Search This Blog

Friday, May 31, 2019

Laser safety

From Wikipedia, the free encyclopedia

 
Laser safety is the safe design, use and implementation of lasers to minimize the risk of laser accidents, especially those involving eye injuries. Since even relatively small amounts of laser light can lead to permanent eye injuries, the sale and usage of lasers is typically subject to government regulations. 

Moderate and high-power lasers are potentially hazardous because they can burn the retina of the eye, or even the skin. To control the risk of injury, various specifications, for example 21 Code of Federal Regulations (CFR) Part 1040 in the US and IEC 60825 internationally, define "classes" of laser depending on their power and wavelength. These regulations impose upon manufacturers required safety measures, such as labeling lasers with specific warnings, and wearing laser safety goggles when operating lasers. Consensus standards, such as American National Standards Institute (ANSI) Z136, provide users with control measures for laser hazards, as well as various tables helpful in calculating maximum permissible exposure (MPE) limits and accessible exposures limits (AELs).

Laser radiation hazards

Thermal effects are the predominant cause of laser radiation injury, but photo-chemical effects can also be of concern for specific wavelengths of laser radiation. Even moderately powered lasers can cause injury to the eye. High power lasers can also burn the skin. Some lasers are so powerful that even the diffuse reflection from a surface can be hazardous to the eye.

Diagram of a human eye
 
The coherence and low divergence angle of laser light, aided by focusing from the lens of an eye, can cause laser radiation to be concentrated into an extremely small spot on the retina. A transient increase of only 10 °C can destroy retinal photoreceptor cells. If the laser is sufficiently powerful, permanent damage can occur within a fraction of a second, literally faster than the blink of an eye. Sufficiently powerful lasers in the visible to near infrared range (400-1400 nm) will penetrate the eyeball and may cause heating of the retina, whereas exposure to laser radiation with wavelengths less than 400 nm and greater than 1400 nm are largely absorbed by the cornea and lens, leading to the development of cataracts or burn injuries.

Infrared lasers are particularly hazardous, since the body's protective glare aversion response, also referred to as the "blink reflex," is triggered only by visible light. For example, some people exposed to high power Nd:YAG laser emitting invisible 1064 nm radiation may not feel pain or notice immediate damage to their eyesight. A pop or click noise emanating from the eyeball may be the only indication that retinal damage has occurred i.e. the retina was heated to over 100 °C resulting in localized explosive boiling accompanied by the immediate creation of a permanent blind spot.

Damage mechanisms

Typical US (ANSI) laser warning label
 
Lasers can cause damage in biological tissues, both to the eye and to the skin, due to several mechanisms. Thermal damage, or burn, occurs when tissues are heated to the point where denaturation of proteins occurs. Another mechanism is photochemical damage, where light triggers chemical reactions in tissue. Photochemical damage occurs mostly with short-wavelength (blue and ultra-violet) light and can be accumulated over the course of hours. Laser pulses shorter than about 1 μs can cause a rapid rise in temperature, resulting in explosive boiling of water. The shock wave from the explosion can subsequently cause damage relatively far away from the point of impact. Ultrashort pulses can also exhibit self-focusing in the transparent parts of the eye, leading to an increase of the damage potential compared to longer pulses with the same energy. Photoionization proved to be the main mechanism of radiation damage at the use of titanium-sapphire laser.

The eye focuses visible and near-infrared light onto the retina. A laser beam can be focused to an intensity on the retina which may be up to 200,000 times higher than at the point where the laser beam enters the eye. Most of the light is absorbed by melanin pigments in the pigment epithelium just behind the photoreceptors, and causes burns in the retina. Ultraviolet light with wavelengths shorter than 400 nm tends to be absorbed by lens and 300 nm in the cornea, where it can produce injuries at relatively low powers due to photochemical damage. Infrared light mainly causes thermal damage to the retina at near-infrared wavelengths and to more frontal parts of the eye at longer wavelengths. The table below summarizes the various medical conditions caused by lasers at different wavelengths, not including injuries due to pulsed lasers.

Wavelength range Pathological effect
180–315 nm (UV-B, UV-C) photokeratitis (inflammation of the cornea, equivalent to sunburn)
315–400 nm (UV-A) photochemical cataract (clouding of the eye lens)
400–780 nm (visible) photochemical damage to the retina, retinal burn
780–1400 nm (near-IR) cataract, retinal burn
1.4–3.0 μm (IR) aqueous flare (protein in the aqueous humour), cataract, corneal burn
3.0 μm–1 mm corneal burn

The skin is usually much less sensitive to laser light than the eye, but excessive exposure to ultraviolet light from any source (laser or non-laser) can cause short- and long-term effects similar to sunburn, while visible and infrared wavelengths are mainly harmful due to thermal damage.

Lasers and aviation safety

FAA researchers compiled a database of more than 400 reported incidents occurring between 1990 and 2004 in which pilots have been startled, distracted, temporarily blinded, or disoriented by laser exposure. This information led to an inquiry in the US Congress. Exposure to hand-held laser light under such circumstances may seem trivial given the brevity of exposure, the large distances involved and beam spread of up to several metres. However, laser exposure may create dangerous conditions such as flash blindness. If this occurs during a critical moment in aircraft operation, the aircraft may be endangered. In addition, some 18% to 35% of the population possess the autosomal dominant genetic trait, photic sneeze, that causes the affected individual to experience an involuntary sneezing fit when exposed to a sudden flash of light.

Maximum permissible exposure

Maximum permissible exposure (MPE) at the cornea for a collimated laser beam according to IEC 60825, as energy density versus exposure time for various wavelengths
 
MPE as power density versus exposure time for various wavelengths
 
MPE as energy density versus wavelength for various exposure times (pulse durations)
 
The maximum permissible exposure (MPE) is the highest power or energy density (in W/cm2 or J/cm2) of a light source that is considered safe, i.e. that has a negligible probability for creating damage. It is usually about 10% of the dose that has a 50% chance of creating damage under worst-case conditions. The MPE is measured at the cornea of the human eye or at the skin, for a given wavelength and exposure time.

