Search This Blog

Monday, June 25, 2018

Nanomedicine

From Wikipedia, the free encyclopedia

Nanomedicine is the medical application of nanotechnology.[1] Nanomedicine ranges from the medical applications of nanomaterials and biological devices, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials (materials whose structure is on the scale of nanometers, i.e. billionths of a meter).


Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles.

Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future.[2][3] The National Nanotechnology Initiative expects new commercial applications in the pharmaceutical industry that may include advanced drug delivery systems, new therapies, and in vivo imaging.[4] Nanomedicine research is receiving funding from the US National Institutes of Health Common Fund program, supporting four nanomedicine development centers.[5]

Nanomedicine sales reached $16 billion in 2015, with a minimum of $3.8 billion in nanotechnology R&D being invested every year. Global funding for emerging nanotechnology increased by 45% per year in recent years, with product sales exceeding $1 trillion in 2013.[6] As the nanomedicine industry continues to grow, it is expected to have a significant impact on the economy.

Drug delivery

Nanoparticles (top), liposomes (middle), and dendrimers (bottom) are some nanomaterials being investigated for use in nanomedicine.

Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles.[7] The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices.[8][9] A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery.[10] The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.[citation needed]

Drug delivery systems, lipid-[11] or polymer-based nanoparticles,[12] can be designed to improve the pharmacokinetics and biodistribution of the drug.[13][14][15] However, the pharmacokinetics and pharmacodynamics of nanomedicine is highly variable among different patients.[16] When designed to avoid the body's defence mechanisms,[17] nanoparticles have beneficial properties that can be used to improve drug delivery. Complex drug delivery mechanisms are being developed, including the ability to get drugs through cell membranes and into cell cytoplasm. Triggered response is one way for drug molecules to be used more efficiently. Drugs are placed in the body and only activate on encountering a particular signal. For example, a drug with poor solubility will be replaced by a drug delivery system where both hydrophilic and hydrophobic environments exist, improving the solubility.[18] Drug delivery systems may also be able to prevent tissue damage through regulated drug release; reduce drug clearance rates; or lower the volume of distribution and reduce the effect on non-target tissue. However, the biodistribution of these nanoparticles is still imperfect due to the complex host's reactions to nano- and microsized materials[17] and the difficulty in targeting specific organs in the body. Nevertheless, a lot of work is still ongoing to optimize and better understand the potential and limitations of nanoparticulate systems. While advancement of research proves that targeting and distribution can be augmented by nanoparticles, the dangers of nanotoxicity become an important next step in further understanding of their medical uses.[19]

Nanoparticles are under research for their potential to decrease antibiotic resistance or for various antimicrobial uses.[20][21][22] Nanoparticles might also used to circumvent multidrug resistance (MDR) mechanisms.[7]

Systems under research

Two forms of nanomedicine that have already been tested in mice and are awaiting human testing will use gold nanoshells to help diagnose and treat cancer,[23] along with liposomes as vaccine adjuvants and drug transport vehicles.[24][25] Similarly, drug detoxification is also another application for nanomedicine which has shown promising results in rats.[26] Advances in Lipid nanotechnology was also instrumental in engineering medical nanodevices and novel drug delivery systems as well as in developing sensing applications.[27] Another example can be found in dendrimers and nanoporous materials. Another example is to use block co-polymers, which form micelles for drug encapsulation.[12]

Polymeric nanoparticles are a competing technology to lipidic (based mainly on Phospholipids) nanoparticles. There is an additional risk of toxicity associated with polymers not widely studied or understood. The major advantages of polymers is stability, lower cost and predictable characterisation. However, in the patient's body this very stability (slow degradation) is a negative factor. Phospholipids on the other hand are membrane lipids (already present in the body and surrounding each cell), have a GRAS (Generally Recognised As Safe) status from FDA and are derived from natural sources without any complex chemistry involved. They are not metabolised but rather absorbed by the body and the degradation products are themselves nutrients (fats or micronutrients).[citation needed]

Protein and peptides exert multiple biological actions in the human body and they have been identified as showing great promise for treatment of various diseases and disorders. These macromolecules are called biopharmaceuticals. Targeted and/or controlled delivery of these biopharmaceuticals using nanomaterials like nanoparticles[28] and Dendrimers is an emerging field called nanobiopharmaceutics, and these products are called nanobiopharmaceuticals.[citation needed]
Another highly efficient system for microRNA delivery for example are nanoparticles formed by the self-assembly of two different microRNAs deregulated in cancer.[29]

Another vision is based on small electromechanical systems; nanoelectromechanical systems are being investigated for the active release of drugs and sensors. Some potentially important applications include cancer treatment with iron nanoparticles or gold shells or cancer early diagnosis.[30] Nanotechnology is also opening up new opportunities in implantable delivery systems, which are often preferable to the use of injectable drugs, because the latter frequently display first-order kinetics (the blood concentration goes up rapidly, but drops exponentially over time). This rapid rise may cause difficulties with toxicity, and drug efficacy can diminish as the drug concentration falls below the targeted range.[citation needed]

