Search This Blog

Monday, February 4, 2019

Ocean acidification

From Wikipedia, the free encyclopedia
World map showing varying change to pH across different parts of different oceans
Estimated change in sea water pH caused by human created CO
2
between the 1700s and the 1990s, from the Global Ocean Data Analysis Project (GLODAP) and the World Ocean Atlas

NOAA provides evidence for upwelling of "acidified" water onto the Continental Shelf. In the figure above, note the vertical sections of (A) temperature, (B) aragonite saturation, (C) pH, (D) DIC, and (E) pCO2 on transect line 5 off Pt. St. George, California. The potential density surfaces are superimposed on the temperature section. The 26.2 potential density surface delineates the location of the first instance in which the undersaturated water is upwelled from depths of 150 to 200 m onto the shelf and outcropping at the surface near the coast. The red dots represent sample locations.
Ocean acidification is the ongoing decrease in the pH of the Earth's oceans, caused by the uptake of carbon dioxide (CO2) from the atmosphere. Seawater is slightly basic (meaning the pH is greater than 7), and ocean acidification involves a shift towards pH-neutral conditions rather than a transition to acidic conditions (pH less than 7). An estimated 30–40% of the carbon dioxide from human activity released into the atmosphere dissolves into oceans, rivers and lakes. To achieve chemical equilibrium, some of it reacts with the water to form carbonic acid. Some of the resulting carbonic acid molecules dissociate into a bicarbonate ion and a hydrogen ion, thus increasing ocean acidity (H+ ion concentration). Between 1751 and 1996, surface ocean pH is estimated to have decreased from approximately 8.25 to 8.14, representing an increase of almost 30% in H+ ion concentration in the world's oceans. Earth System Models project that, within the last decade, ocean acidity exceeded historical analogues and, in combination with other ocean biogeochemical changes, could undermine the functioning of marine ecosystems and disrupt the provision of many goods and services associated with the ocean beginning as early as 2100.
Increasing acidity is thought to have a range of potentially harmful consequences for marine organisms, such as depressing metabolic rates and immune responses in some organisms, and causing coral bleaching. By increasing the presence of free hydrogen ions, the additional carbonic acid that forms in the oceans ultimately results in the conversion of carbonate ions into bicarbonate ions. Ocean alkalinity (roughly equal to [HCO3] + 2[CO32−]) is not changed by the process, or may increase over long time periods due to carbonate dissolution. This net decrease in the amount of carbonate ions available may make it more difficult for marine calcifying organisms, such as coral and some plankton, to form biogenic calcium carbonate, and such structures become vulnerable to dissolution. Ongoing acidification of the oceans may threaten future food chains linked with the oceans. As members of the InterAcademy Panel, 105 science academies have issued a statement on ocean acidification recommending that by 2050, global CO2 emissions be reduced by at least 50% compared to the 1990 level.
While ongoing ocean acidification is at least partially anthropogenic in origin, it has occurred previously in Earth's history. The most notable example is the Paleocene-Eocene Thermal Maximum (PETM), which occurred approximately 56 million years ago when massive amounts of carbon entered the ocean and atmosphere, and led to the dissolution of carbonate sediments in all ocean basins.
Ocean acidification has been compared to anthropogenic climate change and called the "evil twin of global warming" and "the other CO2 problem". Freshwater bodies also appear to be acidifying, although this is a more complex and less obvious phenomenon.

Carbon cycle

The CO
2
cycle between the atmosphere and the ocean

The carbon cycle describes the fluxes of carbon dioxide (CO
2
) between the oceans, terrestrial biosphere, lithosphere, and the atmosphere. Human activities such as the combustion of fossil fuels and land use changes have led to a new flux of CO
2
into the atmosphere. About 45% has remained in the atmosphere; most of the rest has been taken up by the oceans, with some taken up by terrestrial plants.
Distribution of (A) aragonite and (B) calcite saturation depth in the global oceans
The map was created by the National Oceanic and Atmospheric Administration and the Woods Hole Oceanographic Institution using Community Earth System Model data. This map was created by comparing average conditions during the 1880s with average conditions during the most recent 10 years (2003–2012). Aragonite saturation has only been measured at selected locations during the last few decades, but it can be calculated reliably for different times and locations based on the relationships scientists have observed among aragonite saturation, pH, dissolved carbon, water temperature, concentrations of carbon dioxide in the atmosphere, and other factors that can be measured. This map shows changes in the amount of aragonite dissolved in ocean surface waters between the 1880s and the most recent decade (2003–2012). Aragonite saturation is a ratio that compares the amount of aragonite that is actually present with the total amount of aragonite that the water could hold if it were completely saturated. The more negative the change in aragonite saturation, the larger the decrease in aragonite available in the water, and the harder it is for marine creatures to produce their skeletons and shells. The global map shows changes over time in the amount of aragonite dissolved in ocean water, which is called aragonite saturation.
The carbon cycle involves both organic compounds such as cellulose and inorganic carbon compounds such as carbon dioxide, carbonate ion, and bicarbonate ion. The inorganic compounds are particularly relevant when discussing ocean acidification for they include many forms of dissolved CO
2
present in the Earth's oceans.
When CO
2
dissolves, it reacts with water to form a balance of ionic and non-ionic chemical species: dissolved free carbon dioxide (CO
2(aq)
), carbonic acid (H
2
CO
3
), bicarbonate (HCO
3
) and carbonate (CO2−
3
). The ratio of these species depends on factors such as seawater temperature, pressure and salinity (as shown in a Bjerrum plot). These different forms of dissolved inorganic carbon are transferred from an ocean's surface to its interior by the ocean's solubility pump.
The resistance of an area of ocean to absorbing atmospheric CO
2
is known as the Revelle factor.

Acidification

Dissolving CO
2
in seawater increases the hydrogen ion (H+) concentration in the ocean, and thus decreases ocean pH, as follows:
CO2 (aq) + H2O ⇌ H2CO3 ⇌ HCO3 + H+ ⇌ CO32− + 2 H+.