A calculation of the MPE for ocular exposure takes into account the various ways light can act upon the eye. For example, deep-ultraviolet light causes accumulating damage, even at very low powers. Infrared light with a wavelength longer than about 1400 nm is absorbed by the transparent parts of the eye before it reaches the retina, which means that the MPE for these wavelengths is higher than for visible light. In addition to the wavelength and exposure time, the MPE takes into account the spatial distribution of the light (from a laser or otherwise). Collimated laser beams of visible and near-infrared light are especially dangerous at relatively low powers because the lens focuses the light onto a tiny spot on the retina. Light sources with a smaller degree of spatial coherence than a well-collimated laser beam, such as high-power LEDs, lead to a distribution of the light over a larger area on the retina. For such sources, the MPE is higher than for collimated laser beams. In the MPE calculation, the worst-case scenario is assumed, in which the eye lens focuses the light into the smallest possible spot size on the retina for the particular wavelength and the pupil is fully open. Although the MPE is specified as power or energy per unit surface, it is based on the power or energy that can pass through a fully open pupil (0.39 cm2) for visible and near-infrared wavelengths. This is relevant for laser beams that have a cross-section smaller than 0.39 cm2. The IEC-60825-1 and ANSI Z136.1 standards include methods of calculating MPEs.

Regulations

In various jurisdictions, standards bodies, legislation, and government regulations define classes of laser according to the risks associated with them, and define required safety measures for people who may be exposed to those lasers.

In the European Community (EC), eye protection requirements are specified in European standard EN 207. In addition to EN 207, European standard EN 208 specifies requirements for goggles for use during beam alignment. These transmit a portion of the laser light, permitting the operator to see where the beam is, and do not provide complete protection against a direct laser beam hit. Finally, European standard EN 60825 specifies optical densities in extreme situations.

In the US, guidance for the use of protective eyewear, and other elements of safe laser use, is given in the ANSI Z136 series of standards. These consensus standards are intended for laser users, and full copies can be purchased directly from ANSI or the official Secretariat to the Accredited Standards Committee (ASC) Z136 and Publisher of this series of ANSI standards, the Laser Institute of America. The standards are as follows:
  • ANSI Z136.1Safe Use of Lasers
As the parent document of the Z136 series of laser safety standards, the Z136.1 is the foundation of laser safety programs for industry, military, research and development (labs), and higher education (universities).
  • ANSI Z136.2Safe Use of Optical Fiber Communication Systems Utilizing Laser Diode and LED Sources
This standard provides guidance for the safe use, maintenance, service, and installation of optical communications systems utilizing laser diodes or light emitting diodes operating at wavelengths between 0.6 µm and 1 mm. Optical communication systems include end-to-end optical fiber based links, fixed terrestrial point-to-point free-space links, or a combination of both.
  • ANSI Z136.3Safe Use of Lasers in Health Care
Provides guidance for individuals who work with high power Class 3B and Class 4 lasers and laser systems in health care (including, but not limited to: Operating room personnel designated as Laser Safety Officer (LSO)
  • ANSI Z136.4Recommended Practice for Laser Safety Measurements for Hazard Evaluation
Provides guidance for measurement procedures necessary for the classification and evaluation of optical radiation hazards.
  • ANSI Z136.5Safe Use of Lasers in Educational Institutions
This standard addresses laser safety concerns in educational settings.
  • ANSI Z136.6Safe Use of Lasers Outdoors
This standard provides guidance for the safe use of lasers in an outdoor environment, e.g., construction, displays/laser lightshows, scientific/astronomical research, and military (DoE/DoD).
  • ANSI Z136.7Testing and Labeling of Laser Protective Equipment
The objective of this standard is to provide reasonable and adequate guidance on the test methods and protocols used to provide eye protection from lasers and laser systems.
  • ANSI Z136.8Safe Use of Lasers in Research, Development, or Testing
The purpose of this standard is to provide guidance the safe use of lasers and laser systems found in research, development, or testing environments, where safety controls common for commercial lasers may either be missing or disabled.
  • ANSI Z136.9Safe Use of Lasers in Manufacturing Environments
Intended to protect individuals with the potential for laser exposure when lasers are used in manufacturing environments, this standard includes policies and procedures to ensure laser safety in both public and private industries as well as product development along with testing.
Through 21 CFR 1040, the US Food and Drug Administration (FDA) regulates laser products entering commerce and requires all class IIIb and class IV lasers offered in commerce in the US to have five standard safety features: a key switch, a safety interlock dongle, a power indicator, an aperture shutter, and an emission delay (normally two to three seconds). OEM lasers, designed to be parts of other components (such as DVD burners), are exempt from this requirement. Some non-portable lasers may not have a safety dongle or an emission delay, but have an emergency stop button and/or a remote switch.

Classification

The maximal allowed cw-powers for the laser classes 1, 2, 3R and 3B according to the standard EN 60825-1:2007. Note that these values hold only for static, point-like laser sources (i.e. collimated or weakly divergent laser beams).
 
Lasers have been classified by wavelength and maximum output power into four classes and a few subclasses since the early 1970s. The classifications categorize lasers according to their ability to produce damage in exposed people, from class 1 (no hazard during normal use) to class 4 (severe hazard for eyes and skin). There are two classification systems, the "old system" used before 2002, and the "revised system" being phased in since 2002. The latter reflects the greater knowledge of lasers that has been accumulated since the original classification system was devised, and permits certain types of lasers to be recognized as having a lower hazard than was implied by their placement in the original classification system. The revised system is part of the revised IEC 60825 standard. From 2007, the revised system is also incorporated into the US-oriented ANSI Laser Safety Standard (ANSI Z136.1). Since 2007, labeling according to the revised system is accepted by the FDA on laser products imported into the US. The old and revised systems can be distinguished by the 1M, 2M and 3R classes used only in the revised system and the 2A and 3A classes used only in the old system. Class numbers were designated using Roman numerals (I–IV) in the US under the old system and Arabic numerals (1–4) in the EU. The revised system uses Arabic numerals (1–4) in all jurisdictions.

The classification of a laser is based on the concept of accessible emission limits (AEL) that are defined for each laser class. This is usually a maximum power (in W) or energy (in J) that can be emitted in a specified wavelength range and exposure time that passes through a specified aperture stop at a specified distance. For infrared wavelengths above 4 μm, it is specified as a maximum power density (in W/m2). It is the responsibility of the manufacturer to provide the correct classification of a laser, and to equip the laser with appropriate warning labels and safety measures as prescribed by the regulations. Safety measures used with the more powerful lasers include key-controlled operation, warning lights to indicate laser light emission, a beam stop or attenuator, and an electrical contact that the user can connect to an emergency stop or interlock.

Revised system

Warning label for class 2 and higher
 
Below, the main characteristics and requirements for the classification system as specified by the IEC 60825-1 standard are listed, along with typical required warning labels. Additionally, classes 2 and higher must have the triangular warning label shown here and other labels are required in specific cases indicating laser emission, laser apertures, skin hazards, and invisible wavelengths. For classes I to IV, see the section old system further below.

