international consensus in 2012, also exists. This classifies myocardial infarctions into five types:

  1. Spontaneous MI related to plaque erosion and/or rupture fissuring, or dissection
  2. MI related to ischemia, such as from increased oxygen demand or decreased supply, e.g., coronary artery spasm, coronary embolism, anemia, arrhythmias, high blood pressure, or low blood pressure
  3. Sudden unexpected cardiac death, including cardiac arrest, where symptoms may suggest MI, an ECG may be taken with suggestive changes, or a blood clot is found in a coronary artery by angiography and/or at autopsy, but where blood samples could not be obtained, or at a time before the appearance of cardiac biomarkers in the blood
  4. Associated with coronary angioplasty or stents
  5. Associated with CABG
  6. Associated with spontaneous coronary artery dissection in young, fit women

Cardiac biomarkers

There are many different biomarkers used to determine the presence of cardiac muscle damage. Troponins, measured through a blood test, are considered to be the best, and are preferred because they have greater sensitivity and specificity for measuring injury to the heart muscle than other tests. A rise in troponin occurs within 2–3 hours of injury to the heart muscle, and peaks within 1–2 days. The level of the troponin, as well as a change over time, are useful in measuring and diagnosing or excluding myocardial infarctions, and the diagnostic accuracy of troponin testing is improving over time. One high-sensitivity cardiac troponin can rule out a heart attack as long as the ECG is normal.

Other tests, such as CK-MB or myoglobin, are discouraged. CK-MB is not as specific as troponins for acute myocardial injury, and may be elevated with past cardiac surgery, inflammation or electrical cardioversion; it rises within 4–8 hours and returns to normal within 2–3 days. Copeptin may be useful to rule out MI rapidly when used along with troponin.

Electrocardiogram

A 12-lead ECG showing an inferior STEMI due to reduced perfusion through the right coronary artery. Elevation of the ST segment can be seen in leads II, III and aVF.

Electrocardiograms (ECGs) are a series of leads placed on a person's chest that measure electrical activity associated with contraction of the heart muscle. The taking of an ECG is an important part of the workup of an AMI, and ECGs are often not just taken once but may be repeated over minutes to hours, or in response to changes in signs or symptoms.

ECG readouts produce a waveform with different labeled features. In addition to a rise in biomarkers, a rise in the ST segment, changes in the shape or flipping of T waves, new Q waves, or a new left bundle branch block can be used to diagnose an AMI. In addition, ST elevation can be used to diagnose an ST segment myocardial infarction (STEMI). A rise must be new in V2 and V3 ≥2 mm (0,2 mV) for males or ≥1.5 mm (0.15 mV) for females or ≥1 mm (0.1 mV) in two other adjacent chest or limb leads. ST elevation is associated with infarction, and may be preceded by changes indicating ischemia, such as ST depression or inversion of the T waves. Abnormalities can help differentiate the location of an infarct, based on the leads that are affected by changes. Early STEMIs may be preceded by peaked T waves. Other ECG abnormalities relating to complications of acute myocardial infarctions may also be evident, such as atrial or ventricular fibrillation.

Imaging

ECG : AMI with ST elevation in V2-4

Noninvasive imaging plays an important role in the diagnosis and characterisation of myocardial infarction. Tests such as chest X-rays can be used to explore and exclude alternate causes of a person's symptoms. Echocardiography may assist in modifying clinical suspicion of ongoing myocardial infarction in patients that can't be ruled out or ruled in following initial ECG and Troponin testing. Myocardial perfusion imaging has no role in the acute diagnostic algorithm; however, it can confirm a clinical suspicion of Chronic Coronary Syndrome when the patient's history, physical examination (including cardiac examination) ECG, and cardiac biomarkers suggest coronary artery disease.

Echocardiography, an ultrasound scan of the heart, is able to visualize the heart, its size, shape, and any abnormal motion of the heart walls as they beat that may indicate a myocardial infarction. The flow of blood can be imaged, and contrast dyes may be given to improve image. Other scans using radioactive contrast include SPECT CT-scans using thallium, sestamibi (MIBI scans) or tetrofosmin; or a PET scan using Fludeoxyglucose or rubidium-82. These nuclear medicine scans can visualize the perfusion of heart muscle. SPECT may also be used to determine viability of tissue, and whether areas of ischemia are inducible.

Medical societies and professional guidelines recommend that the physician confirm a person is at high risk for Chronic Coronary Syndrome before conducting diagnostic non-invasive imaging tests to make a diagnosis, as such tests are unlikely to change management and result in increased costs. Patients who have a normal ECG and who are able to exercise, for example, most likely do not merit routine imaging.

