Search This Blog

Tuesday, October 8, 2024

Telephone exchange

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Telephone_exchange
A telephone operator manually connecting calls with cord pairs at a telephone switchboard
A modern central office, equipped with voice communication and broadband data capabilities

A telephone exchange, also known as a telephone switch or central office, is a crucial component in the public switched telephone network (PSTN) or large enterprise telecommunications systems. It facilitates the interconnection of telephone subscriber lines or digital system virtual circuits, enabling telephone calls between subscribers.

The terminology used in telecommunications has evolved over time, with telephone exchange and central office often used interchangeably, the latter term originating from the Bell System. A central office typically refers to a facility that houses the inside plant equipment for one or several telephone exchanges, each catering to a specific geographical region. This region is sometimes known as the exchange area. In North America, the term wire center may be used to denote a central office location, indicating a facility that provides a telephone with a dial tone. Telecommunication carriers also define rate centers for business and billing purposes, which in large cities, might encompass clusters of central offices to specify geographic locations for distance measurement calculations.

In the 1940s, the Bell System in the United States and Canada introduced a nationwide numbering system that identified central offices with a unique three-digit code, along with a three-digit numbering plan area code (NPA code or area code), making central office codes distinctive within each numbering plan area. These codes served as prefixes in subscriber telephone numbers. The mid-20th century saw similar organizational efforts in telephone networks globally, propelled by the advent of international and transoceanic telephone trunks and direct customer dialing.

For corporate or enterprise applications, a private telephone exchange is termed a private branch exchange (PBX), which connects to the public switched telephone network. A PBX serves an organization's telephones and any private leased line circuits, typically situated in large office spaces or organizational campuses. Smaller setups might use a PBX or key telephone system managed by a receptionist, catering to the telecommunication needs of the enterprise.

History

Tivadar Puskás
1922 diagram of 1877 Boston exchange
1903 manual switch for four subscriber lines (top) with four cross-bar talking circuits (horizontal), and one bar to connect the operator (T). The lowest cross-bar connects idle stations to ground to enable the signaling indicators (F).

In the era of the electrical telegraph, its principal users were post offices, railway stations, the more important governmental centers (ministries), stock exchanges, very few nationally distributed newspapers, the largest internationally important corporations, and wealthy individuals. Despite the fact that telephone devices existed before the invention of the telephone exchange, their success and economical operation would have been impossible on the same schema and structure of the contemporary telegraph, as prior to the invention of the telephone exchange switchboard, early telephones were hardwired to and communicated with only a single other telephone (such as from an individual's home to the person's business).

A telephone exchange is a telephone system for a small geographic area that provides the switching (interconnection) of subscriber lines for calls made between them. Telephone exchanges replaced small telephone systems that connected its users with direct lines between each and every subscriber station. Exchanges made telephony an available and comfortable technology for everyday use and it gave the impetus for the creation of a new industrial sector.

As with the invention of the telephone itself, the honour of "first telephone exchange" has several claimants. One of the first to propose a telephone exchange was Hungarian Tivadar Puskás in 1877 while he was working for Thomas Edison. The first experimental telephone exchange was based on the ideas of Puskás, and it was built by the Bell Telephone Company in Boston in 1877. The world's first state-administered telephone exchange opened on November 12, 1877 in Friedrichsberg close to Berlin under the direction of Heinrich von Stephan. George W. Coy designed and built the first commercial US telephone exchange which opened in New Haven, Connecticut in January, 1878, and the first telephone booth was built in nearby Bridgeport. The switchboard was built from "carriage bolts, handles from teapot lids and bustle wire" and could handle two simultaneous conversations. Charles Glidden is also credited with establishing an exchange in Lowell, MA. with 50 subscribers in 1878.

In Europe other early telephone exchanges were based in London and Manchester, both of which opened under Bell patents in 1879. Belgium had its first International Bell exchange (in Antwerp) a year later.

In 1887 Puskás introduced the multiplex switchboard.

Later exchanges consisted of one to several hundred plug boards staffed by switchboard operators. Each operator sat in front of a vertical panel containing banks of ¼-inch tip-ring-sleeve (3-conductor) jacks, each of which was the local termination of a subscriber's telephone line. In front of the jack panel lay a horizontal panel containing two rows of patch cords, each pair connected to a cord circuit.

When a calling party lifted the receiver, the local loop current lit a signal lamp near the jack. The operator responded by inserting the rear cord (answering cord) into the subscriber's jack and switched their headset into the circuit to ask, "Number, please?" For a local call, the operator inserted the front cord of the pair (ringing cord) into the called party's local jack and started the ringing cycle. For a long-distance call, the operator plugged into a trunk circuit to connect to another operator in another bank of boards or at a remote central office. In 1918, the average time to complete the connection for a long-distance call was 15 minutes.

Early manual switchboards required the operator to operate listening keys and ringing keys, but by the late 1910s and 1920s, advances in switchboard technology led to features which allowed the call to be automatically answered immediately as the operator inserted the answering cord, and ringing would automatically begin as soon as the operator inserted the ringing cord into the called party's jack. The operator would be disconnected from the circuit, allowing them to handle another call, while the caller heard an audible ringback signal, so that that operator would not have to periodically report that they was continuing to ring the line.

In the ringdown method, the originating operator called another intermediate operator who would call the called subscriber, or passed it on to another intermediate operator. This chain of intermediate operators could complete the call only if intermediate trunk lines were available between all the centers at the same time. In 1943 when military calls had priority, a cross-country US call might take as long as 2 hours to request and schedule in cities that used manual switchboards for toll calls.

On March 10, 1891, Almon Brown Strowger, an undertaker in Kansas City, Missouri, patented the stepping switch, a device which led to the automation of telephone circuit switching. While there were many extensions and adaptations of this initial patent, the one best known consists of 10 levels or banks, each having 10 contacts arranged in a semicircle. When used with a rotary telephone dial, each pair of digits caused the shaft of the central contact "hand" of the stepping switch to first step (ratchet) up one level for each pulse in the first digit and then to swing horizontally in a contact row with one small rotation for each pulse in the next digit.

Later stepping switches were arranged in banks, the first stage of which was a linefinder. If one of up to a hundred subscriber lines (two hundred lines in later linefinders) had the receiver lifted "off hook", a linefinder connected the subscriber's line to a free first selector, which returned the subscriber a dial tone to show that it was ready to receive dialled digits. The subscriber's dial pulsed at about 10 pulses per second, although the speed depended on the standard of the particular telephone administration.

