Search This Blog

Sunday, June 9, 2019

Riboflavin

From Wikipedia, the free encyclopedia

Riboflavin
Riboflavin.svg
Riboflavin-3d-balls.png
Chemical structure
Clinical data
Trade namesmany
Synonymsvactochrome, lactoflavin, vitamin G
AHFS/Drugs.comMonograph
Pregnancy
category
  • US: A (No risk in human studies)
Routes of
administration
by mouth, IM, IV
ATC code
Legal status
Legal status
Pharmacokinetic data
ExcretionUrine
Identifiers
CAS Number
PubChem CID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
E numberE101 (colours) Edit this at Wikidata
CompTox Dashboard (EPA)
ECHA InfoCard100.001.370 Edit this at Wikidata
Chemical and physical data
FormulaC17H20N4O6
Molar mass376.369 g·mol−1

Riboflavin, also known as vitamin B2, is a vitamin found in food and used as a dietary supplement. Food sources include eggs, green vegetables, milk and other dairy product, meat, mushrooms, and almonds. Some countries require its addition to grains. As a supplement it is used to prevent and treat riboflavin deficiency and prevent migraines. It may be given by mouth or injection.

It is nearly always well tolerated. Normal doses are safe during pregnancy. Riboflavin is in the vitamin B group. It is required by the body for cellular respiration.

Riboflavin was discovered in 1920, isolated in 1933, and first made in 1935. It is on the World Health Organization's List of Essential Medicines, the most effective and safe medicines needed in a health system. Riboflavin is available as a generic medication and over the counter. In the United States a month of supplements costs less than 25 USD.

Medical uses

A solution of riboflavin.
 
Corneal ectasia is a progressive thinning of the cornea; the most common form of this condition is keratoconus. Collagen cross-linking by applying riboflavin topically then shining UV light is a method to slow progression of corneal ectasia by strengthening corneal tissue.

As of 2017 a system is marketed by Terumo in Europe that is used to remove pathogens from blood; donated blood is treated with riboflavin and then with ultraviolet light.

A 2017 review found that riboflavin may be useful to prevent migraines in adults, but found that clinical trials in adolescents and children had produced mixed outcomes.

Side effects

In humans, there is no evidence for riboflavin toxicity produced by excessive intakes, in part because it has lower water solubility than other B vitamins, because absorption becomes less efficient as doses increase, and because what exceeds the absorption is excreted via the kidneys into urine. Even when 400 mg of riboflavin per day was given orally to subjects in one study for three months to investigate the efficacy of riboflavin in the prevention of migraine headache, no short-term side effects were reported. Although toxic doses can be administered by injection, any excess at nutritionally relevant doses is excreted in the urine, imparting a bright yellow color when in large quantities. The limited data available on riboflavin’s adverse effects do not mean, however, that high intakes have no adverse effects, and the Food and Nutrition Board urges people to be cautious about consuming excessive amounts of riboflavin.

Function

Flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD) function as cofactors for a variety of flavoprotein enzyme reactions:
Other Flavin derivatives such as N(5)-ethylflavinium ion, Et-Fl+, can oxidize water and produce O2.

Nutrition

Food sources

Food and beverages that provide riboflavin without fortification are milk, cheese, eggs, leaf vegetables, liver, kidneys, lean meats, legumes, mushrooms, and almonds.

The milling of cereals results in considerable loss (up to 60%) of vitamin B2, so white flour is enriched in some countries by addition of the vitamin. The enrichment of bread and ready-to-eat breakfast cereals contributes significantly to the dietary supply of vitamin B2. Polished rice is not usually enriched, because the vitamin’s yellow color would make the rice visually unacceptable to the major rice-consuming populations. However, most of the flavin content of whole brown rice is retained if the rice is steamed (parboiled) prior to milling. This process drives the flavins in the germ and aleurone layers into the endosperm. Free riboflavin is naturally present in foods along with protein-bound FMN and FAD. Bovine milk contains mainly free riboflavin, with a minor contribution from FMN and FAD. In whole milk, 14% of the flavins are bound noncovalently to specific proteins. Milk and yogurt contain some of the highest riboflavin content. Egg white and egg yolk contain specialized riboflavin-binding proteins, which are required for storage of free riboflavin in the egg for use by the developing embryo.

Riboflavin is added to baby foods, breakfast cereals, pastas and vitamin-enriched meal replacement products. It is difficult to incorporate riboflavin into liquid products because it has poor solubility in water, hence the requirement for riboflavin-5'-phosphate (E101a), a more soluble form of riboflavin. Riboflavin is also used as a food coloring and as such is designated in Europe as the E number E101.