Class 1

A Class 1 laser is safe under all conditions of normal use. This means the maximum permissible exposure (MPE) cannot be exceeded when viewing a laser with the naked eye or with the aid of typical magnifying optics (e.g. telescope or microscope). To verify compliance, the standard specifies the aperture and distance corresponding to the naked eye, a typical telescope viewing a collimated beam, and a typical microscope viewing a divergent beam. It is important to realize that certain lasers classified as Class 1 may still pose a hazard when viewed with a telescope or microscope of sufficiently large aperture. For example, a high-power laser with a very large collimated beam or very highly divergent beam may be classified as Class 1 if the power that passes through the apertures defined in the standard is less than the AEL for Class 1; however, an unsafe power level may be collected by a magnifying optic with larger aperture. - Class 1 laser diodes are often used in optical disc drives.

Class 1M

A Class 1M laser is safe for all conditions of use except when passed through magnifying optics such as microscopes and telescopes. Class 1M lasers produce large-diameter beams, or beams that are divergent. The MPE for a Class 1M laser cannot normally be exceeded unless focusing or imaging optics are used to narrow the beam. If the beam is refocused, the hazard of Class 1M lasers may be increased and the product class may be changed. A laser can be classified as Class 1M if the power that can pass through the pupil of the naked eye is less than the AEL for Class 1, but the power that can be collected into the eye by typical magnifying optics (as defined in the standard) is higher than the AEL for Class 1 and lower than the AEL for Class 3B.

Class 2

A Class 2 laser is considered to be safe because the blink reflex (glare aversion response to bright lights) will limit the exposure to no more than 0.25 seconds. It only applies to visible-light lasers (400–700 nm). Class-2 lasers are limited to 1 mW continuous wave, or more if the emission time is less than 0.25 seconds or if the light is not spatially coherent. Intentional suppression of the blink reflex could lead to eye injury. Some laser pointers and measuring instruments are class 2.

Class 2M

A Class 2M laser is safe because of the blink reflex if not viewed through optical instruments. As with class 1M, this applies to laser beams with a large diameter or large divergence, for which the amount of light passing through the pupil cannot exceed the limits for class 2.

Class 3R

A Class 3R laser is considered safe if handled carefully, with restricted beam viewing. With a class 3R laser, the MPE can be exceeded, but with a low risk of injury. Visible continuous lasers in Class 3R are limited to 5 mW. For other wavelengths and for pulsed lasers, other limits apply.

Class 3B

A Class 3B laser is hazardous if the eye is exposed directly, but diffuse reflections such as those from paper or other matte surfaces are not harmful. The AEL for continuous lasers in the wavelength range from 315 nm to far infrared is 0.5 W. For pulsed lasers between 400 and 700 nm, the limit is 30 mJ. Other limits apply to other wavelengths and to ultrashort pulsed lasers. Protective eyewear is typically required where direct viewing of a class 3B laser beam may occur. Class-3B lasers must be equipped with a key switch and a safety interlock. Class 3B lasers are used inside CD and DVD writers, although the writer unit itself is class 1 because the laser light cannot leave the unit.

Class 4

Class 4 is the highest and most dangerous class of laser, including all lasers that exceed the Class 3B AEL. By definition, a class 4 laser can burn the skin, or cause devastating and permanent eye damage as a result of direct, diffuse or indirect beam viewing. These lasers may ignite combustible materials, and thus may represent a fire risk. These hazards may also apply to indirect or non-specular reflections of the beam, even from apparently matte surfaces – meaning that great care must be taken to control the beam path. Class 4 lasers must be equipped with a key switch and a safety interlock. Most industrial, scientific, military, and medical lasers are in this category. Medical lasers can have divergent emissions and require awareness of nominal ocular hazard distance (NOHD) and nominal ocular hazard area (NOHA).

Old system

Green laser – class IIIb compared to class IIIa
 
The safety classes in the "old system" of classification were established in the United States through consensus standards (ANSI Z136.1) and federal and state regulations. The international classification described in consensus standards such as IEC 825 (later IEC 60825) was based on the same concepts but presented with designations slightly different from the US classification. 

This classification system is only slightly altered from the original system developed in the early 1970s. It is still used by US laser product safety regulations. The laser powers mentioned are typical values. Classification is also dependent on the wavelength and on whether the laser is pulsed or continuous. For laser classes 1 to 4, see the section on the revised system above.

Class I

Inherently safe; no possibility of eye damage. This can be either because of a low output power (in which case eye damage is impossible even after hours of exposure), or due to an enclosure preventing user access to the laser beam during normal operation, such as in CD players or laser printers.

Class II

The blink reflex of the human eye (aversion response) will prevent eye damage, unless the person deliberately stares into the beam for an extended period. Output power may be up to 1 mW. This class includes only lasers that emit visible light. Some laser pointers are in this category.

Class IIa

A region in the low-power end of Class II where the laser requires in excess of 1000 seconds of continuous viewing to produce a burn to the retina. Commercial laser scanners are in this subclass.

Class IIIa

Lasers in this class are mostly dangerous in combination with optical instruments which change the beam diameter or power density, though even without optical instrument enhancement direct contact with the eye for over two minutes may cause serious damage to the retina. Output power does not exceed 5 mW. Beam power density may not exceed 2.5 mW/cm2 if the device is not labeled with a "caution" warning label, otherwise a "danger" warning label is required. Many laser sights for firearms and laser pointers commonly used for presentations are in this category.

Class IIIb

Lasers in this class may cause damage if the beam enters the eye directly. This generally applies to lasers powered from 5–500 mW. Lasers in this category can cause permanent eye damage with exposures of 1/100th of a second or more depending on the strength of the laser. A diffuse reflection is generally not hazardous but specular reflections can be just as dangerous as direct exposures. Protective eyewear is recommended when direct beam viewing of Class IIIb lasers may occur. Lasers at the high power end of this class may also present a fire hazard and can lightly burn skin.

Class IV

Lasers in this class have output powers of more than 500 mW in the beam and may cause severe, permanent damage to eye or skin without being focussed by optics of eye or instrumentation. Diffuse reflections of the laser beam can be hazardous to skin or eye within the Nominal Hazard Zone. (The Nominal Hazard Zone is the area around a laser in which the applicable MPE is exceeded.) Many industrial, scientific, military and medical lasers are in this category. Many handheld lasers ("laser pointers") at this output level are also now available in this category.

