Search This Blog

Tuesday, January 13, 2015

Introduction to the mathematics of general relativity

From Wikipedia, the free encyclopedia

The mathematics of general relativity is complex. In Newton's theories of motion, an object's length and the rate at which time passes remain constant while the object accelerates, meaning that many problems in Newtonian mechanics may be solved by algebra alone. In relativity, however, an object's length and the rate at which time passes both change appreciably as the object's speed approaches the speed of light, meaning that more variables and more complicated mathematics is required to calculate the object's motion. As a result, relativity requires the use of concepts such as vectors, tensors, pseudotensors and curvilinear coordinates.
For an introduction based on the example of particles following circular orbits about a large mass, nonrelativistic and relativistic treatments are given in, respectively, Newtonian motivations for general relativity and Theoretical motivation for general relativity.

Vectors and tensors

Vectors

Illustration of a typical vector.

In mathematics, physics, and engineering, a Euclidean vector (sometimes called a geometric[1] or spatial vector,[2] or – as here – simply a vector) is a geometric object that has both a magnitude (or length) and direction. A vector is what is needed to "carry" the point A to the point B; the Latin word vector means "one who carries".[3] The magnitude of the vector is the distance between the two points and the direction refers to the direction of displacement from A to B. Many algebraic operations on real numbers such as addition, subtraction, multiplication, and negation have close analogues for vectors, operations which obey the familiar algebraic laws of commutativity, associativity, and distributivity.

Tensors

Stress, a second-order tensor. Stress is here shown as a series of vectors on each side of the box

A tensor extends the concept of a vector to additional dimensions. A scalar, that is, a simple set of numbers without direction, would be shown on a graph as a point, a zero-dimensional object. A vector, which has a magnitude and direction, would appear on a graph as a line, which is a one-dimensional object. A tensor extends this concept to additional dimensions. A two dimensional tensor would be called a second order tensor. This can be viewed as a set of related vectors, moving in multiple directions on a plane.

Applications

Vectors are fundamental in the physical sciences. They can be used to represent any quantity that has both a magnitude and direction, such as velocity, the magnitude of which is speed. For example, the velocity 5 meters per second upward could be represented by the vector (0, 5) (in 2 dimensions with the positive y axis as 'up'). Another quantity represented by a vector is force, since it has a magnitude and direction. Vectors also describe many other physical quantities, such as displacement, acceleration, momentum, and angular momentum. Other physical vectors, such as the electric and magnetic field, are represented as a system of vectors at each point of a physical space; that is, a vector field.

Tensors also have extensive applications in physics:

Dimensions

In general relativity, four-dimensional vectors, or four-vectors, are required. These four dimensions are length, height, width and time. A "point" in this context would be an event, as it has both a location and a time. Similar to vectors, tensors in relativity require four dimensions. One example is the Riemann curvature tensor.

Coordinate transformation

In physics, as well as mathematics, a vector is often identified with a tuple, or list of numbers, which depend on some auxiliary coordinate system or reference frame. When the coordinates are transformed, for example by rotation or stretching, then the components of the vector also transform. The vector itself has not changed, but the reference frame has, so the components of the vector (or measurements taken with respect to the reference frame) must change to compensate.

The vector is called covariant or contravariant depending on how the transformation of the vector's components is related to the transformation of coordinates.
  • Contravariant vectors are "regular vectors" with units of distance (such as a displacement) or distance times some other unit (such as velocity or acceleration). For example, in changing units from meters to millimeters, a displacement of 1 m becomes 1000 mm.
  • Covariant vectors, on the other hand, have units of one-over-distance (typically such as gradient). For example, in changing again from meters to millimeters, a gradient of 1 K/m becomes 0.001 K/mm.
Coordinate transformation is important because relativity states that there is no one correct reference point in the universe. On earth, we use dimensions like north, east, and elevation, which are used throughout the entire planet. There is no such system for space. Without a clear reference grid, it becomes more accurate to describe the four dimensions as towards/away, left/right, up/down and past/future. As an example event, take the signing of the Declaration of Independence. To a modern observer on Mount Rainier looking east, the event is ahead, to the right, below, and in the past. However, to an observer in medieval England looking north, the event is behind, to the left, neither up nor down, and in the future. The event itself has not changed, the location of the observer has.