Dietary recommendations

The National Academy of Medicine (then the U.S. Institute of Medicine [IOM]) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for riboflavin in 1998. The current EARs for riboflavin for women and men ages 14 and up are 0.9 mg/day and 1.1 mg/day, respectively; the RDAs are 1.1 and 1.3 mg/day, respectively. RDAs are higher than EARs so as to identify amounts that will cover people with higher than average requirements. RDA for pregnancy is 1.4 mg/day. RDA for lactation is 1.6 mg/day. For infants up to 12 months the Adequate Intake (AI) is 0.3–0.4 mg/day. and for children ages 1–13 years the RDA increases with age from 0.5 to 0.9 mg/day. As for safety, the IOM sets Tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. In the case of riboflavin there is no UL, as there is no human data for adverse effects from high doses. Collectively the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR. AI and UL defined the same as in United States. For women and men ages 15 and older the PRI is set at 1.6 mg/day. PRI for pregnancy is 1.9 mg/day, for lactation 2.0 mg/day. For children ages 1–14 years the PRIs increase with age from 0.6 to 1.4 mg/day. These PRIs are higher than the U.S. RDAs. The EFSA also reviewed the safety question and like the U.S., decided that there was not sufficient information to set an UL.

For U.S. food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value (%DV). For riboflavin labeling purposes 100% of the Daily Value was 1.7 mg, but as of May 27, 2016 it was revised to 1.3 mg to bring it into agreement with the RDA. A table of the old and new adult Daily Values is provided at Reference Daily Intake. The original deadline to be in compliance was July 28, 2018, but on September 29, 2017 the FDA released a proposed rule that extended the deadline to January 1, 2020 for large companies and January 1, 2021 for small companies.

Deficiency

Signs and symptoms

Mild deficiencies can exceed 50% of the population in Third World countries and in refugee situations. Deficiency is uncommon in the United States and in other countries that have wheat flour, bread, pasta, corn meal or rice enrichment regulations. In the U.S., starting in the 1940s, flour, corn meal and rice have been fortified with B vitamins as a means of restoring some of what is lost in milling, bleaching and other processing. For adults 20 and older, average intake from food and beverages is 1.8 mg/day for women and 2.5 mg/day for men. An estimated 23% consume a riboflavin-containing dietary supplement that provides on average 10 mg. The U.S. Department of Health and Human Services conducts National Health and Nutrition Examination Survey every two years and reports food results in a series of reports referred to as "What We Eat In America." From NHANES 2011–2012, estimates were that 8% of women and 3% of men consumed less than the RDA. When compared to the lower Estimated Average Requirements, fewer than 3% did not achieve the EAR level. 

Riboflavin deficiency (also called ariboflavinosis) results in stomatitis including painful red tongue with sore throat, chapped and fissured lips (cheilosis), and inflammation of the corners of the mouth (angular stomatitis). There can be oily scaly skin rashes on the scrotum, vulva, philtrum of the lip, or the nasolabial folds. The eyes can become itchy, watery, bloodshot and sensitive to light. Due to interference with iron absorption, even mild to moderate riboflavin deficiency results in an anemia with normal cell size and normal hemoglobin content (i.e. normochromic normocytic anemia). This is distinct from anemia caused by deficiency of folic acid (B9) or cyanocobalamin (B12), which causes anemia with large blood cells (megaloblastic anemia). Deficiency of riboflavin during pregnancy can result in birth defects including congenital heart defects and limb deformities. Prolonged riboflavin insufficiency is also known to cause degeneration of the liver and nervous system.

The stomatitis symptoms are similar to those seen in pellagra, which is caused by niacin (B3) deficiency. Therefore, riboflavin deficiency is sometimes called "pellagra sine pellagra" (pellagra without pellagra), because it causes stomatitis but not widespread peripheral skin lesions characteristic of niacin deficiency.

Riboflavin deficiency prolongs recovery from malaria, despite preventing growth of plasmodium (the malaria parasite).

Causes

Riboflavin is continuously excreted in the urine of healthy individuals, making deficiency relatively common when dietary intake is insufficient. Riboflavin deficiency is usually found together with other nutrient deficiencies, particularly of other water-soluble vitamins. A deficiency of riboflavin can be primary – poor vitamin sources in one's daily diet – or secondary, which may be a result of conditions that affect absorption in the intestine, the body not being able to use the vitamin, or an increase in the excretion of the vitamin from the body. Subclinical deficiency has also been observed in women taking oral contraceptives, in the elderly, in people with eating disorders, chronic alcoholism and in diseases such as HIV, inflammatory bowel disease, diabetes and chronic heart disease. The Celiac Disease Foundation points out that a gluten-free diet may be low in riboflavin (and other nutrients) as enriched wheat flour and wheat foods (bread, pasta, cereals, etc.) is a major dietary contribution to total riboflavin intake. Phototherapy to treat jaundice in infants can cause increased degradation of riboflavin, leading to deficiency if not monitored closely.

