Search This Blog

Monday, June 11, 2018

Vector space

From Wikipedia, the free encyclopedia


Vector addition and scalar multiplication: a vector v (blue) is added to another vector w (red, upper illustration). Below, w is stretched by a factor of 2, yielding the sum v + 2w.

A vector space (also called a linear space) is a collection of objects called vectors, which may be added together and multiplied ("scaled") by numbers, called scalars. Scalars are often taken to be real numbers, but there are also vector spaces with scalar multiplication by complex numbers, rational numbers, or generally any field. The operations of vector addition and scalar multiplication must satisfy certain requirements, called axioms, listed below.

Euclidean vectors are an example of a vector space. They represent physical quantities such as forces: any two forces (of the same type) can be added to yield a third, and the multiplication of a force vector by a real multiplier is another force vector. In the same vein, but in a more geometric sense, vectors representing displacements in the plane or in three-dimensional space also form vector spaces. Vectors in vector spaces do not necessarily have to be arrow-like objects as they appear in the mentioned examples: vectors are regarded as abstract mathematical objects with particular properties, which in some cases can be visualized as arrows.

Vector spaces are the subject of linear algebra and are well characterized by their dimension, which, roughly speaking, specifies the number of independent directions in the space. Infinite-dimensional vector spaces arise naturally in mathematical analysis, as function spaces, whose vectors are functions. These vector spaces are generally endowed with additional structure, which may be a topology, allowing the consideration of issues of proximity and continuity. Among these topologies, those that are defined by a norm or inner product are more commonly used, as having a notion of distance between two vectors. This is particularly the case of Banach spaces and Hilbert spaces, which are fundamental in mathematical analysis.

Historically, the first ideas leading to vector spaces can be traced back as far as the 17th century's analytic geometry, matrices, systems of linear equations, and Euclidean vectors. The modern, more abstract treatment, first formulated by Giuseppe Peano in 1888, encompasses more general objects than Euclidean space, but much of the theory can be seen as an extension of classical geometric ideas like lines, planes and their higher-dimensional analogs.

Today, vector spaces are applied throughout mathematics, science and engineering. They are the appropriate linear-algebraic notion to deal with systems of linear equations. They offer a framework for Fourier expansion, which is employed in image compression routines, and they provide an environment that can be used for solution techniques for partial differential equations. Furthermore, vector spaces furnish an abstract, coordinate-free way of dealing with geometrical and physical objects such as tensors. This in turn allows the examination of local properties of manifolds by linearization techniques. Vector spaces may be generalized in several ways, leading to more advanced notions in geometry and abstract algebra.

Introduction and definition

The concept of vector space will first be explained by describing two particular examples:

First example: arrows in the plane

The first example of a vector space consists of arrows in a fixed plane, starting at one fixed point. This is used in physics to describe forces or velocities. Given any two such arrows, v and w, the parallelogram spanned by these two arrows contains one diagonal arrow that starts at the origin, too. This new arrow is called the sum of the two arrows and is denoted v + w. In the special case of two arrows on the same line, their sum is the arrow on this line whose length is the sum or the difference of the lengths, depending on whether the arrows have the same direction. Another operation that can be done with arrows is scaling: given any positive real number a, the arrow that has the same direction as v, but is dilated or shrunk by multiplying its length by a, is called multiplication of v by a. It is denoted av. When a is negative, av is defined as the arrow pointing in the opposite direction, instead.

The following shows a few examples: if a = 2, the resulting vector aw has the same direction as w, but is stretched to the double length of w (right image below). Equivalently, 2w is the sum w + w. Moreover, (−1)v = −v has the opposite direction and the same length as v (blue vector pointing down in the right image).

Vector addition: the sum v + w (black) of the vectors v (blue) and w (red) is shown. Scalar multiplication: the multiples −v and 2w are shown.

Second example: ordered pairs of numbers

A second key example of a vector space is provided by pairs of real numbers x and y. (The order of the components x and y is significant, so such a pair is also called an ordered pair.) Such a pair is written as (x, y). The sum of two such pairs and multiplication of a pair with a number is defined as follows:
(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2)
and
a (x, y) = (ax, ay).
The first example above reduces to this one if the arrows are represented by the pair of Cartesian coordinates of their end points.

Definition

In this article, vectors are represented in boldface to distinguish them from scalars.[nb 1]

A vector space over a field F is a set V together with two operations that satisfy the eight axioms listed below.
  • The first operation, called vector addition or simply addition + : V × VV, takes any two vectors v and w and assigns to them a third vector which is commonly written as v + w, and called the sum of these two vectors. (Note that the resultant vector is also an element of the set V ).
  • The second operation, called scalar multiplication · : F × VV, takes any scalar a and any vector v and gives another vector av. (Similarly, the vector av is an element of the set V ).
Elements of V are commonly called vectors. Elements of F are commonly called scalars.

In the two examples above, the field is the field of the real numbers and the set of the vectors consists of the planar arrows with fixed starting point and of pairs of real numbers, respectively.

To qualify as a vector space, the set V and the operations of addition and multiplication must adhere to a number of requirements called axioms.[1] In the list below, let u, v and w be arbitrary vectors in V, and a and b scalars in F.

Axiom Meaning
Associativity of addition u + (v + w) = (u + v) + w
Commutativity of addition u + v = v + u
Identity element of addition There exists an element 0V, called the zero vector, such that v + 0 = v for all vV.
Inverse elements of addition For every vV, there exists an element vV, called the additive inverse of v, such that v + (−v) = 0.
Compatibility of scalar multiplication with field multiplication a(bv) = (ab)v [nb 2]
Identity element of scalar multiplication 1v = v, where 1 denotes the multiplicative identity in F.
Distributivity of scalar multiplication with respect to vector addition   a(u + v) = au + av
Distributivity of scalar multiplication with respect to field addition (a + b)v = av + bv

These axioms generalize properties of the vectors introduced in the above examples. Indeed, the result of addition of two ordered pairs (as in the second example above) does not depend on the order of the summands:
(xv, yv) + (xw, yw) = (xw, yw) + (xv, yv).
Likewise, in the geometric example of vectors as arrows, v + w = w + v since the parallelogram defining the sum of the vectors is independent of the order of the vectors. All other axioms can be checked in a similar manner in both examples. Thus, by disregarding the concrete nature of the particular type of vectors, the definition incorporates these two and many more examples in one notion of vector space.

Subtraction of two vectors and division by a (non-zero) scalar can be defined as
vw = v + (−w),
v/a = (1/a)v.
When the scalar field F is the real numbers R, the vector space is called a real vector space. When the scalar field is the complex numbers C, the vector space is called a complex vector space. These two cases are the ones used most often in engineering. The general definition of a vector space allows scalars to be elements of any fixed field F. The notion is then known as an F-vector spaces or a vector space over F. A field is, essentially, a set of numbers possessing addition, subtraction, multiplication and division operations.[nb 3] For example, rational numbers form a field.

In contrast to the intuition stemming from vectors in the plane and higher-dimensional cases, there is, in general vector spaces, no notion of nearness, angles or distances. To deal with such matters, particular types of vector spaces are introduced; see below.

Alternative formulations and elementary consequences

Vector addition and scalar multiplication are operations, satisfying the closure property: u + v and av are in V for all a in F, and u, v in V. Some older sources mention these properties as separate axioms.[2]

In the parlance of abstract algebra, the first four axioms are equivalent to requiring the set of vectors to be an abelian group under addition. The remaining axioms give this group an F-module structure. In other words, there is a ring homomorphism f from the field F into the endomorphism ring of the group of vectors. Then scalar multiplication av is defined as (f(a))(v).[3]

There are a number of direct consequences of the vector space axioms. Some of them derive from elementary group theory, applied to the additive group of vectors: for example the zero vector 0 of V and the additive inverse v of any vector v are unique. Other properties follow from the distributive law, for example av equals 0 if and only if a equals 0 or v equals 0.