Exchanges based on the Strowger switch were eventually challenged by other exchange types and later by crossbar technology. These exchange designs promised faster switching and would accept inter-switch pulses faster than the Strowger's typical 10 pps—typically about 20 pps. At a later date many also accepted DTMF "touch tones" or other tone signaling systems.

A transitional technology (from pulse to DTMF) had converters to convert DTMF to pulse, to feed to older Strowger, panel, or crossbar switches. This technology was used as late as mid-2002.

Terminology

Many terms used in telecommunication technology differ in meaning and usage among the various English speaking regions. For the purpose of this article the following definitions are made:

  • Manual service is telephone service in which a human telephone operator routes calls as instructed by a subscriber with a telephone set that does not have a dial.
  • Dial service is when an exchange routes calls by interpreting subscriber-dialed digits.
  • A telephone switch is the switching equipment of an exchange.
  • A wire center is the area served by a particular switch or central office.
  • A concentrator is a device that concentrates traffic, be it remote or co-located with the switch.
  • An off-hook condition represents a circuit that is in use, e.g., when a telephone call is in progress.
  • An on-hook condition represents an idle circuit, i.e. no telephone call is in progress.

A central office originally was a primary exchange in a city with other exchanges service parts of the area. The term became to mean any switching system including its facilities and operators. It is also used generally for the building that houses switching and related inside plant equipment. In United States telecommunication jargon, a central office (C.O.) is a common carrier switching center Class 5 telephone switch in which trunks and local loops are terminated and switched. In the UK, a telephone exchange means an exchange building, and is also the name for a telephone switch.

Manual service exchanges

1924 PBX switchboard

With manual service, the customer lifts the receiver off-hook and asks the operator to connect the call to a requested number. Provided that the number is in the same central office, and located on the operator's switchboard, the operator connects the call by plugging the ringing cord into the jack corresponding to the called customer's line. If the called party's line is on a different switchboard in the same office, or in a different central office, the operator plugs into the trunk for the destination switchboard or office and asks the operator answering (known as the "B" operator) to connect the call.

Most urban exchanges provided common-battery service, meaning that the central office provided power to the subscriber telephone circuits for operation of the transmitter, as well as for automatic signaling with rotary dials. In common-battery systems, the pair of wires from a subscriber's telephone to the exchange carry 48V (nominal) DC potential from the telephone company end across the conductors. The telephone presents an open circuit when it is on-hook or idle.

When a subscriber's phone is off-hook, it presents an electrical resistance across the line which causes current to flow through the telephone and wires to the central office. In a manually operated switchboard, this current flowed through a relay coil, and actuated a buzzer or a lamp on the operator's switchboard, signaling the operator to perform service.

In the largest cities, it took many years to convert every office to automatic equipment, such as a panel switch. During this transition period, once numbers were standardized to the 2L-4N or 2L-5N format (two-letter exchange name and either four or five digits), it was possible to dial a number located in a manual exchange and be connected without requesting operator assistance. The policy of the Bell System stated that customers in large cities should not need to be concerned with the type of office, whether they were calling a manual or an automatic office.

When a subscriber dialed the number of a manual station, an operator at the destination office answered the call after seeing the number on an indicator, and connected the call by plugging a cord into the outgoing circuit and ringing the destination station. For example, if a dial customer calling from TAylor 4725 dialed a number served by a manual exchange, e.g., ADams 1383-W, the call was completed, from the subscriber's perspective, exactly as a call to LEnnox 5813, in an automated exchange. The party line letters W, R, J, and M were only used in manual exchanges with jack-per-line party lines.

Montreal telephone exchange (c. 1895)

In contrast to the listing format MAin 1234 for an automated office with two capital letters, a manual office, having listings such as Hillside 834 or East 23, was recognizable by the format in which the second letter was not capitalized.

Rural areas, as well as the smallest towns, had manual service and signaling was accomplished with magneto telephones, which had a crank for the signaling generator. To alert the operator, or another subscriber on the same line, the subscriber turned the crank to generate ringing current. The switchboard responded by interrupting the circuit, which dropped a metal tab above the subscriber's line jack and sounded a buzzer. Dry cell batteries, normally two large N°. 6 cells in the subscriber's telephone, provided the direct current for the transmitter. Such magneto systems were in use in the US as late as 1983, as in the small town, Bryant Pond, Woodstock, Maine.

Many small town magneto systems featured party lines, anywhere from two to ten or more subscribers sharing a single line. When calling a party, the operator used code ringing, a distinctive ringing signal sequence, such as two long rings followed by one short ring. Everyone on the line could hear the signals, and could pick up and monitor other people's conversations.

Early automatic exchanges

A rural telephone exchange building in Australia

Automatic exchanges, which provided dial service, were invented by Almon Strowger in 1888. First used commercially in 1892, they did not gain widespread use until the first decade of the 20th century. They eliminated the need for human switchboard operators who completed the connections required for a telephone call. Automation replaced human operators with electromechanical systems, and telephones were equipped with a dial by which a caller transmitted the destination telephone number to the automatic switching system.

A telephone exchange automatically senses an off-hook condition of the telephone when the user removes the handset from the switchhook or cradle. The exchange provides dial tone at that time to indicate to the user that the exchange is ready to receive dialed digits. The pulses or DTMF tones generated by the telephone are processed and a connection is established to the destination telephone within the same exchange or to another distant exchange.

The exchange maintains the connection until one of the parties hangs up. This monitoring of connection status is called supervision. Additional features, such as billing equipment, may also be incorporated into the exchange.

The Bell System dial service implemented a feature called automatic number identification (ANI) which facilitated services like automated billing, toll-free 800-numbers, and 9-1-1 service. In manual service, the operator knows where a call is originating by the light on the switchboard jack field. Before ANI, long-distance calls were placed into an operator queue and the operator asked the calling party's number and recorded it on a paper toll ticket.

Early exchanges were electromechanical systems using motors, shaft drives, rotating switches and relays. Some types of automatic exchanges were the Strowger switch or step-by-step switch, All Relay, panel switch, Rotary system and the crossbar switch.

Electromechanical signaling

Circuits interconnecting switches are called trunks. Before Signalling System 7, Bell System electromechanical switches in the United States originally communicated with one another over trunks using a variety of DC voltages and signaling tones, replaced today by digital signals.

Some signaling communicated dialed digits. An early form called Panel Call Indicator Pulsing used quaternary pulses to set up calls between a panel switch and a manual switchboard. Probably the most common form of communicating dialed digits between electromechanical switches was sending dial pulses, equivalent to a rotary dial's pulsing, but sent over trunk circuits between switches.