Diagnosis

Overt clinical signs are rarely seen among inhabitants of the developed countries. The assessment of riboflavin status is essential for confirming cases with unspecific symptoms where deficiency is suspected.
  • Glutathione reductase is a nicotinamide adenine dinucleotide phosphate (NADPH) and FAD-dependent enzyme, and the major flavoprotein in erythrocytes. The measurement of the activity coefficient of erythrocyte glutathione reductase (EGR) is the preferred method for assessing riboflavin status. It provides a measure of tissue saturation and long-term riboflavin status. In vitro enzyme activity in terms of activity coefficients (AC) is determined both with and without the addition of FAD to the medium. ACs represent a ratio of the enzyme’s activity with FAD to the enzyme’s activity without FAD. An AC of 1.2 to 1.4, riboflavin status is considered low when FAD is added to stimulate enzyme activity. An AC > 1.4 suggests riboflavin deficiency. On the other hand, if FAD is added and AC is < 1.2, then riboflavin status is considered acceptable. Tillotson and Bashor reported that a decrease in the intakes of riboflavin was associated with increase in EGR AC. In the UK study of Norwich elderly, initial EGR AC values for both males and females were significantly correlated with those measured 2 years later, suggesting that EGR AC may be a reliable measure of long-term biochemical riboflavin status of individuals. These findings are consistent with earlier studies.
  • Experimental balance studies indicate that urinary riboflavin excretion rates increase slowly with increasing intakes, until intake level approach 1.0 mg/d, when tissue saturation occurs. At higher intakes, the rate of excretion increases dramatically. Once intakes of 2.5 mg/d are reached, excretion becomes approximately equal to the rate of absorption At such high intake a significant proportion of the riboflavin intake is not absorbed. If urinary riboflavin excretion is <19 40="" are="" creatinine="" day="" deficiency.="" g="" indicative="" intake="" nbsp="" of="" or="" per="" recent="" riboflavin="" span="" without="">

Treatment

Treatment involves a diet which includes an adequate amount of riboflavin containing foods. Multi-vitamin and mineral dietary supplements often contain 100% of the Daily Value (1.3 mg) for riboflavin, and can be used by persons concerned about an inadequate diet. Over-the-counter dietary supplements are available in the United States with doses as high as 100 mg, but there is no evidence that these high doses have any additional benefit for healthy people.

Other animals

In other animals, riboflavin deficiency results in lack of growth, failure to thrive, and eventual death. Experimental riboflavin deficiency in dogs results in growth failure, weakness, ataxia, and inability to stand. The animals collapse, become comatose, and die. During the deficiency state, dermatitis develops together with hair loss. Other signs include corneal opacity, lenticular cataracts, hemorrhagic adrenals, fatty degeneration of the kidney and liver, and inflammation of the mucous membrane of the gastrointestinal tract. Post-mortem studies in rhesus monkeys fed a riboflavin-deficient diet revealed about one-third the normal amount of riboflavin was present in the liver, which is the main storage organ for riboflavin in mammals. Riboflavin deficiency in birds results in low egg hatch rates.

Chemistry

As a chemical compound, riboflavin is a yellow-orange solid substance with poor solubility in water compared to other B vitamins. Visually, it imparts color to vitamin supplements (and bright yellow color of urine in persons taking it).

Industrial uses

Fluorescent spectra of riboflavin
 
A solution of riboflavin in water (right) is yellow with chartreuse fluorescence under fluorescent room lighting. The beaker prepared at left holds a detergent in water, forming micelles that will show the passage of a visible laser beam.
 
A 473 nm 200 mW blue laser beam is directed into the two beakers from the left. The detergent shows the path of the beam by blue scattered light. The light from the riboflavin solution is intense green fluorescence showing along the path of this laser beam.
 
Because riboflavin is fluorescent under UV light, dilute solutions (0.015–0.025% w/w) are often used to detect leaks or to demonstrate coverage in an industrial system such a chemical blend tank or bioreactor. (See the ASME BPE section on Testing and Inspection for additional details.)

Industrial synthesis

Large cultures of Micrococcus luteus growing on pyridine (left) and succinic acid (right). The yellow pigment being produced in the presence of pyridine is riboflavin.
 
The industrial scale production of riboflavin using diverse microorganisms, including filamentous fungi such as Ashbya gossypii, Candida famata and Candida flaveri, as well as the bacteria Corynebacterium ammoniagenes and Bacillus subtilis. The latter organism, genetically modified to both increase the production of riboflavin and to introduce an antibiotic (ampicillin) resistance marker, is employed at a commercial scale to produce riboflavin for feed and food fortification. The chemical company BASF has installed a plant in South Korea, which is specialized on riboflavin production using Ashbya gossypii. The concentrations of riboflavin in their modified strain are so high that the mycelium has a reddish/brownish color and accumulates riboflavin crystals in the vacuoles, which will eventually burst the mycelium. Riboflavin is sometimes overproduced, possibly as a protective mechanism, by some bacteria in the presence of high concentrations of hydrocarbons or aromatic compounds. One such organism is Micrococcus luteus (American Type Culture Collection strain number ATCC 49442), which develops a yellow color due to production of riboflavin while growing on pyridine, but not when grown on other substrates, such as succinic acid.

History

Vitamin B was originally considered to have two components, a heat-labile vitamin B1 and a heat-stable vitamin B2. In the 1920s, vitamin B2 was thought to be the factor necessary for preventing pellagra. In 1923, Paul Gyorgy in Heidelberg was investigating egg-white injury in rats; the curative factor for this condition was called vitamin H (which is now called biotin or vitamin B7). Since both pellagra and vitamin H deficiency were associated with dermatitis, Gyorgy decided to test the effect of vitamin B2 on vitamin H deficiency in rats. He enlisted the service of Wagner-Jauregg in Kuhn’s laboratory. In 1933, Kuhn, Gyorgy, and Wagner found that thiamin-free extracts of yeast, liver, or rice bran prevented the growth failure of rats fed a thiamin-supplemented diet.