Applications

Some nanotechnology-based drugs that are commercially available or in human clinical trials include:
  • Abraxane, approved by the U.S. Food and Drug Administration (FDA) to treat breast cancer,[31] non-small- cell lung cancer (NSCLC)[32] and pancreatic cancer,[33] is the nanoparticle albumin bound paclitaxel.
  • Doxil was originally approved by the FDA for the use on HIV-related Kaposi's sarcoma. It is now being used to also treat ovarian cancer and multiple myeloma. The drug is encased in liposomes, which helps to extend the life of the drug that is being distributed. Liposomes are self-assembling, spherical, closed colloidal structures that are composed of lipid bilayers that surround an aqueous space. The liposomes also help to increase the functionality and it helps to decrease the damage that the drug does to the heart muscles specifically.[34]
  • Onivyde, liposome encapsulated irinotecan to treat metastatic pancreatic cancer, was approved by FDA in October 2015.[35]
  • C-dots (Cornell dots) are the smallest silica-based nanoparticles with the size <10 a="" are="" dye="" href="https://en.wikipedia.org/wiki/Fluorescence" infused="" light="" nbsp="" nm.="" organic="" particles="" the="" title="Fluorescence" up="" which="" will="" with="">fluorescence
. Clinical trial is underway since 2011 to use the C-dots as diagnostic tool to assist surgeons to identify the location of tumor cells.[36]
  • An early phase clinical trial using the platform of ‘Minicell’ nanoparticle for drug delivery have been tested on patients with advanced and untreatable cancer. Built from the membranes of mutant bacteria, the minicells were loaded with paclitaxel and coated with cetuximab, antibodies that bind the epidermal growth factor receptor (EGFR) which is often overexpressed in a number of cancers, as a 'homing' device to the tumor cells. The tumor cells recognize the bacteria from which the minicells have been derived, regard it as invading microorganism and engulf it. Once inside, the payload of anti-cancer drug kills the tumor cells. Measured at 400 nanometers, the minicell is bigger than synthetic particles developed for drug delivery. The researchers indicated that this larger size gives the minicells a better profile in side-effects because the minicells will preferentially leak out of the porous blood vessels around the tumor cells and do not reach the liver, digestive system and skin. This Phase 1 clinical trial demonstrated that this treatment is well tolerated by the patients. As a platform technology, the minicell drug delivery system can be used to treat a number of different cancers with different anti-cancer drugs with the benefit of lower dose and less side-effects.[37][38]
  • In 2014, a Phase 3 clinical trial for treating inflammation and pain after cataract surgery, and a Phase 2 trial for treating dry eye disease were initiated using nanoparticle loteprednol etabonate.[39] In 2015, the product, KPI-121 was found to produce statistically significant positive results for the post-surgery treatment.[40]
  • Cancer

    Existing and potential drug nanocarriers have been reviewed.[7][41][42][43][44][45][46]

    Nanoparticles have high surface area to volume ratio. This allows for many functional groups to be attached to a nanoparticle, which can seek out and bind to certain tumor cells.[47] Additionally, the small size of nanoparticles (10 to 100 nanometers), allows them to preferentially accumulate at tumor sites (because tumors lack an effective lymphatic drainage system).[48] Limitations to conventional cancer chemotherapy include drug resistance, lack of selectivity, and lack of solubility.[46]
    Nanoparticles have the potential to overcome these problems.[41][49]

    In photodynamic therapy, a particle is placed within the body and is illuminated with light from the outside. The light gets absorbed by the particle and if the particle is metal, energy from the light will heat the particle and surrounding tissue. Light may also be used to produce high energy oxygen molecules which will chemically react with and destroy most organic molecules that are next to them (like tumors). This therapy is appealing for many reasons. It does not leave a "toxic trail" of reactive molecules throughout the body (chemotherapy) because it is directed where only the light is shined and the particles exist. Photodynamic therapy has potential for a noninvasive procedure for dealing with diseases, growth and tumors. Kanzius RF therapy is one example of such therapy (nanoparticle hyperthermia) .[citation needed] Also, gold nanoparticles have the potential to join numerous therapeutic functions into a single platform, by targeting specific tumor cells, tissues and organs.[50][51]

    Imaging

    In vivo imaging is another area where tools and devices are being developed.[52] Using nanoparticle contrast agents, images such as ultrasound and MRI have a favorable distribution and improved contrast. In cardiovascular imaging, nanoparticles have potential to aid visualization of blood pooling, ischemia, angiogenesis, atherosclerosis, and focal areas where inflammation is present.[52]

    The small size of nanoparticles endows them with properties that can be very useful in oncology, particularly in imaging.[7] Quantum dots (nanoparticles with quantum confinement properties, such as size-tunable light emission), when used in conjunction with MRI (magnetic resonance imaging), can produce exceptional images of tumor sites. Nanoparticles of cadmium selenide (quantum dots) glow when exposed to ultraviolet light. When injected, they seep into cancer tumors. The surgeon can see the glowing tumor, and use it as a guide for more accurate tumor removal.These nanoparticles are much brighter than organic dyes and only need one light source for excitation. This means that the use of fluorescent quantum dots could produce a higher contrast image and at a lower cost than today's organic dyes used as contrast media. The downside, however, is that quantum dots are usually made of quite toxic elements, but this concern may be addressed by use of fluorescent dopants.[53]

    Tracking movement can help determine how well drugs are being distributed or how substances are metabolized. It is difficult to track a small group of cells throughout the body, so scientists used to dye the cells. These dyes needed to be excited by light of a certain wavelength in order for them to light up. While different color dyes absorb different frequencies of light, there was a need for as many light sources as cells. A way around this problem is with luminescent tags. These tags are quantum dots attached to proteins that penetrate cell membranes.[53] The dots can be random in size, can be made of bio-inert material, and they demonstrate the nanoscale property that color is size-dependent. As a result, sizes are selected so that the frequency of light used to make a group of quantum dots fluoresce is an even multiple of the frequency required to make another group incandesce. Then both groups can be lit with a single light source. They have also found a way to insert nanoparticles[54] into the affected parts of the body so that those parts of the body will glow showing the tumor growth or shrinkage or also organ trouble.[55]