Safety measures

General precautions

Many scientists involved with lasers agree on the following guidelines:
  • Everyone who uses a laser should be aware of the risks. This awareness is not just a matter of time spent with lasers; to the contrary, long-term dealing with invisible risks (such as from infrared laser beams) tends to reduce risk awareness primarily due to complacency, rather than to sharpen it.
  • Optical experiments should be carried out on an optical table with all laser beams travelling in the horizontal plane only, and all beams should be stopped at the edges of the table. Users should never put their eyes at the level of the horizontal plane where the beams are in case of reflected beams that leave the table.
  • Watches and other jewelry that might enter the optical plane should not be allowed in the laboratory. All non-optical objects that are close to the optical plane should have a matte finish in order to prevent specular reflections.
  • Adequate eye protection should always be required for everyone in the room if there is a significant risk for eye injury.
  • High-intensity beams that can cause fire or skin damage (mainly from class 4 and ultraviolet lasers) and that are not frequently modified should be guided through opaque tubes.
  • Alignment of beams and optical components should be performed at a reduced beam power whenever possible.

Protective eyewear

Laser goggles
 
The use of eye protection when operating lasers of classes 3B and 4 in a manner that may result in eye exposure in excess of the MPE is required in the workplace by the US Occupational Safety and Health Administration.

Protective eyewear in the form of appropriately filtering optics can protect the eyes from the reflected or scattered laser light with a hazardous beam power, as well as from direct exposure to a laser beam. Eyewear must be selected for the specific type of laser, to block or attenuate in the appropriate wavelength range. For example, eyewear absorbing 532 nm typically has an orange appearance (although one should never rely solely on the lens color when selecting laser eye protection), transmitting wavelengths larger than 550 nm. Such eyewear would be useless as protection against a laser emitting at 800 nm. Furthermore, some lasers emit more than one wavelength of light, and this may be a particular problem with some less expensive frequency-doubled lasers, such as 532 nm "green laser pointers" which are commonly pumped by 808 nm infrared laser diodes, and also generate the fundamental 1064 nm laser beam which is used to produce the final 532 nm output. If the IR radiation is allowed into the beam, which happens in some green laser pointers, it will in general not be blocked by regular red or orange colored protective eyewear designed for pure green or already IR-filtered beam. Special YAG laser and dual-frequency eyewear is available for work with frequency-doubled YAG and other IR lasers which have a visible beam, but it is more expensive, and IR-pumped green laser products do not always specify whether such extra protection is needed.

Eyewear is rated for optical density (OD), which is the base-10 logarithm of the attenuation factor by which the optical filter reduces beam power. For example, eyewear with OD 3 will reduce the beam power in the specified wavelength range by a factor of 1000. In addition to an optical density sufficient to reduce beam power to below the maximum permissible exposure (see above), laser eyewear used where direct beam exposure is possible should be able to withstand a direct hit from the laser beam without breaking. The protective specifications (wavelengths and optical densities) are usually printed on the goggles, generally near the top of the unit. In the European Community, manufacturers are required by European standard EN 207 to specify the maximum power rating rather than the optical density.

Interlocks and automatic shutdown

Interlocks are circuits that stop the laser beam if some condition is not met, such as if the laser casing or a room door is open. Class 3B and 4 lasers typically provide a connection for an external interlock circuit. Many lasers are considered class 1 only because the light is contained within an interlocked enclosure, like DVD drives or portable CD players. 

Some systems have electronics that automatically shut down the laser under other conditions. For example, some fiber optic communication systems have circuits that automatically shut down transmission if a fiber is disconnected or broken.

Laser safety officer

In many jurisdictions, organizations that operate lasers are required to appoint a laser safety officer (LSO). The LSO is responsible for ensuring that safety regulations are followed by all other workers in the organization.

Laser pointers

Laser pointers
 
In the period from 1999 to 2016, increasing attention has been paid to the risks posed by so-called laser pointers and laser pens. Typically, the sale of laser pointers is restricted to either class 3A (less than 5 mW) or class 2 (less than 1 mW), depending on local regulations. For example, in the US, Canada and the UK, class 3A is the maximum permitted, unless a key actuated control or other safety features are provided. In Australia, class 2 is the maximum allowed class. However, because enforcement is often not very strict, laser pointers of class 2 and above are often available for sale even in countries where they are not allowed. 

Van Norren et al. (1998) could not find a single example in the medical literature of a less than 1 mW class III laser causing eyesight damage. Mainster et al. (2003) provide one case, an 11-year-old child who temporarily damaged her eyesight by holding an approximately 5 mW red laser pointer close to the eye and staring into the beam for 10 seconds; she experienced scotoma (a blind spot) but fully recovered after three months. Luttrull & Hallisey (1999) describe a similar case, a 34-year-old male who stared into the beam of a class IIIa 5 mW red laser for 30 to 60 seconds, causing temporary central scotoma and visual field loss. His eyesight fully recovered within two days, at the time of his eye exam. An intravenous fundus fluorescein angiogram, a technique used by ophthalmologists to visualise the retina of the eye in fine detail, identified subtle discoloration of the fovea

Thus, it appears that a brief 0.25-second exposure to a less than 5 mW laser such as found in red laser pointers does not pose a threat to eye health. On the other hand, there is a potential for injury if a person deliberately stares into a beam of a class IIIa laser for few seconds or more at close range. Even if injury occurs, most people will fully recover their vision. Further experienced discomforts than these may be psychological rather than physical. With regard to green laser pointers the safe exposure time may be less, and with even higher powered lasers instant permanent damage should be expected. These conclusions must be qualified with recent theoretical observations that certain prescription medications may interact with some wavelengths of laser light, causing increased sensitivity (phototoxicity). 

Beyond the question of physical injury to the eye from a laser pointer, several other undesirable effects are possible. These include short-lived flash blindness if the beam is encountered in darkened surroundings, as when driving at night. This may result in momentary loss of vehicular control. Lasers pointed at aircraft are a hazard to aviation. A police officer seeing a red dot on his chest may conclude that a sniper is targeting him and take aggressive action. In addition, the startle reflex exhibited by some exposed unexpectedly to laser light of this sort has been reported to have resulted in cases of self-injury or loss of control. For these and similar reasons, the US Food and Drug Administration has advised that laser pointers are not toys and should not be used by minors except under the direct supervision of an adult.

Fibre optics for communications

Fibre optic laser safety is characterised by the fact that in normal operation the light beam is inaccessible, so something has to be unplugged or broken for it to become accessible. The resultant exit beam is quite divergent, so eye safety is highly dependent on distance, and if a magnifying device is used. 

In practice, accidental exposure to the large majority of installed systems is unlikely to have any health impact, since power levels are usually below 1 mW and the wavelength in the infra-red, e.g. Class 1. However, there are a few significant exceptions. 