Further, the researchers noted that a yellow-green fluorescence in each extract promoted rat growth, and that the intensity of fluorescence was proportional to the effect on growth. This observation enabled them to develop a rapid chemical and bioassay to isolate the factor from egg white in 1933. The same group then isolated the same preparation (a growth-promoting compound with yellow-green fluorescence) from whey using the same procedure (lactoflavin). In 1934, Kuhn’s group identified the structure of so-called flavin and synthesized vitamin B2, leading to evidence in 1939 that riboflavin was essential for human health.

Etymology

The name "riboflavin" (often abbreviated to Rbf or RBF) comes from "ribose" (the sugar whose reduced form, ribitol, forms part of its structure) and "flavin", the ring-moiety which imparts the yellow color to the oxidized molecule (from Latin flavus, "yellow"). The reduced form, which occurs in metabolism along with the oxidized form, is colorless.

Tocopherol

From Wikipedia, the free encyclopedia

Tocopherols (/tˈkɒfəˌrɒl/; TCP) are a class of organic chemical compounds (more precisely, various methylated phenols), many of which have vitamin E activity. Because the vitamin activity was first identified in 1936 from a dietary fertility factor in rats, it was given the name "tocopherol" from the Greek words "τόκος" [tókos, birth], and "φέρειν", [phérein, to bear or carry] meaning in sum "to carry a pregnancy," with the ending "-ol" signifying its status as a chemical alcohol
 
α-Tocopherol is the main source found in supplements and in the European diet, where the main dietary sources are olive and sunflower oils, while γ-tocopherol is the most common form in the American diet due to a higher intake of soybean and corn oil.

Tocotrienols, which are related compounds, also have vitamin E activity. All of these various derivatives with vitamin activity may correctly be referred to as "vitamin E". Tocopherols and tocotrienols are fat-soluble antioxidants but also seem to have many other functions in the body.

Forms

Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Both the tocopherols and tocotrienols occur in α (alpha), β (beta), γ (gamma) and δ (delta) forms, determined by the number and position of methyl groups on the chromanol ring. 

Form Structure
alpha-Tocopherol Tocopherol, alpha-.svg
beta-Tocopherol Beta-tocopherol.png
gamma-Tocopherol Gamma-tocopherol.png
delta-Tocopherol Delta-tocopherol.png

The tocotrienols have the same methyl structure at the ring and the same Greek letter-methyl-notation, but differ from the analogous tocopherols by the presence of three double bonds in the hydrophobic side chain. The unsaturation of the tails gives tocotrienols only a single stereoisomeric carbon (and thus two possible isomers per structural formula, one of which occurs naturally), whereas tocopherols have 3 centers (and eight possible stereoisomers per structural formula, again, only one of which occurs naturally). 

Each form has a different biological activity. In general, the unnatural l-isomers of tocotrienols lack almost all vitamin activity, and half of the possible 8 isomers of the tocopherols (those with 2S chirality at the ring-tail junction) also lack vitamin activity. Of the stereoisomers which retain activity, increasing methylation, especially full methylation to the alpha-form, increases vitamin activity. In tocopherols, this is due to the preference of the tocopherol binding protein for the alpha-tocopherol form of the vitamin.

As a food additive, tocopherol is labeled with these E numbers: E306 (tocopherol), E307 (α-tocopherol), E308 (γ-tocopherol), and E309 (δ-tocopherol). These are all approved in the USA, EU and Australia and New Zealand for use as antioxidants.

α-Tocopherol

Alpha-tocopherol is the form of vitamin E that is preferentially absorbed and accumulated in humans. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of miscarriages in pregnant rats relative to alpha-tocopherol. 

Although the mono-methylated form ddd-gamma-tocopherol is the most prevalent form of vitamin E in oils, there is evidence that rats can methylate this form to the preferred alpha-tocopherol, since several generations of rats retained alpha-tocopherol tissue levels, even when fed only gamma-tocopherol through their lives. 

There are three stereocenters in alpha-tocopherol, so this is a chiral molecule. The eight stereoisomers of alpha-tocopherol differ in the arrangement of groups around these stereocenters. In the image of RRR-alpha-tocopherol below, all three stereocenters are in the R form. However, if the middle of the three stereocenters were changed (so the hydrogen was now pointing down and the methyl group pointing up), this would become the structure of RSR-alpha-tocopherol. These stereoisomers can also be named in an alternative older nomenclature, where the stereocenters are either in the d or l form.

RRR stereoisomer of alpha-tocopherol, bonds around the stereocenters are shown as dashed lines (pointing down) or wedges (pointing up).
 
1 IU of tocopherol is defined as ⅔ milligrams of RRR-alpha-tocopherol (formerly named d-alpha-tocopherol or sometimes ddd-alpha-tocopherol). 1 IU is also defined as 1 milligram of an equal mix of the eight stereoisomers, which is a racemic mixture called all-rac-alpha-tocopheryl acetate. This mix of stereoisomers is often called dl-alpha-tocopheryl acetate, even though it is more precisely dl,dl,dl-alpha-tocopheryl acetate). However, 1 IU of this racemic mixture is not now considered equivalent to 1 IU of natural (RRR) α-tocopherol, and the Institute of Medicine and the USDA now convert IU's of the racemic mixture to milligrams of equivalent RRR using 1 IU racemic mixture = 0.45 "milligrams α-tocopherol".