    Sensing

    Nanotechnology-on-a-chip is one more dimension of lab-on-a-chip technology. Magnetic nanoparticles, bound to a suitable antibody, are used to label specific molecules, structures or microorganisms. In particular silica nanoparticles are inert from the photophysical point of view and might accumulate a large number of dye(s) within the nanoparticle shell.[28] Gold nanoparticles tagged with short segments of DNA can be used for detection of genetic sequence in a sample. Multicolor optical coding for biological assays has been achieved by embedding different-sized quantum dots into polymeric microbeads. Nanopore technology for analysis of nucleic acids converts strings of nucleotides directly into electronic signatures.[citation needed]

    Sensor test chips containing thousands of nanowires, able to detect proteins and other biomarkers left behind by cancer cells, could enable the detection and diagnosis of cancer in the early stages from a few drops of a patient's blood.[56] Nanotechnology is helping to advance the use of arthroscopes, which are pencil-sized devices that are used in surgeries with lights and cameras so surgeons can do the surgeries with smaller incisions. The smaller the incisions the faster the healing time which is better for the patients. It is also helping to find a way to make an arthroscope smaller than a strand of hair.[57]

    Research on nanoelectronics-based cancer diagnostics could lead to tests that can be done in pharmacies. The results promise to be highly accurate and the product promises to be inexpensive. They could take a very small amount of blood and detect cancer anywhere in the body in about five minutes, with a sensitivity that is a thousand times better than in a conventional laboratory test. These devices that are built with nanowires to detect cancer proteins; each nanowire detector is primed to be sensitive to a different cancer marker.[30] The biggest advantage of the nanowire detectors is that they could test for anywhere from ten to one hundred similar medical conditions without adding cost to the testing device.[58] Nanotechnology has also helped to personalize oncology for the detection, diagnosis, and treatment of cancer. It is now able to be tailored to each individual’s tumor for better performance. They have found ways that they will be able to target a specific part of the body that is being affected by cancer.[59]

    Blood purification

    Magnetic micro particles are proven research instruments for the separation of cells and proteins from complex media. The technology is available under the name Magnetic-activated cell sorting or Dynabeads among others. More recently it was shown in animal models that magnetic nanoparticles can be used for the removal of various noxious compounds including toxins, pathogens, and proteins from whole blood in an extracorporeal circuit similar to dialysis.[60][61] In contrast to dialysis, which works on the principle of the size related diffusion of solutes and ultrafiltration of fluid across a semi-permeable membrane, the purification with nanoparticles allows specific targeting of substances. Additionally larger compounds which are commonly not dialyzable can be removed.[citation needed]

    The purification process is based on functionalized iron oxide or carbon coated metal nanoparticles with ferromagnetic or superparamagnetic properties.[62] Binding agents such as proteins,[61] antibodies,[60] antibiotics,[63] or synthetic ligands[64] are covalently linked to the particle surface. These binding agents are able to interact with target species forming an agglomerate. Applying an external magnetic field gradient allows exerting a force on the nanoparticles. Hence the particles can be separated from the bulk fluid, thereby cleaning it from the contaminants.[65][66]

    The small size (< 100 nm) and large surface area of functionalized nanomagnets leads to advantageous properties compared to hemoperfusion, which is a clinically used technique for the purification of blood and is based on surface adsorption. These advantages are high loading and accessibility of the binding agents, high selectivity towards the target compound, fast diffusion, small hydrodynamic resistance, and low dosage.[67]

    This approach offers new therapeutic possibilities for the treatment of systemic infections such as sepsis by directly removing the pathogen. It can also be used to selectively remove cytokines or endotoxins[63] or for the dialysis of compounds which are not accessible by traditional dialysis methods. However the technology is still in a preclinical phase and first clinical trials are not expected before 2017.[68]

    Tissue engineering

    Nanotechnology may be used as part of tissue engineering to help reproduce or repair or reshape damaged tissue using suitable nanomaterial-based scaffolds and growth factors. Tissue engineering if successful may replace conventional treatments like organ transplants or artificial implants. Nanoparticles such as graphene, carbon nanotubes, molybdenum disulfide and tungsten disulfide are being used as reinforcing agents to fabricate mechanically strong biodegradable polymeric nanocomposites for bone tissue engineering applications. The addition of these nanoparticles in the polymer matrix at low concentrations (~0.2 weight %) leads to significant improvements in the compressive and flexural mechanical properties of polymeric nanocomposites.[69][70] Potentially, these nanocomposites may be used as a novel, mechanically strong, light weight composite as bone implants.[citation needed]

    For example, a flesh welder was demonstrated to fuse two pieces of chicken meat into a single piece using a suspension of gold-coated nanoshells activated by an infrared laser. This could be used to weld arteries during surgery.[71] Another example is nanonephrology, the use of nanomedicine on the kidney.

    Medical devices

    Neuro-electronic interfacing is a visionary goal dealing with the construction of nanodevices that will permit computers to be joined and linked to the nervous system. This idea requires the building of a molecular structure that will permit control and detection of nerve impulses by an external computer. A refuelable strategy implies energy is refilled continuously or periodically with external sonic, chemical, tethered, magnetic, or biological electrical sources, while a nonrefuelable strategy implies that all power is drawn from internal energy storage which would stop when all energy is drained. A nanoscale enzymatic biofuel cell for self-powered nanodevices have been developed that uses glucose from biofluids including human blood and watermelons.[72] One limitation to this innovation is the fact that electrical interference or leakage or overheating from power consumption is possible. The wiring of the structure is extremely difficult because they must be positioned precisely in the nervous system. The structures that will provide the interface must also be compatible with the body's immune system.[73]