In Bell System trunks, it was common to use 20 pulse-per-second between crossbar switches and crossbar tandems. This was twice the rate of Western Electric/Bell System telephone dials. Using the faster pulsing rate made trunk utilization more efficient because the switch spent half as long listening to digits. DTMF was not used for trunk signaling.

Multi-frequency (MF) was the last of the pre-digital methods. It used a different set of tones sent in pairs like DTMF. Dialing was preceded by a special keypulse (KP) signal and followed by a start (ST). Variations of the Bell System MF tone scheme became a CCITT standard. Similar schemes were used in the Americas and in some European countries including Spain. Digit strings between switches were often abbreviated to further improve utilization.

For example, one switch might send only the last four or five digits of a telephone number. In one case, seven digit numbers were preceded by a digit 1 or 2 to differentiate between two area codes or office codes, (a two-digit-per-call savings). This improved revenue per trunk and reduced the number of digit receivers needed in a switch. Every task in electromechanical switches was done in big metallic pieces of hardware. Every fractional second cut off of call set up time meant fewer racks of equipment to handle call traffic.

Examples of signals communicating supervision or call progress include E and M signaling, SF signaling, and robbed-bit signaling. In physical (not carrier) E and M trunk circuits, trunks were four wire. Fifty trunks would require a hundred pair cable between switches, for example. Conductors in one common circuit configuration were named tip, ring, ear (E) and mouth (M). Tip and ring were the voice-carrying pair, and named after the tip and ring on the three conductor cords on the manual operator's console.

In two-way trunks with E and M signaling, a handshake took place to prevent both switches from colliding by dialing calls on the same trunk at the same time. By changing the state of these leads from ground to −48 volts, the switches stepped through a handshake protocol. Using DC voltage changes, the local switch would send a signal to get ready for a call and the remote switch would reply with an acknowledgment (a wink) to go ahead with dial pulsing. This was done with relay logic and discrete electronics.

These voltage changes on the trunk circuit would cause pops or clicks that were audible to the subscriber as the electrical handshaking stepped through its protocol. Another handshake, to start timing for billing purposes, caused a second set of clunks when the called party answered.

A second common form of signaling for supervision was called single-frequency or SF signaling. The most common form of this used a steady 2,600 Hz tone to identify a trunk as idle. Trunk circuitry hearing a 2,600 Hz tone for a certain duration would go idle. (The duration requirement reduced falsing.) Some systems used tone frequencies over 3,000 Hz, particularly on SSB frequency-division multiplex microwave radio relays.

On T-carrier digital transmission systems, bits within the T-1 data stream were used to transmit supervision. By careful design, the appropriated bits did not change voice quality appreciably. Robbed bits were translated to changes in contact states (opens and closures) by electronics in the channel bank hardware. This allowed direct current E and M signaling, or dial pulses, to be sent between electromechanical switches over a digital carrier which did not have DC continuity.

Noise

Bell System installations typically had alarm bells, gongs, or chimes to announce alarms calling attention to a failed switch element. A trouble reporting card system was connected to switch common control elements. These trouble reporting systems punctured cardboard cards with a code that logged the nature of a failure.

Maintenance tasks

Manual test board in an electromechanical switching office staffed by a technician

Electromechanical switching systems required sources of electricity in form of direct current (DC), as well as alternating ring current (AC), which were generated on-site with mechanical generators. In addition, telephone switches required adjustment of many mechanical parts. Unlike modern switches, a circuit connecting a dialed call through an electromechanical switch had DC continuity within the local exchange area via metallic conductors.

The design and maintenance procedures of all systems involved methods to avoid that subscribers experienced undue changes in the quality of the service or that they noticed failures. A variety of tools referred to as make-busys were plugged into electromechanical switch elements upon failure and during repairs. A make-busy identified the part being worked on as in-use, causing the switching logic to route around it. A similar tool was called a TD tool. Delinquent subscribers had their service temporarily denied (TDed). This was effected by plugging a tool into the subscriber's office equipment on Crossbar systems or line group in step-by-step switches. The subscriber could receive calls but could not dial out.

Strowger-based, step-by-step offices in the Bell System required continuous maintenance, such as cleaning. Indicator lights on equipment bays alerted staff to conditions such as blown fuses (usually white lamps) or a permanent signal (stuck off-hook condition, usually green indicators). Step offices were more susceptible to single-point failures than newer technologies.

Crossbar offices used more shared, common control circuits. For example, a digit receiver (part of an element called an Originating Register) would be connected to a call just long enough to collect the subscriber's dialed digits. Crossbar architecture was more flexible than step offices. Later crossbar systems had punch-card-based trouble reporting systems. By the 1970s, automatic number identification had been retrofitted to nearly all step-by-step and crossbar switches in the Bell System.

Electronic switches

Electronic switching systems gradually evolved in stages from electromechanical hybrids with stored program control to the fully digital systems. Early systems used reed relay-switched metallic paths under digital control. Equipment testing, phone numbers reassignments, circuit lockouts and similar tasks were accomplished by data entry on a terminal.

Examples of these systems included the Western Electric 1ESS switch, Northern Telecom SP1, Ericsson AXE, Automatic Electric EAX-1 & EAX-2, Philips PRX/A, ITT Metaconta, British GPO/BT TXE series and several other designs were similar. Ericsson also developed a fully computerized version of their ARF crossbar exchange called ARE. These used a crossbar switching matrix with a fully computerized control system and provided a wide range of advanced services. Local versions were called ARE11 while tandem versions were known as ARE13. They were used in Scandinavia, Australia, Ireland and many other countries in the late 1970s and into the 1980s when they were replaced with digital technology.

These systems could use the old electromechanical signaling methods inherited from crossbar and step-by-step switches. They also introduced a new form of data communications: two 1ESS exchanges could communicate with one another using a data link called Common Channel Interoffice Signaling, (CCIS). This data link was based on CCITT 6, a predecessor to SS7. In European systems R2 signalling was normally used.

Digital switches

A typical satellite PABX with front cover removed

First concepts of digital switching and transmission were developed by various labs in the United States and in Europe starting in the 1930s. The first prototype digital switch was developed by Bell Labs as part of the ESSEX project while the first true digital exchange to be combined with digital transmission systems was designed by LCT (Laboratoire Central de Telecommunications) in Paris. The first digital switch to be placed into a public network in England was the Empress Exchange in London which was designed by the General Post Office research labs. It was a tandem switch that connected three Strowger exchanges. The first commercial roll-out of a fully digital local switching system was Alcatel's E10 system which began serving customers in Brittany in Northwestern France in 1972.