Caldeira and Wickett (2003) placed the rate and magnitude of modern ocean acidification changes in the context of probable historical changes during the last 300 million years.
Since the industrial revolution began, the ocean has absorbed about a third of the CO
2
we have produced since then and it is estimated that surface ocean pH has dropped by slightly more than 0.1 units on the logarithmic scale of pH, representing about a 29% increase in H+. It is expected to drop by a further 0.3 to 0.5 pH units (an additional doubling to tripling of today's post-industrial acid concentrations) by 2100 as the oceans absorb more anthropogenic CO
2
, the impacts being most severe for coral reefs and the Southern Ocean. These changes are predicted to accelerate as more anthropogenic CO
2
is released to the atmosphere and taken up by the oceans. The degree of change to ocean chemistry, including ocean pH, will depend on the mitigation and emissions pathways taken by society.
Although the largest changes are expected in the future, a report from NOAA scientists found large quantities of water undersaturated in aragonite are already upwelling close to the Pacific continental shelf area of North America. Continental shelves play an important role in marine ecosystems since most marine organisms live or are spawned there, and though the study only dealt with the area from Vancouver to Northern California, the authors suggest that other shelf areas may be experiencing similar effects.
Average surface ocean pH
Time pH pH change relative
to pre-industrial
Source H+ concentration change
relative to pre-industrial
Pre-industrial (18th century) 8.179
analyzed field
Recent past (1990s) 8.104 −0.075 field + 18.9%
Present levels ~8.069 −0.11 field + 28.8%
2050 (2×CO
2
= 560 ppm)
7.949 −0.230 model + 69.8%
2100 (IS92a) 7.824 −0.355 model + 126.5%

Rate

One of the first detailed datasets to examine how pH varied over 8 years at a specific north temperate coastal location found that acidification had strong links to in situ benthic species dynamics and that the variation in ocean pH may cause calcareous species to perform more poorly than noncalcareous species in years with low pH and predicts consequences for near-shore benthic ecosystems. Thomas Lovejoy, former chief biodiversity advisor to the World Bank, has suggested that "the acidity of the oceans will more than double in the next 40 years. He says this rate is 100 times faster than any changes in ocean acidity in the last 20 million years, making it unlikely that marine life can somehow adapt to the changes." It is predicted that, by the year 2100, If co-occurring biogeochemical changes influence the delivery of ocean goods and services, then they could also have a considerable effect on human welfare for those who rely heavily on the ocean for food, jobs, and revenues.
Current rates of ocean acidification have been compared with the greenhouse event at the Paleocene–Eocene boundary (about 55 million years ago) when surface ocean temperatures rose by 5–6 degrees Celsius. No catastrophe was seen in surface ecosystems, yet bottom-dwelling organisms in the deep ocean experienced a major extinction. The current acidification is on a path to reach levels higher than any seen in the last 65 million years, and the rate of increase is about ten times the rate that preceded the Paleocene–Eocene mass extinction. The current and projected acidification has been described as an almost unprecedented geological event. A National Research Council study released in April 2010 likewise concluded that "the level of acid in the oceans is increasing at an unprecedented rate". A 2012 paper in the journal Science examined the geological record in an attempt to find a historical analog for current global conditions as well as those of the future. The researchers determined that the current rate of ocean acidification is faster than at any time in the past 300 million years.
A review by climate scientists at the RealClimate blog, of a 2005 report by the Royal Society of the UK similarly highlighted the centrality of the rates of change in the present anthropogenic acidification process, writing:
The natural pH of the ocean is determined by a need to balance the deposition and burial of CaCO
3
on the sea floor against the influx of Ca2+ and CO2−
3
into the ocean from dissolving rocks on land, called weathering. These processes stabilize the pH of the ocean, by a mechanism called CaCO
3
compensation...The point of bringing it up again is to note that if the CO
2
concentration of the atmosphere changes more slowly than this, as it always has throughout the Vostok record, the pH of the ocean will be relatively unaffected because CaCO
3
compensation can keep up. The [present] fossil fuel acidification is much faster than natural changes, and so the acid spike will be more intense than the earth has seen in at least 800,000 years.
In the 15-year period 1995–2010 alone, acidity has increased 6 percent in the upper 100 meters of the Pacific Ocean from Hawaii to Alaska. According to a statement in July 2012 by Jane Lubchenco, head of the U.S. National Oceanic and Atmospheric Administration "surface waters are changing much more rapidly than initial calculations have suggested. It's yet another reason to be very seriously concerned about the amount of carbon dioxide that is in the atmosphere now and the additional amount we continue to put out."
A 2013 study claimed acidity was increasing at a rate 10 times faster than in any of the evolutionary crises in Earth's history. In a synthesis report published in Science in 2015, 22 leading marine scientists stated that CO2 from burning fossil fuels is changing the oceans' chemistry more rapidly than at any time since the Great Dying, Earth's most severe known extinction event, emphasizing that the 2 °C maximum temperature increase agreed upon by governments reflects too small a cut in emissions to prevent "dramatic impacts" on the world's oceans, with lead author Jean-Pierre Gattuso remarking that "The ocean has been minimally considered at previous climate negotiations. Our study provides compelling arguments for a radical change at the UN conference (in Paris) on climate change".
The rate at which ocean acidification will occur may be influenced by the rate of surface ocean warming, because the chemical equilibria that govern seawater pH are temperature-dependent. Greater seawater warming could lead to a smaller change in pH for a given increase in CO2.

Calcification

Overview

Changes in ocean chemistry can have extensive direct and indirect effects on organisms and their habitats. One of the most important repercussions of increasing ocean acidity relates to the production of shells and plates out of calcium carbonate (CaCO
3
). This process is called calcification and is important to the biology and survival of a wide range of marine organisms. Calcification involves the precipitation of dissolved ions into solid CaCO
3
structures, such as coccoliths. After they are formed, such structures are vulnerable to dissolution unless the surrounding seawater contains saturating concentrations of carbonate ions (CO32−).