    Molecular nanotechnology is a speculative subfield of nanotechnology regarding the possibility of engineering molecular assemblers, machines which could re-order matter at a molecular or atomic scale. Nanomedicine would make use of these nanorobots, introduced into the body, to repair or detect damages and infections. Molecular nanotechnology is highly theoretical, seeking to anticipate what inventions nanotechnology might yield and to propose an agenda for future inquiry. The proposed elements of molecular nanotechnology, such as molecular assemblers and nanorobots are far beyond current capabilities.[1][73][74][75] Future advances in nanomedicine could give rise to life extension through the repair of many processes thought to be responsible for aging. K. Eric Drexler, one of the founders of nanotechnology, postulated cell repair machines, including ones operating within cells and utilizing as yet hypothetical molecular machines, in his 1986 book Engines of Creation, with the first technical discussion of medical nanorobots by Robert Freitas appearing in 1999.[1] Raymond Kurzweil, a futurist and transhumanist, stated in his book The Singularity Is Near that he believes that advanced medical nanorobotics could completely remedy the effects of aging by 2030.[76] According to Richard Feynman, it was his former graduate student and collaborator Albert Hibbs who originally suggested to him (circa 1959) the idea of a medical use for Feynman's theoretical micromachines (see nanotechnology). Hibbs suggested that certain repair machines might one day be reduced in size to the point that it would, in theory, be possible to (as Feynman put it) "swallow the doctor". The idea was incorporated into Feynman's 1959 essay There's Plenty of Room at the Bottom.[77]

    Biopharmaceutical

    From Wikipedia, the free encyclopedia
    A biopharmaceutical, also known as a biologic(al) medical product, biological,[1] or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living cells used in cell therapy. Biologics can be composed of sugars, proteins, or nucleic acids or complex combinations of these substances, or may be living cells or tissues. They (or their precursors or components) are isolated from living sources—human, animal, plant, fungal, or microbial.

    Terminology surrounding biopharmaceuticals varies between groups and entities, with different terms referring to different subsets of therapeutics within the general biopharmaceutical category. Some regulatory agencies use the terms biological medicinal products or therapeutic biological product to refer specifically to engineered macromolecular products like protein- and nucleic acid-based drugs, distinguishing them from products like blood, blood components, or vaccines, which are usually extracted directly from a biological source.[2][3][4] Specialty drugs, a recent classification of pharmaceuticals, are high-cost drugs that are often biologics.[5][6][7] The European Medicines Agency uses the term advanced therapy medicinal products (ATMPs) for medicines for human use that are "based on genes, cells, or tissue engineering",[8] including gene therapy medicines, somatic-cell therapy medicines, tissue-engineered medicines, and combinations thereof.[9] Within EMA contexts, the term advanced therapies refers specifically to ATMPs, although that term is rather nonspecific outside those contexts.

    Gene-based and cellular biologics, for example, often are at the forefront of biomedical research, and may be used to treat a variety of medical conditions for which no other treatments are available.[10]

    In some jurisdictions, biologics are regulated via different pathways than other small molecule drugs and medical devices.[11]

    The term biopharmacology is sometimes used to describe the branch of pharmacology that studies biopharmaceuticals.

    Major classes


    Blood plasma is a type of biopharmaceutical directly extracted from living systems.

    Extracted from living systems

    Some of the oldest forms of biologics are extracted from the bodies of animals, and other humans especially. Important biologics include:
    Some biologics that were previously extracted from animals, such as insulin, are now more commonly produced by recombinant DNA.

    Produced by recombinant DNA

    As indicated the term "biologics" can be used to refer to a wide range of biological products in medicine. However, in most cases, the term "biologics" is used more restrictively for a class of therapeutics (either approved or in development) that are produced by means of biological processes involving recombinant DNA technology. These medications are usually one of three types:
    1. Substances that are (nearly) identical to the body's own key signalling proteins. Examples are the blood-production stimulating protein erythropoetin, or the growth-stimulating hormone named (simply) "growth hormone" or biosynthetic human insulin and its analogues.
    2. Monoclonal antibodies. These are similar to the antibodies that the human immune system uses to fight off bacteria and viruses, but they are "custom-designed" (using hybridoma technology or other methods) and can therefore be made specifically to counteract or block any given substance in the body, or to target any specific cell type; examples of such monoclonal antibodies for use in various diseases are given in the table below.
    3. Receptor constructs (fusion proteins), usually based on a naturally occurring receptor linked to the immunoglobulin frame. In this case, the receptor provides the construct with detailed specificity, whereas the immunoglobulin-structure imparts stability and other useful features in terms of pharmacology. Some examples are listed in the table below.
    Biologics as a class of medications in this narrower sense have had a profound impact on many medical fields, primarily rheumatology and oncology, but also cardiology, dermatology, gastroenterology, neurology, and others. In most of these disciplines, biologics have added major therapeutic options for the treatment of many diseases, including some for which no effective therapies were available, and others where previously existing therapies were clearly inadequate. However, the advent of biologic therapeutics has also raised complex regulatory issues (see below), and significant pharmacoeconomic concerns, because the cost for biologic therapies has been dramatically higher than for conventional (pharmacological) medications. This factor has been particularly relevant since many biological medications are used for the treatment of chronic diseases, such as rheumatoid arthritis or inflammatory bowel disease, or for the treatment of otherwise untreatable cancer during the remainder of life. The cost of treatment with a typical monoclonal antibody therapy for relatively common indications is generally in the range of €7,000–14,000 per patient per year.