Oblique axes

An oblique coordinate system is one in which the axes are not necessarily orthogonal to each other; that is, they meet at angles other than right angles. When using coordinate transformations as described above, the new coordinate system will often appear to have oblique axes compared to the old system.

Nontensors

A nontensor is a tensor-like quantity that behaves like a tensor in the raising and lowering of indices, but that does not transform like a tensor under a coordinate transformation. For example, Christoffel symbols cannot be tensors themselves if the coordinates don't change in a linear way.
In general relativity, one cannot describe the energy and momentum of the gravitational field by an energy–momentum tensor. Instead, one introduces objects that behave as tensors only with respect to restricted coordinate transformations. Strictly speaking, such objects are not tensors at all. A famous example of such a pseudotensor is the Landau–Lifshitz pseudotensor.

Curvilinear coordinates and curved spacetime

High-precision test of general relativity by the Cassini space probe (artist's impression): radio signals sent between the Earth and the probe (green wave) are delayed by the warping of space and time (blue lines) due to the Sun's mass. That is, the Sun's mass causes the regular grid coordinate system (in blue) to distort and have curvature. The radio wave then follows this curvature and moves toward the Sun.

Curvilinear coordinates are coordinates in which the angles between axes can change from point to point. This means that rather than having a grid of straight lines, the grid instead has curvature.
A good example of this is the surface of the Earth. While maps frequently portray north, south, east and west as a simple square grid, that is not in fact the case. Instead, the longitude lines running north and south are curved and meet at the north pole. This is because the Earth is not flat, but instead round.

In general relativity, gravity has curvature effects on the four dimensions of the universe. A common analogy is placing a heavy object on a stretched out rubber sheet, causing the sheet to bend downward. This curves the coordinate system around the object, much like an object in the universe curves the coordinate system it sits in. The mathematics here are conceptually more complex than on Earth, as it results in four dimensions of curved coordinates instead of three as used to describe a curved 2D surface.

Parallel transport

Example: Parallel displacement along a circle of a three-dimensional ball embedded in two dimensions. The circle of radius r is embedded in a two-dimensional space characterized by the coordinates z^1 and z^2. The circle itself is characterized by coordinates  y^1 and y^2 in the two-dimensional space. The circle itself is one-dimensional and can be characterized by its arc length x. The coordinate y is related to the coordinate x through the relation  y^1 = r \cos( x / r) and  y^2 = r \sin( x / r) . This gives  \partial y^1 / \partial x =  - \sin( x / r) and  \partial y^2 / \partial x = \cos( x / r). In this case the metric is a scalar and is given by  g =  \cos^2( x / r) + \sin^2(x/r) = 1. The interval is then  ds^2 = g \, dx^2 = dx^2. \,  The interval is just equal to the arc length as expected.

The interval in a high-dimensional space

In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their temporal separation. The interval, s2, between two events is defined as:

s^2 = \Delta r^2 - c^2\Delta t^2 \,   (spacetime interval),

where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s^2 above follows the space-like convention (−+++). The reason s^2 is called the interval and not s is that s^2 can be positive, zero or negative.
Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c^2 \Delta t^2) or the spatial separation (\Delta r^2) of the two events is greater: time-like, light-like or space-like.

Certain types of world lines are called geodesics of the spacetime – straight lines in the case of Minkowski space and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points.[4][5] The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.

The covariant derivative

The covariant derivative is a generalization of the directional derivative from vector calculus. As with the directional derivative, the covariant derivative is a rule, which takes as its inputs: (1) a vector, u, defined at a point P, and (2) a vector field, v, defined in a neighborhood of P. The output is the vector, also at the point P. The primary difference from the usual directional derivative is that must, in a certain precise sense, be independent of the manner in which it is expressed in a coordinate system.