History

Vector spaces stem from affine geometry via the introduction of coordinates in the plane or three-dimensional space. Around 1636, Descartes and Fermat founded analytic geometry by equating solutions to an equation of two variables with points on a plane curve.[4] In 1804, to achieve geometric solutions without using coordinates, Bolzano introduced certain operations on points, lines and planes, which are predecessors of vectors.[5] His work was then used in the conception of barycentric coordinates by Möbius in 1827.[6] In 1828 C. V. Mourey suggested the existence of an algebra surpassing not only ordinary algebra but also two-dimensional algebra created by him searching a geometrical interpretation of complex numbers.[7]

The definition of vectors was founded on Bellavitis' notion of the bipoint, an oriented segment of which one end is the origin and the other a target, then further elaborated with the presentation of complex numbers by Argand and Hamilton and the introduction of quaternions and biquaternions by the latter.[8] They are elements in R2, R4, and R8; their treatment as linear combinations can be traced back to Laguerre in 1867, who also defined systems of linear equations.

In 1857, Cayley introduced matrix notation, which allows for a harmonization and simplification of linear maps. Around the same time, Grassmann studied the barycentric calculus initiated by Möbius. He envisaged sets of abstract objects endowed with operations.[9] In his work, the concepts of linear independence and dimension, as well as scalar products, are present. In fact, Grassmann's 1844 work extended a vector space of n dimensions to one of 2n dimensions by consideration of 2-vectors {\displaystyle u\wedge v} and 3-vectors {\displaystyle u\wedge v\wedge w} called multivectors. This extension, called multilinear algebra, is governed by the rules of exterior algebra. Peano was the first to give the modern definition of vector spaces and linear maps in 1888.[10]

An important development of vector spaces is due to the construction of function spaces by Lebesgue. This was later formalized by Banach and Hilbert, around 1920.[11] At that time, algebra and the new field of functional analysis began to interact, notably with key concepts such as spaces of p-integrable functions and Hilbert spaces.[12] Vector spaces, including infinite-dimensional ones, then became a firmly established notion, and many mathematical branches started making use of this concept.

Examples

Coordinate spaces

The simplest example of a vector space over a field F is the field itself, equipped with its standard addition and multiplication. More generally, a vector space can be composed of n-tuples (sequences of length n) of elements of F, such as
(a1, a2, ..., an), where each ai is an element of F.[13]
A vector space composed of all the n-tuples of a field F is known as a coordinate space, usually denoted Fn. The case n = 1 is the above-mentioned simplest example, in which the field F is also regarded as a vector space over itself. The case F = R and n = 2 was discussed in the introduction above.

Complex numbers and other field extensions

The set of complex numbers C, i.e., numbers that can be written in the form x + iy for real numbers x and y where i is the imaginary unit, form a vector space over the reals with the usual addition and multiplication: (x + iy) + (a + ib) = (x + a) + i(y + b) and c ⋅ (x + iy) = (cx) + i(cy) for real numbers x, y, a, b and c. The various axioms of a vector space follow from the fact that the same rules hold for complex number arithmetic.

In fact, the example of complex numbers is essentially the same (i.e., it is isomorphic) to the vector space of ordered pairs of real numbers mentioned above: if we think of the complex number x + i y as representing the ordered pair (x, y) in the complex plane then we see that the rules for sum and scalar product correspond exactly to those in the earlier example.

More generally, field extensions provide another class of examples of vector spaces, particularly in algebra and algebraic number theory: a field F containing a smaller field E is an E-vector space, by the given multiplication and addition operations of F.[14] For example, the complex numbers are a vector space over R, and the field extension \mathbf {Q} (i{\sqrt {5}}) is a vector space over Q.

Function spaces

Functions from any fixed set Ω to a field F also form vector spaces, by performing addition and scalar multiplication pointwise. That is, the sum of two functions f and g is the function (f + g) given by
(f + g)(w) = f(w) + g(w),
and similarly for multiplication. Such function spaces occur in many geometric situations, when Ω is the real line or an interval, or other subsets of R. Many notions in topology and analysis, such as continuity, integrability or differentiability are well-behaved with respect to linearity: sums and scalar multiples of functions possessing such a property still have that property.[15] Therefore, the set of such functions are vector spaces. They are studied in greater detail using the methods of functional analysis, see below. Algebraic constraints also yield vector spaces: the vector space F[x] is given by polynomial functions:
f(x) = r0 + r1x + ... + rn−1xn−1 + rnxn, where the coefficients r0, ..., rn are in F.[16]

Linear equations

Systems of homogeneous linear equations are closely tied to vector spaces.[17] For example, the solutions of
a + 3b + c = 0
4a + 2b + 2c = 0
are given by triples with arbitrary a, b = a/2, and c = −5a/2. They form a vector space: sums and scalar multiples of such triples still satisfy the same ratios of the three variables; thus they are solutions, too. Matrices can be used to condense multiple linear equations as above into one vector equation, namely
Ax = 0,
where A = {\begin{bmatrix}1&3&1\\4&2&2\end{bmatrix}} is the matrix containing the coefficients of the given equations, x is the vector (a, b, c), Ax denotes the matrix product, and 0 = (0, 0) is the zero vector. In a similar vein, the solutions of homogeneous linear differential equations form vector spaces. For example,
f′′(x) + 2f′(x) + f(x) = 0
yields f(x) = a ex + bx ex, where a and b are arbitrary constants, and ex is the natural exponential function.

Basis and dimension


A vector v in R2 (blue) expressed in terms of different bases: using the standard basis of R2 v = xe1 + ye2 (black), and using a different, non-orthogonal basis: v = f1 + f2 (red).

Bases allow one to represent vectors by a sequence of scalars called coordinates or components. A basis is a (finite or infinite) set B = {bi}iI of vectors bi, for convenience often indexed by some index set I, that spans the whole space and is linearly independent. "Spanning the whole space" means that any vector v can be expressed as a finite sum (called a linear combination) of the basis elements:
\mathbf {v} =a_{1}\mathbf {b} _{i_{1}}+a_{2}\mathbf {b} _{i_{2}}+\cdots +a_{n}\mathbf {b} _{i_{n}},




(1)
where the ak are scalars, called the coordinates (or the components) of the vector v with respect to the basis B, and bik (k = 1, ..., n) elements of B. Linear independence means that the coordinates ak are uniquely determined for any vector in the vector space.

For example, the coordinate vectors e1 = (1, 0, ..., 0), e2 = (0, 1, 0, ..., 0), to en = (0, 0, ..., 0, 1), form a basis of Fn, called the standard basis, since any vector (x1, x2, ..., xn) can be uniquely expressed as a linear combination of these vectors:
(x1, x2, ..., xn) = x1(1, 0, ..., 0) + x2(0, 1, 0, ..., 0) + ... + xn(0, ..., 0, 1) = x1e1 + x2e2 + ... + xnen.
The corresponding coordinates x1, x2, ..., xn are just the Cartesian coordinates of the vector.

Every vector space has a basis. This follows from Zorn's lemma, an equivalent formulation of the Axiom of Choice.[18] Given the other axioms of Zermelo–Fraenkel set theory, the existence of bases is equivalent to the axiom of choice.[19] The ultrafilter lemma, which is weaker than the axiom of choice, implies that all bases of a given vector space have the same number of elements, or cardinality (cf. Dimension theorem for vector spaces).[20] It is called the dimension of the vector space, denoted by dim V. If the space is spanned by finitely many vectors, the above statements can be proven without such fundamental input from set theory.[21]

The dimension of the coordinate space Fn is n, by the basis exhibited above. The dimension of the polynomial ring F[x] introduced above is countably infinite, a basis is given by 1, x, x2, ... A fortiori, the dimension of more general function spaces, such as the space of functions on some (bounded or unbounded) interval, is infinite.[nb 4] Under suitable regularity assumptions on the coefficients involved, the dimension of the solution space of a homogeneous ordinary differential equation equals the degree of the equation.[22] For example, the solution space for the above equation is generated by ex and xex. These two functions are linearly independent over R, so the dimension of this space is two, as is the degree of the equation.