    Older patients who receive biologic therapy for diseases such as rheumatoid arthritis, psoriatic arthritis, or ankylosing spondylitis are at increased risk for life-threatening infection, adverse cardiovascular events, and malignancy.[12]

    The first such substance approved for therapeutic use was biosynthetic "human" insulin made via recombinant DNA. Sometimes referred to as rHI, under the trade name Humulin, was developed by Genentech, but licensed to Eli Lilly and Company, who manufactured and marketed it starting in 1982.

    Major kinds of biopharmaceuticals include:
    Research and development investment in new medicines by the biopharmaceutical industry stood at $65.2 billion in 2008.[13] A few examples of biologics made with recombinant DNA technology include:

    USAN/INN Trade name Indication Technology Mechanism of action
    abatacept Orencia rheumatoid arthritis immunoglobin CTLA-4 fusion protein T-cell deactivation
    adalimumab Humira rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, ulcerative colitis, Crohn's disease monoclonal antibody TNF antagonist
    alefacept Amevive chronic plaque psoriasis immunoglobin G1 fusion protein incompletely characterized
    erythropoietin Epogen anemia arising from cancer chemotherapy, chronic renal failure, etc. recombinant protein stimulation of red blood cell production
    etanercept Enbrel rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis recombinant human TNF-receptor fusion protein TNF antagonist
    infliximab Remicade rheumatoid arthritis, ankylosing spondylitis, psoriatic arthritis, psoriasis, Ulcerative Colitus, Crohn's disease monoclonal antibody TNF antagonist
    trastuzumab Herceptin breast cancer humanized monoclonal antibody HER2/neu (erbB2) antagonist
    ustekinumab Stelara psoriasis humanized monoclonal antibody IL-12 and IL-23 antagonist
    denileukin diftitox Ontak cutaneous T-cell lymphoma (CTCL) Diphtheria toxin engineered protein combining Interleukin-2 and Diphtheria toxin Interleukin-2 receptor binder
    golimumab Simponi rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis, ulcerative colitis monoclonal antibody TNF antagonist

    Vaccines

    Many vaccines are grown in tissue cultures.

    Gene therapy

    Viral gene therapy involves artificially manipulating a virus to include a desirable piece of genetic material.

    Biosimilars

    With the expiration of numerous patents for blockbuster biologics between 2012 and 2019, the interest in biosimilar production, i.e., follow-on biologics, has increased.[14] Compared to small molecules that consist of chemically identical active ingredients, biologics are vastly more complex and consist of a multitude of subspecies. Due to their heterogeneity and the high process sensitivity, originators and follow-on biosimilars will exhibit variability in specific variants over time, however the safety and clinical performance of both originator and biosimilar biopharmaceuticals must remain equivalent throughout their lifecycle.[15] [16] Process variations are monitored by modern analytical tools (e.g., liquid chromatography, immunoassays, mass spectrometry, etc.) and describe a unique design space for each biologic.

    Thus, biosimilars require a different regulatory framework compared to small-molecule generics. Legislation in the 21st century has addressed this by recognizing an intermediate ground of testing for biosimilars. The filing pathway requires more testing than for small-molecule generics, but less testing than for registering completely new therapeutics.[17]

    In 2003, the European Medicines Agency introduced an adapted pathway for biosimilars, termed similar biological medicinal products. This pathway is based on a thorough demonstration of "comparability" of the "similar" product to an existing approved product.[18] Within the United States, the Patient Protection and Affordable Care Act of 2010 created an abbreviated approval pathway for biological products shown to be biosimilar to, or interchangeable with, an FDA-licensed reference biological product.[17][19] A major hope linked to the introduction of biosimilars is a reduction of costs to the patients and the healthcare system.[14]

    Commercialization

    When a new biopharmaceutical is developed, the company will typically apply for a patent, which is a grant for exclusive manufacturing rights. This is the primary means by which the developer of the drug can recover the investment cost for development of the biopharmaceutical. The patent laws in the United States and Europe differ somewhat on the requirements for a patent, with the European requirements are perceived as more difficult to satisfy. The total number of patents granted for biopharmaceuticals has risen significantly since the 1970s. In 1978 the total patents granted was 30. This had climbed to 15,600 in 1995, and by 2001 there were 34,527 patent applications.[20] In 2012 the US had the highest IP (Intellectual Property) generation within the biopharmaceutical industry, generating 37 percent of the total number of granted patents worldwide, however, there is still a large margin for growth and innovation within the industry. Revisions to the current IP system to ensure greater reliability for R&D (research and development) investments is a prominent topic of debate in the US as well.[21] Blood products and other human derived biologics like breast milk, have highly regulated or very hard to access markets, therefore, customers generally face a supply shortage for these products due to their nature and often institutions housing these biologics, designated as 'banks', cannot distribute their product to customers effectively.[22] Conversely, banks for Reproductive cells are much more widespread and available due to the ease of which spermatozoa and egg cells are able to be used for fertility treatment.[23]

    Large-scale production

    Biopharmaceuticals may be produced from microbial cells (e.g., recombinant E. coli or yeast cultures), mammalian cell lines (see cell culture) and plant cell cultures (see plant tissue culture) and moss plants in bioreactors of various configurations, including photo-bioreactors.[24] Important issues of concern are cost of production (low-volume, high-purity products are desirable) and microbial contamination (by bacteria, viruses, mycoplasma). Alternative platforms of production which are being tested include whole plants (plant-made pharmaceuticals).

    Transgenics

    A potentially controversial method of producing biopharmaceuticals involves transgenic organisms, particularly plants and animals that have been genetically modified to produce drugs. This production is a significant risk for the investor, due to production failure or scrutiny from regulatory bodies based on perceived risks and ethical issues. Biopharmaceutical crops also represent a risk of cross-contamination with non-engineered crops, or crops engineered for non-medical purposes.