Mechanism

Bjerrum plot: Change in carbonate system of seawater from ocean acidification.
Of the extra carbon dioxide added into the oceans, some remains as dissolved carbon dioxide, while the rest contributes towards making additional bicarbonate (and additional carbonic acid). This also increases the concentration of hydrogen ions, and the percentage increase in hydrogen is larger than the percentage increase in bicarbonate, creating an imbalance in the reaction HCO3 ⇌ CO32− + H+. To maintain chemical equilibrium, some of the carbonate ions already in the ocean combine with some of the hydrogen ions to make further bicarbonate. Thus the ocean's concentration of carbonate ions is reduced, creating an imbalance in the reaction Ca2+ + CO32− ⇌ CaCO3, and making the dissolution of formed CaCO
3
structures more likely.
The increase in concentrations of dissolved carbon dioxide and bicarbonate, and reduction in carbonate, are shown in a Bjerrum plot.

Saturation state

The saturation state (known as Ω) of seawater for a mineral is a measure of the thermodynamic potential for the mineral to form or to dissolve, and for calcium carbonate is described by the following equation:
Here Ω is the product of the concentrations (or activities) of the reacting ions that form the mineral (Ca2+ and CO2−
3
), divided by the product of the concentrations of those ions when the mineral is at equilibrium (K
sp
), that is, when the mineral is neither forming nor dissolving. In seawater, a natural horizontal boundary is formed as a result of temperature, pressure, and depth, and is known as the saturation horizon. Above this saturation horizon, Ω has a value greater than 1, and CaCO
3
does not readily dissolve. Most calcifying organisms live in such waters. Below this depth, Ω has a value less than 1, and CaCO
3
will dissolve. However, if its production rate is high enough to offset dissolution, CaCO
3
can still occur where Ω is less than 1. The carbonate compensation depth occurs at the depth in the ocean where production is exceeded by dissolution.
The decrease in the concentration of CO32− decreases Ω, and hence makes CaCO
3
dissolution more likely.
Calcium carbonate occurs in two common polymorphs (crystalline forms): aragonite and calcite. Aragonite is much more soluble than calcite, so the aragonite saturation horizon is always nearer to the surface than the calcite saturation horizon. This also means that those organisms that produce aragonite may be more vulnerable to changes in ocean acidity than those that produce calcite. Increasing CO
2
levels and the resulting lower pH of seawater decreases the saturation state of CaCO
3
and raises the saturation horizons of both forms closer to the surface. This decrease in saturation state is believed to be one of the main factors leading to decreased calcification in marine organisms, as the inorganic precipitation of CaCO
3
is directly proportional to its saturation state.

Possible impacts

Increasing acidity has possibly harmful consequences, such as depressing metabolic rates in jumbo squid, depressing the immune responses of blue mussels, and coral bleaching. However it may benefit some species, for example increasing the growth rate of the sea star, Pisaster ochraceus, while shelled plankton species may flourish in altered oceans.

The report "Ocean Acidification Summary for Policymakers 2013" describes research findings and possible impacts.

Impacts on oceanic calcifying organisms

Although the natural absorption of CO
2
by the world's oceans helps mitigate the climatic effects of anthropogenic emissions of CO
2
, it is believed that the resulting decrease in pH will have negative consequences, primarily for oceanic calcifying organisms. These span the food chain from autotrophs to heterotrophs and include organisms such as coccolithophores, corals, foraminifera, echinoderms, crustaceans and molluscs. As described above, under normal conditions, calcite and aragonite are stable in surface waters since the carbonate ion is at supersaturating concentrations. However, as ocean pH falls, the concentration of carbonate ions required for saturation to occur increases, and when carbonate becomes undersaturated, structures made of calcium carbonate are vulnerable to dissolution. Therefore, even if there is no change in the rate of calcification, the rate of dissolution of calcareous material increases.
Corals, coccolithophore algae, coralline algae, foraminifera, shellfish, and pteropods experience reduced calcification or enhanced dissolution when exposed to elevated CO
2
.
The Royal Society published a comprehensive overview of ocean acidification, and its potential consequences, in June 2005. However, some studies have found different response to ocean acidification, with coccolithophore calcification and photosynthesis both increasing under elevated atmospheric pCO2, an equal decline in primary production and calcification in response to elevated CO2 or the direction of the response varying between species. A study in 2008 examining a sediment core from the North Atlantic found that while the species composition of coccolithophorids has remained unchanged for the industrial period 1780 to 2004, the calcification of coccoliths has increased by up to 40% during the same time. A 2010 study from Stony Brook University suggested that while some areas are overharvested and other fishing grounds are being restored, because of ocean acidification it may be impossible to bring back many previous shellfish populations. While the full ecological consequences of these changes in calcification are still uncertain, it appears likely that many calcifying species will be adversely affected.
When exposed in experiments to pH reduced by 0.2 to 0.4, larvae of a temperate brittlestar, a relative of the common sea star, fewer than 0.1 percent survived more than eight days. There is also a suggestion that a decline in the coccolithophores may have secondary effects on climate, contributing to global warming by decreasing the Earth's albedo via their effects on oceanic cloud cover. All marine ecosystems on Earth will be exposed to changes in acidification and several other ocean biogeochemical changes.
The fluid in the internal compartments where corals grow their exoskeleton is also extremely important for calcification growth. When the saturation rate of aragonite in the external seawater is at ambient levels, the corals will grow their aragonite crystals rapidly in their internal compartments, hence their exoskeleton grows rapidly. If the level of aragonite in the external seawater is lower than the ambient level, the corals have to work harder to maintain the right balance in the internal compartment. When that happens, the process of growing the crystals slows down, and this slows down the rate of how much their exoskeleton is growing. Depending on how much aragonite is in the surrounding water, the corals may even stop growing because the levels of aragonite are too low to pump into the internal compartment. They could even dissolve faster than they can make the crystals to their skeleton, depending on the aragonite levels in the surrounding water. Under the current progression of carbon emissions, around 70% of North Atlantic cold-water corals will be living in corrosive waters by 2050-60.
A study conducted by the Woods Hole Oceanographic Institution in January 2018 showed that the skeletal growth of corals under acidified conditions is primarily affected by a reduced capacity to build dense exoskeletons, rather than affecting the linear extension of the exoskeleton. Using Global Climate Models, they show that the density of some species of corals could be reduced by over 20% by the end of this century.
An in situ experiment on a 400 m2 patch of the Great Barrier Reef to decrease seawater CO2 level (raise pH) to close to the preindustrial value showed a 7% increase in net calcification. A similar experiment to raise in situ seawater seawater CO2 level (lower pH) to a level expected soon after the middle of this century found that net calcification decreased 34%.
Ocean acidification may force some organisms to reallocate resources away from productive endpoints such as growth in order to maintain calcification.
In some places carbon dioxide bubbles out from the sea floor, locally changing the pH and other aspects of the chemistry of the seawater. Studies of these carbon dioxide seeps have documented a variety of responses by different organisms. Coral reef communities located near carbon dioxide seeps are of particular interest because of the sensitivity of some corals species to acidification. In Papua New Guinea, declining pH caused by carbon dioxide seeps is associated with declines in coral species diversity. However, in Palau carbon dioxide seeps are not associated with reduced species diversity of corals, although bioerosion of coral skeletons is much higher at low pH sites.