A field extension over the rationals Q can be thought of as a vector space over Q (by defining vector addition as field addition, defining scalar multiplication as field multiplication by elements of Q, and otherwise ignoring the field multiplication). The dimension (or degree) of the field extension Q(α) over Q depends on α. If α satisfies some polynomial equation
 
{\displaystyle q_{n}\alpha ^{n}+q_{n-1}\alpha ^{n-1}+\ldots +q_{0}=0}

with rational coefficients qn, ..., q0 (in other words, if α is algebraic), the dimension is finite. More precisely, it equals the degree of the minimal polynomial having α as a root.[23] For example, the complex numbers C are a two-dimensional real vector space, generated by 1 and the imaginary unit i.

The latter satisfies i2 + 1 = 0, an equation of degree two. Thus, C is a two-dimensional R-vector space (and, as any field, one-dimensional as a vector space over itself, C). If α is not algebraic, the dimension of Q(α) over Q is infinite. For instance, for α = π there is no such equation, in other words π is transcendental.[24]

Linear maps and matrices

The relation of two vector spaces can be expressed by linear map or linear transformation. They are functions that reflect the vector space structure—i.e., they preserve sums and scalar multiplication:
f(x + y) = f(x) + f(y) and f(a · x) = a · f(x) for all x and y in V, all a in F.[25]
An isomorphism is a linear map f : VW such that there exists an inverse map g : WV, which is a map such that the two possible compositions fg : WW and gf : VV are identity maps. Equivalently, f is both one-to-one (injective) and onto (surjective).[26] If there exists an isomorphism between V and W, the two spaces are said to be isomorphic; they are then essentially identical as vector spaces, since all identities holding in V are, via f, transported to similar ones in W, and vice versa via g.


Describing an arrow vector v by its coordinates x and y yields an isomorphism of vector spaces.

For example, the "arrows in the plane" and "ordered pairs of numbers" vector spaces in the introduction are isomorphic: a planar arrow v departing at the origin of some (fixed) coordinate system can be expressed as an ordered pair by considering the x- and y-component of the arrow, as shown in the image at the right. Conversely, given a pair (x, y), the arrow going by x to the right (or to the left, if x is negative), and y up (down, if y is negative) turns back the arrow v.

Linear maps VW between two vector spaces form a vector space HomF(V, W), also denoted L(V, W).[27] The space of linear maps from V to F is called the dual vector space, denoted V.[28] Via the injective natural map VV∗∗, any vector space can be embedded into its bidual; the map is an isomorphism if and only if the space is finite-dimensional.[29]

Once a basis of V is chosen, linear maps f : VW are completely determined by specifying the images of the basis vectors, because any element of V is expressed uniquely as a linear combination of them.[30] If dim V = dim W, a 1-to-1 correspondence between fixed bases of V and W gives rise to a linear map that maps any basis element of V to the corresponding basis element of W. It is an isomorphism, by its very definition.[31] Therefore, two vector spaces are isomorphic if their dimensions agree and vice versa. Another way to express this is that any vector space is completely classified (up to isomorphism) by its dimension, a single number. In particular, any n-dimensional F-vector space V is isomorphic to Fn. There is, however, no "canonical" or preferred isomorphism; actually an isomorphism φ : FnV is equivalent to the choice of a basis of V, by mapping the standard basis of Fn to V, via φ. The freedom of choosing a convenient basis is particularly useful in the infinite-dimensional context, see below.

Matrices


A typical matrix

Matrices are a useful notion to encode linear maps.[32] They are written as a rectangular array of scalars as in the image at the right. Any m-by-n matrix A gives rise to a linear map from Fn to Fm, by the following
\mathbf {x} =(x_{1},x_{2},\cdots ,x_{n})\mapsto \left(\sum _{j=1}^{n}a_{1j}x_{j},\sum _{j=1}^{n}a_{2j}x_{j},\cdots ,\sum _{j=1}^{n}a_{mj}x_{j}\right), where \sum denotes summation,
or, using the matrix multiplication of the matrix A with the coordinate vector x:
xAx.
Moreover, after choosing bases of V and W, any linear map f : VW is uniquely represented by a matrix via this assignment.[33]


The volume of this parallelepiped is the absolute value of the determinant of the 3-by-3 matrix formed by the vectors r1, r2, and r3.

The determinant det (A) of a square matrix A is a scalar that tells whether the associated map is an isomorphism or not: to be so it is sufficient and necessary that the determinant is nonzero.[34] The linear transformation of Rn corresponding to a real n-by-n matrix is orientation preserving if and only if its determinant is positive.

Eigenvalues and eigenvectors

Endomorphisms, linear maps f : VV, are particularly important since in this case vectors v can be compared with their image under f, f(v). Any nonzero vector v satisfying λv = f(v), where λ is a scalar, is called an eigenvector of f with eigenvalue λ.[nb 5][35] Equivalently, v is an element of the kernel of the difference fλ · Id (where Id is the identity map VV). If V is finite-dimensional, this can be rephrased using determinants: f having eigenvalue λ is equivalent to
det(fλ · Id) = 0.
By spelling out the definition of the determinant, the expression on the left hand side can be seen to be a polynomial function in λ, called the characteristic polynomial of f.[36] If the field F is large enough to contain a zero of this polynomial (which automatically happens for F algebraically closed, such as F = C) any linear map has at least one eigenvector. The vector space V may or may not possess an eigenbasis, a basis consisting of eigenvectors. This phenomenon is governed by the Jordan canonical form of the map.[37][nb 6] The set of all eigenvectors corresponding to a particular eigenvalue of f forms a vector space known as the eigenspace corresponding to the eigenvalue (and f) in question. To achieve the spectral theorem, the corresponding statement in the infinite-dimensional case, the machinery of functional analysis is needed, see below.

Basic constructions

In addition to the above concrete examples, there are a number of standard linear algebraic constructions that yield vector spaces related to given ones. In addition to the definitions given below, they are also characterized by universal properties, which determine an object X by specifying the linear maps from X to any other vector space.

Subspaces and quotient spaces


A line passing through the origin (blue, thick) in R3 is a linear subspace. It is the intersection of two planes (green and yellow).

A nonempty subset W of a vector space V that is closed under addition and scalar multiplication (and therefore contains the 0-vector of V) is called a linear subspace of V, or simply a subspace of V, when the ambient space is unambiguously a vector space.[38][nb 7] Subspaces of V are vector spaces (over the same field) in their own right. The intersection of all subspaces containing a given set S of vectors is called its span, and it is the smallest subspace of V containing the set S. Expressed in terms of elements, the span is the subspace consisting of all the linear combinations of elements of S.[39]

A linear subspace of dimension 1 is a vector line. A linear subspace of dimension 2 is a vector plane. A linear subspace that contains all elements but one of a basis of the ambient space is a vector hyperplane. In a vector space of finite dimension n, a vector hyperplane is thus a subspace of dimension n – 1.

The counterpart to subspaces are quotient vector spaces.[40] Given any subspace WV, the quotient space V/W ("V modulo W") is defined as follows: as a set, it consists of v + W = {v + w : wW}, where v is an arbitrary vector in V. The sum of two such elements v1 + W and v2 + W is (v1 + v2) + W, and scalar multiplication is given by a · (v + W) = (a · v) + W. The key point in this definition is that v1 + W = v2 + W if and only if the difference of v1 and v2 lies in W.[nb 8] This way, the quotient space "forgets" information that is contained in the subspace W.