    One potential approach to this technology is the creation of a transgenic mammal that can produce the biopharmaceutical in its milk, blood, or urine. Once an animal is produced, typically using the pronuclear microinjection method, it becomes efficacious to use cloning technology to create additional offspring that carry the favorable modified genome.[25] The first such drug manufactured from the milk of a genetically modified goat was ATryn, but marketing permission was blocked by the European Medicines Agency in February 2006.[26] This decision was reversed in June 2006 and approval was given August 2006.[27]

    Regulation

    European Union

    In the European Union, a biological medicinal product[28] is one of the active substance(s) produced from or extracted from a biological (living) system, and requires, in addition to physico-chemical testing, biological testing for full characterisation. The characterisation of a biological medicinal product is a combination of testing the active substance and the final medicinal product together with the production process and its control. For example:
    • Production process – it can be derived from biotechnology or from other technologies. It may be prepared using more conventional techniques as is the case for blood or plasma-derived products and a number of vaccines.
    • Active substance – consisting of entire microorganisms, mammalian cells, nucleic acids, proteinaceous, or polysaccharide components originating from a microbial, animal, human, or plant source.
    • Mode of action – therapeutic and immunological medicinal products, gene transfer materials, or cell therapy materials.

    United States

    In the United States, biologics are licensed through the biologics license application (BLA), then submitted to and regulated by the FDA's Center for Biologics Evaluation and Research (CBER) whereas drugs are regulated by the Center for Drug Evaluation and Research. Approval may require several years of clinical trials, including trials with human volunteers. Even after the drug is released, it will still be monitored for performance and safety risks. The manufacture process must satisfy the FDA's "Good Manufacturing Practices", which are typically manufactured in a clean room environment with strict limits on the amount of airborne particles and other microbial contaminants that may alter the efficacy of the drug.[29]

    Pharming (genetics)

    From Wikipedia, the free encyclopedia
    Pharming, a portmanteau of "farming" and "pharmaceutical", refers to the use of genetic engineering to insert genes that code for useful pharmaceuticals into host animals or plants that would otherwise not express those genes, thus creating a genetically modified organism (GMO).[1][2] Pharming is also known as molecular farming, molecular pharming[3] or biopharming.[4]

    The products of pharming are recombinant proteins or their metabolic products. Recombinant proteins are most commonly produced using bacteria or yeast in a bioreactor, but pharming offers the advantage to the producer that it does not require expensive infrastructure, and production capacity can be quickly scaled to meet demand, at greatly reduced cost.[5]

    History

    The first recombinant plant-derived protein (PDP) was human serum albumin, initially produced in 1990 in transgenic tobacco and potato plants.[6] Open field growing trials of these crops began in the United States in 1992 and have taken place every year since. While the United States Department of Agriculture has approved planting of pharma crops in every state, most testing has taken place in Hawaii, Nebraska, Iowa, and Wisconsin.[7]

    In the early 2000s, the pharming industry was robust. Proof of concept has been established for the production of many therapeutic proteins, including antibodies, blood products, cytokines, growth factors, hormones, recombinant enzymes and human and veterinary vaccines.[8] By 2003 several PDP products for the treatment of human diseases were under development by nearly 200 biotech companies, including recombinant gastric lipase for the treatment of cystic fibrosis, and antibodies for the prevention of dental caries and the treatment of non-Hodgkin's lymphoma.[9]

    Several proteins were brought to market as research and bioproduction reagents, mostly by Sigma-Aldrich. ProdiGene struck agreements with Sigma to distribute ProdiGene's corn-produced aprotinin, trypsin,[10] beta-glucuronidase (GUS), and avidin. Large Scale Biology and SIgma agreed that Sigma would distribute LSBC's tobacco-produced aprotinin. Sigma also agreed to distribute Ventria's rise-produced Lactoferrin and Lysozyme.

    However, in late 2002, just as ProdiGene was ramping up production of trypsin for commercial launch[11] it was discovered that volunteer plants (left over from the prior harvest) of one of their GM corn products were harvested with the conventional soybean crop later planted in that field.[12] ProdiGene was fined $250,000 and ordered by the USDA to pay over $3 million in cleanup costs. This raised a furor and set the pharming field back, dramatically.[5] Many companies went bankrupt as companies faced difficulties getting permits for field trials and investors fled.[5] In reaction, APHIS introduced more strict regulations for pharming field trials in the US in 2003.[13] In 2005, Anheuser-Busch threatened to boycott rice grown in Missouri because of plans by Ventria Bioscience to grow pharm rice in the state. A compromise was reached, but Ventria withdrew its permit to plant in Missouri due to unrelated circumstances.

    The industry has slowly recovered, by focusing on pharming in simple plants grown in bioreactors and on growing GM crops in greenhouses.[14] Some companies and academic groups have continued with open-field trials of GM crops that produce drugs. In 2006 Dow AgroSciences received USDA approval to market a vaccine for poultry against Newcastle disease, produced in plant cell culture – the first plant-produced vaccine approved in the U.S.[15][16]

    In mammals

    Historical development

    Milk is presently the most mature system to produce recombinant proteins from transgenic organisms. Blood, egg white, seminal plasma, and urine are other theoretically possible systems, but all have drawbacks. Blood, for instance, as of 2012 cannot store high levels of stable recombinant proteins, and biologically active proteins in blood may alter the health of the animals.[17] Expression in the milk of a mammal, such as a cow, sheep, or goat, is a common application, as milk production is plentiful and purification from milk is relatively easy. Hamsters and rabbits have also been used in preliminary studies because of their faster breeding.