Other biological impacts

Aside from the slowing and/or reversing of calcification, organisms may suffer other adverse effects, either indirectly through negative impacts on food resources, or directly as reproductive or physiological effects. For example, the elevated oceanic levels of CO2 may produce CO
2
-induced acidification of body fluids, known as hypercapnia. Also, increasing ocean acidity is believed to have a range of direct consequences. For example, increasing acidity has been observed to: reduce metabolic rates in jumbo squid; depress the immune responses of blue mussels; and make it harder for juvenile clownfish to tell apart the smells of non-predators and predators, or hear the sounds of their predators. This is possibly because ocean acidification may alter the acoustic properties of seawater, allowing sound to propagate further, and increasing ocean noise. This impacts all animals that use sound for echolocation or communication. Atlantic longfin squid eggs took longer to hatch in acidified water, and the squid's statolith was smaller and malformed in animals placed in sea water with a lower pH. The lower PH was simulated with 20-30 times the normal amount of CO2. However, as with calcification, as yet there is not a full understanding of these processes in marine organisms or ecosystems.
Another possible effect would be an increase in red tide events, which could contribute to the accumulation of toxins (domoic acid, brevetoxin, saxitoxin) in small organisms such as anchovies and shellfish, in turn increasing occurrences of amnesic shellfish poisoning, neurotoxic shellfish poisoning and paralytic shellfish poisoning.

Ecosystem impacts amplified by ocean warming and deoxygenation

While the full implications of elevated CO2 on marine ecosystems are still being documented, there is a substantial body of research showing that a combination of ocean acidification and elevated ocean temperature, driven mainly by CO2 and other greenhouse gas emissions, have a compounded effect on marine life and the ocean environment. This effect far exceeds the individual harmful impact of either. In addition, ocean warming exacerbates ocean deoxygenation, which is an additional stressor on marine organisms, by increasing ocean stratification, through density and solubility effects, thus limiting nutrients, while at the same time increasing metabolic demand.
Meta analyses have quantified the direction and magnitude of the harmful effects of ocean acidification, warming and deoxygenation on the ocean. These meta-analyses have been further tested by mesocosm studies that simulated the interaction of these stressors and found a catastrophic effect on the marine food web, i.e. that the increases in consumption from thermal stress more than negates any primary producer to herbivore increase from elevated CO2.

Nonbiological impacts

Leaving aside direct biological effects, it is expected that ocean acidification in the future will lead to a significant decrease in the burial of carbonate sediments for several centuries, and even the dissolution of existing carbonate sediments. This will cause an elevation of ocean alkalinity, leading to the enhancement of the ocean as a reservoir for CO2 with implications for climate change as more CO2 leaves the atmosphere for the ocean.

Impact on human industry

The threat of acidification includes a decline in commercial fisheries and in the Arctic tourism industry and economy. Commercial fisheries are threatened because acidification harms calcifying organisms which form the base of the Arctic food webs.
Pteropods and brittle stars both form the base of the Arctic food webs and are both seriously damaged from acidification. Pteropods shells dissolve with increasing acidification and the brittle stars lose muscle mass when re-growing appendages. For pteropods to create shells they require aragonite which is produced through carbonate ions and dissolved calcium. Pteropods are severely affected because increasing acidification levels have steadily decreased the amount of water supersaturated with carbonate which is needed for aragonite creation. Arctic waters are changing so rapidly that they will become undersaturated with aragonite as early as 2016. Additionally the brittle star's eggs die within a few days when exposed to expected conditions resulting from Arctic acidification. Acidification threatens to destroy Arctic food webs from the base up. Arctic food webs are considered simple, meaning there are few steps in the food chain from small organisms to larger predators. For example, pteropods are "a key prey item of a number of higher predators – larger plankton, fish, seabirds, whales". Both pteropods and sea stars serve as a substantial food source and their removal from the simple food web would pose a serious threat to the whole ecosystem. The effects on the calcifying organisms at the base of the food webs could potentially destroy fisheries. The value of fish caught from US commercial fisheries in 2007 was valued at $3.8 billion and of that 73% was derived from calcifiers and their direct predators. Other organisms are directly harmed as a result of acidification. For example, decrease in the growth of marine calcifiers such as the American lobster, ocean quahog, and scallops means there is less shellfish meat available for sale and consumption. Red king crab fisheries are also at a serious threat because crabs are calcifiers and rely on carbonate ions for shell development. Baby red king crab when exposed to increased acidification levels experienced 100% mortality after 95 days. In 2006, red king crab accounted for 23% of the total guideline harvest levels and a serious decline in red crab population would threaten the crab harvesting industry. Several ocean goods and services are likely to be undermined by future ocean acidification potentially affecting the livelihoods of some 400 to 800 million people depending upon the emission scenario.

Impact on indigenous peoples

Acidification could damage the Arctic tourism economy and affect the way of life of indigenous peoples. A major pillar of Arctic tourism is the sport fishing and hunting industry. The sport fishing industry is threatened by collapsing food webs which provide food for the prized fish. A decline in tourism lowers revenue input in the area, and threatens the economies that are increasingly dependent on tourism. The rapid decrease or disappearance of marine life could also affect the diet of Indigenous peoples.