Most single mode / multi mode fiber systems actually use infra-red light, invisible to the human eye. In this case, there is no 'eye aversion response". A special case is systems operating at 670–1000 nm, where the beam may appear to be a dull red, even if the light beam is actually very intense. Technicians may also use red lasers for fault finding at around 628–670 nm. These can create a significant hazard if viewed incorrectly, particularly if they are abnormally high power. Such visible fault finders are usually classified as Class 2 up to 1 mW, and Class 2M up to 10 mW. 

High power optical amplifiers are used in long distance systems. They use internal pump lasers with power levels up to a few watts, which is a major hazard. However these power levels are contained within the amplifier module. Any system employing typical optical connectors (i.e. not expanded beam) cannot typically exceed about 100 mW, above which power level single mode connectors become unreliable, so if there is a single mode connector in the system, the design power level will always be below this level, even if no other details are known. An additional factor with these systems is that light around the 1550 nm wavelength band (common for optical amplifiers) is regarded as relatively low risk, since the eye fluids absorb the light before it is focused on the retina. This tends to reduce the overall risk factor of such systems.

Optical microscopes and magnifying devices also present unique safety challenges. If any optical power is present, and a simple magnifying device is used to examine the fiber end, then the user is no longer protected by beam divergence, since the entire beam may be imaged onto the eye. Therefore, simple magnifying devices should never be used in such situations. Optical connector inspection microscopes are available which incorporate blocking filters, thus greatly improving eye safety. The most recent such design also incorporates protection against red fault locating lasers.

Non-beam hazards – electrical and other

While most of the danger of lasers comes from the beam itself, there are certain non-beam hazards that are often associated with use of laser systems. Many lasers are high voltage devices, typically 400 V upward for a small 5 mJ pulsed laser, and exceeding many kilovolts in higher powered lasers. This, coupled with high pressure water for cooling the laser and other associated electrical equipment can create a greater hazard than the laser beam itself.

Electric equipment should generally be installed at least 250 mm (10 inches) above the floor to reduce electric risk in the case of flooding. Optical tables, lasers, and other equipment should be well grounded. Enclosure interlocks should be respected and special precautions taken during troubleshooting. 

In addition to the electrical hazards, lasers may create chemical, mechanical, and other hazards specific to particular installations. Chemical hazards may include materials intrinsic to the laser, such as beryllium oxide in argon ion laser tubes, halogens in excimer lasers, organic dyes dissolved in toxic or flammable solvents in dye lasers, and heavy metal vapors and asbestos insulation in helium cadmium lasers. They may also include materials released during laser processing, such as metal fumes from cutting or surface treatments of metals or the complex mix of decomposition products produced in the high energy plasma of a laser cutting plastics.

Mechanical hazards may include moving parts in vacuum and pressure pumps; implosion or explosion of flashlamps, plasma tubes, water jackets, and gas handling equipment. 

High temperatures and fire hazards may also result from the operation of high-powered Class IIIB or any Class IV Laser. 

In commercial laser systems, hazard mitigations such as the presence of fusible plugs, thermal interrupters, and pressure relief valves reduce the hazard of, for example, a steam explosion arising from an obstructed water cooling jacket. Interlocks, shutters, and warning lights are often critical elements of modern commercial installations. In older lasers, experimental and hobby systems, and those removed from other equipment (OEM units) special care must be taken to anticipate and reduce the consequences of misuse as well as various failure modes.

Lasers and aviation safety

From Wikipedia, the free encyclopedia

Under certain conditions, laser light or other bright lights (spotlights, searchlights) directed at aircraft can be a hazard. The most likely scenario is when a bright visible laser light causes distraction or temporary flash blindness to a pilot, during a critical phase of flight such as landing or takeoff. It is far less likely, though still possible, that a visible or invisible beam could cause permanent harm to a pilot's eyes. Although laser weapons are under development by militaries, these are so specialized, expensive and controlled that it is improbable for non-military lasers to cause structural damage to an aircraft.

Aviation hazards from bright light can be minimized or eliminated in two primary ways. First, users on the ground can exercise caution, to prevent or minimize any laser or other bright light being directed in airspace and especially towards aircraft. Second, pilots should have awareness of laser/aviation hazards and knowledge of basic recovery procedures in case of laser or bright light exposure.

Pointing a laser at an aircraft can be hazardous to pilots and has resulted in arrests, trials and jail sentences. It also results in calls to license or ban laser pointers. Some jurisdictions such as New South Wales, Australia have restricted laser pointers as a result of multiple incidents.

Lasers and bright lights

In addition to lasers, other bright directional lights such as searchlights and spotlights can have the same dazzling, distracting, and flashblinding effects. Searchlight and spotlight operators should take the same basic precautions as laser users. Similarly, pilots and safety officials should keep in mind that a reported "laser" incident may be caused by a non-laser bright light.

Lasers in airspace

There are many valid reasons that lasers are aimed into airspace. Lasers are used in industry and research, such as in atmospheric remote sensing, and as "guide stars" in adaptive optics astronomy. Lasers and searchlights are used in entertainment; for example, in outdoor shows such as the nightly IllumiNations show at Walt Disney World's Epcot. Laser pointers are used by the general public; sometimes they will be accidentally or deliberately aimed at or near aircraft. (Of course, no unauthorized person should deliberately aim any type of laser at or near an aircraft.) 

Lasers are even used, or proposed for use, with aircraft. Pilots straying into unauthorized airspace over Washington, D.C. can be warned to turn back by shining eye-safe low-power red and green lasers at them. At least one system has been tested that would use lasers on final approach to help line up the pilot on the proper glideslope. NASA has tested a Helicopter Airborne Laser Positioning System. The FAA has tested laser-projected lines on airport runways, to increase visibility of "hold short" markings.

Because of these varied uses, it is not practical to ban lasers from airspace. This would unduly restrict legitimate uses, it would not prevent accidental illumination incidents, and it would not stop someone who deliberately, out of malice or ignorance, targeted aircraft. For this reason, practical laser/aviation safety is based on informed users and informed pilots.

Primary hazards of lasers and bright lights

FAA flight simulator showing distraction where the light does not obscure vision but can distract the pilot. Light intensity 0.5 μW/cm²; for example, a legal 5 mW laser pointer at 3,700 feet (1,100 m).
 
FAA flight simulator showing veiling glare where it is hard to see through the light to the background scene. Light level 5.0 μW/cm²; for example, a legal 5 mW laser pointer at 1,200 feet (370 m).
 
Simulation of temporary flash blindness where the image takes from a few seconds to a few minutes to fade away, depending on how much light entered the eye. Light level 50 μW/cm²; for example, a legal 5 mW laser pointer at 350 feet (110 m).
 