The kernel ker(f) of a linear map f : VW consists of vectors v that are mapped to 0 in W.[41] Both kernel and image im(f) = {f(v) : vV} are subspaces of V and W, respectively.[42] The existence of kernels and images is part of the statement that the category of vector spaces (over a fixed field F) is an abelian category, i.e. a corpus of mathematical objects and structure-preserving maps between them (a category) that behaves much like the category of abelian groups.[43] Because of this, many statements such as the first isomorphism theorem (also called rank–nullity theorem in matrix-related terms)
V / ker(f) ≡ im(f).
and the second and third isomorphism theorem can be formulated and proven in a way very similar to the corresponding statements for groups.

An important example is the kernel of a linear map xAx for some fixed matrix A, as above. The kernel of this map is the subspace of vectors x such that Ax = 0, which is precisely the set of solutions to the system of homogeneous linear equations belonging to A. This concept also extends to linear differential equations
a_{0}f+a_{1}{\frac {df}{dx}}+a_{2}{\frac {d^{2}f}{dx^{2}}}+\cdots +a_{n}{\frac {d^{n}f}{dx^{n}}}=0, where the coefficients ai are functions in x, too.
In the corresponding map
f\mapsto D(f)=\sum _{i=0}^{n}a_{i}{\frac {d^{i}f}{dx^{i}}},
the derivatives of the function f appear linearly (as opposed to f′′(x)2, for example). Since differentiation is a linear procedure (i.e., (f + g)′ = f′ + g ′ and (c·f)′ = c·f for a constant c) this assignment is linear, called a linear differential operator. In particular, the solutions to the differential equation D(f) = 0 form a vector space (over R or C).

Direct product and direct sum

The direct product of vector spaces and the direct sum of vector spaces are two ways of combining an indexed family of vector spaces into a new vector space.
The direct product \textstyle {\prod _{i\in I}V_{i}} of a family of vector spaces Vi consists of the set of all tuples (vi)iI, which specify for each index i in some index set I an element vi of Vi.[44] Addition and scalar multiplication is performed componentwise. A variant of this construction is the direct sum \oplus _{i\in I}V_{i} (also called coproduct and denoted \textstyle {\coprod _{i\in I}V_{i}}), where only tuples with finitely many nonzero vectors are allowed. If the index set I is finite, the two constructions agree, but in general they are different.

Tensor product

The tensor product VF W, or simply VW, of two vector spaces V and W is one of the central notions of multilinear algebra which deals with extending notions such as linear maps to several variables. A map g : V × WX is called bilinear if g is linear in both variables v and w. That is to say, for fixed w the map vg(v, w) is linear in the sense above and likewise for fixed v.
The tensor product is a particular vector space that is a universal recipient of bilinear maps g, as follows. It is defined as the vector space consisting of finite (formal) sums of symbols called tensors
v1w1 + v2w2 + ... + vnwn,
subject to the rules
a · (vw) = (a · v) ⊗ w = v ⊗ (a · w), where a is a scalar,
(v1 + v2) ⊗ w = v1w + v2w, and
v ⊗ (w1 + w2) = vw1 + vw2.[45]

Commutative diagram depicting the universal property of the tensor product.

These rules ensure that the map f from the V × W to VW that maps a tuple (v, w) to vw is bilinear. The universality states that given any vector space X and any bilinear map g : V × WX, there exists a unique map u, shown in the diagram with a dotted arrow, whose composition with f equals g: u(vw) = g(v, w).[46] This is called the universal property of the tensor product, an instance of the method—much used in advanced abstract algebra—to indirectly define objects by specifying maps from or to this object.

Vector spaces with additional structure

From the point of view of linear algebra, vector spaces are completely understood insofar as any vector space is characterized, up to isomorphism, by its dimension. However, vector spaces per se do not offer a framework to deal with the question—crucial to analysis—whether a sequence of functions converges to another function. Likewise, linear algebra is not adapted to deal with infinite series, since the addition operation allows only finitely many terms to be added. Therefore, the needs of functional analysis require considering additional structures.

A vector space may be given a partial order ≤, under which some vectors can be compared.[47] For example, n-dimensional real space Rn can be ordered by comparing its vectors componentwise. Ordered vector spaces, for example Riesz spaces, are fundamental to Lebesgue integration, which relies on the ability to express a function as a difference of two positive functions
f = f+f,
where f+ denotes the positive part of f and f the negative part.[48]

Normed vector spaces and inner product spaces

"Measuring" vectors is done by specifying a norm, a datum which measures lengths of vectors, or by an inner product, which measures angles between vectors. Norms and inner products are denoted |\mathbf {v} | and \langle \mathbf {v} ,\mathbf {w} \rangle , respectively. The datum of an inner product entails that lengths of vectors can be defined too, by defining the associated norm |\mathbf {v} |:={\sqrt {\langle \mathbf {v} ,\mathbf {v} \rangle }}. Vector spaces endowed with such data are known as normed vector spaces and inner product spaces, respectively.[49]
Coordinate space Fn can be equipped with the standard dot product:
\langle \mathbf {x} ,\mathbf {y} \rangle =\mathbf {x} \cdot \mathbf {y} =x_{1}y_{1}+\cdots +x_{n}y_{n}.
In R2, this reflects the common notion of the angle between two vectors x and y, by the law of cosines:
\mathbf {x} \cdot \mathbf {y} =\cos \left(\angle (\mathbf {x} ,\mathbf {y} )\right)\cdot |\mathbf {x} |\cdot |\mathbf {y} |.
Because of this, two vectors satisfying \langle \mathbf {x} ,\mathbf {y} \rangle =0 are called orthogonal. An important variant of the standard dot product is used in Minkowski space: R4 endowed with the Lorentz product
\langle \mathbf {x} |\mathbf {y} \rangle =x_{1}y_{1}+x_{2}y_{2}+x_{3}y_{3}-x_{4}y_{4}.[50]
In contrast to the standard dot product, it is not positive definite: \langle \mathbf {x} |\mathbf {x} \rangle also takes negative values, for example for \mathbf {x} =(0,0,0,1). Singling out the fourth coordinate—corresponding to time, as opposed to three space-dimensions—makes it useful for the mathematical treatment of special relativity.

Topological vector spaces

Convergence questions are treated by considering vector spaces V carrying a compatible topology, a structure that allows one to talk about elements being close to each other.[51][52] Compatible here means that addition and scalar multiplication have to be continuous maps. Roughly, if x and y in V, and a in F vary by a bounded amount, then so do x + y and ax.[nb 9] To make sense of specifying the amount a scalar changes, the field F also has to carry a topology in this context; a common choice are the reals or the complex numbers.
In such topological vector spaces one can consider series of vectors. The infinite sum
\sum _{i=0}^{\infty }f_{i}
denotes the limit of the corresponding finite partial sums of the sequence (fi)iN of elements of V. For example, the fi could be (real or complex) functions belonging to some function space V, in which case the series is a function series. The mode of convergence of the series depends on the topology imposed on the function space. In such cases, pointwise convergence and uniform convergence are two prominent examples.


Unit "spheres" in R2 consist of plane vectors of norm 1. Depicted are the unit spheres in different p-norms, for p = 1, 2, and ∞. The bigger diamond depicts points of 1-norm equal to 2.

A way to ensure the existence of limits of certain infinite series is to restrict attention to spaces where any Cauchy sequence has a limit; such a vector space is called complete. Roughly, a vector space is complete provided that it contains all necessary limits. For example, the vector space of polynomials on the unit interval [0,1], equipped with the topology of uniform convergence is not complete because any continuous function on [0,1] can be uniformly approximated by a sequence of polynomials, by the Weierstrass approximation theorem.[53] In contrast, the space of all continuous functions on [0,1] with the same topology is complete.[54] A norm gives rise to a topology by defining that a sequence of vectors vn converges to v if and only if
{\text{lim}}_{n\rightarrow \infty }|\mathbf {v} _{n}-\mathbf {v} |=0.
Banach and Hilbert spaces are complete topological vector spaces whose topologies are given, respectively, by a norm and an inner product. Their study—a key piece of functional analysis—focusses on infinite-dimensional vector spaces, since all norms on finite-dimensional topological vector spaces give rise to the same notion of convergence.[55] The image at the right shows the equivalence of the 1-norm and ∞-norm on R2: as the unit "balls" enclose each other, a sequence converges to zero in one norm if and only if it so does in the other norm. In the infinite-dimensional case, however, there will generally be inequivalent topologies, which makes the study of topological vector spaces richer than that of vector spaces without additional data.