Ocean Acidification in the Arctic Ocean

Annual Arctic Sea Ice Minimum
The Arctic Ocean has experienced drastic change over the years due to global warming. It has been known that the Arctic Ocean acidity levels have been increasing and at twice the rate compared to the Pacific and Atlantic oceans. The loss of sea ice has been connected to a decrease in pH levels in the ocean water. Sea ice has experienced an extreme reduction over the past 30 years, forming a minimum area of 2.9×106 km2 at the end of the boreal summer of 2007, 47%, less than in 1980. Sea ice limits the air-sea gas exchange with carbon dioxide. With less water completely exposed to the atmosphere, the levels of carbon dioxide gas in the water remain low. The Arctic Ocean should have low carbon dioxide levels due to intense cooling, run off of fresh water and photosynthesis from marine organisms. However, the decrease of sea ice over the years due to global warming has limited freshwater runoff and has exposed a higher percentage of the ocean surface to the atmosphere. The increase of carbon dioxide in the water decreases the pH of the ocean causing ocean acidification. The decrease in sea ice has also allowed more Pacific water to flow into in the Arctic Ocean during the winter, this is called Pacific winter water. The Pacific water flows into the Arctic Ocean carrying additional amounts of carbon dioxide by being exposed to the atmosphere and absorbing carbon dioxide from decaying organic matter and from sediments.
The Arctic Ocean pH levels are rapidly decreasing because not only is the ocean water absorbing more carbon dioxide due to increased surface area exposure as a result of a decrease in sea ice. It also has large amounts of carbon dioxide being transferred to the Arctic from the Pacific ocean.
Cold water is able to absorb higher amounts of carbon dioxide compared to warm water. The solubility of gases decreases in relation to increasing temperature. Cold water bodies are absorbing the increasing amount of carbon dioxide in the atmosphere and becoming known as carbon sinks. The increasing amount of carbon dioxide in the water is putting many organisms at risk as they are affected by the increase of acidity in the ocean water.

Effects of Ocean Acidification on Arctic Organisms

Organisms in Arctic waters are already challenged with stressors of living in the Arctic Ocean, such as dealing with cold temperatures, and it is thought that because of this, additional stressors such as ocean acidification, will cause ocean acidification effects on marine organisms to appear first in the Arctic. There exists a significant variation in the sensitivity of marine organisms to increased ocean acidification. Calcifying organisms generally exhibit larger negative responses from ocean acidification than non‐calcifying organisms across numerous response variables, with the exception of crustaceans, which calcify but were not negatively affected. The acidification of the Arctic Ocean will impact these marine calcifiers in several different ways.
The uptake of CO₂ by seawater increases the concentration of hydrogen ions, which lowers pH and, in changing the chemical equilibrium of the inorganic carbon system, reduces the concentration of carbonate ions (CO₃²⁻). Carbonate ions are required by marine calcifying organisms such as plankton, shellfish, and fish to produce calcium carbonate (CaCO₃) shells and skeletons.
Arctic Council map

For either aragonite or calcite, the two polymorphs of CaCO₃ produced by marine organisms, the saturation state of CaCO₃ in ocean water is expressed by the product of the concentrations of CO₂²⁻ and Ca²⁺ in seawater relative to the stoichiometric solubility product at a given temperature, salinity, and pressure. Waters which are saturated in CaCO₃ are favorable to precipitation and formation of CaCO₃ shells and skeletons, but waters which are undersaturated are corrosive to CaCO₃ shells, and in the absence of protective mechanisms, dissolution of calcium carbonate will occur. Because colder arctic water absorbs more CO₂, the concentration of CO₃²⁻ is reduced, therefore the saturation of calcium carbonate is lower in high-latitude oceans than it is in tropical or temperate oceans. In model simulations of the Arctic Ocean, it is predicted that aragonite saturation will decrease, because of an increased amount of freshwater input from melting sea ice and increased carbon uptake as a result of sea ice retreat. This simulation predicts that Arctic surface waters will become undersaturated with aragonite within a decade. The undersaturation of aragonite will cause the shells of organisms which are constructed from aragonite to dissolve. This would have a profound effect on a large variety of marine organisms and has the potential to do devastating damage to keystone species and to the marine food web in the Arctic Ocean. Laboratory experiments on various marine biota in an elevated CO₂ environment show that changes in aragonite saturation cause substantial changes in overall calcification rates for many species of marine organisms, including coccolithophore, foraminifera, pteropods, mussels, and clams.
Although the undersaturation of arctic water has been proven to have an effect on the ability of organisms to precipitate their shells, recent studies have shown that the calcification rate of calcifiers, such as corals, coccolithophores, foraminiferans and bivalves, decrease with increasing pCO₂, even in seawater supersaturated with respect to CaCO₃. Additionally, increased pCO₂ has been found to have complex effects on the physiology, growth and reproductive success of various marine calcifiers. CO₂ tolerance seems to differ between various marine organisms, as well as differences in CO₂ tolerance at different life cycle stages (e.g. larva and adult). The first stage in the life cycle of marine calcifiers which are at a serious risk by high CO2 content is the planktonic larval stage. The larval development of several marine species, primarily sea urchins and bivalves, are highly affected by elevations of seawater pCO₂. In laboratory tests, numerous sea urchin embryos were reared under different CO₂ concentrations until they developed to the larval stage. It was found that once reaching this stage, larval and arm sizes were significantly smaller, as well as abnormal skeleton morphology was noted with increasing pCO₂.
Pterapod shell dissolved in seawater adjusted to an ocean chemistry projected for the year 2100