There are some subjects which laser/aviation safety experts agree pose no real hazard. These include passenger exposure to laser light, pilot distraction during cruising or other non-critical phases of flight, and laser damage to the aircraft. 

The main concerns of safety experts are almost exclusively focused on laser and bright light effects on pilots, especially when they are in a critical phase of flight: takeoff, approach, landing, and emergency maneuvers.

There are four primary areas of concern. The first three are "visual effects" that temporarily distract or block pilots' vision. These effects are only of concern when the laser emits visible light.
  • Distraction and startle. An unexpected laser or bright light could distract the pilot during a nighttime landing or takeoff. A pilot might not know what was happening at first. They may be worried that a brighter light or other threat would be coming. It is important that pilots be trained to understand the relatively minor impact of laser flashes caused by laser pointers and not to over react.
  • Glare and disruption. As the light brightness increases, it starts to interfere with vision. Veiling glare would make it difficult to see out the windscreen. Night vision starts to deteriorate. Laser light is highly directional so that pilots may act to exclude the source from their direct field of vision if properly trained. Pointer lasers have an illuminance of about 1 lumen/m2 whereas during the day the pilots have to deal with sunlight which is one hundred thousand times stronger.
  • Temporary flash blindness. This works exactly like a bright camera flash: there is no injury, but night vision is temporarily knocked out. There may be afterimages—again, exactly like a bright camera flash leaving temporary spots.
The three visual effects above are the primary concern for aviation experts. This is because they could happen with lower-powered lasers that are commonly available. The fourth concern, eye damage, is much less likely. It would take specialized equipment not readily available to the general public.
  • Eye damage. Though it is unlikely, high power visible or invisible (infrared, ultraviolet) laser light could cause permanent eye injury. The injury could be relatively minor, such as spots only detectable by medical exam or on the periphery of vision. At higher power levels, the spots may be in the central vision, in the same area where the original light was viewed. Most unlikely of all is injury causing a complete and permanent loss of vision. To do this requires very specialized equipment and a desire to deliberately target aircraft.
It is extremely unlikely that any of the four elements above would cause loss of the aircraft, especially if the pilots react properly and work as a team.

Analyzing the hazard

The exact hazard in a specific situation depends on a number of factors.

Laser/bright light factors

  • The power of the laser or bright light. The more light emitted, the brighter and more hazardous it will be.
  • The beam divergence. A low-divergence "tight" beam will be a hazard at greater distances than one which spreads out rapidly.
  • Visibility (wavelength) of the beam. An infrared or ultraviolet laser beam does not present any visual effect risk to pilots, as they cannot see it. However, at high powers it can present an eye damage risk. In some cases, this hazard may be greater since a pilot would not know they were being illuminated.
  • Color of the beam (for visible wavelengths). In general, the eyes of pilots in an illuminated nighttime cockpit are most sensitive to greenish-yellow light (of wavelength around 500–600 nanometers, peaking at 555 nm). A blue or red laser will appear much dimmer—and thus less distracting—than a green or yellow laser of equal power (wattage). To give a specific example, a 10-watt continuous-wave YAG laser at 532 nanometers (green) can appear brighter to the eye than an 18-watt continuous-wave argon-ion laser that outputs 10 watts of 514 nm (green-blue) light plus 8 watts of 488 nm (blue) light.
  • Pulsed/continuous nature of the beam. Some laser beams emit their energy in pulses. A pulsed laser presents a greater eye damage risk than a continuous laser of equal (average) power. This is because the power is packed into shorter but more intense pulses.

Operational factors

  • Beam movement. If the beam is moving around such as in a laser show, it covers a greater area of the sky and thus has a greater chance to illuminate an aircraft. However, if it did scan across a cockpit, in general the exposure duration would be shorter. (A more precise analysis would look at the relative motion of the beam and aircraft.)
  • Location of the beam relative to airports. The beam must avoid airspace around airports and busy air routes. The FAA has established safety zones around airports, which are described in the "Regulation" section below. It is possible to use beams within the zones, if the beam power is below the FAA limit for the zone.
  • Projector and laser stability. To avoid accidents, the laser projector must be secured with relation to termination points and beam blocks. If a projector slips, or safety software fails, the beam could enter unsafe areas of airspace.

Situational factors

  • Day vs. night. Almost all concern is over nighttime illumination. The three visual effects listed above (distraction, glare and flash blindness) are minimized during the day since the eye is not dark adapted, and since visible lasers are not often used outdoors in daytime.
  • Motion and speed of the aircraft. A slow aircraft is at greater risk than a fast one (relative to travel across the viewer's line of sight). Helicopters are at greatest risk because they can hover, presenting a relatively stationary target.
  • Distance to the aircraft. A low-flying aircraft is at greater risk. Again, helicopters are vulnerable due to their close ground proximity.
  • Direction relative to the aircraft and cockpit. A beam aimed directly at an incoming aircraft gives the greatest risk to pilots. One aimed across the aircraft's travel gives less risk, partially because the light enters through the side windows, and partially because it is harder to keep the beam aimed exactly at the cockpit area. A beam aimed straight up gives the least risk, although it is still possible for the beam to illuminate the cockpit during a banking turn.

Pilot/aircrew factors

  • Flight phase. The risk is greatest when the exposure comes during a time of high workload: takeoffs, critical or emergency maneuvers, and landings.
  • Pilot awareness and response. Ideally, pilots will be aware of laser and bright light hazards, and will know how to recover in case of an incident. Conversely, a pilot can make the situation worse if he or she overreacts, stares at the light to try to locate its source, or takes immediate unnecessary evasive maneuvers.
The U.S. FAA has studied some of these factors. They conducted research using pilots in flight simulators to determine the effects of laser exposure on pilot performance; results were released in August 2003 and June 2004.

Example laser safety calculations

Graphic illustrating how laser pointer hazards are most serious when the laser is close to the aircraft
 
The graphic (right) shows many important laser/aviation safety concepts. For example, it shows that the areas of most concern—eye damage, flash blindness and glare—occur relatively close to the aircraft. The distraction risk covers the longest hazard distance, but fortunately also presents the least concern. The photos in the graphic also give an idea of what the visual effect looks like to the pilot, at various distances. 

Note that while the distances given are exact ("52 feet", "262 feet"), the laser's brightness is in fact falling off slowly. It is not as if at 51 feet the laser is an eye hazard and at 53 feet it is eye safe. Effects diminish continuously with increasing distance.

Also, the weaker effects are part of any stronger effect. Even if a laser does not cause eye damage at 25 feet, it can still cause flash blindness, glare and a distraction.