Differential diagnosis

There are many causes of chest pain, which can originate from the heart, lungs, gastrointestinal tract, aorta, and other muscles, bones and nerves surrounding the chest. In addition to myocardial infarction, other causes include angina, insufficient blood supply (ischemia) to the heart muscles without evidence of cell death, gastroesophageal reflux disease; pulmonary embolism, tumors of the lungs, pneumonia, rib fracture, costochondritis, heart failure and other musculoskeletal injuries. Rarer severe differential diagnoses include aortic dissection, esophageal rupture, tension pneumothorax, and pericardial effusion causing cardiac tamponade. The chest pain in an MI may mimic heartburn. Causes of sudden-onset breathlessness generally involve the lungs or heart – including pulmonary edema, pneumonia, allergic reactions and asthma, and pulmonary embolus, acute respiratory distress syndrome and metabolic acidosis. There are many different causes of fatigue, and myocardial infarction is not a common cause.

Prevention

There is a large crossover between the lifestyle and activity recommendations to prevent a myocardial infarction, and those that may be adopted as secondary prevention after an initial myocardial infarction, because of shared risk factors and an aim to reduce atherosclerosis affecting heart vessels. The influenza vaccine also appear to protect against myocardial infarction with a benefit of 15 to 45%.

Primary prevention

Lifestyle

Physical activity can reduce the risk of cardiovascular disease, and people at risk are advised to engage in 150 minutes of moderate or 75 minutes of vigorous intensity aerobic exercise a week. Keeping a healthy weight, drinking alcohol within the recommended limits, and quitting smoking reduce the risk of cardiovascular disease.

Substituting unsaturated fats such as olive oil and rapeseed oil instead of saturated fats may reduce the risk of myocardial infarction, although there is not universal agreement. Dietary modifications are recommended by some national authorities, with recommendations including increasing the intake of wholegrain starch, reducing sugar intake (particularly of refined sugar), consuming five portions of fruit and vegetables daily, consuming two or more portions of fish per week, and consuming 4–5 portions of unsalted nuts, seeds, or legumes per week. The dietary pattern with the greatest support is the Mediterranean diet. Vitamins and mineral supplements are of no proven benefit, and neither are plant stanols or sterols.

Public health measures may also act at a population level to reduce the risk of myocardial infarction, for example by reducing unhealthy diets (excessive salt, saturated fat, and trans-fat) including food labeling and marketing requirements as well as requirements for catering and restaurants and stimulating physical activity. This may be part of regional cardiovascular disease prevention programs or through the health impact assessment of regional and local plans and policies.

Most guidelines recommend combining different preventive strategies. A 2015 Cochrane Review found some evidence that such an approach might help with blood pressurebody mass index and waist circumference. However, there was insufficient evidence to show an effect on mortality or actual cardio-vascular events.

Medication

Statins, drugs that act to lower blood cholesterol, decrease the incidence and mortality rates of myocardial infarctions. They are often recommended in those at an elevated risk of cardiovascular diseases.

Aspirin has been studied extensively in people considered at increased risk of myocardial infarction. Based on numerous studies in different groups (e.g. people with or without diabetes), there does not appear to be a benefit strong enough to outweigh the risk of excessive bleeding. Nevertheless, many clinical practice guidelines continue to recommend aspirin for primary prevention, and some researchers feel that those with very high cardiovascular risk but low risk of bleeding should continue to receive aspirin.

Secondary prevention

There is a large crossover between the lifestyle and activity recommendations to prevent a myocardial infarction, and those that may be adopted as secondary prevention after an initial myocardial infarct. Recommendations include stopping smoking, a gradual return to exercise, eating a healthy diet, low in saturated fat and low in cholesterol, drinking alcohol within recommended limits, exercising, and trying to achieve a healthy weight. Exercise is both safe and effective even if people have had stents or heart failure, and is recommended to start gradually after 1–2 weeks. Counselling should be provided relating to medications used, and for warning signs of depression. Previous studies suggested a benefit from omega-3 fatty acid supplementation but this has not been confirmed.

Medications

Following a heart attack, nitrates, when taken for two days, and ACE-inhibitors decrease the risk of death. Other medications include:

Aspirin is continued indefinitely, as well as another antiplatelet agent such as clopidogrel or ticagrelor ("dual antiplatelet therapy" or DAPT) for up to twelve months. If someone has another medical condition that requires anticoagulation (e.g. with warfarin) this may need to be adjusted based on risk of further cardiac events as well as bleeding risk. In those who have had a stent, more than 12 months of clopidogrel plus aspirin does not affect the risk of death.