Parallel transport

Given the covariant derivative, one can define the parallel transport of a vector v at a point P along a curve γ starting at P. For each point x of γ, the parallel transport of v at x will be a function of x, and can be written as v(x), where v(0) = v. The function v is determined by the requirement that the covariant derivative of v(x) along γ is 0. This is similar to the fact the a constant function is one whose derivative is constantly 0.

Christoffel symbols

The equation for the covariant derivative can be written down in terms of Christoffel symbols. The Christoffel symbols find frequent use in Einstein's theory of general relativity, where spacetime is represented by a curved 4-dimensional Lorentz manifold with a Levi-Civita connection. The Einstein field equations—which determine the geometry of spacetime in the presence of matter—contain the Ricci tensor, and so calculating the Christoffel symbols is essential. Once the geometry is determined, the paths of particles and light beams are calculated by solving the geodesic equations in which the Christoffel symbols explicitly appear.

Geodesics

In general relativity, a geodesic generalizes the notion of a "straight line" to curved spacetime. Importantly, the world line of a particle free from all external, non-gravitational force, is a particular type of geodesic. In other words, a freely moving or falling particle always moves along a geodesic.
In general relativity, gravity can be regarded as not a force but a consequence of a curved spacetime geometry where the source of curvature is the stress–energy tensor (representing matter, for instance). Thus, for example, the path of a planet orbiting around a star is the projection of a geodesic of the curved 4-dimensional spacetime geometry around the star onto 3-dimensional space.

A curve is a geodesic if the tangent vector of the curve at any point is equal to the parallel transport of the tangent vector of the base point.

Curvature tensor

The Riemann tensor tells us, mathematically, how much curvature there is in any given region of space. Contracting the tensor produces 3 different mathematical objects:
  1. The Riemann curvature tensor: R^\rho{}_{\sigma\mu\nu}, which gives the most information on the curvature of a space and is derived from derivatives of the metric tensor. In flat space this tensor is zero.
  2. The Ricci tensor: R_{\sigma\nu}, comes from the need in Einstein's theory for a curvature tensor with only 2 indices. It is obtained by averaging certain portions of the Riemann curvature tensor.
  3. The scalar curvature: R, the simplest measure of curvature, assigns a single scalar value to each point in a space. It is obtained by averaging the Ricci tensor.
The Riemann curvature tensor can be expressed in terms of the covariant derivative.

The Einstein tensor \mathbf{G} is a rank 2 tensor defined over pseudo-Riemannian manifolds. In index-free notation it is defined as
\mathbf{G}=\mathbf{R}-\frac{1}{2}\mathbf{g}R,
where \mathbf{R} is the Ricci tensor, \mathbf{g} is the metric tensor and R is the scalar curvature. It is used in the Einstein field equations.

Stress–energy tensor

Contravariant components of the stress–energy tensor.

The stress–energy tensor (sometimes stress–energy–momentum tensor or energy–momentum tensor) is a tensor quantity in physics that describes the density and flux of energy and momentum in spacetime, generalizing the stress tensor of Newtonian physics. It is an attribute of matter, radiation, and non-gravitational force fields. The stress–energy tensor is the source of the gravitational field in the Einstein field equations of general relativity, just as mass density is the source of such a field in Newtonian gravity.

Einstein equation

The Einstein field equations (EFE) or Einstein's equations are a set of 10 equations in Albert Einstein's general theory of relativity which describe the fundamental interaction of gravitation as a result of spacetime being curved by matter and energy.[6] First published by Einstein in 1915[7] as a tensor equation, the EFE equate local spacetime curvature (expressed by the Einstein tensor) with the local energy and momentum within that spacetime (expressed by the stress–energy tensor).[8]
The Einstein Field Equations can be written as
G_{\mu \nu}= {8 \pi G \over c^4} T_{\mu \nu} ,
where G_{\mu \nu} is the Einstein tensor and T_{\mu \nu} is the stress–energy tensor.

This implies that the curvature of space (represented by the Einstein tensor) is directly connected to the presence of matter and energy (represented by the stress–energy tensor).