Prominent examples of digital switches include:

  • Ericsson's AXE telephone exchange is the most widely used digital switching platform in the world and can be found throughout Europe and in most countries around the world. It is also very popular in mobile applications. This highly modular system was developed in Sweden in the 1970s as a replacement for the very popular range of Ericsson crossbar switches ARF, ARM, ARK and ARE used by many European networks from the 1950s onwards.
  • Alcatel-Lucent inherited three of the world's most iconic digital switching systems : Alcatel E10, 1000-S12, and the Western Electric 5ESS.
Alcatel developed the E10 system in France during the late 1960s and 1970s. This widely used family of digital switches was one of the earliest TDM switches to be widely used in public networks. Subscribers were first connected to E10A switches in France in 1972. This system is used in France, Ireland, China, and many other countries. It has been through many revisions and current versions are even integrated into all-IP networks.
Alcatel also acquired ITT System 12 which when it bought ITT's European operations. The S12 system and E10 systems were merged into a single platform in the 1990s. The S12 system is used in Germany, Italy, Australia, Belgium, China, India, and many other countries around the world.
Finally, when Alcatel and Lucent merged, the company acquired Lucent's 5ESS and 4ESS systems used throughout the United States of America and in many other countries.
  • Nokia Siemens Networks EWSD originally developed by Siemens, Bosch and DeTeWe [de] for the German market is used throughout the world.
  • Nortel then Genband, and now Ribbon Communications DMS100 and other versions are very popular with operators all over the world.
  • GTD-5 EAX developed by GTE Automatic Electric, the GTD-5 was acquired by Lucent which became Alcatel-Lucent, which then became Nokia
  • NEC NEAX used in Japan, New Zealand and many other countries.
  • Marconi System X originally developed by the British Post Office (later BT), GEC, Plessey and STC, is a type of digital exchange used by BT Group in the UK public telephone network.
A digital exchange (Nortel DMS-100) used by an operator to offer local and long-distance services in France. Each switch typically serves 10,000–100,000+ subscribers depending on the geographic area

Digital switches encode the speech going on, in 8,000 time slices per second. (A sampling rate of 8khz). At each time slice, a digital PCM representation of the sound is made. The digital PCM signals are then sent to the receiving end of the line, where the reverse process occurs using a DAC (digital-to-analog converter), to produce the sound for the receiving phone. In other words, when someone uses a telephone, the speaker's voice is "encoded" using PCM for switching then reconstructed for the person on the other end. The speaker's voice is delayed in the process by a small fraction of one second — it is not "live", it is reconstructed — delayed only minutely.

Individual local loop telephone lines are connected to a remote concentrator. In many cases, the concentrator is co-located in the same building as the switch. The interface between remote concentrators and telephone switches has been standardised by ETSI as the V5 protocol. Concentrators are used because most telephones are idle most of the day, hence the traffic from hundreds or thousands of them may be concentrated into only tens or hundreds of shared connections.

Some telephone switches do not have concentrators directly connected to them, but rather are used to connect calls between other telephone switches. These complex machines are referred to as "carrier-level" switches or tandem switches.

Some telephone exchange buildings in small towns house only remote or satellite switches, and are homed upon a "parent" switch, usually several kilometres away. The remote switch is dependent on the parent switch for routing. Unlike a digital loop carrier, a remote switch can route calls between local phones itself, without using trunks to the parent switch.

Map of wire center locations in the US
Map of central office locations in the US

The switch's place in the network

Telephone switches are a small component of a large network. A major part, in terms of expense, maintenance, and logistics of the telephone system is outside plant, which is the wiring outside the central office. While many subscribers were served with party-lines in the middle of the 20th century, it was the goal that each subscriber telephone station were connected to an individual pair of wires from the switching system.

A typical central office may have tens of thousands of pairs of wires that appear on terminal blocks called the main distribution frame (MDF). A component of the MDF is protection: fuses or other devices that protect the switch from lightning, shorts with electric power lines, or other foreign voltages. In a typical telephone company, a large database tracks information about each subscriber pair and the status of each jumper. Before computerization of Bell System records in the 1980s, this information was handwritten in pencil in accounting ledger books.

To reduce the expense of outside plant, some companies use "pair gain" devices to provide telephone service to subscribers. These devices are used to provide service where existing copper facilities have been exhausted or by siting in a neighborhood, can reduce the length of copper pairs, enabling digital services such as Integrated Services Digital Network (ISDN) or digital subscriber line (DSL).

Pair gain or digital loop carriers (DLCs) are located outside the central office, usually in a large neighborhood distant from the CO. DLCs are often referred to as Subscriber Loop Carriers (SLCs), after a Lucent proprietary product.

DLCs can be configured as universal (UDLCs) or integrated (IDLCs). Universal DLCs have two terminals, a central office terminal (COT) and a remote terminal (RT), that function similarly. Both terminals interface with analog signals, convert to digital signals, and transport to the other side where the reverse is performed.

Sometimes, the transport is handled by separate equipment. In an Integrated DLC, the COT is eliminated. Instead, the RT is connected digitally to equipment in the telephone switch. This reduces the total amount of equipment required.

Switches are used in both local central offices and in long distance centers. There are two major types in the Public switched telephone network (PSTN), the Class 4 telephone switches designed for toll or switch-to-switch connections, and the Class 5 telephone switches or subscriber switches, which manage connections from subscriber telephones. Since the 1990s, hybrid Class 4/5 switching systems that serve both functions have become common.

Another element of the telephone network is time and timing. Switching, transmission and billing equipment may be slaved to very high accuracy 10 MHz standards which synchronize time events to very close intervals. Time-standards equipment may include Rubidium- or Caesium-based standards and a Global Positioning System receiver.

Switch design

Long-distance switches may use a slower, more efficient switch-allocation algorithm than local central offices, because they have near 100% utilization of their input and output channels. Central offices have more than 90% of their channel capacity unused.

Traditional telephone switches connected physical circuits (e.g., wire pairs) while modern telephone switches use a combination of space- and time-division switching. In other words, each voice channel is represented by a time slot (say 1 or 2) on a physical wire pair (A or B). In order to connect two voice channels (say A1 and B2) together, the telephone switch interchanges the information between A1 and B2. It switches both the time slot and physical connection. To do this, it exchanges data between the time slots and connections 8,000 times per second, under control of digital logic that cycles through electronic lists of the current connections. Using both types of switching makes a modern switch far smaller than either a space or time switch could be by itself.