Beta blocker therapy such as metoprolol or carvedilol is recommended to be started within 24 hours, provided there is no acute heart failure or heart block. The dose should be increased to the highest tolerated. Contrary to most guidelines, the use of beta blockers does not appear to affect the risk of death, possibly because other treatments for MI have improved. When beta blocker medication is given within the first 24–72 hours of a STEMI no lives are saved. However, 1 in 200 people were prevented from a repeat heart attack, and another 1 in 200 from having an abnormal heart rhythm. Additionally, for 1 in 91 the medication causes a temporary decrease in the heart's ability to pump blood.

ACE inhibitor therapy should be started within 24 hours and continued indefinitely at the highest tolerated dose. This is provided there is no evidence of worsening kidney failure, high potassium, low blood pressure, or known narrowing of the renal arteries. Those who cannot tolerate ACE inhibitors may be treated with an angiotensin II receptor antagonist.

Statin therapy has been shown to reduce mortality and subsequent cardiac events and should be commenced to lower LDL cholesterol. Other medications, such as ezetimibe, may also be added with this goal in mind.

Aldosterone antagonists (spironolactone or eplerenone) may be used if there is evidence of left ventricular dysfunction after an MI, ideally after beginning treatment with an ACE inhibitor.

Other

A defibrillator, an electric device connected to the heart and surgically inserted under the skin, may be recommended. This is particularly if there are any ongoing signs of heart failure, with a low left ventricular ejection fraction and a New York Heart Association grade II or III after 40 days of the infarction. Defibrillators detect potentially fatal arrhythmia and deliver an electrical shock to the person to depolarize a critical mass of the heart muscle.

First aid

Taking aspirin helps to reduce the risk of mortality in people with myocardial infarction.

Management

A myocardial infarction requires immediate medical attention. Treatment aims to preserve as much heart muscle as possible, and to prevent further complications. Treatment depends on whether the myocardial infarction is a STEMI or NSTEMI. Treatment in general aims to unblock blood vessels, reduce blood clot enlargement, reduce ischemia, and modify risk factors with the aim of preventing future MIs. In addition, the main treatment for myocardial infarctions with ECG evidence of ST elevation (STEMI) include thrombolysis or percutaneous coronary intervention, although PCI is also ideally conducted within 1–3 days for NSTEMI. In addition to clinical judgement, risk stratification may be used to guide treatment, such as with the TIMI and GRACE scoring systems.

Pain

The pain associated with myocardial infarction is often treated with nitroglycerin, a vasodilator, or opioid medications such as morphine. Nitroglycerin (given under the tongue or injected into a vein) may improve blood supply to the heart. It is an important part of therapy for its pain relief effects, though there is no proven benefit to mortality. Morphine or other opioid medications may also be used, and are effective for the pain associated with STEMI. There is poor evidence that morphine shows any benefit to overall outcomes, and there is some evidence of potential harm.

Antithrombotics

Aspirin, an antiplatelet drug, is given as a loading dose to reduce the clot size and reduce further clotting in the affected artery. It is known to decrease mortality associated with acute myocardial infarction by at least 50%. P2Y12 inhibitors such as clopidogrel, prasugrel and ticagrelor are given concurrently, also as a loading dose, with the dose depending on whether further surgical management or fibrinolysis is planned. Prasugrel and ticagrelor are recommended in European and American guidelines, as they are active more quickly and consistently than clopidogrel. P2Y12 inhibitors are recommended in both NSTEMI and STEMI, including in PCI, with evidence also to suggest improved mortality. Heparins, particularly in the unfractionated form, act at several points in the clotting cascade, help to prevent the enlargement of a clot, and are also given in myocardial infarction, owing to evidence suggesting improved mortality rates. In very high-risk scenarios, inhibitors of the platelet glycoprotein αIIbβ3a receptor such as eptifibatide or tirofiban may be used.

There is varying evidence on the mortality benefits in NSTEMI. A 2014 review of P2Y12 inhibitors such as clopidogrel found they do not change the risk of death when given to people with a suspected NSTEMI prior to PCI, nor do heparins change the risk of death. They do decrease the risk of having a further myocardial infarction.

Angiogram

Inserting a stent to widen the artery.

Primary percutaneous coronary intervention (PCI) is the treatment of choice for STEMI if it can be performed in a timely manner, ideally within 90–120 minutes of contact with a medical provider. Some recommend it is also done in NSTEMI within 1–3 days, particularly when considered high-risk. A 2017 review, however, did not find a difference between early versus later PCI in NSTEMI.