Similar findings have been found in CO₂ treated-mussel larvae, which showed a larval size decrease of about 20% and showed morphological abnormalities such as convex hinges, weaker and thinner shells and protrusion of mantle. The larval body size also impacts the encounter and clearance rates of food particles, and if larval shells are smaller or deformed, these larvae are more prone to starvation. In addition, CaCO₃ structures also serve vital functions for calcified larvae, such as defence against predation, as well as roles in feeding, buoyancy control and pH regulation. Another example of a species which may be seriously impacted by ocean acidification is Pteropods, which are shelled pelagic molluscs which play an important role in the food-web of various ecosystems. Since they harbor an aragonitic shell, they could be very sensitive to ocean acidification driven by the increase of anthropogenic CO₂ emissions.Laboratory tests showed that calcification exhibits a 28% decrease at the pH value of the Arctic Ocean expected for the year 2100, compared to the present pH value. This 28% decline of calcification in the lower pH condition is within the range reported also for other calcifying organisms such as corals. In contrast with sea urchin and bivalve larvae, corals and marine shrimps are more severely impacted by ocean acidification after settlement, while they developed into the polyp stage. From laboratory tests, the morphology of the CO₂-treated polyp endoskeleton of corals was disturbed and malformed compared to the radial pattern of control polyps.
This variability in the impact of ocean acidification on different life cycle stages of different organisms can be partially explained by the fact that most echinoderms and mollusks start shell and skeleton synthesis at their larval stage, whereas corals start at the settlement stage. Hence, these stages are highly susceptible to the potential effects of ocean acidification. Most calcifiers, such as corals, echinoderms, bivalves and crustaceans, play important roles in coastal ecosystems as keystone species, bioturbators and ecosystem engineers. The food web in the Arctic Ocean is somewhat truncated, meaning it is short and simple. Any impacts to key species in the food web can cause exponentially devastating effects on the rest on the food chain as a whole, as they will no longer have a reliable food source. If these larger organisms no longer have any source of nutrients, they too will eventually die off, and the entire Arctic Ocean ecosystem will be affected. This would have a huge impact on the Arctic people who catch Arctic fish for a living, as well as the economic repercussions which would follow such a major shortage of food and living income for these families.

Possible responses

Demonstrator calling for action against ocean acidification at the People's Climate March (2017).

Reducing CO2 emissions

Members of the InterAcademy Panel recommended that by 2050, global anthropogenic CO2 emissions be reduced less than 50% of the 1990 level. The 2009 statement also called on world leaders to:
  • Acknowledge that ocean acidification is a direct and real consequence of increasing atmospheric CO2 concentrations, is already having an effect at current concentrations, and is likely to cause grave harm to important marine ecosystems as CO2 concentrations reach 450 [parts-per-million (ppm)] and above;
  • ... Recognise that reducing the build up of CO2 in the atmosphere is the only practicable solution to mitigating ocean acidification;
  • ... Reinvigorate action to reduce stressors, such as overfishing and pollution, on marine ecosystems to increase resilience to ocean acidification.
Stabilizing atmospheric CO2 concentrations at 450 ppm would require near-term emissions reductions, with steeper reductions over time.
In order to prevent disruption of the calcification of marine organisms and the resultant risk of fundamentally altering marine food webs, the following guard rail should be obeyed: the pH of near surface waters should not drop more than 0.2 units below the pre-industrial average value in any larger ocean region (nor in the global mean).
One policy target related to ocean acidity is the magnitude of future global warming. Parties to the United Nations Framework Convention on Climate Change (UNFCCC) adopted a target of limiting warming to below 2 °C, relative to the pre-industrial level. Meeting this target would require substantial reductions in anthropogenic CO2 emissions.
Limiting global warming to below 2 °C would imply a reduction in surface ocean pH of 0.16 from pre-industrial levels. This would represent a substantial decline in surface ocean pH.
On September 25, 2015, USEPA denied a June 30, 2015, citizens petition that asked EPA to regulate CO2 under TSCA in order to mitigate ocean acidification. In the denial, EPA said that risks from ocean acidification were being "more efficiently and effectively addressed" under domestic actions, e.g., under the Presidential Climate Action Plan, and that multiple avenues are being pursued to work with and in other nations to reduce emissions and deforestation and promote clean energy and energy efficiency.
On March 28, 2017 the US by executive order rescinded the Climate Action Plan. On June 1, 2017 it was announced the US would withdraw from the Paris accords, and on June 12, 2017 that the US would abstain from the G7 Climate Change Pledge, two major international efforts to reduce CO2 emissions.

Climate engineering

Climate engineering (mitigating temperature or pH effects of emissions) has been proposed as a possible response to ocean acidification. The IAP (2009) statement cautioned against climate engineering as a policy response:
Mitigation approaches such as adding chemicals to counter the effects of acidification are likely to be expensive, only partly effective and only at a very local scale, and may pose additional unanticipated risks to the marine environment. There has been very little research on the feasibility and impacts of these approaches. Substantial research is needed before these techniques could be applied.
Reports by the WGBU (2006), the UK's Royal Society (2009), and the US National Research Council (2011) warned of the potential risks and difficulties associated with climate engineering.

Iron fertilization

Iron fertilization of the ocean could stimulate photosynthesis in phytoplankton. The phytoplankton would convert the ocean's dissolved carbon dioxide into carbohydrate and oxygen gas, some of which would sink into the deeper ocean before oxidizing. More than a dozen open-sea experiments confirmed that adding iron to the ocean increases photosynthesis in phytoplankton by up to 30 times. While this approach has been proposed as a potential solution to the ocean acidification problem, mitigation of surface ocean acidification might increase acidification in the less-inhabited deep ocean.
A report by the UK's Royal Society (2009) reviewed the approach for effectiveness, affordability, timeliness and safety. The rating for affordability was "medium", or "not expected to be very cost-effective". For the other three criteria, the ratings ranged from "low" to "very low" (i.e., not good). For example, in regards to safety, the report found a "[high] potential for undesirable ecological side effects", and that ocean fertilization "may increase anoxic regions of ocean ('dead zones')".

Carbon cycle

From Wikipedia, the free encyclopedia

Movement of carbon between land, atmosphere, and ocean in billions of tons per year. Yellow numbers are natural fluxes, red are human contributions, white are stored carbon. The effects of volcanic and tectonic activity are not included.
 
