Search This Blog

Saturday, December 7, 2024

Collective memory

From Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Collective_memory

Collective memory
refers to the shared pool of memories, knowledge and information of a social group that is significantly associated with the group's identity. The English phrase "collective memory" and the equivalent French phrase "la mémoire collective" appeared in the second half of the nineteenth century. The philosopher and sociologist Maurice Halbwachs analyzed and advanced the concept of the collective memory in the book Les cadres sociaux de la mémoire (1925).

Collective memory can be constructed, shared, and passed on by large and small social groups. Examples of these groups can include nations, generations, communities, among others.

Collective memory has been a topic of interest and research across a number of disciplines, including psychology, sociology, history, philosophy, and anthropology.

Conceptualization of collective memory

Attributes of collective memory

Collective memory has been conceptualized in several ways and proposed to have certain attributes. For instance, collective memory can refer to a shared body of knowledge (e.g., memory of a nation's past leaders or presidents); the image, narrative, values and ideas of a social group; or the continuous process by which collective memories of events change.

History versus collective memory

The difference between history and collective memory is best understood when comparing the aims and characteristics of each. A goal of history broadly is to provide a comprehensive, accurate, and unbiased portrayal of past events. This often includes the representation and comparison of multiple perspectives and the integration of these perspectives and details to provide a complete and accurate account. In contrast, collective memory focuses on a single perspective, for instance, the perspective of one social group, nation, or community. Consequently, collective memory represents past events as associated with the values, narratives and biases specific to that group.

Studies have found that people from different nations can have major differences in their recollections of the past. In one study where American and Russian students were instructed to recall significant events from World War II and these lists of events were compared, the majority of events recalled by the American and Russian students were not shared. Differences in the events recalled and emotional views towards the Civil War, World War II and the Iraq War have also been found in a study comparing collective memory between generations of Americans.

Perspectives on collective memory

The concept of collective memory, initially developed by Halbwachs, has been explored and expanded from various angles – a few of these are introduced below.

James E. Young has introduced the notion of 'collected memory' (opposed to collective memory), marking memory's inherently fragmented, collected and individual character, while Jan Assmann develops the notion of 'communicative memory', a variety of collective memory based on everyday communication. This form of memory resembles the exchanges in oral cultures or the memories collected (and made collective) through oral tradition. As another subform of collective memories, Assmann mentions forms detached from the everyday; they can be particular materialized and fixed points as, e.g. texts and monuments.

The theory of collective memory was also discussed by former Hiroshima resident and atomic-bomb survivor, Kiyoshi Tanimoto, in a tour of the United States as an attempt to rally support and funding for the reconstruction of his Memorial Methodist Church in Hiroshima. He theorized that the use of the atomic bomb had forever added to the world's collective memory and would serve in the future as a warning against such devices. See John Hersey's 1946 book Hiroshima.

Historian Guy Beiner (1968- ), an authority on memory and the history of Ireland, has criticized the unreflective use of the adjective "collective" in many studies of memory:

The problem is with crude concepts of collectivity, which assume a homogeneity that is rarely, if ever, present, and maintain that, since memory is constructed, it is entirely subject to the manipulations of those invested in its maintenance, denying that there can be limits to the malleability of memory or to the extent to which artificial constructions of memory can be inculcated. In practice, the construction of a completely collective memory is at best an aspiration of politicians, which is never entirely fulfilled and is always subject to contestations.

In its place, Beiner has promoted the term "social memory" and has also demonstrated its limitations by developing a related concept of "social forgetting".

Historian David Rieff takes issue with the term "collective memory", distinguishing between memories of people who were actually alive during the events in question, and people who only know about them from culture or media. Rieff writes in opposition to George Santayana's aphorism "those who cannot remember the past are condemned to repeat it", pointing out that strong cultural emphasis on certain historical events (often wrongs against the group) can prevent resolution of armed conflicts, especially when the conflict has been previously fought to a draw. The sociologist David Leupold draws attention to the problem of structural nationalism inherent in the notion of collective memory, arguing in favor of "emancipating the notion of collective memory from being subjected to the national collective" by employing a multi-collective perspective that highlights the mutual interaction of other memory collectives that form around generational belonging, family, locality or socio-political world-views.

Pierre Lévy argues that the phenomenon of human collective intelligence undergoes a profound shift with the arrival of the internet paradigm, as it allows the vast majority of humanity to access and modify a common shared online collective memory.

Collective memory and psychological research

Though traditionally a topic studied in the humanities, collective memory has become an area of interest in psychology. Common approaches taken in psychology to study collective memory have included investigating the cognitive mechanisms involved in the formation and transmission of collective memory; and comparing the social representations of history between social groups.

Social representations of history

Research on collective memory have taken the approach to compare how different social groups form their own representations of history and how such collective memories can impact ideals, values, behaviors and vice versa. Developing social identity and evaluating the past in order to prevent past patterns of conflict and errors are proposed functions of why groups form social representations of history. This research has focused on surveying different groups or comparing differences in recollections of historical events, such as the examples given earlier when comparing history and collective memory.

Differences in collective memories between social groups, such as nations or states, have been attributed to collective narcissism and egocentric/ethnocentric bias. In one related study where participants from 35 countries were questioned about their country's contribution to world history and provided a percentage estimation from 0% to 100%, evidence for collective narcissism was found as many countries gave responses exaggerating their country's contribution. In another study where American's from the 50 states were asked similar questions regarding their state's contribution to the history of the United States, patterns of overestimation and collective narcissism were also found.

Cognitive mechanisms underlying collaborative recall

Certain cognitive mechanisms involved during group recall and the interactions between these mechanisms have been suggested to contribute to the formation of collective memory. Below are some mechanisms involved during when groups of individuals recall collaboratively.

Collaborative inhibition and retrieval disruption

When groups collaborate to recall information, they experience collaborative inhibition, a decrease in performance compared to the pooled memory recall of an equal number of individuals. Weldon and Bellinger (1997) and Basden, Basden, Bryner, and Thomas (1997) provided evidence that retrieval interference underlies collaborative inhibition, as hearing other members' thoughts and discussion about the topic at hand interferes with one's own organization of thoughts and impairs memory.

The main theoretical account for collaborative inhibition is retrieval disruption. During the encoding of information, individuals form their own idiosyncratic organization of the information. This organization is later used when trying to recall the information. In a group setting as members exchange information, the information recalled by group members disrupts the idiosyncratic organization one had developed. As each member's organization is disrupted, this results in the less information recalled by the group compared to the pooled recall of participants who had individually recalled (an equal number of participants as in the group).

Despite the problem of collaborative inhibition, working in groups may benefit an individual's memory in the long run, as group discussion exposes one to many different ideas over time. Working alone initially prior to collaboration seems to be the optimal way to increase memory.

Early speculations about collaborative inhibition have included explanations, such as diminished personal accountability, social loafing and the diffusion of responsibility, however retrieval disruption remains the leading explanation. Studies have found that collective inhibition to sources other than social loafing, as offering a monetary incentive have been evidenced to fail to produce an increase in memory for groups. Further evidence from this study suggest something other than social loafing is at work, as reducing evaluation apprehension – the focus on one's performance amongst other people – assisted in individuals' memories but did not produce a gain in memory for groups. Personal accountability – drawing attention to one's own performance and contribution in a group – also did not reduce collaborative inhibition. Therefore, group members' motivation to overcome the interference of group recall cannot be achieved by several motivational factors.

Cross-cueing

Information exchange among group members often helps individuals to remember things that they would not have remembered had they been working alone. In other words, the information provided by person A may 'cue' memories in person B. This results in enhanced recall. During a group recall, an individual might not remember as much as they would on their own, as their memory recall cues may be distorted because of other team members. Nevertheless, this has enhanced benefits, team members can remember something specific to the disruption of the group. Cross-cueing plays a role in formulation of group recall (Barber, 2011).

Collective false memories

In 2010, a study was done to see how individuals remembered a bombing that occurred in the 1980s. The clock was later set at 10.25 to remember the tragic bomb (de Vito et al. 2009). The individuals were asked to remember if the clock at Bologna central station in Italy had remained functioning, everyone said no, in fact it was the opposite (Legge, 2018). There have been many instances in history where people create a false memory. In a 2003 study done in the Claremont Graduate University, results demonstrated that during a stressful event and the actual event are managed by the brain differently. Other instances of false memories may occur when remembering something on an object that is not actually there or mistaking how someone looks in a crime scene (Legge, 2018). It is possible for people to remember the same false memories; some people call it the "Mandela effect". The name "Mandela effect" comes from the name of South African civil rights leader Nelson Mandela whom many people falsely believed was dead. (Legge, 2018). The Pandora Box experiment explains that language complexes the mind more when it comes to false memories. Language plays a role with imaginative experiences, because it makes it hard for humans to gather correct information (Jablonka, 2017).

Error pruning

Compared to recalling individually, group members can provide opportunities for error pruning during recall to detect errors that would otherwise be uncorrected by an individual.