    One approach to this technology is the creation of a transgenic mammal that can produce the biopharmaceutical in its milk (or blood or urine). Once an animal is produced, typically using the pronuclear microinjection method, it becomes efficacious to use cloning technology to create additional offspring that carry the favorable modified genome.[18] In February 2009 the US FDA granted marketing approval for the first drug to be produced in genetically modified livestock.[19] The drug is called ATryn, which is antithrombin protein purified from the milk of genetically modified goats. Marketing permission was granted by the European Medicines Agency in August 2006.[20]

    Patentability issues

    As indicated above, some mammals typically used for food production (such as goats, sheep, pigs, and cows) have been modified to produce non-food products, a practice sometimes called pharming. Use of genetically modified goats has been approved by the FDA and EMA to produce ATryn, i.e. recombinant antithrombin, an anticoagulant protein drug.[21] These products "produced by turning animals into drug-manufacturing 'machines' by genetically modifying them" are sometimes termed biopharmaceuticals.

    The patentability of such biopharmaceuticals and their process of manufacture is uncertain. Probably, the biopharmaceuticals themselves so made are unpatentable, assuming that they are chemically identical to the preexisting drugs that they imitate. Several 19th century United States Supreme Court decisions hold that a previously known natural product manufactured by artificial means cannot be patented.[22] An argument can be made for the patentability of the process for manufacturing a biopharmaceutical, however, because genetically modifying animals so that they will produce the drug is dissimilar to previous methods of manufacture; moreover, one Supreme Court decision seems to hold open that possibility.[23]

    On the other hand, it has been suggested that the recent Supreme Court decision in Mayo v. Prometheus[24] may create a problem in that, in accordance with the ruling in that case, "it may be said that such and such genes manufacture this protein in the same way they always did in a mammal, they produce the same product, and the genetic modification technology used is conventional, so that the steps of the process 'add nothing to the laws of nature that is not already present.[25] If the argument prevailed in court, the process would also be ineligible for patent protection. This issue has not yet been decided in the courts.

    In plants

    Plant-made pharmaceuticals (PMPs), also referred to as pharming, is a sub-sector of the biotechnology industry that involves the process of genetically engineering plants so that they can produce certain types of therapeutically important proteins and associated molecules such as peptides and secondary metabolites. The proteins and molecules can then be harvested and used to produce pharmaceuticals.

    Recently, several non-crop plants such as the duckweed Lemna minor or the moss Physcomitrella patens have shown to be useful for the production of biopharmaceuticals. These frugal organisms can be cultivated in bioreactors (as opposed to being grown in fields), secrete the transformed proteins into the growth medium and, thus, substantially reduce the burden of protein purification in preparing recombinant proteins for medical use.[26][27][28] In addition, both species can be engineered to cause secretion of proteins with human patterns of glycosylation, an improvement over conventional plant gene-expression systems.[29][30] Biolex Therapeutics developed a duckweed-based expression platform; it sold that business to Synthon and declared bankruptcy in 2012.

    Additionally, an Israeli company, Protalix, has developed a method to produce therapeutics in cultured transgenic carrot or tobacco cells.[31] Protalix and its partner, Pfizer, received FDA approval to market its drug, taliglucerase alfa (Elelyso), treatment for Gaucher's disease, in 2012.[32]

    Arabidopsis is often used as a model organism to study gene expression in plants, while actual production may be carried out in maize, rice, potatoes, tobacco, flax or safflower. The advantage of rice and flax is that they are self-pollinating, and thus gene flow issues (see below) are avoided. However, human error could still result in pharm crops entering the food supply. Using a minor crop such as safflower or tobacco, avoids the greater political pressures and risk to the food supply involved with using staple crops such as beans or rice.

    Regulation

    The regulation of genetic engineering concerns the approaches taken by governments to assess and manage the risks associated with the development and release of genetically modified crops. There are differences in the regulation of GM crops – including those used for pharming – between countries, with some of the most marked differences occurring between the USA and Europe. Regulation varies in a given country depending on the intended use of the products of the genetic engineering. For example, a crop not intended for food use is generally not reviewed by authorities responsible for food safety.

    Controversy

    There are controversies around GMOs generally on several levels, including whether making them is ethical, issues concerning intellectual property and market dynamics; environmental effects of GM crops; and GM crops' role in industrial agricultural more generally. There are also specific controversies around pharming.

    Advantages

    Plants do not carry pathogens that might be dangerous to human health. Additionally, on the level of pharmacologically active proteins, there are no proteins in plants that are similar to human proteins. On the other hand, plants are still sufficiently closely related to animals and humans that they are able to correctly process and configure both animal and human proteins. Their seeds and fruits also provide sterile packaging containers for the valuable therapeutics and guarantee a certain storage life.[33]

    Global demand for pharmaceuticals is at unprecedented levels. Expanding the existing microbial systems, although feasible for some therapeutic products, is not a satisfactory option on several grounds.[8] Many proteins of interest are too complex to be made by microbial systems or by protein synthesis.[6][33] These proteins are currently being produced in animal cell cultures, but the resulting product is often prohibitively expensive for many patients. For these reasons, science has been exploring other options for producing proteins of therapeutic value.[2][8][16]

    These pharmaceutical crops could become extremely beneficial in developing countries. The World Health Organization estimates that nearly 3 million people die each year from vaccine preventable disease, mostly in Africa. Diseases such as measles and hepatitis lead to deaths in countries where the people cannot afford the high costs of vaccines, but pharm crops could help solve this problem.[34]

    Disadvantages

    While molecular farming is one application of genetic engineering, there are concerns that are unique to it. In the case of genetically modified (GM) foods, concerns focus on the safety of the food for human consumption. In response, it has been argued that the genes that enhance a crop in some way, such as drought resistance or pesticide resistance, are not believed to affect the food itself. Other GM foods in development, such as fruits designed to ripen faster or grow larger, are believed not to affect humans any differently from non-GM varieties.[2][16][33][35]