From a conceptual point of view, all notions related to topological vector spaces should match the topology. For example, instead of considering all linear maps (also called functionals) VW, maps between topological vector spaces are required to be continuous.[56] In particular, the (topological) dual space V consists of continuous functionals VR (or to C). The fundamental Hahn–Banach theorem is concerned with separating subspaces of appropriate topological vector spaces by continuous functionals.[57]

Banach spaces

Banach spaces, introduced by Stefan Banach, are complete normed vector spaces.[58] A first example is the vector space ℓ p consisting of infinite vectors with real entries x = (x1, x2, ...) whose p-norm (1 ≤ p ≤ ∞) given by
|\mathbf {x} |_{p}:=\left(\sum _{i}|x_{i}|^{p}\right)^{1/p} for p < ∞ and |\mathbf {x} |_{\infty }:={\text{sup}}_{i}|x_{i}|
is finite. The topologies on the infinite-dimensional space ℓ p are inequivalent for different p. E.g. the sequence of vectors xn = (2n, 2n, ..., 2n, 0, 0, ...), i.e. the first 2n components are 2n, the following ones are 0, converges to the zero vector for p = ∞, but does not for p = 1:
|x_{n}|_{\infty }=\sup(2^{-n},0)=2^{-n}\rightarrow 0, but
|x_{n}|_{1}=\sum _{i=1}^{2^{n}}2^{-n}=2^{n}\cdot 2^{-n}=1.
More generally than sequences of real numbers, functions f: Ω → R are endowed with a norm that replaces the above sum by the Lebesgue integral
|f|_{p}:=\left(\int _{\Omega }|f(x)|^{p}\,dx\right)^{1/p}.
The space of integrable functions on a given domain Ω (for example an interval) satisfying |f|p < ∞, and equipped with this norm are called Lebesgue spaces, denoted Lp(Ω).[nb 10] These spaces are complete.[59] (If one uses the Riemann integral instead, the space is not complete, which may be seen as a justification for Lebesgue's integration theory.[nb 11]) Concretely this means that for any sequence of Lebesgue-integrable functions f1, f2, ... with |fn|p < ∞, satisfying the condition
\lim _{k,\ n\to \infty }\int _{\Omega }|{f}_{k}(x)-{f}_{n}(x)|^{p}\,dx=0
there exists a function f(x) belonging to the vector space Lp(Ω) such that
{\displaystyle \lim _{k\to \infty }\int _{\Omega }|{f}(x)-{f}_{k}(x)|^{p}\,dx=0.}
Imposing boundedness conditions not only on the function, but also on its derivatives leads to Sobolev spaces.[60]

Hilbert spaces


The succeeding snapshots show summation of 1 to 5 terms in approximating a periodic function (blue) by finite sum of sine functions (red).

Complete inner product spaces are known as Hilbert spaces, in honor of David Hilbert.[61] The Hilbert space L2(Ω), with inner product given by
{\displaystyle \langle f\ ,\ g\rangle =\int _{\Omega }f(x){\overline {g(x)}}\,dx,}
where {\overline {g(x)}} denotes the complex conjugate of g(x),[62][nb 12] is a key case.

By definition, in a Hilbert space any Cauchy sequence converges to a limit. Conversely, finding a sequence of functions fn with desirable properties that approximates a given limit function, is equally crucial. Early analysis, in the guise of the Taylor approximation, established an approximation of differentiable functions f by polynomials.[63] By the Stone–Weierstrass theorem, every continuous function on [a, b] can be approximated as closely as desired by a polynomial.[64] A similar approximation technique by trigonometric functions is commonly called Fourier expansion, and is much applied in engineering, see below. More generally, and more conceptually, the theorem yields a simple description of what "basic functions", or, in abstract Hilbert spaces, what basic vectors suffice to generate a Hilbert space H, in the sense that the closure of their span (i.e., finite linear combinations and limits of those) is the whole space. Such a set of functions is called a basis of H, its cardinality is known as the Hilbert space dimension.[nb 13] Not only does the theorem exhibit suitable basis functions as sufficient for approximation purposes, but together with the Gram–Schmidt process, it enables one to construct a basis of orthogonal vectors.[65] Such orthogonal bases are the Hilbert space generalization of the coordinate axes in finite-dimensional Euclidean space.

The solutions to various differential equations can be interpreted in terms of Hilbert spaces. For example, a great many fields in physics and engineering lead to such equations and frequently solutions with particular physical properties are used as basis functions, often orthogonal.[66] As an example from physics, the time-dependent Schrödinger equation in quantum mechanics describes the change of physical properties in time by means of a partial differential equation, whose solutions are called wavefunctions.[67] Definite values for physical properties such as energy, or momentum, correspond to eigenvalues of a certain (linear) differential operator and the associated wavefunctions are called eigenstates. The spectral theorem decomposes a linear compact operator acting on functions in terms of these eigenfunctions and their eigenvalues.[68]

Algebras over fields


A hyperbola, given by the equation xy = 1. The coordinate ring of functions on this hyperbola is given by R[x, y] / (x · y − 1), an infinite-dimensional vector space over R.

General vector spaces do not possess a multiplication between vectors. A vector space equipped with an additional bilinear operator defining the multiplication of two vectors is an algebra over a field.[69] Many algebras stem from functions on some geometrical object: since functions with values in a given field can be multiplied pointwise, these entities form algebras. The Stone–Weierstrass theorem mentioned above, for example, relies on Banach algebras which are both Banach spaces and algebras.

Commutative algebra makes great use of rings of polynomials in one or several variables, introduced above. Their multiplication is both commutative and associative. These rings and their quotients form the basis of algebraic geometry, because they are rings of functions of algebraic geometric objects.[70]

Another crucial example are Lie algebras, which are neither commutative nor associative, but the failure to be so is limited by the constraints ([x, y] denotes the product of x and y):
Examples include the vector space of n-by-n matrices, with [x, y] = xyyx, the commutator of two matrices, and R3, endowed with the cross product.

The tensor algebra T(V) is a formal way of adding products to any vector space V to obtain an algebra.[72] As a vector space, it is spanned by symbols, called simple tensors
v1v2 ⊗ ... ⊗ vn, where the degree n varies.
The multiplication is given by concatenating such symbols, imposing the distributive law under addition, and requiring that scalar multiplication commute with the tensor product ⊗, much the same way as with the tensor product of two vector spaces introduced above. In general, there are no relations between v1v2 and v2v1. Forcing two such elements to be equal leads to the symmetric algebra, whereas forcing v1v2 = − v2v1 yields the exterior algebra.[73]

When a field, F is explicitly stated, a common term used is F-algebra.