Social contagion errors

Group settings can also provide opportunities for exposure to erroneous information that may be mistaken to be correct or previously studied.

Re-exposure effects

Listening to group members recall the previously encoded information can enhance memory as it provides a second exposure opportunity to the information.

Forgetting

Studies have shown that information forgotten and excluded during group recall can promote the forgetting of related information compared to information unrelated to that which was excluded during group recall. Selective forgetting has been suggested to be a critical mechanism involved in the formation of collective memories and what details are ultimately included and excluded by group members. This mechanism has been studied using the socially-shared retrieval induced forgetting paradigm, a variation of the retrieval induced forgetting method with individuals.[39][40][41] The brain has many important brain regions that are directed at memory, the cerebral cortex, the fornix and the structures that they contain. These structures in the brain are required for attaining new information, and if any of these structures are damaged you can get anterograde or retrograde amnesia (Anastasio et al.,p. 26, 2012). Amnesia could be anything that disrupts your memory or affects you psychologically. Over time, memory loss becomes a natural part of amnesia. Sometimes you can get retrograde memory of a recent or past event.

Synchronization of memories from dyads to networks

Bottom-up approaches to the formation of collective memories investigate how cognitive-level phenomena allow for people to synchronize their memories following conversational remembering. Due to the malleability of human memory, talking with one another about the past results in memory changes that increase the similarity between the interactional partners' memories When these dyadic interactions occur in a social network, one can understand how large communities converge on a similar memory of the past. Research on larger interactions show that collective memory in larger social networks can emerge due to cognitive mechanisms involved in small group interactions.

Computational approaches to collective memory analysis

With the ability of online data such as social media and social network data and developments in natural language processing as well as information retrieval it has become possible to study how online users refer to the past and what they focus at. In an early study in 2010 researchers extracted absolute year references from large amounts of news articles collected for queries denoting particular countries. This allowed to portray so-called memory curves that demonstrate which years are particularly strongly remembered in the context of different countries (commonly, exponential shape of memory curves with occasional peaks that relate to commemorating important past events) and how the attention to more distant years declines in news. Based on a topic modelling and analysis they then detected major topics portraying how particular years are remembered. Rather than news, Wikipedia was also the target of analysis. Viewership statistics of Wikipedia articles on aircraft crashes were analyzed to study the relation between recent events and past events, particularly for understanding memory-triggering patterns.

Other studies focused on the analysis of collective memory in social networks such as investigation of over 2 million tweets (both quantitively and qualitatively) that are related to history to uncover their characteristics and ways in which history-related content is disseminated in social networks. Hashtags, as well as tweets, can be classified into the following types:

  • General History hashtags used in general to broadly identify history-related tweets that do not fall into any specific type (e.g., #history, #historyfacts).
  • National or Regional History hashtags which relate to national or regional histories, for example, #ushistory or #canadianhistory including also past names of locations (e.g., #ancientgreece).
  • Facet-focused History hashtags which relate to particular thematic facets of history (e.g.,#sporthistory, #arthistory).
  • General Commemoration hashtags that serve for commemorating or recalling a certain day or period (often somehow related to the day of tweet posting), or unspecified entities, such as #todaywe remember, #otd, #onthisday, #4yearsago and #rememberthem.
  • Historical Events hashtags related to particular events in the past (e.g., #wwi, #sevenyearswar).
  • Historical Entities hashtags denoting references to specific entities such as persons, organizations or objects (e.g., #stalin, #napoleon).

The study of digital memorialization, which encompasses the ways in social and collective memory has shifted after the digital turn, has grown substantially responding to rising proliferation of memorial content not only on the internet, but also the increased use of digital formats and tools in heritage institutions, classrooms, and among individual users worldwide.

Medical education

From Wikipedia, the free encyclopedia
Medical student in a laboratory at Monterrey Institute of Technology and Higher Education, Mexico City
Medical Student taking blood pressure during awareness campaign event

Medical education is education related to the practice of being a medical practitioner, including the initial training to become a physician (i.e., medical school and internship) and additional training thereafter (e.g., residency, fellowship, and continuing medical education).

Medical education and training varies considerably across the world. Various teaching methodologies have been used in medical education, which is an active area of educational research.

Medical education is also the subject-didactic academic field of educating medical doctors at all levels, including entry-level, post-graduate, and continuing medical education. Specific requirements such as entrustable professional activities must be met before moving on in stages of medical education.

Common techniques and evidence base

Medical education applies theories of pedagogy specifically in the context of medical education. Medical education has been a leader in the field of evidence-based education, through the development of evidence syntheses such as the Best Evidence Medical Education collection, formed in 1999, which aimed to "move from opinion-based education to evidence-based education". Common evidence-based techniques include the Objective structured clinical examination (commonly known as the 'OSCE) to assess clinical skills, and reliable checklist-based assessments to determine the development of soft skills such as professionalism. However, there is a persistence of ineffective instructional methods in medical education, such as the matching of teaching to learning styles and Edgar Dales' "Cone of Learning".

Entry-level education

Faculty of Medicine (Comenius University in Bratislava) Slovakia

Entry-level medical education programs are tertiary-level courses undertaken at a medical school. Depending on jurisdiction and university, these may be either undergraduate-entry (most of Europe, Asia, South America and Oceania), or graduate-entry programs (mainly Australia, Philippines and North America). Some jurisdictions and universities provide both undergraduate entry programs and graduate entry programs (Australia, South Korea).

In general, initial training is taken at medical school. Traditionally initial medical education is divided between preclinical and clinical studies. The former consists of the basic sciences such as anatomy, physiology, biochemistry, pharmacology, pathology, microbiology. The latter consists of teaching in the various areas of clinical medicine such as internal medicine, pediatrics, obstetrics and gynecology, psychiatry, general practice and surgery. More recently, there have been significant efforts in the United States to integrate health systems science (HSS) as the "third pillar" of medical education, alongside preclinical and clinical studies. HSS is a foundational platform and framework for the study and understanding of how care is delivered, how health professionals work together to deliver that care, and how the health system can improve patient care and health care delivery.

There has been a proliferation of programmes that combine medical training with research (M.D./Ph.D.) or management programmes (M.D./ MBA), although this has been criticised because extended interruption to clinical study has been shown to have a detrimental effect on ultimate clinical knowledge.

The LCME and the "Function and Structure of a Medical School"

The Liaison Committee on Medical Education (LCME) is a committee of educational accreditation for schools of medicine leading to an MD in the United States and Canada. In order to maintain accreditation, medical schools are required to ensure that students meet a certain set of standards and competencies, defined by the accreditation committees. The "Function and Structure of a Medical School" article is a yearly published article from the LCME that defines 12 accreditation standards.

Entrustable Professional Activities for entering residency

The Association of American Medical Colleges (AAMC) has recommended thirteen Entrustable Professional Activities (EPAs) that medical students should be expected to accomplish prior to beginning a residency program. EPAs are based on the integrated core competencies developed over the course of medical school training. Each EPA lists its key feature, associated competencies, and observed behaviors required for completion of that activity. The students progress through levels of understanding and capability, developing with decreasing need for direct supervision. Eventually students should be able to perform each activity independently, only requiring assistance in situations of unique or uncommon complexity.

The list of topics that EPAs address include:

  1. History and physical exam skills
  2. Differential diagnosis
  3. Diagnostic/screening tests
  4. Orders and prescriptions
  5. Patient encounter documentation
  6. Oral presentations of patient encounters
  7. Clinical questioning/using evidence
  8. Patient handovers/transitions of care
  9. Teamwork
  10. Urgent/Emergency care
  11. Informed consent
  12. Procedures
  13. Safety and improvement

Postgraduate education

Dean's office at the First Faculty of Medicine, Charles University, Prague

Following completion of entry-level training, newly graduated doctors are often required to undertake a period of supervised practice before full registration is granted; this is most often of one-year duration and may be referred to as an "internship" or "provisional registration" or "residency".

Further training in a particular field of medicine may be undertaken. In the U.S., further specialized training, completed after residency is referred to as "fellowship". In some jurisdictions, this is commenced immediately following completion of entry-level training, while other jurisdictions require junior doctors to undertake generalist (unstreamed) training for a number of years before commencing specialization.

Each residency and fellowship program is accredited by the Accreditation Council for Graduate Medical Education (ACGME), a non-profit organization led by physicians with the goal of enhancing educational standards among physicians. The ACGME oversees all MD and DO residency programs in the United States. As of 2019, there were approximately 11,700 ACGME accredited residencies and fellowship programs in 181 specialties and subspecialties.

Education theory itself is becoming an integral part of postgraduate medical training. Formal qualifications in education are also becoming the norm for medical educators, such that there has been a rapid increase in the number of available graduate programs in medical education.