Schwarzschild solution and black holes

In Einstein's theory of general relativity, the Schwarzschild metric (also Schwarzschild vacuum or Schwarzschild solution), is a solution to the Einstein field equations which describes the gravitational field outside a spherical mass, on the assumption that the electric charge of the mass, angular momentum of the mass, and universal cosmological constant are all zero. The solution is a useful approximation for describing slowly rotating astronomical objects such as many stars and planets, including Earth and the Sun. The solution is named after Karl Schwarzschild, who first published the solution in 1916.
According to Birkhoff's theorem, the Schwarzschild metric is the most general spherically symmetric, vacuum solution of the Einstein field equations. A Schwarzschild black hole or static black hole is a black hole that has no charge or angular momentum. A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass.

Spacetime

From Wikipedia, the free encyclopedia

In physics, spacetime (also space–time, space time or space–time continuum) is any mathematical model that combines space and time into a single interwoven continuum. The spacetime of our universe is usually interpreted from a Euclidean space perspective, which regards space as consisting of three dimensions, and time as consisting of one dimension, the "fourth dimension". By combining space and time into a single manifold called Minkowski space, physicists have significantly simplified a large number of physical theories, as well as described in a more uniform way the workings of the universe at both the supergalactic and subatomic levels.

In non-relativistic classical mechanics, the use of Euclidean space instead of spacetime is appropriate, as time is treated as universal and constant, being independent of the state of motion of an observer.[disambiguation needed] In relativistic contexts, time cannot be separated from the three dimensions of space, because the observed rate at which time passes for an object depends on the object's velocity relative to the observer and also on the strength of gravitational fields, which can slow the passage of time for an object as seen by an observer outside the field.

In cosmology, the concept of spacetime combines space and time to a single abstract universe. Mathematically it is a manifold consisting of "events" which are described by some type of coordinate system. Typically three spatial dimensions (length, width, height), and one temporal dimension (time) are required. Dimensions are independent components of a coordinate grid needed to locate a point in a certain defined "space". For example, on the globe the latitude and longitude are two independent coordinates which together uniquely determine a location. In spacetime, a coordinate grid that spans the 3+1 dimensions locates events (rather than just points in space), i.e., time is added as another dimension to the coordinate grid. This way the coordinates specify where and when events occur. However, the unified nature of spacetime and the freedom of coordinate choice it allows imply that to express the temporal coordinate in one coordinate system requires both temporal and spatial coordinates in another coordinate system. Unlike in normal spatial coordinates, there are still restrictions for how measurements can be made spatially and temporally (see Spacetime intervals). These restrictions correspond roughly to a particular mathematical model which differs from Euclidean space in its manifest symmetry.

Until the beginning of the 20th century, time was believed to be independent of motion, progressing at a fixed rate in all reference frames; however, later experiments revealed that time slows at higher speeds of the reference frame relative to another reference frame. Such slowing, called time dilation, is explained in special relativity theory. Many experiments have confirmed time dilation, such as the relativistic decay of muons from cosmic ray showers and the slowing of atomic clocks aboard a Space Shuttle relative to synchronized Earth-bound inertial clocks. The duration of time can therefore vary according to events and reference frames.

When dimensions are understood as mere components of the grid system, rather than physical attributes of space, it is easier to understand the alternate dimensional views as being simply the result of coordinate transformations.

The term spacetime has taken on a generalized meaning beyond treating spacetime events with the normal 3+1 dimensions. It is really the combination of space and time. Other proposed spacetime theories include additional dimensions—normally spatial but there exist some speculative theories that include additional temporal dimensions and even some that include dimensions that are neither temporal nor spatial (e.g., superspace). How many dimensions are needed to describe the universe is still an open question. Speculative theories such as string theory predict 10 or 26 dimensions (with M-theory predicting 11 dimensions: 10 spatial and 1 temporal), but the existence of more than four dimensions would only appear to make a difference at the subatomic level.[1]

Spacetime in literature

Incas regarded space and time as a single concept, referred to as pacha (Quechua: pacha, Aymara: pacha).[2][3] The peoples of the Andes maintain a similar understanding.[4]

Arthur Schopenhauer wrote in §18 of On the Fourfold Root of the Principle of Sufficient Reason (1813): "the representation of coexistence is impossible in Time alone; it depends, for its completion, upon the representation of Space; because, in mere Time, all things follow one another, and in mere Space all things are side by side; it is accordingly only by the combination of Time and Space that the representation of coexistence arises".