Applications

Vector spaces have many applications as they occur frequently in common circumstances, namely wherever functions with values in some field are involved. They provide a framework to deal with analytical and geometrical problems, or are used in the Fourier transform. This list is not exhaustive: many more applications exist, for example in optimization. The minimax theorem of game theory stating the existence of a unique payoff when all players play optimally can be formulated and proven using vector spaces methods.[74] Representation theory fruitfully transfers the good understanding of linear algebra and vector spaces to other mathematical domains such as group theory.[75]

Distributions

A distribution (or generalized function) is a linear map assigning a number to each "test" function, typically a smooth function with compact support, in a continuous way: in the above terminology the space of distributions is the (continuous) dual of the test function space.[76] The latter space is endowed with a topology that takes into account not only f itself, but also all its higher derivatives. A standard example is the result of integrating a test function f over some domain Ω:
I(f)=\int _{\Omega }f(x)\,dx.
When Ω = {p}, the set consisting of a single point, this reduces to the Dirac distribution, denoted by δ, which associates to a test function f its value at the p: δ(f) = f(p). Distributions are a powerful instrument to solve differential equations. Since all standard analytic notions such as derivatives are linear, they extend naturally to the space of distributions. Therefore, the equation in question can be transferred to a distribution space, which is bigger than the underlying function space, so that more flexible methods are available for solving the equation. For example, Green's functions and fundamental solutions are usually distributions rather than proper functions, and can then be used to find solutions of the equation with prescribed boundary conditions. The found solution can then in some cases be proven to be actually a true function, and a solution to the original equation (e.g., using the Lax–Milgram theorem, a consequence of the Riesz representation theorem).[77]

Fourier analysis


The heat equation describes the dissipation of physical properties over time, such as the decline of the temperature of a hot body placed in a colder environment (yellow depicts colder regions than red).

Resolving a periodic function into a sum of trigonometric functions forms a Fourier series, a technique much used in physics and engineering.[nb 14][78] The underlying vector space is usually the Hilbert space L2(0, 2π), for which the functions sin mx and cos mx (m an integer) form an orthogonal basis.[79] The Fourier expansion of an L2 function f is
{\frac {a_{0}}{2}}+\sum _{m=1}^{\infty }\left[a_{m}\cos \left(mx\right)+b_{m}\sin \left(mx\right)\right].
The coefficients am and bm are called Fourier coefficients of f, and are calculated by the formulas[80]
a_{m}={\frac {1}{\pi }}\int _{0}^{2\pi }f(t)\cos(mt)\,dt,
b_{m}={\frac {1}{\pi }}\int _{0}^{2\pi }f(t)\sin(mt)\,dt.
In physical terms the function is represented as a superposition of sine waves and the coefficients give information about the function's frequency spectrum.[81] A complex-number form of Fourier series is also commonly used.[80] The concrete formulae above are consequences of a more general mathematical duality called Pontryagin duality.[82] Applied to the group R, it yields the classical Fourier transform; an application in physics are reciprocal lattices, where the underlying group is a finite-dimensional real vector space endowed with the additional datum of a lattice encoding positions of atoms in crystals.[83]

Fourier series are used to solve boundary value problems in partial differential equations.[84] In 1822, Fourier first used this technique to solve the heat equation.[85] A discrete version of the Fourier series can be used in sampling applications where the function value is known only at a finite number of equally spaced points. In this case the Fourier series is finite and its value is equal to the sampled values at all points.[86] The set of coefficients is known as the discrete Fourier transform (DFT) of the given sample sequence. The DFT is one of the key tools of digital signal processing, a field whose applications include radar, speech encoding, image compression.[87] The JPEG image format is an application of the closely related discrete cosine transform.[88]

The fast Fourier transform is an algorithm for rapidly computing the discrete Fourier transform.[89] It is used not only for calculating the Fourier coefficients but, using the convolution theorem, also for computing the convolution of two finite sequences.[90] They in turn are applied in digital filters[91] and as a rapid multiplication algorithm for polynomials and large integers (Schönhage–Strassen algorithm).[92][93]

Differential geometry


The tangent space to the 2-sphere at some point is the infinite plane touching the sphere in this point.

The tangent plane to a surface at a point is naturally a vector space whose origin is identified with the point of contact. The tangent plane is the best linear approximation, or linearization, of a surface at a point.[nb 15] Even in a three-dimensional Euclidean space, there is typically no natural way to prescribe a basis of the tangent plane, and so it is conceived of as an abstract vector space rather than a real coordinate space. The tangent space is the generalization to higher-dimensional differentiable manifolds.[94]

Riemannian manifolds are manifolds whose tangent spaces are endowed with a suitable inner product.[95] Derived therefrom, the Riemann curvature tensor encodes all curvatures of a manifold in one object, which finds applications in general relativity, for example, where the Einstein curvature tensor describes the matter and energy content of space-time.[96][97] The tangent space of a Lie group can be given naturally the structure of a Lie algebra and can be used to classify compact Lie groups.[98]

Generalizations

Vector bundles


A Möbius strip. Locally, it looks like U × R.

A vector bundle is a family of vector spaces parametrized continuously by a topological space X.[94] More precisely, a vector bundle over X is a topological space E equipped with a continuous map
π : EX
such that for every x in X, the fiber π−1(x) is a vector space. The case dim V = 1 is called a line bundle. For any vector space V, the projection X × VX makes the product X × V into a "trivial" vector bundle. Vector bundles over X are required to be locally a product of X and some (fixed) vector space V: for every x in X, there is a neighborhood U of x such that the restriction of π to π−1(U) is isomorphic[nb 16] to the trivial bundle U × VU. Despite their locally trivial character, vector bundles may (depending on the shape of the underlying space X) be "twisted" in the large (i.e., the bundle need not be (globally isomorphic to) the trivial bundle X × V). For example, the Möbius strip can be seen as a line bundle over the circle S1 (by identifying open intervals with the real line). It is, however, different from the cylinder S1 × R, because the latter is orientable whereas the former is not.[99]

Properties of certain vector bundles provide information about the underlying topological space. For example, the tangent bundle consists of the collection of tangent spaces parametrized by the points of a differentiable manifold. The tangent bundle of the circle S1 is globally isomorphic to S1 × R, since there is a global nonzero vector field on S1.[nb 17] In contrast, by the hairy ball theorem, there is no (tangent) vector field on the 2-sphere S2 which is everywhere nonzero.[100] K-theory studies the isomorphism classes of all vector bundles over some topological space.[101] In addition to deepening topological and geometrical insight, it has purely algebraic consequences, such as the classification of finite-dimensional real division algebras: R, C, the quaternions H and the octonions O.

The cotangent bundle of a differentiable manifold consists, at every point of the manifold, of the dual of the tangent space, the cotangent space. Sections of that bundle are known as differential one-forms.

Modules

Modules are to rings what vector spaces are to fields: the same axioms, applied to a ring R instead of a field F, yield modules.[102] The theory of modules, compared to that of vector spaces, is complicated by the presence of ring elements that do not have multiplicative inverses. For example, modules need not have bases, as the Z-module (i.e., abelian group) Z/2Z shows; those modules that do (including all vector spaces) are known as free modules. Nevertheless, a vector space can be compactly defined as a module over a ring which is a field with the elements being called vectors. Some authors use the term vector space to mean modules over a division ring.[103] The algebro-geometric interpretation of commutative rings via their spectrum allows the development of concepts such as locally free modules, the algebraic counterpart to vector bundles.

Affine and projective spaces


An affine plane (light blue) in R3. It is a two-dimensional subspace shifted by a vector x (red).

Roughly, affine spaces are vector spaces whose origins are not specified.[104] More precisely, an affine space is a set with a free transitive vector space action. In particular, a vector space is an affine space over itself, by the map
V × VV, (v, a) ↦ a + v.
If W is a vector space, then an affine subspace is a subset of W obtained by translating a linear subspace V by a fixed vector xW; this space is denoted by x + V (it is a coset of V in W) and consists of all vectors of the form x + v for vV. An important example is the space of solutions of a system of inhomogeneous linear equations
Ax = b
generalizing the homogeneous case b = 0 above.[105] The space of solutions is the affine subspace x + V where x is a particular solution of the equation, and V is the space of solutions of the homogeneous equation (the nullspace of A).

The set of one-dimensional subspaces of a fixed finite-dimensional vector space V is known as projective space; it may be used to formalize the idea of parallel lines intersecting at infinity.[106] Grassmannians and flag manifolds generalize this by parametrizing linear subspaces of fixed dimension k and flags of subspaces, respectively.