Continuing medical education

In most countries, continuing medical education (CME) courses are required for continued licensing. CME requirements vary by state and by country. In the US, accreditation is overseen by the Accreditation Council for Continuing Medical Education (ACCME). Physicians often attend dedicated lectures, grand rounds, conferences, and performance improvement activities in order to fulfill their requirements. Additionally, physicians are increasingly opting to pursue further graduate-level training in the formal study of medical education as a pathway for continuing professional development.

Online learning

Medical education is increasingly utilizing online teaching, usually within learning management systems (LMSs) or virtual learning environments (VLEs). Additionally, several medical schools have incorporated the use of blended learning combining the use of video, asynchronous, and in-person exercises. A landmark scoping review published in 2018 demonstrated that online teaching modalities are becoming increasingly prevalent in medical education, with associated high student satisfaction and improvement on knowledge tests. However, the use of evidence-based multimedia design principles in the development of online lectures was seldom reported, despite their known effectiveness in medical student contexts. To enhance variety in an online delivery environment, the use of serious games, which have previously shown benefit in medical education, can be incorporated to break the monotony of online-delivered lectures.

Research areas into online medical education include practical applications, including simulated patients and virtual medical records (see also: telehealth). When compared to no intervention, simulation in medical education training is associated with positive effects on knowledge, skills, and behaviors and moderate effects for patient outcomes. However, data is inconsistent on the effectiveness of asynchronous online learning when compared to traditional in-person lectures. Furthermore, studies utilizing modern visualization technology (i.e. virtual and augmented reality) have shown great promise as means to supplement lesson content in physiological and anatomical education.

Telemedicine/telehealth education

With the advent of telemedicine (aka telehealth), students learn to interact with and treat patients online, an increasingly important skill in medical education. In training, students and clinicians enter a "virtual patient room" in which they interact and share information with a simulated or real patient actors. Students are assessed based on professionalism, communication, medical history gathering, physical exam, and ability to make shared decisions with the patient actor.

Medical education systems by country

Jackson Memorial Hospital in Miami, the primary teaching hospital for the Miller School of Medicine at the University of Miami, in July 2010

In the United Kingdom, a typical medicine course at university is five years, or four years if the student already holds a degree. Among some institutions and for some students, it may be six years (including the selection of an intercalated BSc—taking one year—at some point after the pre-clinical studies). All programs culminate in the Bachelor of Medicine and Surgery degree (abbreviated MBChB, MBBS, MBBCh, BM, etc.). This is followed by two clinical foundation years afterward, namely F1 and F2, similar to internship training. Students register with the UK General Medical Council at the end of F1. At the end of F2, they may pursue further years of study. The system in Australia is very similar, with registration by the Australian Medical Council (AMC).

In the U.S. and Canada, a potential medical student must first complete an undergraduate degree in any subject before applying to a graduate medical school to pursue an (M.D. or D.O.) program. U.S. medical schools are almost all four-year programs. Some students opt for the research-focused M.D./Ph.D. dual degree program, which is usually completed in 7–10 years. There are certain courses that are pre-requisite for being accepted to medical school, such as general chemistry, organic chemistry, physics, mathematics, biology, English, labwork, etc. The specific requirements vary by school.

In Australia, there are two pathways to a medical degree. Students can choose to take a five- or six-year undergraduate medical degree Bachelor of Medicine/Bachelor of Surgery (MBBS or BMed) as a first tertiary degree directly after secondary school graduation, or first complete a bachelor's degree (in general three years, usually in the medical sciences) and then apply for a four-year graduate entry Bachelor of Medicine/Bachelor of Surgery (MBBS) program.

See:

North America
Europe
Asia/Middle East/Oceania
Africa

Norms and values

Along with training individuals in the practice of medicine, medical education influences the norms and values of its participants (patients, families, etc.) This either occurs through explicit training in medical ethics, or covertly through a "hidden curriculum" –– a body of norms and values that students encounter implicitly, but is not formally taught. While formal ethics courses are a requirement at schools such as those accredited by the LCME, gaps between these courses and the "hidden curriculum" throughout medical education are frequently raised as issues contributing to the culture of medicine.

The aims of medical ethics training are to give medical doctors the ability to recognise ethical issues, reason about them morally and legally when making clinical decisions, and be able to interact to obtain the information necessary to do so.

The hidden curriculum may include the use of unprofessional behaviours for efficiency or viewing the academic hierarchy as more important than the patient. In certain institutions, such as those with LCME accreditation, the requirement of "professionalism" may be additionally weaponized against trainees, with complaints about ethics and safety being labelled as unprofessional.

The hidden curriculum was recently shown to be a cause of reduction in medical student empathy as they progress throughout medical school.

Integration with health policy

As medical professional stakeholders in the field of health care (i.e. entities integrally involved in the health care system and affected by reform), the practice of medicine (i.e. diagnosing, treating, and monitoring disease) is directly affected by the ongoing changes in both national and local health policy and economics.

There is a growing call for health professional training programs to not only adopt more rigorous health policy education and leadership training, but to apply a broader lens to the concept of teaching and implementing health policy through health equity and social disparities that largely affect health and patient outcomes. Increased mortality and morbidity rates occur from birth to age 75, attributed to medical care (insurance access, quality of care), individual behavior (smoking, diet, exercise, drugs, risky behavior), socioeconomic and demographic factors (poverty, inequality, racial disparities, segregation), and physical environment (housing, education, transportation, urban planning). A country's health care delivery system reflects its "underlying values, tolerances, expectations, and cultures of the societies they serve", and medical professionals stand in a unique position to influence opinion and policy of patients, healthcare administrators, & lawmakers.

In order to truly integrate health policy matters into physician and medical education, training should begin as early as possible – ideally during medical school or premedical coursework – to build "foundational knowledge and analytical skills" continued during residency and reinforced throughout clinical practice, like any other core skill or competency. This source further recommends adopting a national standardized core health policy curriculum for medical schools and residencies in order to introduce a core foundation in this much needed area, focusing on four main domains of health care: (1) systems and principles (e.g. financing; payment; models of management; information technology; physician workforce), (2) quality and safety (e.g. quality improvement indicators, measures, and outcomes; patient safety), (3) value and equity (e.g. medical economics, medical decision making, comparative effectiveness, health disparities), and (4) politics and law (e.g. history and consequences of major legislations; adverse events, medical errors, and malpractice).

However limitations to implementing these health policy courses mainly include perceived time constraints from scheduling conflicts, the need for an interdisciplinary faculty team, and lack of research / funding to determine what curriculum design may best suit the program goals. Resistance in one pilot program was seen from program directors who did not see the relevance of the elective course and who were bounded by program training requirements limited by scheduling conflicts and inadequate time for non-clinical activities. But for students in one medical school study, those taught higher-intensity curriculum (vs lower-intensity) were "three to four times as likely to perceive themselves as appropriately trained in components of health care systems", and felt it did not take away from getting poorer training in other areas. Additionally, recruiting and retaining a diverse set of multidisciplinary instructors and policy or economic experts with sufficient knowledge and training may be limited at community-based programs or schools without health policy or public health departments or graduate programs. Remedies may include having online courses, off-site trips to the capitol or health foundations, or dedicated externships, but these have interactive, cost, and time constraints as well. Despite these limitations, several programs in both medical school and residency training have been pioneered.

Lastly, more national support and research will be needed to not only establish these programs but to evaluate how to both standardize and innovate the curriculum in a way that is flexible with the changing health care and policy landscape. In the United States, this will involve coordination with the ACGME (Accreditation Council for Graduate Medical Education), a private NPO that sets educational and training standards for U.S. residencies and fellowships that determines funding and ability to operate.

Medical education as a subject-didactic field

Medical education is also the subject-didactic field of educating medical doctors at all levels, applying theories of pedagogy in the medical context, with its own journals, such as Medical Education. Researchers and practitioners in this field are usually medical doctors or educationalists. Medical curricula vary between medical schools, and are constantly evolving in response to the need of medical students, as well as the resources available. Medical schools have been documented to utilize various forms of problem-based learning, team-based learning, and simulation. The Liaison Committee on Medical Education (LCME) publishes standard guidelines regarding goals of medical education, including curriculum design, implementation, and evaluation.

Air National Guard Base training in medical simulation

The objective structured clinical examinations (OSCEs) are widely utilized as a way to assess health science students' clinical abilities in a controlled setting. Although used in medical education programs throughout the world, the methodology for assessment may vary between programs and thus attempts to standardize the assessment have been made.

Cadaver laboratory

Medical student describes anatomical landmarks of a donated human cadaver.

Medical schools and surgical residency programs may utilize cadavers to identify anatomy, study pathology, perform procedures, correlate radiology findings, and identify causes of death. With the integration of technology, traditional cadaver dissection has been debated regarding its effectiveness in medical education, but remains a large component of medical curriculum around the world. Didactic courses in cadaver dissection are commonly offered by certified anatomists, scientists, and physicians with a background in the subject.