Tocotrienols

Tocotrienols, although less commonly known, also belong to the vitamin E family. Tocotrienols have four natural 2' d-isomers (they have a stereoisomeric carbon only at the 2' ring-tail position). The four tocotrienols (in order of decreasing methylation: d-alpha, d-beta, d-gamma, and d-delta-tocotrienol) have structures corresponding to the four tocopherols, except with an unsaturated bond in each of the three isoprene units that form the hydrocarbon tail, whereas tocopherols have a saturated phytyl tail (the phytyl tail of tocopherols gives the possibility for 2 more stereoisomeric sites in these molecules that tocotrienols do not have). Tocotrienol has been subject to fewer clinical studies and seen less research as compared to tocopherol. However, there is growing interest in the health effects of these compounds.

Function and dietary recommendations

Tocopherols function by donating H atoms to radicals (X).

Mechanism of action

Tocopherols are radical scavengers, delivering an H atom to quench free radicals. At 323 kJ/mol, the O-H bond in tocopherols is about 10% weaker than in most other phenols. This weak bond allows the vitamin to donate a hydrogen atom to the peroxyl radical and other free radicals, minimizing their damaging effect. The thus generated tocopheryl radical is relatively unreactive but revert to tocopherol by a redox reaction with a hydrogen donor such as vitamin C. As they are fat-soluble, tocopherols are incorporated into cell membranes, which are protected from oxidative damage.

Dietary considerations

The U.S. Recommended Dietary Allowance (RDA) for adults is 15 mg/day. The RDA is based on the alpha-tocopherol form because it is the most active form as originally tested. Vitamin E supplements are absorbed best when taken with meals. The U.S. Institute of Medicine has set an upper tolerable intake level (UL) for vitamin E at 1,000 mg (1,500 IU) per day. The European Food Safety Authority sets UL at 300 mg alpha-tocopherol equivalents /day.

α-Tocopherol equivalents

For dietary purposes, vitamin E activity of vitamin E isomers is expressed as α-tocopherol equivalents (a-TEs). One a-TE is defined by the biological activity of 1 mg (natural) d-alpha-Tocopherol in the resorption-gestation test. According to listings by FAO and others beta-tocopherol should be multiplied by 0.5, gamma-tocopherol by 0.1, and a-tocotrienol by 0.3. The IU is converted to aTE by multiplying it with 0.67. These factors do not correlate with the antioxidant activity of vitamin E isomers, where tocotrienols show even much higher activity in vivo.

Sources

The U.S. Department of Agriculture (USDA), Agricultural Research Services, maintains a food composition database. The last major revision was Release 28, September 2015. In general, food sources with the highest concentrations of vitamin E are vegetable oils, followed by nuts and seeds. Adjusting for typical portion sizes, however, for many people in the United States the most important sources of vitamin E include fortified breakfast cereals.

Deficiency

Vitamin E deficiency is rare, and in almost all instances caused by an underlying disease rather than a diet low in vitamin E. Vitamin E deficiency causes neurological problems due to poor nerve conduction. These include neuromuscular problems such as spinocerebellar ataxia and myopathies. Deficiency can also cause anemia, due to oxidative damage to red blood cells.

Supplements

Commercial vitamin E supplements can be classified into several distinct categories:
  • Fully synthetic vitamin E, "dl-alpha-tocopherol", the most inexpensive, most commonly sold supplement form usually as the acetate ester.
  • Semi-synthetic "natural source" vitamin E esters, the "natural source" forms used in tablets and multiple vitamins. These are highly fractionated d-alpha tocopherol or its esters, often made by synthetic methylation of gamma and beta d,d,d tocopherol vitamers extracted from plant oils.
  • Less fractionated "natural mixed tocopherols" and high d-gamma-tocopherol fraction supplements.

Synthetic all-racemic

Synthetic vitamin E derived from petroleum products is manufactured as all-racemic alpha tocopheryl acetate with a mixture of eight stereoisomers. In this mixture, one alpha-tocopherol molecule in eight molecules are in the form of RRR-alpha-tocopherol (12.5% of the total).

The 8-isomer all-rac vitamin E is always marked on labels simply as dl-tocopherol or dl-tocopheryl acetate, even though it is (if fully written out) actually dl,dl,dl-tocopherol. The present largest manufacturers of this type are DSM and BASF

Natural alpha-tocopherol is the RRR-alpha (or ddd-alpha) form. The synthetic dl,dl,dl-alpha ("dl-alpha") form is not as active as the natural ddd-alpha ("d-alpha") tocopherol form. This is mainly due to reduced vitamin activity of the 4 possible stereoisomers which are represented by the l or S enantiomer at the first stereocenter (an S or l configuration between the chromanol ring and the tail, i.e., the SRR, SRS, SSR, and SSS stereoisomers). The 3 unnatural "2R" stereoisomers with natural R configuration at this 2' stereocenter, but S at one of the other centers in the tail (i.e., RSR, RRS, RSS), appear to retain substantial RRR vitamin activity, because they are recognized by the alpha-tocopherol transport protein, and thus maintained in the plasma, where the other four stereoisomers (SRR, SRS, SSR, and SSS) are not. Thus, the synthetic all-rac-α-tocopherol in theory would have approximately half the vitamin activity of RRR-alpha-tocopherol in humans. Experimentally, the ratio of activities of the 8 stereoisomer racemic mixture to the natural vitamin, is 1 to 1.36 in the rat pregnancy model (suggesting a measured activity ratio of 1/1.36 = 74% of natural, for the 8-isomer racemic mix).