The carbon cycle is the biogeochemical cycle by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the Earth. Carbon is the main component of biological compounds as well as a major component of many minerals such as limestone. Along with the nitrogen cycle and the water cycle, the carbon cycle comprises a sequence of events that are key to make Earth capable of sustaining life. It describes the movement of carbon as it is recycled and reused throughout the biosphere, as well as long-term processes of carbon sequestration to and release from carbon sinks

The carbon cycle was discovered by Joseph Priestley and Antoine Lavoisier, and popularized by Humphry Davy.

Main components

The global carbon cycle is now usually divided into the following major reservoirs of carbon interconnected by pathways of exchange:
The carbon exchanges between reservoirs occur as the result of various chemical, physical, geological, and biological processes. The ocean contains the largest active pool of carbon near the surface of the Earth. The natural flows of carbon between the atmosphere, ocean, terrestrial ecosystems, and sediments are fairly balanced so that carbon levels would be roughly stable without human influence.

Atmosphere

The ocean and land have continued to absorb about half of all carbon dioxide emissions into the atmosphere, even as anthropogenic emissions have risen dramatically in recent decades. It remains unclear if carbon absorption will continue at this rate.
 
Epiphytes on electric wires. This kind of plant takes both CO2 and water from the atmosphere for living and growing.
 
Carbon in the Earth's atmosphere exists in two main forms: carbon dioxide and methane. Both of these gases absorb and retain heat in the atmosphere and are partially responsible for the greenhouse effect. Methane produces a larger greenhouse effect per volume as compared to carbon dioxide, but it exists in much lower concentrations and is more short-lived than carbon dioxide, making carbon dioxide the more important greenhouse gas of the two.

Carbon dioxide is removed from the atmosphere primarily through photosynthesis and enters the terrestrial and oceanic biospheres. Carbon dioxide also dissolves directly from the atmosphere into bodies of water (ocean, lakes, etc.), as well as dissolving in precipitation as raindrops fall through the atmosphere. When dissolved in water, carbon dioxide reacts with water molecules and forms carbonic acid, which contributes to ocean acidity. It can then be absorbed by rocks through weathering. It also can acidify other surfaces it touches or be washed into the ocean.

Human activities over the past two centuries have significantly increased the amount of carbon in the atmosphere, mainly in the form of carbon dioxide, both by modifying ecosystems' ability to extract carbon dioxide from the atmosphere and by emitting it directly, e.g., by burning fossil fuels and manufacturing concrete.

In the extremely far future, the carbon cycle will likely speed up the rate of carbon dioxide is absorbed into the soil from carbonate–silicate cycle. This is mainly caused by the increased luminosity of the Sun, which speeds up the rate of surface weathering. This will eventually cause most of the carbon dioxide in the atmosphere to be squelched into the Earth's crust as carbonate. Though volcanoes will continue to pump carbon dioxide into the atmosphere in the short term, it will not be enough to keep the carbon dioxide level stable in the long term. Once the carbon dioxide level falls below 50 particles per million, C3 photosynthesis will no longer be possible. This is expected to occur about 600 million years from now.

Once the oceans on the Earth evaporate in about 1.1 billion years from now, plate tectonics will very likely stop due to the lack of water to lubricate them. The lack of volcanoes pumping out carbon dioxide will cause the carbon cycle to end between 1 billion and 2 billion years into the future.

Terrestrial biosphere

A portable soil respiration system measuring soil CO2 flux
 
The terrestrial biosphere includes the organic carbon in all land-living organisms, both alive and dead, as well as carbon stored in soils. About 500 gigatons of carbon are stored above ground in plants and other living organisms, while soil holds approximately 1,500 gigatons of carbon. Most carbon in the terrestrial biosphere is organic carbon, while about a third of soil carbon is stored in inorganic forms, such as calcium carbonate. Organic carbon is a major component of all organisms living on earth. Autotrophs extract it from the air in the form of carbon dioxide, converting it into organic carbon, while heterotrophs receive carbon by consuming other organisms.

Because carbon uptake in the terrestrial biosphere is dependent on biotic factors, it follows a diurnal and seasonal cycle. In CO2 measurements, this feature is apparent in the Keeling curve. It is strongest in the northern hemisphere because this hemisphere has more land mass than the southern hemisphere and thus more room for ecosystems to absorb and emit carbon. 

Carbon leaves the terrestrial biosphere in several ways and on different time scales. The combustion or respiration of organic carbon releases it rapidly into the atmosphere. It can also be exported into the ocean through rivers or remain sequestered in soils in the form of inert carbon. Carbon stored in soil can remain there for up to thousands of years before being washed into rivers by erosion or released into the atmosphere through soil respiration. Between 1989 and 2008 soil respiration increased by about 0.1% per year. In 2008, the global total of CO2 released by soil respiration was roughly 98 billion tonnes, about 10 times more carbon than humans are now putting into the atmosphere each year by burning fossil fuel (this does not represent a net transfer of carbon from soil to atmosphere, as the respiration is largely offset by inputs to soil carbon). There are a few plausible explanations for this trend, but the most likely explanation is that increasing temperatures have increased rates of decomposition of soil organic matter, which has increased the flow of CO2. The length of carbon sequestering in soil is dependent on local climatic conditions and thus changes in the course of climate change.

Ocean

The ocean can be conceptually divided into a surface layer within which water makes frequent (daily to annual) contact with the atmosphere, and a deep layer below the typically mixed layer depth of a few hundred meters or less, within which the time between consecutive contacts may be centuries. The dissolved inorganic carbon (DIC) in the surface layer is exchanged rapidly with the atmosphere, maintaining equilibrium. Partly because its concentration of DIC is about 15% higher but mainly due to its larger volume, the deep ocean contains far more carbon—it's the largest pool of actively cycled carbon in the world, containing 50 times more than the atmosphere—but the timescale to reach equilibrium with the atmosphere is hundreds of years: the exchange of carbon between the two layers, driven by thermohaline circulation, is slow.