Medical curriculum and evidence-based medical education journals

Medical curriculum vary widely among medical schools and residency programs, but generally follow an evidence based medical education (EBME) approach. These evidence based approaches are published in medical journals. The list of peer-reviewed medical education journals includes, but is not limited to:

Open access medical education journals:

Graduate Medical Education and Continuing Medical Education focused journals:

  • Journal of Continuing Education in the Health Professions
  • Journal of Graduate Medical Education

This is not a complete list of medical education journals. Each medical journal in this list has a varying impact factor, or mean number of citations indicating how often it is used in scientific research and study.

Planetary habitability

From Wikipedia, the free encyclopedia
Understanding planetary habitability is partly an extrapolation of the conditions on Earth, as this is the only planet known to support life.

Planetary habitability is the measure of a planet's or a natural satellite's potential to develop and maintain an environment hospitable to life. Life may be generated directly on a planet or satellite endogenously. Research suggests that life may also be transferred from one body to another, through a hypothetical process known as panspermia. Environments do not need to contain life to be considered habitable nor are accepted habitable zones (HZ) the only areas in which life might arise.

As the existence of life beyond Earth is unknown, planetary habitability is largely an extrapolation of conditions on Earth and the characteristics of the Sun and Solar System which appear favorable to life's flourishing. Of particular interest are those factors that have sustained complex, multicellular organisms on Earth and not just simpler, unicellular creatures. Research and theory in this regard is a component of a number of natural sciences, such as astronomy, planetary science and the emerging discipline of astrobiology.

An absolute requirement for life is an energy source, and the notion of planetary habitability implies that many other geophysical, geochemical, and astrophysical criteria must be met before an astronomical body can support life. In its astrobiology roadmap, NASA has defined the principal habitability criteria as "extended regions of liquid water, conditions favorable for the assembly of complex organic molecules, and energy sources to sustain metabolism". In August 2018, researchers reported that water worlds could support life.

Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. In determining the habitability potential of a body, studies focus on its bulk composition, orbital properties, atmosphere, and potential chemical interactions. Stellar characteristics of importance include mass and luminosity, stable variability, and high metallicity. Rocky, wet terrestrial-type planets and moons with the potential for Earth-like chemistry are a primary focus of astrobiological research, although more speculative habitability theories occasionally examine alternative biochemistries and other types of astronomical bodies.

Background

The idea that planets beyond Earth might host life is an ancient one, though historically it was framed by philosophy as much as physical science. The late 20th century saw two breakthroughs in the field. The observation and robotic spacecraft exploration of other planets and moons within the Solar System has provided critical information on defining habitability criteria and allowed for substantial geophysical comparisons between the Earth and other bodies. The discovery of exoplanets, beginning in the early 1990s and accelerating thereafter, has provided further information for the study of possible extraterrestrial life. These findings confirm that the Sun is not unique among stars in hosting planets and expands the habitability research horizon beyond the Solar System.

While Earth is the only place in the Universe known to harbor life, estimates of habitable zones around other stars, along with the discovery of thousands of exoplanets and new insights into the extreme habitats on Earth where organisms known as extremophiles live, suggest that there may be many more habitable places in the Universe than considered possible until very recently. On 4 November 2013, astronomers reported, based on Kepler space mission data, that there could be as many as 40 billion Earth-sized planets orbiting in the habitable zones of Sun-like stars and red dwarfs within the Milky Way. 11 billion of these estimated planets may be orbiting Sun-like stars. The nearest such planet may be 12 light-years away, according to the scientists. As of June 2021, a total of 59 potentially habitable exoplanets have been found.

Stellar characteristics

An understanding of planetary habitability begins with the host star. The classical habitable zone (HZ) is defined for surface conditions only; but a metabolism that does not depend on the stellar light can still exist outside the HZ, thriving in the interior of the planet where liquid water is available.

Under the auspices of SETI's Project Phoenix, scientists Margaret Turnbull and Jill Tarter developed the "HabCat" (or Catalogue of Habitable Stellar Systems) in 2002. The catalogue was formed by winnowing the nearly 120,000 stars of the larger Hipparcos Catalogue into a core group of 17,000 potentially habitable stars, and the selection criteria that were used provide a good starting point for understanding which astrophysical factors are necessary for habitable planets. According to research published in August 2015, very large galaxies may be more favorable to the formation and development of habitable planets than smaller galaxies, like the Milky Way galaxy.

However, what makes a planet habitable is a much more complex question than having a planet located at the right distance from its host star so that water can be liquid on its surface: various geophysical and geodynamical aspects, the radiation, and the host star's plasma environment can influence the evolution of planets and life, if it originated. Liquid water is a necessary but not sufficient condition for life as we know it, as habitability is a function of a multitude of environmental parameters.

Spectral class

The spectral class of a star indicates its photospheric temperature, which (for main-sequence stars) correlates to overall mass. The appropriate spectral range for habitable stars is considered to be "late F" or "G", to "mid-K". This corresponds to temperatures of a little more than 7,000 K down to a little less than 4,000 K (6,700 °C to 3,700 °C); the Sun, a G2 star at 5,777 K, is well within these bounds. This spectral range probably accounts for between 5% and 10% of stars in the local Milky Way galaxy. "Middle-class" stars of this sort have a number of characteristics considered important to planetary habitability:

  • They live at least a few hundred million years, allowing life a chance to evolve. More luminous main-sequence stars of the "O" classes and many members of the "B" classes usually live less than 500 million years and in exceptional cases less than 10 million.
  • They emit enough high-frequency ultraviolet radiation to trigger important atmospheric dynamics such as ozone formation, but not so much that ionisation destroys incipient life.
  • They emit sufficient radiation at wavelengths conducive to photosynthesis.
  • Liquid water may exist on the surface of planets orbiting them at a distance that does not induce tidal locking.

K-type stars may be able to support life far longer than the Sun.

Whether fainter late K and M class red dwarf stars are also suitable hosts for habitable planets is perhaps the most important open question in the entire field of planetary habitability given their prevalence (habitability of red dwarf systems). Gliese 581 c, a "super-Earth", has been found orbiting in the "habitable zone" (HZ) of a red dwarf and may possess liquid water. However it is also possible that a greenhouse effect may render it too hot to support life, while its neighbor, Gliese 581 d, may be a more likely candidate for habitability. In September 2010, the discovery was announced of another planet, Gliese 581 g, in an orbit between these two planets. However, reviews of the discovery have placed the existence of this planet in doubt, and it is listed as "unconfirmed". In September 2012, the discovery of two planets orbiting Gliese 163 was announced. One of the planets, Gliese 163 c, about 6.9 times the mass of Earth and somewhat hotter, was considered to be within the habitable zone.

A recent study suggests that cooler stars that emit more light in the infrared and near infrared may actually host warmer planets with less ice and incidence of snowball states. These wavelengths are absorbed by their planets' ice and greenhouse gases and remain warmer.

A 2020 study found that about half of Sun-like stars could host rocky, potentially habitable planets. Specifically, they estimated with that, on average, the nearest habitable zone planet around G and K-type stars is about 6 parsecs away, and there are about 4 rocky planets around G and K-type stars within 10 parsecs (32.6 light years) of the Sun.

Stable habitable zone

The habitable zone (HZ) is a shell-shaped region of space surrounding a star in which a planet could maintain liquid water on its surface. The concept was first proposed by astrophysicist Su-Shu Huang in 1959, based on climatic constraints imposed by the host star. After an energy source, liquid water is widely considered the most important ingredient for life, considering how integral it is to all life systems on Earth. However, if life is discovered in the absence of water, the definition of an HZ may have to be greatly expanded.

The inner edge of the HZ is the distance where runaway greenhouse effect vaporize the whole water reservoir and, as a second effect, induce the photodissociation of water vapor and the loss of hydrogen to space. The outer edge of the HZ is the distance from the star where a maximum greenhouse effect fails to keep the surface of the planet above the freezing point, and by CO
2
(carbon dioxide) condensation.

A "stable" HZ implies two factors. First, the range of an HZ should not vary greatly over time. All stars increase in luminosity as they age, and a given HZ thus migrates outwards, but if this happens too quickly (for example, with a super-massive star) planets may only have a brief window inside the HZ and a correspondingly smaller chance of developing life. Calculating an HZ range and its long-term movement is never straightforward, as negative feedback loops such as the CNO cycle will tend to offset the increases in luminosity. Assumptions made about atmospheric conditions and geology thus have as great an impact on a putative HZ range as does stellar evolution: the proposed parameters of the Sun's HZ, for example, have fluctuated greatly.

Second, no large-mass body such as a gas giant should be present in or relatively close to the HZ, thus disrupting the formation of Earth-size bodies. The matter in the asteroid belt, for example, appears to have been unable to accrete into a planet due to orbital resonances with Jupiter; if the giant had appeared in the region that is now between the orbits of Venus and Mars, Earth would almost certainly not have developed in its present form. However a gas giant inside the HZ might have habitable moons under the right conditions.