Although it is clear that mixtures of stereoisomers are not as active as the natural RRR-alpha-tocopherol form, in the ratios discussed above, specific information on any side effects of the seven synthetic vitamin E stereoisomers is not readily available.

Esters

Alpha tocopheryl acetate, an acetate ester of alpha-tocopherol.
 
Manufacturers also commonly convert the phenol form of the vitamins (with a free hydroxyl group) to esters, using acetic or succinic acid. These tocopheryl esters are more stable and are easy to use in vitamin supplements. Alpha tocopheryl esters are de-esterified in the gut and then absorbed as the free tocopherol. Tocopheryl nicotinate and tocopheryl linolate esters are also used in cosmetics and some pharmaceuticals.

Mixed tocopherols

"Mixed tocopherols" in the US contain at least 20% w/w other natural R, R,R- tocopherols, i.e. R, R,R-alpha-tocopherol content plus at least 25% R, R,R-beta-, R, R,R-gamma-, R, R,R-delta-tocopherols.

Some brands may contain 200% w/w or more of the other tocopherols and measurable tocotrienols. Some mixed tocopherols with higher gamma-tocopherol content are marketed as "High Gamma-Tocopherol." The label should report each component in milligrams, except R, R,R-alpha-tocopherol may still be reported in IU. Mixed tocopherols can also be found in other nutritional supplements.

Uses

Observational studies that measure dietary intake and/or serum concentration, and experimental studies that ideally are randomized clinical trials (RCTs), are two means of examining the effects or lack thereof of a proposed intervention on human health. Healthcare outcomes can be expected to be in accord between reviews of observational and experimental studies. If there is a lack of agreement then factors other than design need to be considered. In observational studies on vitamin E, an inverse correlation between dietary intake and risk of a disease, or serum concentration and risk of a disease, can be considered suggestive, but any conclusions should also rest on randomized clinical trials of sufficient size and duration to measure clinically significant results. One concern with correlations is that other nutrients and non-nutrient compounds (such as polyphenols) may be higher in the same diets that are higher in vitamin E. Another concern for the relevance of RCTs described below is that while observational studies are comparing disease risk between low and high dietary intake of naturally occurring vitamin E from food (when worldwide, the adult median dietary intake is 6.2 mg/d for d-alpha-tocopherol; 10.2 mg/day when all of the tocopherol and tocotrienol isomers are included), the prospective RCTs often used 400 IU/day of synthetic dl-alpha-tocopherol as the test product, equivalent to 268 mg of α-tocopherol equivalents.

Supplement popularity over time

In the US, the popularity for vitamin E as a dietary supplement may have peaked around 2000. The Nurses' Health Study (NHS) and the Health Professionals Follow-up Study (HPFS) tracked dietary supplement use by people over the age of 40 during years 1986-2006. For women, user prevalence was 16.1% in 1986, 46.2% in 1998, 44.3% in 2002, but had decreased to 19.8% in 2006. Similarly, for men, prevalence for same years was 18.9%, 52.0%, 49.4% and 24.5%. The authors theorized that declining use in these health science aware populations may have due to publications of studies that showed either no benefits or negative consequences from vitamin E supplements. There is other evidence for declining use of vitamin E. Within the US military services, vitamin prescriptions written for active, reserve and retired military, and their dependents, were tracked over years 2007-2011. Vitamin E prescriptions decreased by 53% while vitamin C remained constant and vitamin D increased by 454%. A report on vitamin E sales volume in the US documented a 50% decrease between 2000 and 2006, with a significant cause attributed to a well-publicized meta-analysis that had concluded that high-dosage vitamin E increased all-cause mortality.

Age-related macular degeneration

A Cochrane review published in 2017 on antioxidant vitamin and mineral supplements for slowing the progression of age-related macular degeneration (AMD) identified only one vitamin E clinical trial. That trial compared 500 IU/day of alpha-tocopherol to placebo for four years and reported no effect on the progression of AMD in people already diagnosed with the condition. Another Cochrane review, same year, same authors, reviewed the literature on alpha-tocopherol preventing the development of AMD. This review identified four trials, duration 4–10 years, and reported no change to risk of developing AMD. A large clinical trial known as AREDS compared beta-carotene (15 mg), vitamin C (500 mg) and alpha-tocopherol (400 IU) to placebo for up to 10 years, with a conclusion that the anti-oxidant combination significantly slowed progression. However, because there was no group in the trial receiving only vitamin E, no conclusions could be drawn as to the contribution of the vitamin to the effect.