PCI involves small probes, inserted through peripheral blood vessels such as the femoral artery or radial artery into the blood vessels of the heart. The probes are then used to identify and clear blockages using small balloons, which are dragged through the blocked segment, dragging away the clot, or the insertion of stents. Coronary artery bypass grafting is only considered when the affected area of heart muscle is large, and PCI is unsuitable, for example with difficult cardiac anatomy. After PCI, people are generally placed on aspirin indefinitely and on dual antiplatelet therapy (generally aspirin and clopidogrel) for at least a year.

Fibrinolysis

If PCI cannot be performed within 90 to 120 minutes in STEMI then fibrinolysis, preferably within 30 minutes of arrival to hospital, is recommended. If a person has had symptoms for 12 to 24 hours evidence for effectiveness of thrombolysis is less and if they have had symptoms for more than 24 hours it is not recommended. Thrombolysis involves the administration of medication that activates the enzymes that normally dissolve blood clots. These medications include tissue plasminogen activator, reteplase, streptokinase, and tenecteplase. Thrombolysis is not recommended in a number of situations, particularly when associated with a high risk of bleeding or the potential for problematic bleeding, such as active bleeding, past strokes or bleeds into the brain, or severe hypertension. Situations in which thrombolysis may be considered, but with caution, include recent surgery, use of anticoagulants, pregnancy, and proclivity to bleeding. Major risks of thrombolysis are major bleeding and intracranial bleeding. Pre-hospital thrombolysis reduces time to thrombolytic treatment, based on studies conducted in higher income countries; however, it is unclear whether this has an impact on mortality rates.

Other

In the past, high flow oxygen was recommended for everyone with a possible myocardial infarction. More recently, no evidence was found for routine use in those with normal oxygen levels and there is potential harm from the intervention. Therefore, oxygen is currently only recommended if oxygen levels are found to be low or if someone is in respiratory distress.

If despite thrombolysis there is significant cardiogenic shock, continued severe chest pain, or less than a 50% improvement in ST elevation on the ECG recording after 90 minutes, then rescue PCI is indicated emergently.

Those who have had cardiac arrest may benefit from targeted temperature management with evaluation for implementation of hypothermia protocols. Furthermore, those with cardiac arrest, and ST elevation at any time, should usually have angiography. Aldosterone antagonists appear to be useful in people who have had an STEMI and do not have heart failure.

Rehabilitation and exercise

Cardiac rehabilitation benefits many who have experienced myocardial infarction, even if there has been substantial heart damage and resultant left ventricular failure. It should start soon after discharge from the hospital. The program may include lifestyle advice, exercise, social support, as well as recommendations about driving, flying, sports participation, stress management, and sexual intercourse. Returning to sexual activity after myocardial infarction is a major concern for most patients, and is an important area to be discussed in the provision of holistic care.

In the short-term, exercise-based cardiovascular rehabilitation programs may reduce the risk of a myocardial infarction, reduces a large number of hospitalizations from all causes, reduces hospital costs, improves health-related quality of life, and has a small effect on all-cause mortality. Longer-term studies indicate that exercise-based cardiovascular rehabilitation programs may reduce cardiovascular mortality and myocardial infarction.

Prognosis

The prognosis after myocardial infarction varies greatly depending on the extent and location of the affected heart muscle, and the development and management of complications. Prognosis is worse with older age and social isolation. Anterior infarcts, persistent ventricular tachycardia or fibrillation, development of heart blocks, and left ventricular impairment are all associated with poorer prognosis. Without treatment, about a quarter of those affected by MI die within minutes and about forty percent within the first month. Morbidity and mortality from myocardial infarction has, however, improved over the years due to earlier and better treatment: in those who have a STEMI in the United States, between 5 and 6 percent die before leaving the hospital and 7 to 18 percent die within a year.

It is unusual for babies to experience a myocardial infarction, but when they do, about half die. In the short-term, neonatal survivors seem to have a normal quality of life.

Complications

Complications may occur immediately following the myocardial infarction or may take time to develop. Disturbances of heart rhythms, including atrial fibrillation, ventricular tachycardia and fibrillation and heart block can arise as a result of ischemia, cardiac scarring, and infarct location. Stroke is also a risk, either as a result of clots transmitted from the heart during PCI, as a result of bleeding following anticoagulation, or as a result of disturbances in the heart's ability to pump effectively as a result of the infarction. Regurgitation of blood through the mitral valve is possible, particularly if the infarction causes dysfunction of the papillary muscle. Cardiogenic shock as a result of the heart being unable to adequately pump blood may develop, dependent on infarct size, and is most likely to occur within the days following an acute myocardial infarction. Cardiogenic shock is the largest cause of in-hospital mortality. Rupture of the ventricular dividing wall or left ventricular wall may occur within the initial weeks. Dressler's syndrome, a reaction following larger infarcts and a cause of pericarditis is also possible.