Low stellar variation

Changes in luminosity are common to all stars, but the severity of such fluctuations covers a broad range. Most stars are relatively stable, but a significant minority of variable stars often undergo sudden and intense increases in luminosity and consequently in the amount of energy radiated toward bodies in orbit. These stars are considered poor candidates for hosting life-bearing planets, as their unpredictability and energy output changes would negatively impact organisms: living things adapted to a specific temperature range could not survive too great a temperature variation. Further, upswings in luminosity are generally accompanied by massive doses of gamma ray and X-ray radiation which might prove lethal. Atmospheres do mitigate such effects, but their atmosphere might not be retained by planets orbiting variables, because the high-frequency energy buffeting these planets would continually strip them of their protective covering.

The Sun, in this respect as in many others, is relatively benign: the variation between its maximum and minimum energy output is roughly 0.1% over its 11-year solar cycle. There is strong (though not undisputed) evidence that even minor changes in the Sun's luminosity have had significant effects on the Earth's climate well within the historical era: the Little Ice Age of the mid-second millennium, for instance, may have been caused by a relatively long-term decline in the Sun's luminosity. Thus, a star does not have to be a true variable for differences in luminosity to affect habitability. Of known solar analogs, one that closely resembles the Sun is considered to be 18 Scorpii; unfortunately for the prospects of life existing in its proximity, the only significant difference between the two bodies is the amplitude of the solar cycle, which appears to be much greater for 18 Scorpii.

High metallicity

While the bulk of material in any star is hydrogen and helium, there is a significant variation in the amount of heavier elements (metals). A high proportion of metals in a star correlates to the amount of heavy material initially available in the protoplanetary disk. A smaller amount of metal makes the formation of planets much less likely, under the solar nebula theory of planetary system formation. Any planets that did form around a metal-poor star would probably be low in mass, and thus unfavorable for life. Spectroscopic studies of systems where exoplanets have been found to date confirm the relationship between high metal content and planet formation: "Stars with planets, or at least with planets similar to the ones we are finding today, are clearly more metal rich than stars without planetary companions." This relationship between high metallicity and planet formation also means that habitable systems are more likely to be found around stars of younger generations, since stars that formed early in the universe's history have low metal content.

Planetary characteristics

The moons of some gas giants could potentially be habitable.

Habitability indicators and biosignatures must be interpreted within a planetary and environmental context. Whether a planet will emerge as habitable depends on the sequence of events that led to its formation, which could include the production of organic molecules in molecular clouds and protoplanetary disks, delivery of materials during and after planetary accretion, and the orbital location in the planetary system. The chief assumption about habitable planets is that they are terrestrial. Such planets, roughly within one order of magnitude of Earth mass, are primarily composed of silicate rocks, and have not accreted the gaseous outer layers of hydrogen and helium found on gas giants. The possibility that life could evolve in the cloud tops of giant planets has not been decisively ruled out, though it is considered unlikely, as they have no surface and their gravity is enormous. The natural satellites of giant planets, meanwhile, remain valid candidates for hosting life.

In February 2011 the Kepler Space Observatory Mission team released a list of 1235 extrasolar planet candidates, including 54 that may be in the habitable zone. Six of the candidates in this zone are smaller than twice the size of Earth. A more recent study found that one of these candidates (KOI 326.01) is much larger and hotter than first reported. Based on the findings, the Kepler team estimated there to be "at least 50 billion planets in the Milky Way" of which "at least 500 million" are in the habitable zone.

In analyzing which environments are likely to support life, a distinction is usually made between simple, unicellular organisms such as bacteria and archaea and complex metazoans (animals). Unicellularity necessarily precedes multicellularity in any hypothetical tree of life, and where single-celled organisms do emerge there is no assurance that greater complexity will then develop. The planetary characteristics listed below are considered crucial for life generally, but in every case multicellular organisms are more picky than unicellular life.

In August 2021, a new class of habitable planets, named ocean planets, which involves "hot, ocean-covered planets with hydrogen-rich atmospheres", has been reported. Hycean planets may soon be studied for biosignatures by terrestrial telescopes as well as space telescopes, such as the James Webb Space Telescope (JWST), which was launched on 25 December 2021.

Mass and size

Mars, with its rarefied atmosphere, is colder than the Earth would be if it were at a similar distance from the Sun.

Low-mass planets are poor candidates for life for two reasons. First, their lesser gravity makes atmosphere retention difficult. Constituent molecules are more likely to reach escape velocity and be lost to space when buffeted by solar wind or stirred by collision. Planets without a thick atmosphere lack the matter necessary for primal biochemistry, have little insulation and poor heat transfer across their surfaces (for example, Mars, with its thin atmosphere, is colder than the Earth would be if it were at a similar distance from the Sun), and provide less protection against meteoroids and high-frequency radiation. Further, where an atmosphere is less dense than 0.006 Earth atmospheres, water cannot exist in liquid form as the required atmospheric pressure, 4.56 mm Hg (608 Pa) (0.18 inch Hg), does not occur. In addition, a lessened pressure reduces the range of temperatures at which water is liquid.

Secondly, smaller planets have smaller diameters and thus higher surface-to-volume ratios than their larger cousins. Such bodies tend to lose the energy left over from their formation quickly and end up geologically dead, lacking the volcanoes, earthquakes and tectonic activity which supply the surface with life-sustaining material and the atmosphere with temperature moderators like carbon dioxide. Plate tectonics appear particularly crucial, at least on Earth: not only does the process recycle important chemicals and minerals, it also fosters bio-diversity through continent creation and increased environmental complexity and helps create the convective cells necessary to generate Earth's magnetic field.

"Low mass" is partly a relative label: the Earth is low mass when compared to the Solar System's gas giants, but it is the largest, by diameter and mass, and the densest of all terrestrial bodies. It is large enough to retain an atmosphere through gravity alone and large enough that its molten core remains a heat engine, driving the diverse geology of the surface (the decay of radioactive elements within a planet's core is the other significant component of planetary heating). Mars, by contrast, is nearly (or perhaps totally) geologically dead and has lost much of its atmosphere. Thus it would be fair to infer that the lower mass limit for habitability lies somewhere between that of Mars and that of Earth or Venus: 0.3 Earth masses has been offered as a rough dividing line for habitable planets. However, a 2008 study by the Harvard-Smithsonian Center for Astrophysics suggests that the dividing line may be higher. Earth may in fact lie on the lower boundary of habitability: if it were any smaller, plate tectonics would be impossible. Venus, which has 85% of Earth's mass, shows no signs of tectonic activity. Conversely, "super-Earths", terrestrial planets with higher masses than Earth, would have higher levels of plate tectonics and thus be firmly placed in the habitable range.

Exceptional circumstances do offer exceptional cases: Jupiter's moon Io (which is smaller than any of the terrestrial planets) is volcanically dynamic because of the gravitational stresses induced by its orbit, and its neighbor Europa may have a liquid ocean or icy slush underneath a frozen shell also due to power generated from orbiting a gas giant.

Saturn's Titan, meanwhile, has an outside chance of harbouring life, as it has retained a thick atmosphere and has liquid methane seas on its surface. Organic-chemical reactions that only require minimum energy are possible in these seas, but whether any living system can be based on such minimal reactions is unclear, and would seem unlikely. These satellites are exceptions, but they prove that mass, as a criterion for habitability, cannot necessarily be considered definitive at this stage of our understanding.

A larger planet is likely to have a more massive atmosphere. A combination of higher escape velocity to retain lighter atoms, and extensive outgassing from enhanced plate tectonics may greatly increase the atmospheric pressure and temperature at the surface compared to Earth. The enhanced greenhouse effect of such a heavy atmosphere would tend to suggest that the habitable zone should be further out from the central star for such massive planets.

Finally, a larger planet is likely to have a large iron core. This allows for a magnetic field to protect the planet from stellar wind and cosmic radiation, which otherwise would tend to strip away planetary atmosphere and to bombard living things with ionized particles. Mass is not the only criterion for producing a magnetic field—as the planet must also rotate fast enough to produce a dynamo effect within its core—but it is a significant component of the process.

The mass of a potentially habitable exoplanet is between 0.1 and 5.0 Earth masses. However it is possible for a habitable world to have a mass as low as 0.0268 Earth Masses. The radius of a potentially habitable exoplanet would range between 0.5 and 1.5 Earth radii.

Orbit and rotation

As with other criteria, stability is the critical consideration in evaluating the effect of orbital and rotational characteristics on planetary habitability. Orbital eccentricity is the difference between a planet's farthest and closest approach to its parent star divided by the sum of said distances. It is a ratio describing the shape of the elliptical orbit. The greater the eccentricity the greater the temperature fluctuation on a planet's surface. Although they are adaptive, living organisms can stand only so much variation, particularly if the fluctuations overlap both the freezing point and boiling point of the planet's main biotic solvent (e.g., water on Earth). If, for example, Earth's oceans were alternately boiling and freezing solid, it is difficult to imagine life as we know it having evolved. The more complex the organism, the greater the temperature sensitivity. The Earth's orbit is almost perfectly circular, with an eccentricity of less than 0.02; other planets in the Solar System (with the exception of Mercury) have eccentricities that are similarly benign.