The structure of a switch is an odd number of layers of smaller, simpler subswitches. Each layer is interconnected by a web of wires that goes from each subswitch, to a set of the next layer of subswitches. In some designs, a physical (space) switching layer alternates with a time switching layer. The layers are symmetric, because in a telephone system callers can also be called. Other designs use time-switching only, throughout the switch.

A time-division subswitch reads a complete cycle of time slots into a memory, and then writes it out in a different order, also under control of a cyclic computer memory. This causes some delay in the signal.

A space-division subswitch switches electrical paths, often using some variant of a nonblocking minimal spanning switch, or a crossover switch.

Fault tolerance

Composite switches are inherently fault-tolerant. If a subswitch fails, the controlling computer can sense the failure during a periodic test. The computer marks all the connections to the subswitch as "in use". This prevents new calls, and does not interrupt established calls. As established calls end, the subswitch becomes unused, and can be repaired. When the next test succeeds, the switch returns to full operation.

To prevent frustration with unsensed failures, all the connections between layers in the switch are allocated using first-in-first-out lists (queues). As a result, if a connection is faulty or noisy and the customer hangs up and redials, they will get a different set of connections and subswitches. A last-in-first-out (stack) allocation of connections might cause a continuing string of very frustrating failures.

Fire and disaster recovery

Second Avenue exchange, NYC, site of the 1975 New York Telephone Exchange fire.
A central exchange is almost always a single point of failure for local calls. As the capacity of individual switches and the optical fibre which interconnects them increases, potential disruption caused by destruction of one local office will only be magnified. Multiple fibre connections can be used to provide redundancy to voice and data connections between switching centres, but careful network design is required to avoid situations where a main fibre and its backup both go through the same damaged central office as a potential common mode failure.

History of the telephone

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/History_of_the_telephone
Actor portraying Alexander Graham Bell in a 1932 silent film. Shows Bell's second telephone transmitter (microphone), invented 1876 and first displayed at the Centennial Exposition, Philadelphia.

This history of the telephone chronicles the development of the electrical telephone, and includes a brief overview of its predecessors. The first telephone patent was granted to Alexander Graham Bell in 1869.

Mechanical acoustic devices

A 19th century acoustic tin can or "lovers' telephone"

Before the invention of electromagnetic telephones, mechanical acoustic devices existed for transmitting speech and music over a greater distance. This distance was greater than that of normal direct speech. The earliest mechanical telephones were based on sound transmission through pipes or other physical media. The acoustic tin can telephone, or "lovers' phone", has been known for centuries. It connects two diaphragms with a taut string or wire, which transmits sound by mechanical vibrations from one to the other along the wire (and not by a modulated electric current). The classic example is the children's toy made by connecting the bottoms of two paper cups, metal cans, or plastic bottles with tautly held string.

Some of the earliest known experiments were conducted by the British physicist and polymath, Robert Hooke, from 1664 to 1685. An acoustic string phone made in 1667 has been attributed to him. An early version was also found in use by the Chimu in Peru. The gourd and stretched-hide version resides in the Smithsonian Museum collection and dates back to around the 7th century AD.

For a few years in the late 1800s, acoustic telephones were marketed commercially as a competitor to the electrical telephone. When the Bell telephone patents expired and many new telephone manufacturers began competing, acoustic telephone makers quickly went out of business. Their maximum range was very limited. An example of one such company was the Pulsion Telephone Supply Company created by Lemuel Mellett in Massachusetts, which designed its version in 1888 and deployed it on railroad right-of-ways.

Additionally, speaking tubes have long been common, especially within buildings and aboard ships, and they are still in use today.

Electrical devices

The telephone emerged from the making and successive improvements of the electrical telegraph. In 1804, Spanish polymath and scientist Francisco Salva Campillo constructed an electrochemical telegraph. The first working telegraph was built by the English inventor Francis Ronalds in 1816 and used static electricity. An electromagnetic telegraph was created by Baron Schilling in 1832. Carl Friedrich Gauss and Wilhelm Weber built another electromagnetic telegraph in 1833 in Göttingen. At the University of Göttingen, the two had been working together in the field of magnetism. They built the first telegraph to connect the observatory and the Institute of physics, which was able to send eight words per minute.

Bell prototype telephone stamp
Centennial Issue of 1976

The electrical telegraph was first commercialized by Sir William Fothergill Cooke and entered use on the Great Western Railway in England. It ran for 13 mi (21 km) from Paddington station to West Drayton and came into operation on April 9, 1839.

Another electrical telegraph was independently developed and patented in the United States in 1837 by Samuel Morse. His assistant, Alfred Vail, developed the Morse code signaling alphabet with Morse. America's first telegraph was sent by Morse on January 6, 1838, across 2 miles (3 km) of wiring.

Invention of the telephone

Credit for the invention of the electric telephone is frequently disputed, and new controversies over the issue have arisen from time to time. Antonio Meucci, Alexander Graham Bell, and Elisha Gray amongst others, have all been credited with the telephone's invention. The early history of the telephone became and still remains a confusing morass of claims and counterclaims, which were not clarified by the huge number of lawsuits filed in order to resolve the patent claims of the many individuals and commercial competitors. The Bell and Edison patents, however, were commercially decisive, because they dominated telephone technology and were upheld by court decisions in the United States.

The master telephone patent granted to Bell, 174465, March 10, 1876

The modern telephone is the result of the work of many people. Alexander Graham Bell was, however, the first to patent the telephone, as an "apparatus for transmitting vocal or other sounds telegraphically". Bell has most often been credited as the inventor of the first practical telephone. Johann Philipp Reis coined the term "telephon". Models of it were sent abroad, to London, Dublin, Tiflis, and other places. It became a subject for popular lectures, and an article for scientific cabinets. Edison credited him as the "first inventor of the telephone." The Italian inventor and businessman Antonio Meucci has been recognized by the U.S. House of Representatives for his contributory work on the telephone. Several other controversies also surround the question of priority of invention for the telephone.

The Elisha Gray and Alexander Bell telephone controversy considers the question of whether Bell and Gray invented the telephone independently and, if not, whether Bell stole the invention from Gray. This controversy is narrower than the broader question of who deserves credit for inventing the telephone, for which there are several claimants.

The Canadian Parliamentary Motion on Alexander Graham Bell article reviews the controversial June 2002 United States House of Representatives resolution recognizing Meucci's contributions 'in' the invention of the telephone (not 'for' the invention of the telephone). The same resolution was not passed in the U.S. Senate, thus labeling the House resolution as "political rhetoric". A subsequent counter-motion was unanimously passed in Canada's Parliament 10 days later which declared Bell its inventor. This webpage examines critical aspects of both the parliamentary motion and the congressional resolution.