The idea of a unified spacetime is stated by Edgar Allan Poe in his essay on cosmology titled Eureka (1848) that "Space and duration are one". In 1895, in his novel The Time Machine, H. G. Wells wrote, "There is no difference between time and any of the three dimensions of space except that our consciousness moves along it", and that "any real body must have extension in four directions: it must have Length, Breadth, Thickness, and Duration".

Marcel Proust, in his novel Swann's Way (published 1913), describes the village church of his childhood's Combray as "a building which occupied, so to speak, four dimensions of space—the name of the fourth being Time".

Mathematical concept

In Encyclopedie under the term dimension Jean le Rond d'Alembert speculated that duration (time) might be considered a fourth dimension if the idea was not too novel.[5]

Another early venture was by Joseph Louis Lagrange in his Theory of Analytic Functions (1797, 1813). He said, "One may view mechanics as a geometry of four dimensions, and mechanical analysis as an extension of geometric analysis".[6]

The ancient idea of the cosmos gradually was described mathematically with differential equations, differential geometry, and abstract algebra. These mathematical articulations blossomed in the nineteenth century as electrical technology stimulated men like Michael Faraday and James Clerk Maxwell to describe the reciprocal relations of electric and magnetic fields. Daniel Siegel phrased Maxwell's role in relativity as follows:
[...] the idea of the propagation of forces at the velocity of light through the electromagnetic field as described by Maxwell's equations—rather than instantaneously at a distance—formed the necessary basis for relativity theory.[7]
Maxwell used vortex models in his papers on On Physical Lines of Force, but ultimately gave up on any substance but the electromagnetic field. Pierre Duhem wrote:
[Maxwell] was not able to create the theory that he envisaged except by giving up the use of any model, and by extending by means of analogy the abstract system of electrodynamics to displacement currents.[8]
In Siegel's estimation, "this very abstract view of the electromagnetic fields, involving no visualizable picture of what is going on out there in the field, is Maxwell's legacy."[9] Describing the behaviour of electric fields and magnetic fields led Maxwell to a unified view of an electromagnetic field. Being functions, these fields took values on a domain, a piece of spacetime. It is the intermingling of electric and magnetic manifestations, described by Maxwell's equations that give spacetime its structure. In particular, the rate of motion of an observer determines the electric and magnetic profiles of the electromagnetic field. The propagation of the field is determined by the electromagnetic wave equation which also requires spacetime for description.

Spacetime was described as an affine space with quadratic form in Minkowski space of 1908.[10] In his 1914 textbook The Theory of Relativity, Ludwik Silberstein used biquaternions to represent events in Minkowski space. He also exhibited the Lorentz transformations between observers of differing velocities as biquaternion mappings. Biquaternions were described in 1853 by W. R. Hamilton, so while the physical interpretation was new, the mathematics was well known in English literature, making relativity an instance of applied mathematics.

The first inkling of general relativity in spacetime was articulated by W. K. Clifford. Description of the effect of gravitation on space and time was found to be most easily visualized as a "warp" or stretching in the geometrical fabric of space and time, in a smooth and continuous way that changed smoothly from point-to-point along the spacetime fabric. In 1947 James Jeans provided a concise summary of the development of spacetime theory in his book The Growth of Physical Science.[11]

Basic concepts

Spacetimes are the arenas in which all physical events take place—an event is a point in spacetime specified by its time and place. For example, the motion of planets around the sun may be described in a particular type of spacetime, or the motion of light around a rotating star may be described in another type of spacetime. The basic elements of spacetime are events. In any given spacetime, an event is a unique position at a unique time. Because events are spacetime points, an example of an event in classical relativistic physics is (x,y,z,t), the location of an elementary (point-like) particle at a particular time. A spacetime itself can be viewed as the union of all events in the same way that a line is the union of all of its points, formally organized into a manifold, a space which can be described at small scales using coordinate systems.