Complementary and alternative medicine

Proponents of megavitamin therapy and orthomolecular medicine advocate natural tocopherols. Meanwhile, clinical trials have largely concentrated on use of either a synthetic, all-racemic d-alpha tocopheryl or synthetic dl-alpha tocopheryl.

Antioxidant theory

Tocopherol is described as functioning as an antioxidant. A dose-ranging trial was conducted in people with chronic oxidative stress attributed to elevated serum cholesterol. Plasma F2-isoprostane concentration was selected as a biomarker of free radical-mediated lipid peroxidation. Only the two highest doses - 1600 and 3200 IU/day - significantly lowered F2-isoprostane.

Alzheimer's disease

Alzheimer's disease (AD) and vascular dementia are common causes of decline of brain functions that occur with age. AD is a chronic neurodegenerative disease that worsens over time. The disease process is associated with plaques and tangles in the brain. Vascular dementia can be caused by ischemic or hemorrhagic infarcts affecting multiple brain areas, including the anterior cerebral artery territory, the parietal lobes, or the cingulate gyrus. Both types of dementia may be present. Vitamin E status (and that of other antioxidant nutrients) is conjectured as having a possible impact on risk of Alzheimer's disease and vascular dementia. A review of dietary intake studies reported that higher consumption of vitamin E from foods lowered the risk of developing AD by 24%. A second review examined serum vitamin E levels and reported lower serum vitamin E in AD patients compared to healthy, age-matched people. In 2017 a consensus statement from the British Association for Psychopharmacology included that until further information is available, vitamin E cannot be recommended for treatment or prevention of Alzheimer's disease.

Cancer

From reviews of observational studies, diets higher in vitamin E content were associated with a lower relative risk of kidney cancer, bladder cancer, and lung cancer When comparisons were made between the lowest and highest groups for dietary vitamin E consumption from food, the average reductions in relative risk were in the range of 16-19%. For all of these reviews, the authors noted that the findings needed to be confirmed by prospective studies. From randomized clinical trials (RCTs) in which alpha-tocopherol was administered as a dietary supplement, results differed from the dietary intake reviews. A RCT of 400 IU/day of alpha-tocopherol did not reduce risk of bladder cancer. In male tobacco smokers, 50 mg/day had no impact on developing lung cancer. A review of RCTs for colorectal cancer reported lack of a statistically significant reduction in risk. In male tobacco smokers, 50 mg/day reduced prostate cancer risk by 32%, but in a different trial, majority non-smokers, 400 IU/day increased risk by 17%. In women who consumed either placebo or 600 IU of natural-source vitamin E on alternate days for an average of 10.1 years there were no significant differences for breast cancer, lung cancer or colon cancer.

The U.S. Food and Drug Administration initiated a process of reviewing and approving food and dietary supplement health claims in 1993. A Qualified Health Claim issued in 2012 allows product label claims that vitamin E may reduce risk of renal, bladder and colorectal cancers, with a stipulation that the label must include a mandatory qualifier sentence: “FDA has concluded that there is very little scientific evidence for this claim.” The European Food Safety Authority (EFSA) reviews proposed health claims for the European Union countries. As of March 2018, EFSA has not evaluated any vitamin E and cancer prevention claims.

Cataracts

A meta-analysis from 2015 reported that for studies which reported serum tocopherol, higher serum concentration was associated with a 23% reduction in relative risk of age-related cataracts (ARC), with the effect due to differences in nuclear cataract rather than cortical or posterior subcapsular cataract - the three major classifications of age-related cataracts. However, this article and a second meta-analysis reporting on clinical trials of alpha-tocopherol supplementation reported no statistically significant change to risk of ARC when compared to placebo.

Cardiovascular diseases

Research on the effects of vitamin E on cardiovascular disease has produced conflicting results. An inverse relation has been observed between coronary heart disease and the consumption of foods high in vitamin E, and also higher serum concentration of alpha-tocopherol. In one of the largest observational studies, almost 90,000 healthy nurses were tracked for eight years. Compared to those in the lowest fifth for reported vitamin E consumption (from food and dietary supplements), those in the highest fifth were at a 34% lower risk of major coronary disease. Diet higher in vitamin E may also be higher in other, unidentified components that promote heart health, or people choosing such diets may be making other healthy lifestyle choices. There is some supporting evidence from randomized clinical trials (RCTs). A meta-analysis on the effects of alpha-tocopherol supplementation in RCTs on aspects of cardiovascular health reported that when consumed without any other antioxidant nutrient, the relative risk of heart attack was reduced by 18%. The results were not consistent for all of the individual trials incorporated into the meta-analysis. For example, the Physicians' Health Study II did not show any benefit after 400 IU every other day for eight years, for heart attack, stroke, coronary mortality or all-cause mortality. The effects of vitamin E supplementation on incidence of stroke were summarized in 2011. There were no significant benefits for vitamin E versus placebo for risk of stroke, or for subset analysis for ischaemic stroke, haemorrhagic stroke, fatal stroke or non-fatal stroke.