Telephone exchange

The main users of the electrical telegraph were post offices, railway stations, the more important governmental centers (ministries), stock exchanges, very few nationally distributed newspapers, the largest internationally important corporations, and wealthy individuals.

Telegraph exchanges worked mainly on a store and forward basis. Although telephones devices were in use before the invention of the telephone exchange, their success and economical operation would have been impossible with the schema and structure of the contemporary telegraph systems.

Prior to the invention of the telephone switchboard, pairs of telephones were connected directly with each other, which was primarily useful for connecting a home to the owner's business (They practically functioned as a primitive intercom). A telephone exchange provides telephone service for a small area. Either manually by operators, or automatically by machine switching equipment, it interconnects individual subscriber lines for calls made between them. This made it possible for subscribers to call each other at homes, businesses, or public spaces. These made telephones an available and comfortable communication tool for many purposes, and it gave the impetus for the creation of a new industrial sector.

The telephone exchange was an idea of the Hungarian engineer Tivadar Puskás (1844–1893) in 1876, while he was working for Thomas Edison on a telegraph exchange. The first commercial telephone exchange was opened at New Haven, Connecticut, with 21 subscribers on 28 January 1878, in a storefront of the Boardman Building in New Haven, Connecticut. George W. Coy designed and built the world's first switchboard for commercial use. Coy was inspired by Alexander Graham Bell's lecture at the Skiff Opera House in New Haven on 27 April 1877.

In Bell's lecture, during which a three-way telephone connection with Hartford and Middletown, Connecticut, was demonstrated, he first discussed the idea of a telephone exchange for the conduct of business and trade. On 3 November 1877, Coy applied for and received a franchise from the Bell Telephone Company for New Haven and Middlesex Counties. Coy, along with Herrick P. Frost and Walter Lewis, who provided the capital, established the District Telephone Company of New Haven on 15 January 1878.

The switchboard built by Coy was, according to one source, constructed of "carriage bolts, handles from teapot lids and bustle wire." According to the company records, all the furnishings of the office, including the switchboard, were worth less than forty dollars. While the switchboard could connect as many as sixty-four customers, only two conversations could be handled simultaneously and six connections had to be made for each call.

The District Telephone Company of New Haven went into operation with only twenty-one subscribers, who paid $1.50 per month. By 21 February 1878, however, when the first telephone directory was published by the company, fifty subscribers were listed. Most of these were businesses and listings such as physicians, the police, and the post office; only eleven residences were listed, four of which were for persons associated with the company.

The New Haven District Telephone Company grew quickly and was reorganized several times in its first years. By 1880, the company had the right from the Bell Telephone Company to service all of Connecticut and western Massachusetts. As it expanded, the company was first renamed Connecticut Telephone, and then Southern New England Telephone in 1882. The site of the first telephone exchange was granted a designation as a National Historic Landmark on 23 April 1965. However it was withdrawn in 1973 in order to demolish the building and construct a parking garage.

Early telephone developments

The following is a brief summary of the history of the development of the telephone:

Antonio Meucci's telephone.
A French Gower telephone of 1912 at the Musée des Arts et Métiers in Paris
  • Early 7th century AD - Chimu culture in Peru invents a string telephone using gourds and stretched hide. The original artifact is in the Smithsonian's National Museum of the American Indian storage facility in Suitland, Maryland.
  • 1667: Robert Hooke invents a string telephone that conveys sounds over an extended wire by mechanical vibrations. It was to be termed an 'acoustic' or 'mechanical' (non-electrical) telephone.
  • 1753: Charles Morrison proposes the idea that electricity can be used to transmit messages, by using different wires for each letter.
  • 1844: Innocenzo Manzetti first moots the idea of a "speaking telegraph" (telephone).
  • 1854: Charles Bourseul writes a memorandum on the principles of the telephone. (See the article: "Transmission électrique de la parole", L'Illustration, Paris, 26 August 1854.)
  • 2nd of June, 1854: Antonio Meucci demonstrates an electric voice-operated device in New York; exactly what kind of device he demonstrates is unknown.
  • 1861: Philipp Reis constructs the first speech-transmitting telephone
  • 28 December 1871: Antonio Meucci files a patent caveat (No. 3353, a notice of intent to invent, but not a formal patent application) at the U.S. Patent Office for a device he names a "Sound Telegraph".
  • 1872: Elisha Gray establishes Western Electric Manufacturing Company.
  • 1 July 1875: Bell uses a bi-directional "gallows" telephone that is able to transmit "voicelike sounds", but not clear speech. Both the transmitter and the receiver are identical membrane electromagnet instruments.
  • 1875: Thomas Edison experiments with acoustic telegraphy and in November builds an electro-dynamic receiver, but does not exploit it.
  • 1875: Hungarian Tivadar Puskás (the inventor of the telephone exchange) arrives in the USA.
  • 6 April 1875: Bell's U.S. Patent 161,739 "Transmitters and Receivers for Electric Telegraphs" is granted. This uses multiple vibrating steel reeds in make-break circuits, and the concept of multiplexed frequencies.
  • 20 January 1876: Bell signs and notarizes his patent application for the telephone.
  • 11 February 1876: Elisha Gray designs a liquid transmitter for use with a telephone, but does not build one.
  • 7 March 1876: Bell's U.S. patent No. 174,465 for the telephone is granted.
  • 10 March 1876: Bell transmits the sentence: "Mr. Watson, come here! I want to see you!" using a liquid transmitter and an electromagnetic receiver.
  • 10 August 1876: Using the telegraph line between Brantford and Paris, Ontario, eight miles (thirteen kilometres) distant, Bell makes a telephone call, said by some to be the "world's first long-distance call".
  • 30 January 1877: Bell's U.S. patent No. 186,787 is granted for an electromagnetic telephone using permanent magnets, iron diaphragms, and a call bell.
  • 27 April 1877: Edison files for a patent on a carbon (graphite) transmitter. Patent No. 474,230 is granted on 3 May 1892, after a 15-year delay because of litigation. Edison is later granted patent No. 222,390 for a carbon granules transmitter in 1879.
  • 6 October 1877: Scientific American publishes the invention from Bell—at that time still without a ringer.
  • 25 October 1877: the article in Scientific American is discussed at the Telegraphenamt in Berlin
  • 12 November 1877: The first commercial telephone company enters telephone business in Friedrichsberg close to Berlin using the Siemens pipe as ringer and telephone devices built by Siemens.
  • 1877: The first experimental Telephone Exchange is established in Boston.
  • 1877: First long-distance telephone line
  • 1877: Emile Berliner invents the telephone transmitter.
  • 14 January 1878: Bell demonstrates the telephone to Queen Victoria and makes the first publicly witnessed long-distance calls in the UK. The queen tries the device and finds it to be "quite extraordinary".
  • 26 January 1878: The first permanent telephone connection in the UK is made between two businesses in Manchester
  • 28 January 1878: The first commercial US telephone exchange opens in New Haven, Connecticut.
  • 15 June 1878: The first commercial toll line enters operation, connecting Springfield and Holyoke, Massachusetts
  • 1887: Tivadar Puskás introduces the multiplex switchboard, that has an epochal significance in the further development of telephone exchanges.
  • 1915: The first U.S. coast-to-coast long-distance telephone call, is ceremonially inaugurated by A.G. Bell in New York City and his former assistant Thomas Augustus Watson in San Francisco, California.
  • 1927: The first transatlantic phone call is made, from the United States to the United Kingdom.