A spacetime is independent of any observer.[12] However, in describing physical phenomena (which occur at certain moments of time in a given region of space), each observer chooses a convenient metrical coordinate system. Events are specified by four real numbers in any such coordinate system. The trajectories of elementary (point-like) particles through space and time are thus a continuum of events called the world line of the particle. Extended or composite objects (consisting of many elementary particles) are thus a union of many world lines twisted together by virtue of their interactions through spacetime into a "world-braid".

However, in physics, it is common to treat an extended object as a "particle" or "field" with its own unique (e.g., center of mass) position at any given time, so that the world line of a particle or light beam is the path that this particle or beam takes in the spacetime and represents the history of the particle or beam. The world line of the orbit of the Earth (in such a description) is depicted in two spatial dimensions x and y (the plane of the Earth's orbit) and a time dimension orthogonal to x and y.
The orbit of the Earth is an ellipse in space alone, but its world line is a helix in spacetime.[13]
The unification of space and time is exemplified by the common practice of selecting a metric (the measure that specifies the interval between two events in spacetime) such that all four dimensions are measured in terms of units of distance: representing an event as (x_0,x_1,x_2,x_3) = (ct,x,y,z) (in the Lorentz metric) or (x_1,x_2,x_3,x_4) = (x,y,z,ict) (in the original Minkowski metric) where c is the speed of light.[14] The metrical descriptions of Minkowski Space and spacelike, lightlike, and timelike intervals given below follow this convention, as do the conventional formulations of the Lorentz transformation.

Spacetime intervals

In a Euclidean space, the separation between two points is measured by the distance between the two points. The distance is purely spatial, and is always positive. In spacetime, the separation between two events is measured by the invariant interval between the two events, which takes into account not only the spatial separation between the events, but also their temporal separation. The interval, s2, between two events is defined as:

s^2 = \Delta r^2 - c^2\Delta t^2 \,   (spacetime interval),

where c is the speed of light, and Δr and Δt denote differences of the space and time coordinates, respectively, between the events. The choice of signs for s^2 above follows the space-like convention (−+++). The reason s^2 is called the interval and not s is that s^2 can be positive, zero or negative.
Spacetime intervals may be classified into three distinct types, based on whether the temporal separation (c^2 \Delta t^2) or the spatial separation (\Delta r^2) of the two events is greater: time-like, light-like or space-like.

Certain types of world lines are called geodesics of the spacetime – straight lines in the case of Minkowski space and their closest equivalent in the curved spacetime of general relativity. In the case of purely time-like paths, geodesics are (locally) the paths of greatest separation (spacetime interval) as measured along the path between two events, whereas in Euclidean space and Riemannian manifolds, geodesics are paths of shortest distance between two points.[15][16] The concept of geodesics becomes central in general relativity, since geodesic motion may be thought of as "pure motion" (inertial motion) in spacetime, that is, free from any external influences.

Time-like interval

\begin{align} \\
  c^2\Delta t^2 &> \Delta r^2\\
            s^2 &< 0 \\
\end{align}
For two events separated by a time-like interval, enough time passes between them that there could be a cause–effect relationship between the two events. For a particle traveling through space at less than the speed of light, any two events which occur to or by the particle must be separated by a time-like interval. Event pairs with time-like separation define a negative squared spacetime interval (s^2 < 0) and may be said to occur in each other's future or past. There exists a reference frame such that the two events are observed to occur in the same spatial location, but there is no reference frame in which the two events can occur at the same time.

The measure of a time-like spacetime interval is described by the proper time, \Delta\tau:

\Delta\tau = \sqrt{\Delta t^2 - \frac{\Delta r^2}{c^2}}   (proper time).

The proper time interval would be measured by an observer with a clock traveling between the two events in an inertial reference frame, when the observer's path intersects each event as that event occurs. (The proper time defines a real number, since the interior of the square root is positive.)