Habitability is also influenced by the architecture of the planetary system around a star. The evolution and stability of these systems are determined by gravitational dynamics, which drive the orbital evolution of terrestrial planets. Data collected on the orbital eccentricities of extrasolar planets has surprised most researchers: 90% have an orbital eccentricity greater than that found within the Solar System, and the average is fully 0.25. This means that the vast majority of planets have highly eccentric orbits and of these, even if their average distance from their star is deemed to be within the HZ, they nonetheless would be spending only a small portion of their time within the zone.

A planet's movement around its rotational axis must also meet certain criteria if life is to have the opportunity to evolve. A first assumption is that the planet should have moderate seasons. If there is little or no axial tilt (or obliquity) relative to the perpendicular of the ecliptic, seasons will not occur and a main stimulant to biospheric dynamism will disappear. The planet would also be colder than it would be with a significant tilt: when the greatest intensity of radiation is always within a few degrees of the equator, warm weather cannot move poleward and a planet's climate becomes dominated by colder polar weather systems.

If a planet is radically tilted, seasons will be extreme and make it more difficult for a biosphere to achieve homeostasis. The axial tilt of the Earth is higher now (in the Quaternary) than it has been in the past, coinciding with reduced polar ice, warmer temperatures and less seasonal variation. Scientists do not know whether this trend will continue indefinitely with further increases in axial tilt (see Snowball Earth).

The exact effects of these changes can only be computer modelled at present, and studies have shown that even extreme tilts of up to 85 degrees do not absolutely preclude life "provided it does not occupy continental surfaces plagued seasonally by the highest temperature." Not only the mean axial tilt, but also its variation over time must be considered. The Earth's tilt varies between 21.5 and 24.5 degrees over 41,000 years. A more drastic variation, or a much shorter periodicity, would induce climatic effects such as variations in seasonal severity.

Other orbital considerations include:

  • The planet should rotate relatively quickly so that the day-night cycle is not overlong. If a day takes years, the temperature differential between the day and night side will be pronounced, and problems similar to those noted with extreme orbital eccentricity will come to the fore.
  • The planet also should rotate quickly enough so that a magnetic dynamo may be started in its iron core to produce a magnetic field.
  • Change in the direction of the axis rotation (precession) should not be pronounced. In itself, precession need not affect habitability as it changes the direction of the tilt, not its degree. However, precession tends to accentuate variations caused by other orbital deviations; see Milankovitch cycles. Precession on Earth occurs over a 26,000-year cycle.

The Earth's Moon appears to play a crucial role in moderating the Earth's climate by stabilising the axial tilt. It has been suggested that a chaotic tilt may be a "deal-breaker" in terms of habitability—i.e. a satellite the size of the Moon is not only helpful but required to produce stability. This position remains controversial.

In the case of the Earth, the sole Moon is sufficiently massive and orbits so as to significantly contribute to ocean tides, which in turn aids the dynamic churning of Earth's large liquid water oceans. These lunar forces not only help ensure that the oceans do not stagnate, but also play a critical role in Earth's dynamic climate.

Geology

Geological cross section of Earth

Concentrations of radionuclides in rocky planet mantles may be critical for the habitability of Earth-like planets. Such planets with higher abundances likely lack a persistent dynamo for a significant fraction of their lifetimes, and those with lower concentrations may often be geologically inert. Planetary dynamos create strong magnetic fields which may often be necessary for life to develop or persist as they shield planets from solar winds and cosmic radiation. The electromagnetic emission spectra of stars could be used to identify those which are more likely to host habitable Earth-like planets. As of 2020, radionuclides are thought to be produced by rare stellar processes such as neutron star mergers.

Additional geological characteristics may be essential or major factors in the habitability of natural celestial bodies – including some that may shape the body's heat and magnetic field. Some of these are unknown or not well understood and being investigated by planetary scientists, geochemists and others.

Geochemistry

It is generally assumed that any extraterrestrial life that might exist will be based on the same fundamental biochemistry as found on Earth, as the four elements most vital for life, carbon, hydrogen, oxygen, and nitrogen, are also the most common chemically reactive elements in the universe. Indeed, simple biogenic compounds, such as very simple amino acids such as glycine, have been found in meteorites and in the interstellar medium. These four elements together comprise over 96% of Earth's collective biomass. Carbon has an unparalleled ability to bond with itself and to form a massive array of intricate and varied structures, making it an ideal material for the complex mechanisms that form living cells. Hydrogen and oxygen, in the form of water, compose the solvent in which biological processes take place and in which the first reactions occurred that led to life's emergence. The energy released in the formation of powerful covalent bonds between carbon and oxygen, available by oxidizing organic compounds, is the fuel of all complex life-forms. These four elements together make up amino acids, which in turn are the building blocks of proteins, the substance of living tissue. In addition, neither sulfur (required for the building of proteins) nor phosphorus (needed for the formation of DNA, RNA, and the adenosine phosphates essential to metabolism) are rare.

Relative abundance in space does not always mirror differentiated abundance within planets; of the four life elements, for instance, only oxygen is present in any abundance in the Earth's crust. This can be partly explained by the fact that many of these elements, such as hydrogen and nitrogen, along with their simplest and most common compounds, such as carbon dioxide, carbon monoxide, methane, ammonia, and water, are gaseous at warm temperatures. In the hot region close to the Sun, these volatile compounds could not have played a significant role in the planets' geological formation. Instead, they were trapped as gases underneath the newly formed crusts, which were largely made of rocky, involatile compounds such as silica (a compound of silicon and oxygen, accounting for oxygen's relative abundance). Outgassing of volatile compounds through the first volcanoes would have contributed to the formation of the planets' atmospheres. The Miller–Urey experiment showed that, with the application of energy, simple inorganic compounds exposed to a primordial atmosphere can react to synthesize amino acids.

Even so, volcanic outgassing could not have accounted for the amount of water in Earth's oceans. The vast majority of the water—and arguably carbon—necessary for life must have come from the outer Solar System, away from the Sun's heat, where it could remain solid. Comets impacting with the Earth in the Solar System's early years would have deposited vast amounts of water, along with the other volatile compounds life requires, onto the early Earth, providing a kick-start to the origin of life.

Thus, while there is reason to suspect that the four "life elements" ought to be readily available elsewhere, a habitable system probably also requires a supply of long-term orbiting bodies to seed inner planets. Without comets there is a possibility that life as we know it would not exist on Earth.

Microenvironments and extremophiles

The Atacama Desert in South America provides an analog to Mars and an ideal environment to study the boundary between sterility and habitability.

One important qualification to habitability criteria is that only a tiny portion of a planet is required to support life, a so-called Goldilocks Edge or Great Prebiotic Spot. Astrobiologists often concern themselves with "micro-environments", noting that "we lack a fundamental understanding of how evolutionary forces, such as mutation, selection, and genetic drift, operate in micro-organisms that act on and respond to changing micro-environments." Extremophiles are Earth organisms that live in niche environments under severe conditions generally considered inimical to life. Usually (although not always) unicellular, extremophiles include acutely alkaliphilic and acidophilic organisms and others that can survive water temperatures above 100 °C in hydrothermal vents.

The discovery of life in extreme conditions has complicated definitions of habitability, but also generated much excitement amongst researchers in greatly broadening the known range of conditions under which life can persist. For example, a planet that might otherwise be unable to support an atmosphere given the solar conditions in its vicinity, might be able to do so within a deep shadowed rift or volcanic cave. Similarly, craterous terrain might offer a refuge for primitive life. The Lawn Hill crater has been studied as an astrobiological analog, with researchers suggesting rapid sediment infill created a protected microenvironment for microbial organisms; similar conditions may have occurred over the geological history of Mars.

Earth environments that cannot support life are still instructive to astrobiologists in defining the limits of what organisms can endure. The heart of the Atacama Desert, generally considered the driest place on Earth, appears unable to support life, and it has been subject to study by NASA and ESA for that reason: it provides a Mars analog and the moisture gradients along its edges are ideal for studying the boundary between sterility and habitability. The Atacama was the subject of study in 2003 that partly replicated experiments from the Viking landings on Mars in the 1970s; no DNA could be recovered from two soil samples, and incubation experiments were also negative for biosignatures.

Ecological factors

The two current ecological approaches for predicting the potential habitability use 19 or 20 environmental factors, with emphasis on water availability, temperature, presence of nutrients, an energy source, and protection from solar ultraviolet and galactic cosmic radiation.