Early commercial instruments

1917 wall telephone, open to show magneto and local battery

Early telephones were technically diverse. Some of them used liquid transmitters which soon went out of use. Others were dynamic: their diaphragms vibrated a coil of wire in the field of a permanent magnet or vice versa. Such sound-powered telephones survived in small numbers through the 20th century in military and maritime applications where the ability to create its own electrical power was crucial. Most, however, used Edison/Berliner carbon transmitters, which were much louder than the other kinds, even though they required induction coils, actually acting as impedance matching transformers to make it compatible to the line impedance. The Edison patents kept the Bell monopoly viable into the 20th century, by which time telephone networks were more important than the instrument.

Early telephones were locally powered by a dynamic transmitter. One of the jobs of outside plant personnel was to visit each telephone periodically to inspect the battery. During the 20th century, the "common battery" operation came to dominate, and was powered by the "talk battery" from the telephone exchange over the same wires that carried the voice signals. Late in the century, wireless handsets brought a revival of local battery power.

The earliest telephones had only one wire for transmitting and receiving of audio, and used a ground return path. The earliest dynamic telephones also had only one opening for sound, and the user listened and spoke into the same hole. Sometimes the instruments were operated in pairs at each end, making conversation more convenient but also more expensive.

Historical marker commemorating the first telephone central office in New York State (1878)

At first, telephones were leased in pairs to the subscriber, for example one for his home and one for his shop, and the subscriber had to arrange with telegraph contractors to construct a line between them. Users who wanted the ability to speak to three or four different shops, suppliers etc. would obtain and set up three or four pairs of telephones. Western Union, already using telegraph exchanges, quickly extended the principle to its telephones in New York City and San Francisco, and Bell was not slow in appreciating the potential.

Signaling began in an appropriately primitive manner. The user alerted the other end, or the exchange operator, by whistling into the transmitter. Exchange operation soon resulted in telephones being equipped with a bell, first operated over a second wire and later with the same wire using a condenser. Telephones connected to the earliest Strowger automatic exchanges had seven wires, one for the knife switch, one for each telegraph key, one for the bell, one for the push button and two for speaking.

Rural and other telephones that were not on a common battery exchange had hand cranked "magneto" generators to produce an alternating current to ring the bells of other telephones on the line and to alert the exchange operator.

In 1877 and 1878, Edison invented and developed the carbon microphone used in all telephones along with the Bell receiver until the 1980s. After protracted patent litigation, a federal court ruled in 1892 that Edison and not Emile Berliner was the inventor of the carbon microphone. The carbon microphone was also used in radio broadcasting and public address work through the 1920s.

1896 Telephone (Sweden)

In the 1890s a new smaller style of telephone was introduced, the candlestick telephone, and it was packaged in three parts. The transmitter stood on a stand, known as a "candlestick" for its shape. When not in use, the receiver hung on a hook with a switch in it, known as a "switchhook." Previous telephones required the user to operate a separate switch to connect either the voice or the bell. With the new kind, the user was less likely to leave the phone "off the hook". In phones connected to magneto exchanges, the bell, induction coil, battery, and magneto were in a separate bell box called a "ringer box." In phones connected to common battery exchanges, the ringer box was installed under a desk, or other out of the way place, since it did not need a battery or magneto.

Cradle designs were also used at this time, with a handle with the receiver and transmitter attached, separate from the cradle base that housed the magneto crank and other parts. They were larger than the "candlestick" and more popular.

Disadvantages of single-wire operation, such as crosstalk and hum from nearby AC power wires, had already led to the use of twisted pairs and, for long-distance telephones, four-wire circuits. Users at the beginning of the 20th century did not place long-distance calls from their own telephones but made an appointment to use a special sound-proofed long-distance telephone booth furnished with the latest technology.

Around 1893, the country leading the world in telephones per 100 persons—known as teledensity—was Sweden with 0.55 in the whole country but 4 in Stockholm (10,000 out of a total of 27,658 subscribers). This compares with 0.4 in the US for that year. Telephone service in Sweden developed through a variety of institutional forms: the International Bell Telephone Company (a U.S. multinational), town and village co-operatives, the General Telephone Company of Stockholm (a Swedish private company), and the Swedish Telegraph Department (part of the Swedish government). Since Stockholm consists of islands, telephone service offered relatively large advantages, but had to use submarine cables extensively. Competition between Bell Telephone and General Telephone, and later between General Telephone and the Swedish Telegraph Dept., was intense.

In 1893, the U.S. was considerably behind Sweden, New Zealand, Switzerland, and Norway in teledensity. The U.S. became the world leadership in teledensity with the rise of many independent telephone companies after the Bell patents expired in 1893 and 1894.

20th-century developments

Old Receiver schematic, c.1906
A German rotary dial telephone, the W48
Top of cellular telephone tower

By 1904, over three million phones were connected by manual switchboard exchanges in the U.S. By 1914, the U.S. was the world leader in telephone density and had more than twice the teledensity of Sweden, New Zealand, Switzerland, and Norway. The relatively good performance of the U.S. occurred despite competing telephone networks not interconnecting. On January 7, 1927, W. S. Gifford, president of the American Telephone & Telegraph Company, called Evelyn P. Murray to test the first commercial telephone line across the Atlantic Ocean.

What turned out to be the most popular and longest-lasting physical style of telephone was introduced in the early 20th century, including Bell's model 102 telephone. A carbon granule transmitter and electromagnetic receiver were united in a single molded plastic handle, which when not in use were placed in a cradle in the base unit. The circuit diagram of the model 102 shows the direct connection of the receiver to the line, while the transmitter was induction coupled, with energy supplied by a local battery. The coupling transformer, battery, and ringer were in a separate enclosure from the desk set. The rotary dial in the base interrupted the line current by repeatedly but very briefly disconnecting the line 1 to 10 times for each digit, and the hook switch (in the center of the circuit diagram) permanently disconnected the line and the transmitter battery while the handset was on the cradle.