Light-like interval

\begin{align}
 c^2\Delta t^2 &= \Delta r^2 \\
           s^2 &= 0 \\
\end{align}
In a light-like interval, the spatial distance between two events is exactly balanced by the time between the two events. The events define a squared spacetime interval of zero (s^2 = 0). Light-like intervals are also known as "null" intervals.

Events which occur to or are initiated by a photon along its path (i.e., while traveling at c, the speed of light) all have light-like separation. Given one event, all those events which follow at light-like intervals define the propagation of a light cone, and all the events which preceded from a light-like interval define a second (graphically inverted, which is to say "pastward") light cone.

Space-like interval

\begin{align} \\
  c^2\Delta t^2 &< \Delta r^2 \\
            s^2 &> 0 \\
\end{align}
When a space-like interval separates two events, not enough time passes between their occurrences for there to exist a causal relationship crossing the spatial distance between the two events at the speed of light or slower. Generally, the events are considered not to occur in each other's future or past. There exists a reference frame such that the two events are observed to occur at the same time, but there is no reference frame in which the two events can occur in the same spatial location.

For these space-like event pairs with a positive squared spacetime interval (s^2 > 0), the measurement of space-like separation is the proper distance, \Delta\sigma:

\Delta\sigma = \sqrt{s^2} = \sqrt{\Delta r^2 - c^2\Delta t^2}   (proper distance).

Like the proper time of time-like intervals, the proper distance of space-like spacetime intervals is a real number value.

Mathematics of spacetimes

For physical reasons, a spacetime continuum is mathematically defined as a four-dimensional, smooth, connected Lorentzian manifold (M,g). This means the smooth Lorentz metric g has signature (3,1). The metric determines the geometry of spacetime, as well as determining the geodesics of particles and light beams. About each point (event) on this manifold, coordinate charts are used to represent observers in reference frames. Usually, Cartesian coordinates (x, y, z, t) are used. Moreover, for simplicity's sake, units of measurement are usually chosen such that the speed of light c is equal to 1.

A reference frame (observer) can be identified with one of these coordinate charts; any such observer can describe any event p. Another reference frame may be identified by a second coordinate chart about p. Two observers (one in each reference frame) may describe the same event p but obtain different descriptions.

Usually, many overlapping coordinate charts are needed to cover a manifold. Given two coordinate charts, one containing p (representing an observer) and another containing q (representing another observer), the intersection of the charts represents the region of spacetime in which both observers can measure physical quantities and hence compare results. The relation between the two sets of measurements is given by a non-singular coordinate transformation on this intersection. The idea of coordinate charts as local observers who can perform measurements in their vicinity also makes good physical sense, as this is how one actually collects physical data—locally.

For example, two observers, one of whom is on Earth, but the other one who is on a fast rocket to Jupiter, may observe a comet crashing into Jupiter (this is the event p). In general, they will disagree about the exact location and timing of this impact, i.e., they will have different 4-tuples (x, y, z, t) (as they are using different coordinate systems). Although their kinematic descriptions will differ, dynamical (physical) laws, such as momentum conservation and the first law of thermodynamics, will still hold. In fact, relativity theory requires more than this in the sense that it stipulates these (and all other physical) laws must take the same form in all coordinate systems. This introduces tensors into relativity, by which all physical quantities are represented.

Geodesics are said to be time-like, null, or space-like if the tangent vector to one point of the geodesic is of this nature. Paths of particles and light beams in spacetime are represented by time-like and null (light-like) geodesics, respectively.

Topology

The assumptions contained in the definition of a spacetime are usually justified by the following considerations.
The connectedness assumption serves two main purposes. First, different observers making measurements (represented by coordinate charts) should be able to compare their observations on the non-empty intersection of the charts. If the connectedness assumption were dropped, this would not be possible. Second, for a manifold, the properties of connectedness and path-connectedness are equivalent, and one requires the existence of paths (in particular, geodesics) in the spacetime to represent the motion of particles and radiation.