For any given laser, the relative distances shown here may change. For example, an invisible (infrared) laser can be an eye hazard for hundreds of feet, but presents no flash blindness, glare or distraction hazard. Because of this, each laser must be analyzed individually. 

To give another example, here are calculations of a more powerful laser—the type that might be used in an outdoor laser show. A 6-watt green (532 nm) laser with a 1.1 milliradian beam divergence is an eye hazard to about 1,600 feet (490 meters), can cause flash blindness to about 8,200 feet (1.5 mi/2.5 km), causes veiling glare to about 36,800 feet (7 mi; 11 km), and is a distraction to about 368,000 feet (70 mi; 110 km).

Reducing the hazard

There are a number of ways that laser users, regulators and pilots reduce the potential hazard from outdoor laser use. These measures include:

Police enforcement

Police have begun using helicopters to patrol and seek out people using lasers to disrupt aviation.

User hazard reduction measures

  • Using the lowest power necessary for the task.
  • Increasing the beam divergence. The beam spreads out faster, so at any given distance, the amount of light entering the eye or a cockpit windscreen will be less (e.g., lower irradiance).
  • Keeping beams away from areas with many aircraft, such as airports and flight paths.
  • Terminating beams on buildings, dense trees, etc. to prevent laser light from entering protected airspace. This is a common protection measure for outdoor laser shows, if there are structures available for termination.
  • Using spotters to watch for aircraft. This is commonly done for laser shows which tend to be short-duration (around an hour) and infrequent (nightly shows are rare).
  • Using automated detection systems such as radar or sky cameras. These are used for long-duration (all night) and frequent (nightly) applications, such as laser guide stars used at astronomical observatories.
  • Developing and following policies for outdoor laser operations, such as the ANSI standard "Safe Use of Lasers Outdoors" or NASA's "Use Policy for Outdoor Lasers".

Regulatory hazard reduction measures

  • Restricting the sale or use of laser devices. This is done in some jurisdictions. For example, in April 2008 New South Wales, Australia banned laser pointer possession, except by special permit, in an effort to reduce the number of laser illuminations of aircraft. In October 1997 in the United Kingdom, administrative steps were taken to restrict the sale of laser pointers > 1 milliwatt output, for similar reasons (although the purchase, importation and use of such pointers in the UK remains lawful). In the U.S., the Congressional Research Service notes that a ban could "pose significant challenges because these devices are widely available at low cost and are used in a variety of applications such as laser pointers, laser levels and laser gun sights."
  • Requiring review or approval of outdoor laser uses. This is discussed in the Regulation and control section below.
  • Amending existing laws, or enacting new ones, to try to discourage irresponsible laser use. One U.S. federal effort in this direction is the "Securing Airplane Cockpits Against Lasers Act of 2005", discussed in the History section below.
  • Following a series of accidents caused by lasers, Arizona state passed Bill 2164 (2014) that making it a Class One misdemeanor to point a laser at an aircraft.

Pilot/aircrew hazard reduction measures

  • Fixed laser installations (e.g. laser guide stars from observatories) may be marked on aeronautical charts so pilots are aware of potential beams along their flight path. Temporary uses (laser shows) may be described in pre-flight information. For example, in the U.S., laser uses submitted to the FAA are often listed in NOTAMs for pilots.
  • Education and training. The SAE G-10T Laser Hazards Subcommittee is working on Aerospace Recommended Practice document 5598, "Laser Visual Interference - Pilot Operational Procedures." This will provide information for pilots on recognizing and recovering from a laser or bright light incident. Articles in aviation publications also have provided helpful information, such as "Laser Illuminations: The Last Line of Defense - The Pilot!".

Active hazard reduction (proposed measures)

Some measures have been proposed to protect aircrews including goggles and windscreen filters. These may work in theory (especially against known wavelengths) and may be useful in some situations such as military operations. However, these measures may not be suitable, practical or recommended for widespread civil air operations.
  • Laser safety goggles. Laboratory-type laser safety goggles are not well suited for pilot operation. "The 20% transmission ratio of laboratory laser eyewear would probably have disastrous effects on a cockpit crew who must read instruments while flying at night.... The optical quality of such systems also becomes a factor because slight amounts of distortion or haze which may be of no concern in the laboratory may be a major concern to pilots flying at low altitudes and high speed." Also, there may be a variety of laser wavelengths/colors that may need to be defended against. If all wavelengths are protected, the goggles essentially are opaque. There are also issues with the discomfort of wearing goggles routinely, given that laser incidents are relatively rare.
  • Active "smart" goggles which can detect laser light and then activate a blocking/dimming process based on the power and wavelength. It is not known if these are in production or use; if so, it is likely that these are used only in military applications.
  • Glare shields that can be pulled down over a windscreen to reduce all incoming light.
  • Laser event detectors/recorders that can sense a laser illumination and record information about the wavelength and power. This does not provide protection but does give information about an illumination which may be useful for later analysis or legal action.

Regulation and control

The U.S. FAA Laser Free Zone extends horizontally 2 NM (3,700 m) from the centerline of all runways (two dark lines in this diagram) with additional 3 NM (5,560 m) extensions at each end of a runway. Vertically, the LFZ extends to 2,000 feet (610 m) above ground level.
 
The U.S. FAA Critical Flight Zone extends horizontally 10 nmi (19 km) around the airport, and extends vertically to 10,000 feet (3,000 m) above ground level. The optional Sensitive Flight Zone is designated around special airspace needing bright-light protection.
 
In the United States, laser airspace guidelines can be found in Federal Aviation Administration Order JO 7400.2, Chapter 29 "Outdoor Laser Operations", and bright light airspace guidelines are in Chapter 30 "High Intensity Light Operations".

In the United Kingdom, CAP 736 is the "Guide for the Operation of Lasers, Searchlights and Fireworks in United Kingdom Airspace." 

For all laser users, the ANSI Z136.6 document gives guidance for the safe use of outdoor lasers. While this document is copyrighted by ANSI and is relatively costly, a flavor of its recommendations can be seen in NASA's Use Policy for Outdoor Lasers.