Dimension

From Wikipedia, the free encyclopedia


From left to right: the square, the cube and the tesseract. The two-dimensional (2d) square is bounded by one-dimensional (1d) lines; the three-dimensional (3d) cube by two-dimensional areas; and the four-dimensional (4d) tesseract by three-dimensional volumes. For display on a two-dimensional surface such as a screen, the 3d cube and 4d tesseract require projection.

The first four spatial dimensions, represented in a two-dimensional picture.
  1. Two points can be connected to create a line segment.
  2. Two parallel line segments can be connected to form a square.
  3. Two parallel squares can be connected to form a cube.
  4. Two parallel cubes can be connected to form a tesseract.
In physics and mathematics, the dimension of a mathematical space (or object) is informally defined as the minimum number of coordinates needed to specify any point within it.[1][2] Thus a line has a dimension of one because only one coordinate is needed to specify a point on it – for example, the point at 5 on a number line. A surface such as a plane or the surface of a cylinder or sphere has a dimension of two because two coordinates are needed to specify a point on it – for example, both a latitude and longitude are required to locate a point on the surface of a sphere. The inside of a cube, a cylinder or a sphere is three-dimensional because three coordinates are needed to locate a point within these spaces.

In classical mechanics, space and time are different categories and refer to absolute space and time. That conception of the world is a four-dimensional space but not the one that was found necessary to describe electromagnetism. The four dimensions of spacetime consist of events that are not absolutely defined spatially and temporally, but rather are known relative to the motion of an observer. Minkowski space first approximates the universe without gravity; the pseudo-Riemannian manifolds of general relativity describe spacetime with matter and gravity. Ten dimensions are used to describe string theory, eleven dimensions can describe supergravity and M-theory, and the state-space of quantum mechanics is an infinite-dimensional function space.

The concept of dimension is not restricted to physical objects. High-dimensional spaces frequently occur in mathematics and the sciences. They may be parameter spaces or configuration spaces such as in Lagrangian or Hamiltonian mechanics; these are abstract spaces, independent of the physical space we live in.

In mathematics

In mathematics, the dimension of an object is an intrinsic property independent of the space in which the object is embedded. For example, a point on the unit circle in the plane can be specified by two Cartesian coordinates, but a single polar coordinate (the angle) would be sufficient, so the circle is 1-dimensional even though it exists in the 2-dimensional plane. This intrinsic notion of dimension is one of the chief ways the mathematical notion of dimension differs from its common usages.

The dimension of Euclidean n-space En is n. When trying to generalize to other types of spaces, one is faced with the question "what makes En n-dimensional?" One answer is that to cover a fixed ball in En by small balls of radius ε, one needs on the order of εn such small balls. This observation leads to the definition of the Minkowski dimension and its more sophisticated variant, the Hausdorff dimension, but there are also other answers to that question. For example, the boundary of a ball in En looks locally like En-1 and this leads to the notion of the inductive dimension. While these notions agree on En , they turn out to be different when one looks at more general spaces.

A tesseract is an example of a four-dimensional object. Whereas outside mathematics the use of the term "dimension" is as in: "A tesseract has four dimensions", mathematicians usually express this as: "The tesseract has dimension 4", or: "The dimension of the tesseract is 4".

Although the notion of higher dimensions goes back to René Descartes, substantial development of a higher-dimensional geometry only began in the 19th century, via the work of Arthur Cayley, William Rowan Hamilton, Ludwig Schläfli and Bernhard Riemann. Riemann's 1854 Habilitationsschrift, Schläfli's 1852 Theorie der vielfachen Kontinuität, Hamilton's 1843 discovery of the quaternions and the construction of the Cayley algebra marked the beginning of higher-dimensional geometry.

The rest of this section examines some of the more important mathematical definitions of the dimensions.

Complex dimension

Complex dimensions appear in the study of complex manifolds and algebraic varieties. A complex number (x + iy) has a real part x and an imaginary part y, where x and y are real numbers. A single complex coordinate system may be applied to an object having two real dimensions. For example, an ordinary two-dimensional spherical surface, when given a complex metric, becomes a Riemann sphere of one complex dimension.[3]

Vector spaces

The dimension of a vector space is the number of vectors in any basis for the space, i.e. the number of coordinates necessary to specify any vector. This notion of dimension (the cardinality of a basis) is often referred to as the Hamel dimension or algebraic dimension to distinguish it from other notions of dimension.

Manifolds

The uniquely defined dimension of every connected topological manifold can be calculated. A connected topological manifold is locally homeomorphic to Euclidean n-space, in which the number n is the manifold's dimension.

For connected differentiable manifolds, the dimension is also the dimension of the tangent vector space at any point.

In geometric topology, the theory of manifolds is characterized by the way dimensions 1 and 2 are relatively elementary, the high-dimensional cases n > 4 are simplified by having extra space in which to "work"; and the cases n = 3 and 4 are in some senses the most difficult. This state of affairs was highly marked in the various cases of the Poincaré conjecture, where four different proof methods are applied.

Varieties

The dimension of an algebraic variety may be defined in various equivalent ways. The most intuitive way is probably the dimension of the tangent space at any Regular point of an algebraic variety. Another intuitive way is to define the dimension as the number of hyperplanes that are needed in order to have an intersection with the variety that is reduced to a finite number of points (dimension zero). This definition is based on the fact that the intersection of a variety with a hyperplane reduces the dimension by one unless if the hyperplane contains the algebraic variety.

An algebraic set being a finite union of algebraic varieties, its dimension is the maximum of the dimensions of its components. It is equal to the maximal length of the chains V_{0}\subsetneq V_{1}\subsetneq \ldots \subsetneq V_{d} of sub-varieties of the given algebraic set (the length of such a chain is the number of "\subsetneq ").

Each variety can be considered as an algebraic stack, and its dimension as variety agrees with its dimension as stack. There are however many stacks which do not correspond to varieties, and some of these have negative dimension. Specifically, if V is a variety of dimension m and G is an algebraic group of dimension n acting on V, then the quotient stack [V/G] has dimension mn.[4]

Krull dimension

The Krull dimension of a commutative ring is the maximal length of chains of prime ideals in it, a chain of length n being a sequence {\mathcal {P}}_{0}\subsetneq {\mathcal {P}}_{1}\subsetneq \ldots \subsetneq {\mathcal {P}}_{n} of prime ideals related by inclusion. It is strongly related to the dimension of an algebraic variety, because of the natural correspondence between sub-varieties and prime ideals of the ring of the polynomials on the variety.

For an algebra over a field, the dimension as vector space is finite if and only if its Krull dimension is 0.

Lebesgue covering dimension

For any normal topological space X, the Lebesgue covering dimension of X is defined to be n if n is the smallest integer for which the following holds: any open cover has an open refinement (a second open cover where each element is a subset of an element in the first cover) such that no point is included in more than n + 1 elements. In this case dim X = n. For X a manifold, this coincides with the dimension mentioned above. If no such integer n exists, then the dimension of X is said to be infinite, and one writes dim X = ∞. Moreover, X has dimension −1, i.e. dim X = −1 if and only if X is empty. This definition of covering dimension can be extended from the class of normal spaces to all Tychonoff spaces merely by replacing the term "open" in the definition by the term "functionally open".

An inductive definition of dimension can be created as follows. Consider a discrete set of points (such as a finite collection of points) to be 0-dimensional. By dragging a 0-dimensional object in some direction, one obtains a 1-dimensional object. By dragging a 1-dimensional object in a new direction, one obtains a 2-dimensional object. In general one obtains an (n + 1)-dimensional object by dragging an n-dimensional object in a new direction.

The inductive dimension of a topological space may refer to the small inductive dimension or the large inductive dimension, and is based on the analogy that (n + 1)-dimensional balls have n-dimensional boundaries, permitting an inductive definition based on the dimension of the boundaries of open sets.