Starting in the 1930s, the base of the telephone also enclosed its bell and induction coil, obviating the need for a separate ringer box. Power was supplied to each subscriber line by central-office batteries instead of the user's local battery, which required periodic service. For the next half century, the network behind the telephone grew progressively larger and much more efficient, and, after the rotary dial was added, the instrument itself changed little until Touch-Tone signaling started replacing the rotary dial in the 1960s.

The history of mobile phones can be traced back to two-way radios permanently installed in vehicles such as taxicabs, police cruisers, railroad trains, and the like. Later versions such as the so-called transportables or "bag phones" were equipped with a cigarette-lighter plug so that they could also be carried, and thus could be used as either mobile two-way radios or as portable phones by being patched into the telephone network.

In December 1947, Bell Labs engineers Douglas H. Ring and W. Rae Young proposed hexagonal cell transmissions for mobile phones. Philip T. Porter, also of Bell Labs, proposed that the cell towers be at the corners of the hexagons rather than the centers and have directional antennas that would transmit/receive in 3 directions (see picture at right) into 3 adjacent hexagon cells. The technology did not exist then and the radio frequencies had not yet been allocated. Cellular technology was undeveloped until the 1960s, when Richard H. Frenkiel and Joel S. Engel of Bell Labs developed the electronics.

Meanwhile, the 1956 inauguration of the TAT-1 cable and later international direct dialing were important steps in putting together the various continental telephone networks into a global network.

On 3 April 1973, Motorola manager Martin Cooper placed a cellular-phone call (in front of reporters) to Dr. Joel S. Engel, head of research at AT&T's Bell Labs. This began the era of the handheld cellular-mobile phone.

Cable-television companies began to use their fast-developing cable networks with ducting under the streets of the United Kingdom in the late 1980s to provide telephony services in association with major telephone companies. One of the early cable operators in the UK, Cable London, connected its first cable telephone customer in about 1990.

Digital telephone technology

The rapid development and wide adoption of pulse-code modulation (PCM) digital telephony was enabled by metal–oxide–semiconductor (MOS) technology. The MOS field-effect transistor (MOSFET) was invented by Mohamed M. Atalla and Dawon Kahng at Bell Telephone Laboratories in 1959, and the MOS integrated circuit (MOS IC) chip was proposed soon after, but MOS technology was initially overlooked by Bell because they did not find it practical for analog telephone applications, before it was commercialized by Fairchild and RCA for digital electronics such as computers. MOS technology eventually became practical for telephone applications with the MOS mixed-signal integrated circuit, which combines analog and digital signal processing on a single chip, developed by former Bell engineer David A. Hodges with Paul R. Gray at UC Berkeley in the early 1970s. In 1974, Hodges and Gray worked with R.E. Suarez to develop MOS switched capacitor (SC) circuit technology, which they used to develop the digital-to-analog converter (DAC) chip, using MOSFETs and MOS capacitors for data conversion. This was followed by the analog-to-digital converter (ADC) chip, developed by Gray and J. McCreary in 1975.

MOS SC circuits led to the development of PCM codec-filter chips in the late 1970s. The silicon-gate CMOS (complementary MOS) PCM codec-filter chip, developed by Hodges and W.C. Black in 1980, has since been the industry standard for digital telephony. By the 1990s, telecommunication networks such as the public switched telephone network (PSTN) had been largely digitized with very-large-scale integration (VLSI) CMOS PCM codec-filters, widely used in switching systems for telephone exchanges, private branch exchanges (PBX) and key telephone systems (KTS); user-end modems; data transmission applications such as digital loop carriers, pair gain multiplexers, telephone loop extenders, integrated services digital network (ISDN) terminals, digital cordless telephones and digital cell phones; and applications such as speech recognition equipment, voice data storage, voice mail and digital tapeless answering machines. The bandwidth of digital telecommunication networks has been rapidly increasing at an exponential rate, as observed by Edholm's law, largely driven by the rapid scaling and miniaturization of MOS technology.

The British companies Pye TMC, Marconi-Elliott and GEC developed the digital push-button telephone, based on MOS IC technology, in 1970. It was variously called the "MOS telephone", the "push-button telephone chip", and the "telephone on a chip". It used MOS IC logic, with thousands of MOSFETs on a chip, to convert the keypad input into a pulse signal. This made it possible for push-button telephones to be used with pulse dialing at most telephone exchanges. MOS telephone technology introduced a new feature: the use of MOS memory chips to store phone numbers, which could then be used for speed dialing at the push of a button. This was demonstrated in the United Kingdom by Pye TMC, Marcno-Elliot and GEC in 1970. Between 1971 and 1973, Bell combined MOS technology with touch-tone technology to develop a push-button MOS touch-tone phone called the "Touch-O-Matic" telephone, which could store up to 32 phone numbers. This was made possible by the low cost, low power requirements, small size and high reliability of MOSFETs, over 15,000 of which were contained on ten MOS IC chips, including one chip for logic, one for the keypad dial interface, and eight for memory.

Women's usage in the 20th century

Private conversation, 1910

The telephone was instrumental to modernization. It aided in the development of suburbs and the separation of homes and businesses, but also became a reason for the separation between women occupying the private sphere and men in the public sphere. Both historically and currently, women are predominantly responsible for the telephone calls that bridge the public and private sphere, such as calls regarding doctor's appointments and meetings.

21st-century developments

Internet Protocol (IP) telephony, also known as Internet telephony or Voice over Internet Protocol (VoIP), is a disruptive technology that is rapidly gaining ground against traditional telephone network technologies.

Apple iPhone smartphone

IP telephony uses a broadband Internet service to transmit conversations as data packets. In addition to replacing the traditional plain old telephone service (POTS) systems, IP telephony competes with mobile phone networks by offering free or lower cost service via WiFi hotspots. VoIP is also used on private wireless networks which may or may not have a connection to the outside telephone network.

Telecommunication of the 21st century has been dominated by the development of the smartphone. This is a combination of a hand-held computer, a cellular phone, a digital camera, and Internet access. One of its features is the touch screen that facilitates the primary interaction for users for most tasks, such as dialing telephone numbers. Some of its software features also include email communication, as well as audio and video playback and capture.

Personality theories of addiction

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Personality_theories_of_addiction ...