Every spacetime is paracompact. This property, allied with the smoothness of the spacetime, gives rise to a smooth linear connection, an important structure in general relativity. Some important theorems on constructing spacetimes from compact and non-compact manifolds include the following:
  • A compact manifold can be turned into a spacetime if, and only if, its Euler characteristic is 0. (Proof idea: the existence of a Lorentzian metric is shown to be equivalent to the existence of a nonvanishing vector field.)
  • Any non-compact 4-manifold can be turned into a spacetime.[17]

Spacetime symmetries

Often in relativity, spacetimes that have some form of symmetry are studied. As well as helping to classify spacetimes, these symmetries usually serve as a simplifying assumption in specialized work. Some of the most popular ones include:

Causal structure

The causal structure of a spacetime describes causal relationships between pairs of points in the spacetime based on the existence of certain types of curves joining the points.

Spacetime in special relativity

The geometry of spacetime in special relativity is described by the Minkowski metric on R4. This spacetime is called Minkowski space. The Minkowski metric is usually denoted by \eta and can be written as a four-by-four matrix:
\eta_{ab} \, = \operatorname{diag}(1, -1, -1, -1)
where the Landau–Lifshitz space-like convention is being used. A basic assumption of relativity is that coordinate transformations must leave spacetime intervals invariant. Intervals are invariant under Lorentz transformations. This invariance property leads to the use of four-vectors (and other tensors) in describing physics.

Strictly speaking, one can also consider events in Newtonian physics as a single spacetime. This is Galilean–Newtonian relativity, and the coordinate systems are related by Galilean transformations. However, since these preserve spatial and temporal distances independently, such a spacetime can be decomposed into spatial coordinates plus temporal coordinates, which is not possible in the general case.

Spacetime in general relativity

In general relativity, it is assumed that spacetime is curved by the presence of matter (energy), this curvature being represented by the Riemann tensor. In special relativity, the Riemann tensor is identically zero, and so this concept of "non-curvedness" is sometimes expressed by the statement Minkowski spacetime is flat.

The earlier discussed notions of time-like, light-like and space-like intervals in special relativity can similarly be used to classify one-dimensional curves through curved spacetime. A time-like curve can be understood as one where the interval between any two infinitesimally close events on the curve is time-like, and likewise for light-like and space-like curves. Technically the three types of curves are usually defined in terms of whether the tangent vector at each point on the curve is time-like, light-like or space-like. The world line of a slower-than-light object will always be a time-like curve, the world line of a massless particle such as a photon will be a light-like curve, and a space-like curve could be the world line of a hypothetical tachyon. In the local neighborhood of any event, time-like curves that pass through the event will remain inside that event's past and future light cones, light-like curves that pass through the event will be on the surface of the light cones, and space-like curves that pass through the event will be outside the light cones. One can also define the notion of a three-dimensional "spacelike hypersurface", a continuous three-dimensional "slice" through the four-dimensional property with the property that every curve that is contained entirely within this hypersurface is a space-like curve.[18]

Many spacetime continua have physical interpretations which most physicists would consider bizarre or unsettling. For example, a compact spacetime has closed timelike curves, which violate our usual ideas of causality (that is, future events could affect past ones). For this reason, mathematical physicists usually consider only restricted subsets of all the possible spacetimes. One way to do this is to study "realistic" solutions of the equations of general relativity. Another way is to add some additional "physically reasonable" but still fairly general geometric restrictions and try to prove interesting things about the resulting spacetimes. The latter approach has led to some important results, most notably the Penrose–Hawking singularity theorems.

Quantized spacetime

In general relativity, spacetime is assumed to be smooth and continuous—and not just in the mathematical sense. In the theory of quantum mechanics, there is an inherent discreteness present in physics. In attempting to reconcile these two theories, it is sometimes postulated that spacetime should be quantized at the very smallest scales. Current theory is focused on the nature of spacetime at the Planck scale. Causal sets, loop quantum gravity, string theory, causal dynamical triangulation, and black hole thermodynamics all predict a quantized spacetime with agreement on the order of magnitude. Loop quantum gravity makes precise predictions about the geometry of spacetime at the Planck scale.

Cryogenics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Cryogenics...