Hausdorff dimension

The Hausdorff dimension is useful for studying structurally complicated sets, especially fractals. The Hausdorff dimension is defined for all metric spaces and, unlike the dimensions considered above, can also have non-integer real values.[5] The box dimension or Minkowski dimension is a variant of the same idea. In general, there exist more definitions of fractal dimensions that work for highly irregular sets and attain non-integer positive real values. Fractals have been found useful to describe many natural objects and phenomena.[6][page needed][7][page needed]

Hilbert spaces

Every Hilbert space admits an orthonormal basis, and any two such bases for a particular space have the same cardinality. This cardinality is called the dimension of the Hilbert space. This dimension is finite if and only if the space's Hamel dimension is finite, and in this case the two dimensions coincide.

In physics

Spatial dimensions

Classical physics theories describe three physical dimensions: from a particular point in space, the basic directions in which we can move are up/down, left/right, and forward/backward. Movement in any other direction can be expressed in terms of just these three. Moving down is the same as moving up a negative distance. Moving diagonally upward and forward is just as the name of the direction implies; i.e., moving in a linear combination of up and forward. In its simplest form: a line describes one dimension, a plane describes two dimensions, and a cube describes three dimensions.

Time

A temporal dimension is a dimension of time. Time is often referred to as the "fourth dimension" for this reason, but that is not to imply that it is a spatial dimension. A temporal dimension is one way to measure physical change. It is perceived differently from the three spatial dimensions in that there is only one of it, and that we cannot move freely in time but subjectively move in one direction.

The equations used in physics to model reality do not treat time in the same way that humans commonly perceive it. The equations of classical mechanics are symmetric with respect to time, and equations of quantum mechanics are typically symmetric if both time and other quantities (such as charge and parity) are reversed. In these models, the perception of time flowing in one direction is an artifact of the laws of thermodynamics (we perceive time as flowing in the direction of increasing entropy).

The best-known treatment of time as a dimension is Poincaré and Einstein's special relativity (and extended to general relativity), which treats perceived space and time as components of a four-dimensional manifold, known as spacetime, and in the special, flat case as Minkowski space.

Additional dimensions

In physics, three dimensions of space and one of time is the accepted norm. However, there are theories that attempt to unify the four fundamental forces by introducing extra dimensions. Most notably, superstring theory requires 10 spacetime dimensions, and originates from a more fundamental 11-dimensional theory tentatively called M-theory which subsumes five previously distinct superstring theories. To date, no experimental or observational evidence is available to confirm the existence of these extra dimensions. If extra dimensions exist, they must be hidden from us by some physical mechanism. One well-studied possibility is that the extra dimensions may be "curled up" at such tiny scales as to be effectively invisible to current experiments. Limits on the size and other properties of extra dimensions are set by particle experiments[clarification needed] such as those at the Large Hadron Collider.[8]

At the level of quantum field theory, Kaluza–Klein theory unifies gravity with gauge interactions, based on the realization that gravity propagating in small, compact extra dimensions is equivalent to gauge interactions at long distances. In particular when the geometry of the extra dimensions is trivial, it reproduces electromagnetism. However at sufficiently high energies or short distances, this setup still suffers from the same pathologies that famously obstruct direct attempts to describe quantum gravity. Therefore, these models still require a UV completion, of the kind that string theory is intended to provide. In particular, superstring theory requires six compact dimensions forming a Calabi–Yau manifold. Thus Kaluza-Klein theory may be considered either as an incomplete description on its own, or as a subset of string theory model building.

In addition to small and curled up extra dimensions, there may be extra dimensions that instead aren't apparent because the matter associated with our visible universe is localized on a (3 + 1)-dimensional subspace. Thus the extra dimensions need not be small and compact but may be large extra dimensions. D-branes are dynamical extended objects of various dimensionalities predicted by string theory that could play this role. They have the property that open string excitations, which are associated with gauge interactions, are confined to the brane by their endpoints, whereas the closed strings that mediate the gravitational interaction are free to propagate into the whole spacetime, or "the bulk". This could be related to why gravity is exponentially weaker than the other forces, as it effectively dilutes itself as it propagates into a higher-dimensional volume.

Some aspects of brane physics have been applied to cosmology. For example, brane gas cosmology[9][10] attempts to explain why there are three dimensions of space using topological and thermodynamic considerations. According to this idea it would be because three is the largest number of spatial dimensions where strings can generically intersect. If initially there are lots of windings of strings around compact dimensions, space could only expand to macroscopic sizes once these windings are eliminated, which requires oppositely wound strings to find each other and annihilate. But strings can only find each other to annihilate at a meaningful rate in three dimensions, so it follows that only three dimensions of space are allowed to grow large given this kind of initial configuration.

Extra dimensions are said to be universal if all fields are equally free to propagate within them.

Networks and dimension

Some complex networks are characterized by fractal dimensions.[11] The concept of dimension can be generalized to include networks embedded in space.[12] The dimension characterize their spatial constraints.

In literature

Science fiction texts often mention the concept of "dimension" when referring to parallel or alternate universes or other imagined planes of existence. This usage is derived from the idea that to travel to parallel/alternate universes/planes of existence one must travel in a direction/dimension besides the standard ones. In effect, the other universes/planes are just a small distance away from our own, but the distance is in a fourth (or higher) spatial (or non-spatial) dimension, not the standard ones.

One of the most heralded science fiction stories regarding true geometric dimensionality, and often recommended as a starting point for those just starting to investigate such matters, is the 1884 novella Flatland by Edwin A. Abbott. Isaac Asimov, in his foreword to the Signet Classics 1984 edition, described Flatland as "The best introduction one can find into the manner of perceiving dimensions."

The idea of other dimensions was incorporated into many early science fiction stories, appearing prominently, for example, in Miles J. Breuer's The Appendix and the Spectacles (1928) and Murray Leinster's The Fifth-Dimension Catapult (1931); and appeared irregularly in science fiction by the 1940s. Classic stories involving other dimensions include Robert A. Heinlein's —And He Built a Crooked House (1941), in which a California architect designs a house based on a three-dimensional projection of a tesseract; and Alan E. Nourse's Tiger by the Tail and The Universe Between (both 1951). Another reference is Madeleine L'Engle's novel A Wrinkle In Time (1962), which uses the fifth dimension as a way for "tesseracting the universe" or "folding" space in order to move across it quickly. The fourth and fifth dimensions were also a key component of the book The Boy Who Reversed Himself by William Sleator.

In philosophy

Immanuel Kant, in 1783, wrote: "That everywhere space (which is not itself the boundary of another space) has three dimensions and that space in general cannot have more dimensions is based on the proposition that not more than three lines can intersect at right angles in one point. This proposition cannot at all be shown from concepts, but rests immediately on intuition and indeed on pure intuition a priori because it is apodictically (demonstrably) certain."[13]

"Space has Four Dimensions" is a short story published in 1846 by German philosopher and experimental psychologist Gustav Fechner under the pseudonym "Dr. Mises". The protagonist in the tale is a shadow who is aware of and able to communicate with other shadows, but who is trapped on a two-dimensional surface. According to Fechner, this "shadow-man" would conceive of the third dimension as being one of time.[14] The story bears a strong similarity to the "Allegory of the Cave" presented in Plato's The Republic (c. 380 BC).

Simon Newcomb wrote an article for the Bulletin of the American Mathematical Society in 1898 entitled "The Philosophy of Hyperspace".[15] Linda Dalrymple Henderson coined the term "hyperspace philosophy", used to describe writing that uses higher dimensions to explore metaphysical themes, in her 1983 thesis about the fourth dimension in early-twentieth-century art.[16] Examples of "hyperspace philosophers" include Charles Howard Hinton, the first writer, in 1888, to use the word "tesseract";[17] and the Russian esotericist P. D. Ouspensky.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...