    In contrast, molecular farming is not intended for crops destined for the food chain. It produces plants that contain physiologically active compounds that accumulate in the plant’s tissues. Considerable attention is focused, therefore, on the restraint and caution necessary to protect both consumer health and environmental biodiversity.[2]

    The fact that the plants are used to produce drugs alarms activists. They worry that once production begins, the altered plants might find their way into the food supply or cross-pollinate with conventional, non-GM crops.[35] These concerns have historical validation from the ProdiGene incident, and from the StarLink incident, in which GMO corn accidentally ended up in commercial food products. Activists also are concerned about the power of business. According to the Canadian Food Inspection Agency, in a recent report, says that U.S. demand alone for biotech pharmaceuticals is expanding at 13 percent annually and to reach a market value of $28.6 billion in 2004.[35] Pharming is expected to be worth $100 billion globally by 2020.[36]

    List of originators (companies and universities), research projects and products

    Please note that this list is by no means exhaustive.
    • Dow AgroSciences – poultry vaccine against Newcastle disease virus (first PMP to be approved for marketing by the USDA Center for Veterinary Biologics[37] Dow never intended to market the vaccine.[38] "'Dow Agrosciences used the animal vaccine as an example to completely run through the process. A new platform needs to be approved, which can be difficult when authorities get in contact with it for the first time', explains the plant physiologist Stefan Schillberg, head of the Molecular Biology Division at the Fraunhofer Institute for Molecular Biology and Applied Ecology Aachen."[39]
    • Fraunhofer Institute for Molecular Biology and Applied Ecology, with sites in Germany, the US, and Chile[40] is the lead institute of the Pharma Planta consortium of 33 partner organizations from 12 European countries and South Africa, funded by the European Commission.[41] Pharma Planta is developing systems for plant production of proteins in greenhouses in the European regulatory framework.[42] It is collaborating on biosimilars with Plantform and PharmaPraxis (see below).[43]
    • Genzymeantithrombin III in goat milk
    • GTC Biotherapeutics – ATryn (recombinant human antithrombin) in goat milk[44]
    • Icon Genetics produces therapeutics in transiently infected Nicotiana benthamiana (relative of tobacco) plants in greenhouses in Halle, Germany[45][46] or in fields. First product is a vaccine for a cancer, non-Hodgkin's lymphoma.[46]
    • Iowa State University – immunogenic protein from E. coli bacteria in pollen-free corn as a potential vaccine against E. coli for animals and humans[47][48][49]
    • Kentucky Bioprocessing took over Large Scale Biology's facilities in Owensboro, Kentucky, and offers contract biomanufacturing services in tobacco plants, grown in greenhouses or in open fields.[50]
    • Medicago Inc. – Pre-clinical trials of Influenza vaccine made in transiently infected Nicotiana benthamiana (relative of tobacco) plants in greenhouses[51] Medicago has a system for pharming in alfalfa that their website says is "not suited for the production of vaccines"[52]
    • PharmaPraxis – Developing biosimilars in collaboration with PlantForm (see below) and Fraunhofer.[43]
    • Pharming – C1 inhibitor, human collagen 1, fibrinogen (with American Red Cross), and lactoferrin in cow milk[53] The intellectual property behind the fibrinogen project was acquired from PPL Therapeutics when PPL went bankrupt in 2004.[54]
    • Phyton Biotech uses plant cell culture systems to manufacture active pharmaceutical ingredients based on taxanes, including paclitaxel and docetaxel[55]
    • Planet Biotechnology – antibodies against Streptococcus mutans, antibodies against doxorubicin, and ICAM 1 receptor in tobacco[56]
    • PlantForm Corporation – biosimilar trastuzumab in tobacco[57] – It is developing biosimilars in collaboration with PharmaPraxis (see above) and Fraunhofer.[43]
    • ProdiGene – was developing several proteins, including aprotinin, trypsin and a veterinary TGE vaccine in corn. Was in process of launching trypsin product in 2002[11] when later that year its field test crops contaminated conventional crops.[12] Unable to pay the $3 million cost of the cleanup, it was purchased by International Oilseed Distributors in 2003[58][59] International Oilseed Distributors is controlled by Harry H. Stine,[60] who owns one of the biggest soybeans genetics companies in the US.[61] ProdiGene's maize-produced trypsin, with the trademark TrypZean[62] is currently sold by Sigma-Aldritch as a research reagent.[10][63][64]
    • SyngentaBeta carotene in rice (this is "Golden rice 2"), which Syngenta has donated to the Golden Rice Project[65]
    • University of Arizona – Hepatitis C vaccine in potatoes[66][67]
    • Ventria Biosciencelactoferrin and lysozyme in rice
    • Washington State University – lactoferrin and lysozyme in barley[68][69]
    • European COST Action on Molecular Farming – COST Action FA0804 on Molecular Farming provides a pan-European coordination centre, connecting academic and government institutions and companies from 23 countries.[70] The aim of the Action is to advance the field by encouraging scientific interactions, providing expert opinion and encouraging commercial development of new products. The COST Action also provides grants allowing young scientists to visit participating laboratories across Europe for scientific training.
    • Mapp Biopharmaceutical in San Diego, California, was reported in August 2014 to be developing ZMapp, an experimental cure for the deadly Ebola virus disease. Two Americans who had been infected in Liberia were reported to be improving with the drug. ZMapp was made using antibodies produced by GM tobacco plants.[71][72]
    Projects known to be abandoned

    Operator (computer programming)

    From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...