Some habitability factors
Water  · Activity of liquid water
 · Past or future liquid (ice) inventories
 · Salinity, pH, and Eh of available water
Chemical environment Nutrients:
 · C, H, N, O, P, S, essential metals, essential micronutrients
 · Fixed nitrogen
 · Availability/mineralogy
Toxin abundances and lethality:
 · Heavy metals (e.g. Zn, Ni, Cu, Cr, As, Cd, etc.; some are essential, but toxic at high levels)
 · Globally distributed oxidizing soils
Energy for metabolism Solar (surface and near-surface only)
Geochemical (subsurface)
 · Oxidants
 · Reductants
 · Redox gradients
Conducive
physical conditions
 · Temperature
 · Extreme diurnal temperature fluctuations
 · Low pressure (is there a low-pressure threshold for terrestrial anaerobes?)
 · Strong ultraviolet germicidal irradiation
 · Galactic cosmic radiation and solar particle events (long-term accumulated effects)
 · Solar UV-induced volatile oxidants, e.g. O 2, O, H2O2, O3
 · Climate and its variability (geography, seasons, diurnal, and eventually, obliquity variations)
 · Substrate (soil processes, rock microenvironments, dust composition, shielding)
 · High CO2 concentrations in the global atmosphere
 · Transport (aeolian, ground water flow, surface water, glacial)

Classification terminology

The Habitable Exoplanets Catalog uses estimated surface temperature range to classify exoplanets:

  • hypopsychroplanets - very cold (<−50 °C)
  • psychroplanets - cold (<−50 to 0 °C)
  • mesoplanets - medium temperature (0–50 °C; not to be confused with the other definition of mesoplanets)
  • thermoplanets - hot (50–100 °C)
  • hyperthermoplanets - (> 100 °C)

Mesoplanets would be ideal for complex life, whereas hypopsychroplanets and hyperthermoplanets might only support extremophilic life.

The HEC uses the following terms to classify exoplanets in terms of mass, from least to greatest: asteroidan, mercurian, subterran, terran, superterran, neptunian, and jovian.

Alternative star systems

In determining the feasibility of extraterrestrial life, astronomers had long focused their attention on stars like the Sun. However, since planetary systems that resemble the Solar System are proving to be rare, they have begun to explore the possibility that life might form in systems very unlike the Sun's.

It is believed that F, G, K and M-type stars could host habitable exoplanets. About half of the stars similar in temperature to the Sun could have a rocky planet able to support liquid water on its surface, according to research using data from NASA's Kepler Space Telescope.

Binary systems

Typical estimates often suggest that 50% or more of all stellar systems are binary systems. This may be partly sample bias, as massive and bright stars tend to be in binaries and these are most easily observed and catalogued; a more precise analysis has suggested that the more common fainter stars are usually singular, and that up to two thirds of all stellar systems are therefore solitary.

The separation between stars in a binary may range from less than one astronomical unit (AU, the average Earth–Sun distance) to several hundred. In latter instances, the gravitational effects will be negligible on a planet orbiting an otherwise suitable star and habitability potential will not be disrupted unless the orbit is highly eccentric (see Nemesis, for example). However, where the separation is significantly less, a stable orbit may be impossible. If a planet's distance to its primary exceeds about one fifth of the closest approach of the other star, orbital stability is not guaranteed. Whether planets might form in binaries at all had long been unclear, given that gravitational forces might interfere with planet formation. Theoretical work by Alan Boss at the Carnegie Institution has shown that gas giants can form around stars in binary systems much as they do around solitary stars.

One study of Alpha Centauri, the nearest star system to the Sun, suggested that binaries need not be discounted in the search for habitable planets. Centauri A and B have an 11 AU distance at closest approach (23 AU mean), and both should have stable habitable zones. A study of long-term orbital stability for simulated planets within the system shows that planets within approximately three AU of either star may remain rather stable (i.e. the semi-major axis deviating by less than 5% during 32 000 binary periods). The continuous habitable zone (CHZ for 4.5 billion years) for Centauri A is conservatively estimated at 1.2 to 1.3 AU and Centauri B at 0.73 to 0.74—well within the stable region in both cases.

Red dwarf systems

Relative star sizes and photospheric temperatures. Any planet around a red dwarf such as the one shown here (Gliese 229A) would have to huddle close to achieve Earth-like temperatures, probably inducing tidal locking. See Aurelia. Credit: MPIA/V. Joergens.

M-type stars also considered possible hosts of habitable exoplanets, even those with flares such as Proxima b. Determining the habitability of red dwarf stars could help determine how common life in the universe might be, as red dwarfs make up between 70 and 90% of all the stars in the galaxy. However, it is important to bear in mind that flare stars could greatly reduce the habitability of exoplanets by eroding their atmosphere.

Size

Astronomers for many years ruled out red dwarfs as potential abodes for life. Their small size (from 0.08 to 0.45 solar masses) means that their nuclear reactions proceed exceptionally slowly, and they emit very little light (from 3% of that produced by the Sun to as little as 0.01%). Any planet in orbit around a red dwarf would have to huddle very close to its parent star to attain Earth-like surface temperatures; from 0.3 AU (just inside the orbit of Mercury) for a star like Lacaille 8760, to as little as 0.032 AU for a star like Proxima Centauri (such a world would have a year lasting just 6.3 days). At those distances, the star's gravity would cause tidal locking. One side of the planet would eternally face the star, while the other would always face away from it. The only ways in which potential life could avoid either an inferno or a deep freeze would be if the planet had an atmosphere thick enough to transfer the star's heat from the day side to the night side, or if there was a gas giant in the habitable zone, with a habitable moon, which would be locked to the planet instead of the star, allowing a more even distribution of radiation over the moon. It was long assumed that such a thick atmosphere would prevent sunlight from reaching the surface in the first place, preventing photosynthesis.

An artist's impression of GJ 667 Cc, a potentially habitable planet orbiting a red dwarf constituent in a trinary star system

This pessimism has been tempered by research. Studies by Robert Haberle and Manoj Joshi of NASA's Ames Research Center in California have shown that a planet's atmosphere (assuming it included greenhouse gases CO2 and H2O) need only be 100 millibars (0.10 atm), for the star's heat to be effectively carried to the night side. This is well within the levels required for photosynthesis, though water would still remain frozen on the dark side in some of their models. Martin Heath of Greenwich Community College, has shown that seawater, too, could be effectively circulated without freezing solid if the ocean basins were deep enough to allow free flow beneath the night side's ice cap. Further research—including a consideration of the amount of photosynthetically active radiation—suggested that tidally locked planets in red dwarf systems might at least be habitable for higher plants.

Other factors limiting habitability

Size is not the only factor in making red dwarfs potentially unsuitable for life, however. On a red dwarf planet, photosynthesis on the night side would be impossible, since it would never see the sun. On the day side, because the sun does not rise or set, areas in the shadows of mountains would remain so forever. Photosynthesis as we understand it would be complicated by the fact that a red dwarf produces most of its radiation in the infrared, and on the Earth the process depends on visible light. There are potential positives to this scenario. Numerous terrestrial ecosystems rely on chemosynthesis rather than photosynthesis, for instance, which would be possible in a red dwarf system. A static primary star position removes the need for plants to steer leaves toward the sun, deal with changing shade/sun patterns, or change from photosynthesis to stored energy during night. Because of the lack of a day-night cycle, including the weak light of morning and evening, far more energy would be available at a given radiation level.

Red dwarfs are far more variable and violent than their more stable, larger cousins. Often they are covered in starspots that can dim their emitted light by up to 40% for months at a time, while at other times they emit gigantic flares that can double their brightness in a matter of minutes. Such variation would be very damaging for life, as it would not only destroy any complex organic molecules that could possibly form biological precursors, but also because it would blow off sizeable portions of the planet's atmosphere.

For a planet around a red dwarf star to support life, it would require a rapidly rotating magnetic field to protect it from the flares. A tidally locked planet rotates only very slowly, and so cannot produce a geodynamo at its core. The violent flaring period of a red dwarf's life cycle is estimated to only last roughly the first 1.2 billion years of its existence. If a planet forms far away from a red dwarf so as to avoid tidal locking, and then migrates into the star's habitable zone after this turbulent initial period, it is possible that life may have a chance to develop. However, observations of the 7 to 12-billion year old Barnard's Star showcase that even old red dwarfs can have significant flare activity. Barnard's Star was long assumed to have little activity, but in 1998 astronomers observed an intense stellar flare, showing that it is a flare star.

Longevity and ubiquity

Red dwarfs have one advantage over other stars as abodes for life: far greater longevity. It took 4.5 billion years before humanity appeared on Earth, and life as we know it will see suitable conditions for 1 to 2.3 billion years more. Red dwarfs, by contrast, could live for trillions of years because their nuclear reactions are far slower than those of larger stars, meaning that life would have longer to evolve and survive.

While the likelihood of finding a planet in the habitable zone around any specific red dwarf is slight, the total amount of habitable zone around all red dwarfs combined is equal to the total amount around Sun-like stars given their ubiquity. Furthermore, this total amount of habitable zone will last longer, because red dwarf stars live for hundreds of billions of years or even longer on the main sequence. However, combined with the above disadvantages, it is more likely that red dwarf stars would remain habitable longer to microbes, while the shorter-lived yellow dwarf stars, like the Sun, would remain habitable longer to animals.