Heart failure may develop as a long-term consequence, with an impaired ability of heart muscle to pump, scarring, and an increase in the size of the existing muscle. Aneurysm of the left ventricle myocardium develops in about 10% of MI and is itself a risk factor for heart failure, ventricular arrhythmia, and the development of clots.

Risk factors for complications and death include age, hemodynamic parameters (such as heart failure, cardiac arrest on admission, systolic blood pressure, or Killip class of two or greater), ST-segment deviation, diabetes, serum creatinine, peripheral vascular disease, and elevation of cardiac markers.

Epidemiology

Myocardial infarction is a common presentation of coronary artery disease. The World Health Organization estimated in 2004, that 12.2% of worldwide deaths were from ischemic heart disease; with it being the leading cause of death in high- or middle-income countries and second only to lower respiratory infections in lower-income countries. Worldwide, more than 3 million people have STEMIs and 4 million have NSTEMIs a year. STEMIs occur about twice as often in men as women.

Rates of death from ischemic heart disease (IHD) have slowed or declined in most high-income countries, although cardiovascular disease still accounted for one in three of all deaths in the US in 2008. For example, rates of death from cardiovascular disease have decreased almost a third between 2001 and 2011 in the United States.

In contrast, IHD is becoming a more common cause of death in the developing world. For example, in India, IHD had become the leading cause of death by 2004, accounting for 1.46 million deaths (14% of total deaths) and deaths due to IHD were expected to double during 1985–2015. Globally, disability adjusted life years (DALYs) lost to ischemic heart disease are predicted to account for 5.5% of total DALYs in 2030, making it the second-most-important cause of disability (after unipolar depressive disorder), as well as the leading cause of death by this date.

Social determinants of health

Social determinants such as neighborhood disadvantage, immigration status, lack of social support, social isolation, and access to health services play an important role in myocardial infarction risk and survival. Studies have shown that low socioeconomic status is associated with an increased risk of poorer survival. There are well-documented disparities in myocardial infarction survival by socioeconomic status, race, education, and census-tract-level poverty.

Race: In the U.S. African Americans have a greater burden of myocardial infarction and other cardiovascular events. On a population level, there is a higher overall prevalence of risk factors that are unrecognized and therefore not treated, which places these individuals at a greater likelihood of experiencing adverse outcomes and therefore potentially higher morbidity and mortality. Similarly, South Asians (including South Asians that have migrated to other countries around the world) experience higher rates of acute myocardial infarctions at younger ages, which can be largely explained by a higher prevalence of risk factors at younger ages.

Socioeconomic status: Among individuals who live in the low-socioeconomic (SES) areas, which is close to 25% of the US population, myocardial infarctions (MIs) occurred twice as often compared with people who lived in higher SES areas.

Immigration status: In 2018 many lawfully present immigrants who are eligible for coverage remain uninsured because immigrant families face a range of enrollment barriers, including fear, confusion about eligibility policies, difficulty navigating the enrollment process, and language and literacy challenges. Uninsured undocumented immigrants are ineligible for coverage options due to their immigration status.

Health care access: Lack of health insurance and financial concerns about accessing care were associated with delays in seeking emergency care for acute myocardial infarction which can have significant, adverse consequences on patient outcomes.

Education: Researchers found that compared to people with graduate degrees, those with lower educational attainment appeared to have a higher risk of heart attack, dying from a cardiovascular event, and overall death.

Society and culture

Depictions of heart attacks in popular media often include collapsing or loss of consciousness which are not common symptoms; these depictions contribute to widespread misunderstanding about the symptoms of myocardial infarctions, which in turn contributes to people not getting care when they should.

At common law, in general, a myocardial infarction is a disease but may sometimes be an injury. This can create coverage issues in the administration of no-fault insurance schemes such as workers' compensation. In general, a heart attack is not covered; however, it may be a work-related injury if it results, for example, from unusual emotional stress or unusual exertion. In addition, in some jurisdictions, heart attacks had by persons in particular occupations such as police officers may be classified as line-of-duty injuries by statute or policy. In some countries or states, a person having had an MI may be prevented from participating in activity that puts other people's lives at risk, for example driving a car or flying an airplane.

Delayed-choice quantum eraser

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Delayed-choice_quantum_eraser A delayed-cho...