Airspace zones

The U.S. FAA has established airspace zones. These protect the area around airports and other sensitive airspace from the hazards of safe-but-too-bright visible laser light exposure:
  • The Laser Free Zone extends immediately around and above runways, as depicted at right. Light irradiance within the zone must be less than 50 nanowatts per square centimeter (0.05 microwatts per square centimeter). This was set at "a level that would not cause any visual disruption."
  • The Critical Flight Zone covers 10 nautical miles (NM) around the airport; the light limit is 5 microwatts per square centimeter (μW/cm²). This "was determined to be the level at which significant glare problems can occur."
  • The optional Sensitive Flight Zone is designated by the FAA, military or other aviation authorities where light intensity must be less than 100 μW/cm². This might be done for example around a busy flight path or where military operations are taking place. This "was identified as the level of exposure at which significant flash blindness and afterimages could interfere with a pilot's visual performance."
  • The Normal Flight Zone covers all other airspace. The light intensity must be less than 2.5 milliwatts per square centimeter (2500 μW/cm²). This is about half of the Class 3R power level, and is not considered
For non-visible lasers (infrared and ultraviolet), the irradiance at the aircraft must be eye-safe—below the Maximum Permissible Exposure level for that wavelength. For pulsed visible lasers, the irradiance at the aircraft must be both eye-safe and must be at or below any applicable FAA laser zone. 

In the UK, restrictions are in place in a zone that includes a circle 3 nmi (5.6 km) in radius around an aerodrome (airport) plus extensions off each end of each runway. The runway zones are rectangles 20 nmi (37 km) in total length and 1,000 meters (3,300 feet) wide, centered about each runway.

Reporting

In the U.S., those persons operating outdoor lasers are requested to file reports with the FAA at least 30 days in advance, detailing their laser power(s). They must reference their operation location with respect to local airports and describe the laser power emitted within the Sensitive, Critical and Laser Free zones. Note that it is possible to use lasers whose output exceeds the limits of these zones, if other control measures are in place. For example, spotters could be used to watch for aircraft, and turn off the laser if a potential conflict is sighted. (This raises separate issues about the number, training and effectiveness of the spotters; the FAA must be satisfied that these issues are answered for the particular operation.) 

FAA Advisory Circular 70-1 "Outdoor Laser Operations" contains two forms plus instructions. One form is a "Notice of Proposed Laser Operations", the other is a "Laser Configuration Worksheet" which is filled out for each laser or each different laser configuration. The FAA will review the report, and will either send a letter of objection or will send a letter of non-objection. The language is important; the FAA does not "approve" or "disapprove" as this implies a higher level of regulatory authority which the FAA does not have.

If the laser use is for a show or display in the U.S., there is a more stringent regulatory process. In the U.S., any use of lasers in a show or display requires pre-approval from the FDA Center for Devices and Radiological Health. This is required both for the laser equipment, and separately for the show itself (site, audience configuration, beam effects, etc.). As part of the CDRH's show approval ("variance") process, the CDRH will require a letter of non-objection from the FAA. Without this, the laser show cannot legally proceed.

In the U.S., laser activity in a given area is communicated to pilots before their flight via a NOTAM. Pilots exposed to a laser or bright light during flight should follow Advisory Circular 70-2 "Reporting of Laser Illumination of Aircraft". 

UK laser operators report outdoor laser, searchlight or firework operations at least 28 days in advance, using the Notification Form found in annex A of the CAP 736 document.

Regulatory and standards development

A key group inside the U.S. working on laser/aviation safety is the SAE G-10T, Laser Safety Hazards Subcommittee. It consists of laser safety experts and researchers, pilots and other interested parties representing military, commercial and private aviation, and laser users. Their recommendations have formed the basis of the FAA laser and bright light regulations and forms, as well as standards adopted in other countries and by the ICAO

The ANSI Z136.6 standard is the "American National Standard for Safe Use of Lasers Outdoors."  The Z136.6 committee has worked closely with SAE G-10T and others, to develop recommended safety procedures for outdoor laser use.

History

Until the early 1990s, laser and bright light aviation incidents were sporadic. In the U.S., NASA's Aviation Safety Reporting System showed only one or two incidents per year. The SAE G-10T subcommittee began meeting around 1993 as the number of incidents grew. Almost all of the incidents were known or suspected to be due to outdoor laser displays. Almost all of the concern was over potential eye damage; at the time visual effects were felt to be a minor consequence.

In late 1995, a number of illumination incidents occurred in Las Vegas due to new outdoor laser displays. Although the displays had been approved by the FDA as eye-safe for their airport proximity, no one had realized that the glare/distraction hazard would adversely affect pilots. In December 1995 the FDA issued an emergency order shutting down the Las Vegas shows.

Within the SAE G-10T subcommittee, there was some consideration about cutting back or banning laser shows. However, it became apparent that there were a large number of non-entertainment laser users as well. The focus shifted to control of known laser users, whether shows or industry/research. New policies and procedures were developed, such as the FAA 7200 Chapter 29, and Advisory Circular 70-1. Although incidents continued to occur (from January 1996 to July 1999, the FAA's Western-Pacific Region identified more than 150 incidents in which low-flying aircraft were illuminated by lasers), the situation seemed under control. 

Then in late 2004 and early 2005, came a significant increase in reported incidents linked to laser pointers. The wave of incidents may have been triggered in part by "copycats" who read press accounts of laser pointer incidents. In one case, David Banach of New Jersey was charged under federal Patriot Act anti-terrorism laws, after he allegedly shone a laser pointer at aircraft.

Responding to the incidents, the Congressional Research Service issued a study on the laser "threat to aviation safety and security." Because there was no federal law specifically banning deliberate laser illumination of aircraft, Congressman Ric Keller introduced H.R. 1400, the "Securing Airplane Cockpits Against Lasers Act of 2005." The bill was passed by the U.S. House and Senate, but did not go to conference and thus did not become law. In 2007, Keller re-introduced the bill as H.R. 1615. Although passed by the House in May 2007, it was not acted on by the Senate before the end of the 110th Congress and never became law.

On March 28, 2008, a "coordinated attack" took place using four green laser pointers aimed at six aircraft landing at the Sydney (New South Wales) Australia airport. As a result of this attack plus others, a law was proposed in mid-April 2008 in NSW to ban possession of handheld lasers, even "harmless classroom pointers". The Australian state of Victoria has reportedly had a similar ban since 1998, but press reports state that it is easy to buy lasers without a permit.

On February 22, 2009, a dozen planes were targeted with green laser beams at Seattle-Tacoma International Airport. An FAA spokeswoman said there were 148 laser attacks on aircraft in the U.S. from January 1, 2009 to February 23, 2009.

During the July 2013 protests of the Morsi Presidency in Egypt and later celebration of his removal, thousands of protesters and revelers aimed laser pointers at government helicopters.

On February 2016 a Virgin Atlantic flight from Heathrow to New York JFK Airport was forced to turn back when a laser beam was shone into the cockpit. The incident led BALPA to call for lasers to be classified as offensive weapons.

In the first seven months of 2018, United States Armed Forces pilots were targeted with laser points in multiple regions, but particularly in the Middle East.

History of mathematics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/History_of_mathematics A proof from Eu...