Massive stars

Recent research suggests that very large stars, greater than ~100 solar masses, could have planetary systems consisting of hundreds of Mercury-sized planets within the habitable zone. Such systems could also contain brown dwarfs and low-mass stars (~0.1–0.3 solar masses). However the very short lifespans of stars of more than a few solar masses would scarcely allow time for a planet to cool, let alone the time needed for a stable biosphere to develop. Massive stars are thus eliminated as possible abodes for life.

However, a massive-star system could be a progenitor of life in another way – the supernova explosion of the massive star in the central part of the system. This supernova will disperse heavier elements throughout its vicinity, created during the phase when the massive star has moved off of the main sequence, and the systems of the potential low-mass stars (which are still on the main sequence) within the former massive-star system may be enriched with the relatively large supply of the heavy elements so close to a supernova explosion. However, this states nothing about what types of planets would form as a result of the supernova material, or what their habitability potential would be.

Neutron stars

Post-main sequence stars

Four classes of habitable planets based on water

In a review of the factors which are important for the evolution of habitable Earth-sized planets, Lammer et al. proposed a classification of four water-dependent habitat types:

Class I habitats are planetary bodies on which stellar and geophysical conditions allow liquid water to be available at the surface, along with sunlight, so that complex multicellular organisms may originate.

Class II habitats include bodies which initially enjoy Earth-like conditions, but do not keep their ability to sustain liquid water on their surface due to stellar or geophysical conditions. Mars, and possibly Venus are examples of this class where complex life forms may not develop.

Class III habitats are planetary bodies where liquid water oceans exist below the surface, where they can interact directly with a silicate-rich core.

Such a situation can be expected on water-rich planets located too far from their star to allow surface liquid water, but on which subsurface water is in liquid form because of the geothermal heat. Two examples of such an environment are Europa and Enceladus. In such worlds, not only is light not available as an energy source, but the organic material brought by meteorites (thought to have been necessary to start life in some scenarios) may not easily reach the liquid water. If a planet can only harbor life below its surface, the biosphere would not likely modify the whole planetary environment in an observable way, thus, detecting its presence on an exoplanet would be extremely difficult.

Class IV habitats have liquid water layers between two ice layers, or liquids above ice.

If the water layer is thick enough, water at its base will be in solid phase (ice polymorphs) because of the high pressure. Ganymede and Callisto are likely examples of this class. Their oceans are thought to be enclosed between thick ice layers. In such conditions, the emergence of even simple life forms may be very difficult because the necessary ingredients for life will likely be completely diluted.

The galactic neighborhood

Along with the characteristics of planets and their star systems, the wider galactic environment may also impact habitability. Scientists considered the possibility that particular areas of galaxies (galactic habitable zones) are better suited to life than others; the Solar System, in the Orion Arm, on the Milky Way galaxy's edge is considered to be in a life-favorable spot:

  • It is not in a globular cluster where immense star densities are inimical to life, given excessive radiation and gravitational disturbance. Globular clusters are also primarily composed of older, probably metal-poor, stars. Furthermore, in globular clusters, the great ages of the stars would mean a large amount of stellar evolution by the host or other nearby stars, which due to their proximity may cause extreme harm to life on any planets, provided that they can form.
  • It is not near an active gamma ray source.
  • It is not near the galactic center where once again star densities increase the likelihood of ionizing radiation (e.g., from magnetars and supernovae). The supermassive black holes at the centers of galaxies may also prove a danger to any nearby bodies.
  • The circular orbit of the Sun around the galactic center keeps it out of the way of the galaxy's spiral arms where intense radiation and gravitation may again lead to disruption.

Thus, relative isolation is ultimately what a life-bearing system needs. If the Sun were crowded amongst other systems, the chance of being fatally close to dangerous radiation sources would increase significantly. Further, close neighbors might disrupt the stability of various orbiting bodies such as Oort cloud and Kuiper belt objects, which can bring catastrophe if knocked into the inner Solar System.

While stellar crowding proves disadvantageous to habitability, so too does extreme isolation. A star as metal-rich as the Sun would probably not have formed in the very outermost regions of the Milky Way given a decline in the relative abundance of metals and a general lack of star formation. Thus, a "suburban" location, such as the Solar System enjoys, is preferable to a Galaxy's center or farthest reaches.

Other considerations

Alternative biochemistries

While most investigations of extraterrestrial life start with the assumption that advanced life-forms must have similar requirements for life as on Earth, the hypothesis of other types of biochemistry suggests the possibility of lifeforms evolving around a different metabolic mechanism. In Evolving the Alien, biologist Jack Cohen and mathematician Ian Stewart argue astrobiology, based on the Rare Earth hypothesis, is restrictive and unimaginative. They suggest that Earth-like planets may be very rare, but non-carbon-based complex life could possibly emerge in other environments. The most frequently mentioned alternative to carbon is silicon-based life, while ammonia and hydrocarbons are sometimes suggested as alternative solvents to water. The astrobiologist Dirk Schulze-Makuch and other scientists have proposed a Planet Habitability Index whose criteria include "potential for holding a liquid solvent" that is not necessarily restricted to water.

More speculative ideas have focused on bodies altogether different from Earth-like planets. Astronomer Frank Drake, a well-known proponent of the search for extraterrestrial life, imagined life on a neutron star: submicroscopic "nuclear molecules" combining to form creatures with a life cycle millions of times quicker than Earth life. Called "imaginative and tongue-in-cheek", the idea gave rise to science fiction depictions. Carl Sagan, another optimist with regards to extraterrestrial life, considered the possibility of organisms that are always airborne within the high atmosphere of Jupiter in a 1976 paper. Cohen and Stewart also envisioned life in both a solar environment and in the atmosphere of a gas giant.

"Good Jupiters"

"Good Jupiters" are gas giants, like the Solar System's Jupiter, that orbit their stars in circular orbits far enough away from the habitable zone not to disturb it but close enough to "protect" terrestrial planets in closer orbit in two critical ways. First, they help to stabilize the orbits, and thereby the climates of the inner planets. Second, they keep the inner stellar system relatively free of comets and asteroids that could cause devastating impacts. Jupiter orbits the Sun at about five times the distance between the Earth and the Sun. This is the rough distance we should expect to find good Jupiters elsewhere. Jupiter's "caretaker" role was dramatically illustrated in 1994 when Comet Shoemaker–Levy 9 impacted the giant.

However, the evidence is not quite so clear. Research has shown that Jupiter's role in determining the rate at which objects hit Earth is significantly more complicated than once thought.

The role of Jupiter in the early history of the Solar System is somewhat better established, and the source of significantly less debate. Early in the Solar System's history, Jupiter is accepted as having played an important role in the hydration of our planet: it increased the eccentricity of asteroid belt orbits and enabled many to cross Earth's orbit and supply the planet with important volatiles such as water and carbon dioxide. Before Earth reached half its present mass, icy bodies from the Jupiter–Saturn region and small bodies from the primordial asteroid belt supplied water to the Earth due to the gravitational scattering of Jupiter and, to a lesser extent, Saturn. Thus, while the gas giants are now helpful protectors, they were once suppliers of critical habitability material.

In contrast, Jupiter-sized bodies that orbit too close to the habitable zone but not in it (as in 47 Ursae Majoris), or have a highly elliptical orbit that crosses the habitable zone (like 16 Cygni B) make it very difficult for an independent Earth-like planet to exist in the system. See the discussion of a stable habitable zone above. However, during the process of migrating into a habitable zone, a Jupiter-size planet may capture a terrestrial planet as a moon. Even if such a planet is initially loosely bound and following a strongly inclined orbit, gravitational interactions with the star can stabilize the new moon into a close, circular orbit that is coplanar with the planet's orbit around the star.

Life's impact on habitability

A supplement to the factors that support life's emergence is the notion that life itself, once formed, becomes a habitability factor in its own right. An important Earth example was the production of molecular oxygen gas (O
2
) by ancient cyanobacteria, and eventually photosynthesizing plants, leading to a radical change in the composition of Earth's atmosphere. This environmental change is called the Great Oxidation Event. This oxygen proved fundamental to the respiration of later animal species. The Gaia hypothesis, a scientific model of the geo-biosphere pioneered by James Lovelock in 1975, argues that life as a whole fosters and maintains suitable conditions for itself by helping to create a planetary environment suitable for its continuity. Similarly, David Grinspoon has suggested a "living worlds hypothesis" in which our understanding of what constitutes habitability cannot be separated from life already extant on a planet. Planets that are geologically and meteorologically alive are much more likely to be biologically alive as well and "a planet and its life will co-evolve." This is the basis of Earth system science.

The role of chance

In 2020, a computer simulation of the evolution of planetary climates over 3 billion years suggested that feedback is a necessary but insufficient condition for preventing planets from ever becoming too hot or cold for life. Chance also plays a crucial role. Related considerations include yet unknown factors influencing the thermal habitability of planets such as "feedback mechanism (or mechanisms) that prevents the climate ever wandering to fatal temperatures".

Biodiversity loss

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Biodiversity_loss   ...