In 2001 the U.S. Food and Drug Administration rejected proposed health claims for vitamin E and cardiovascular health. The U.S. National Institutes of Health also reviewed the literature and concluded there was not sufficient evidence to support the idea that routine use of vitamin E supplements prevents cardiovascular disease or reduces its morbidity and mortality. In 2010 the European Food Safety Authority reviewed and rejected claims that a cause and effect relationship has been established between the dietary intake of vitamin E and maintenance of normal cardiac function or of normal blood circulation.

Pregnancy

Antioxidant vitamins as dietary supplements have been proposed as having benefits if consumed during pregnancy. For the combination of vitamin E with vitamin C supplemented to pregnant women, a Cochrane review of 21 clinical trials concluded that the data do not support vitamin E supplementation - majority of trials alpha-tocopherol at 400 IU/day plus vitamin C at 1000 mg/day - as being efficacious for reducing risk of stillbirth, neonatal death, preterm birth, preeclampsia or any other maternal or infant outcomes, either in healthy women or those considered at risk for pregnancy complications. The review identified only three small trials in which vitamin E was supplemented without co-supplementation with vitamin C. None of these trials reported any clinically meaningful information.

Topical

Although there is widespread use of vitamin E as a topical medication, with claims for improved wound healing and reduced scar tissue, reviews have repeatedly concluded that there is insufficient evidence to support these claims. There are reports of vitamin E-induced allergic contact dermatitis from use of vitamin-E derivatives such as tocopheryl linoleate and tocopherol acetate in skin care products. Incidence is low despite widespread use.

Side effects

The US Food and Nutrition Board set a Tolerable upper intake level (UL) at 1,000 mg (1,500 IU) per day derived from animal models that demonstrated bleeding at high doses. The European Food Safety Authority reviewed the same safety question and set a UL at 300 mg/day. A meta-analysis of long-term clinical trials reported a non-significant 2% increase in all-cause mortality when alpha-tocopherol was the only supplement used. Another meta-analysis reported a non-significant 1% increase in all-cause mortality when alpha-tocopherol was the only supplement. Subset analysis reported no difference between natural (plant extracted) or synthetic alpha-tocopherol, or whether the amount used was less than or more than 400 IU/day. There are reports of vitamin E-induced allergic contact dermatitis from use of vitamin-E derivatives such as tocopheryl linoleate and tocopherol acetate in skin care products. Incidence is low despite widespread use.

Drug interactions

The amounts of alpha-tocopherol, other tocopherols and tocotrienols that are components of dietary vitamin E, when consumed from foods, do not appear to cause any interactions with drugs. Consumption of alpha-tocopherol as a dietary supplement in amounts in excess of 300 mg/day may lead to interactions with aspirin, warfarin, tamoxifen and cyclosporine A in ways that alter function. For aspirin and warfarin, high amounts of vitamin E may potentiate anti-blood clotting action. One small trial demonstrated that vitamin E at 400 mg/day reduced blood concentration of the anti-breast cancer drug tamoxifen. In multiple clinical trials, vitamin E lowered blood concentration of the immuno-suppressant drug, cyclosporine A. The US National Institutes of Health, Office of Dietary Supplements, raises a concern that co-administration of vitamin E could counter the mechanisms of anti-cancer radiation therapy and some types of chemotherapy, and so advises against its use in these patient populations. The references it cited reported instances of reduced treatment adverse effects, but also poorer cancer survival, raising the possibility of tumor protection from the oxidative damage intended by the treatments.

Synthesis

Naturally sourced d-alpha-tocopherol can be extracted and purified from seed oils, or gamma-tocopherol can be extracted, purified, and methylated to create d-alpha-tocopherol. In contrast to alpha-tocopherol extracted from plants, which is also called d-alpha-tocopherol, industrial synthesis creates dl-alpha-tocopherol. "It is synthesized from a mixture of toluene and 2,3,5-trimethyl-hydroquinone that reacts with isophytol to all-rac-alpha-tocopherol, using iron in the presence of hydrogen chloride gas as catalyst. The reaction mixture obtained is filtered and extracted with aqueous caustic soda. Toluene is removed by evaporation and the residue (all rac-alpha-tocopherol) is purified by vacuum distillation." Specification for the ingredient is more than 97% pure. This synthetic dl-alpha-tocopherol has approximately 50% of the potency of d-alpha-tocopherol. Manufacturers of dietary supplements and fortified foods for humans or domesticated animals convert the phenol form of the vitamin to an ester using either acetic acid or succinic acid because the esters are more chemically stable, providing for a longer shelf-life. The ester forms are de-esterified in the gut and absorbed as free alpha-tocopherol.

History

During feeding experiments with rats Herbert McLean Evans concluded in 1922 that besides vitamins B and C, an unknown vitamin existed. Although every other nutrition was present, the rats were not fertile. This condition could be changed by additional feeding with wheat germ. It took several years until 1936 when the substance was isolated from wheat germ and the formula C29H50O2 was determined. Evans also found that the compound reacted like an alcohol and concluded that one of the oxygen atoms was part of an OH (hydroxyl) group. As noted in the introduction, the vitamin was given its name by Evans from Greek words meaning "to bear young" with the addition of the -ol as an alcohol. The structure was determined shortly thereafter in 1938.

Chemical thermodynamics

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Chemical_thermodynamics ...