Carbon enters the ocean mainly through the dissolution of atmospheric carbon dioxide, a small fraction of which is converted into carbonate. It can also enter the ocean through rivers as dissolved organic carbon. It is converted by organisms into organic carbon through photosynthesis and can either be exchanged throughout the food chain or precipitated into the ocean's deeper, more carbon-rich layers as dead soft tissue or in shells as calcium carbonate. It circulates in this layer for long periods of time before either being deposited as sediment or, eventually, returned to the surface waters through thermohaline circulation. Oceans are basic (~pH 8.2), hence CO2 acidification shifts the pH of the ocean towards neutral. 

Oceanic absorption of CO2 is one of the most important forms of carbon sequestering limiting the human-caused rise of carbon dioxide in the atmosphere. However, this process is limited by a number of factors. CO2 absorption makes water more acidic, which affects ocean biosystems. The projected rate of increasing oceanic acidity could slow the biological precipitation of calcium carbonates, thus decreasing the ocean's capacity to absorb carbon dioxide.

Earth's interior

The geologic component of the carbon cycle operates slowly in comparison to the other parts of the global carbon cycle. It is one of the most important determinants of the amount of carbon in the atmosphere, and thus of global temperatures.

Most of the earth's carbon is stored inertly in the earth's lithosphere. Much of the carbon stored in the earth's mantle was stored there when the earth formed. Some of it was deposited in the form of organic carbon from the biosphere. Of the carbon stored in the geosphere, about 80% is limestone and its derivatives, which form from the sedimentation of calcium carbonate stored in the shells of marine organisms. The remaining 20% is stored as kerogens formed through the sedimentation and burial of terrestrial organisms under high heat and pressure. Organic carbon stored in the geosphere can remain there for millions of years.

Carbon can leave the geosphere in several ways. Carbon dioxide is released during the metamorphosis of carbonate rocks when they are subducted into the earth's mantle. This carbon dioxide can be released into the atmosphere and ocean through volcanoes and hotspots. It can also be removed by humans through the direct extraction of kerogens in the form of fossil fuels. After extraction, fossil fuels are burned to release energy, thus emitting the carbon they store into the atmosphere.

Human influence

Human perturbation of the carbon cycle
Human activity since the industrial era has changed the balance in the natural carbon cycle. Units are in gigatons.
 
CO2 in Earth's atmosphere if half of global-warming emissions are not absorbed.
(NASA computer simulation).

Since the industrial revolution, human activity has modified the carbon cycle by changing its components' functions and directly adding carbon to the atmosphere.

The largest human impact on the carbon cycle is through direct emissions from burning fossil fuels, which transfers carbon from the geosphere into the atmosphere. The rest of this increase is caused mostly by changes in land-use, particularly deforestation.

Another direct human impact on the carbon cycle is the chemical process of calcination of limestone for clinker production, which releases CO2. Clinker is an industrial precursor of cement

Humans also influence the carbon cycle indirectly by changing the terrestrial and oceanic biosphere. Over the past several centuries, direct and indirect human-caused land use and land cover change (LUCC) has led to the loss of biodiversity, which lowers ecosystems' resilience to environmental stresses and decreases their ability to remove carbon from the atmosphere. More directly, it often leads to the release of carbon from terrestrial ecosystems into the atmosphere. Deforestation for agricultural purposes removes forests, which hold large amounts of carbon, and replaces them, generally with agricultural or urban areas. Both of these replacement land cover types store comparatively small amounts of carbon so that the net product of the process is that more carbon stays in the atmosphere.

Other human-caused changes to the environment change ecosystems' productivity and their ability to remove carbon from the atmosphere. Air pollution, for example, damages plants and soils, while many agricultural and land use practices lead to higher erosion rates, washing carbon out of soils and decreasing plant productivity. 

Humans also affect the oceanic carbon cycle. Current trends in climate change lead to higher ocean temperatures, thus modifying ecosystems. Also, acid rain and polluted runoff from agriculture and industry change the ocean's chemical composition. Such changes can have dramatic effects on highly sensitive ecosystems such as coral reefs, thus limiting the ocean's ability to absorb carbon from the atmosphere on a regional scale and reducing oceanic biodiversity globally. 

Arctic methane emissions indirectly caused by anthropogenic global warming also affect the carbon cycle and contribute to further warming in what is known as climate change feedback.

On 12 November 2015, NASA scientists reported that human-made carbon dioxide (CO2) continues to increase, reaching levels not seen in hundreds of thousands of years: currently, the rate carbon dioxide released by the burning of fossil fuels is about double the net uptake by vegetation and the ocean.

Supermassive black hole (updated)

From Wikipedia, the free encyclopedia

Artist concept of a SMBH consuming matter from a nearby star
 
A supermassive black hole (SMBH or sometimes SBH) is the largest type of black hole, containing a mass of the order of hundreds of thousands, to billions times, the mass of the Sun (M). This is a class of astronomical objects that has undergone gravitational collapse, leaving behind a spheroidal region of space from which nothing can escape; not even light. Observational evidence indicates that all, or nearly all, massive galaxies contain a supermassive black hole, located at the galaxy's center. In the case of the Milky Way, the supermassive black hole corresponds to the location of Sagittarius A* at the Galactic Core. Accretion of interstellar gas onto supermassive black holes is the process responsible for powering quasars and other types of active galactic nuclei.

Description

Supermassive black holes have properties that distinguish them from lower-mass classifications. First, the average density of a SMBH (defined as the mass of the black hole divided by the volume within its Schwarzschild radius) can be less than the density of water in the case of some SMBHs. This is because the Schwarzschild radius is directly proportional to its mass. Since the volume of a spherical object (such as the event horizon of a non-rotating black hole) is directly proportional to the cube of the radius, the density of a black hole is inversely proportional to the square of the mass, and thus higher mass black holes have lower average density. In addition, the tidal forces in the vicinity of the event horizon are significantly weaker for supermassive black holes. The tidal force on a body at the event horizon is likewise inversely proportional to the square of the mass: a person on the surface of the Earth and one at the event horizon of a 10 million M black hole experience about the same tidal force between their head and feet. Unlike with stellar mass black holes, one would not experience significant tidal force until very deep into the black hole.

History of research

The story of how supermassive black holes were found began with the investigation by Maarten Schmidt of the radio source 3C 273 in 1963. Initially this was thought to be a star, but the spectrum proved puzzling. It was determined to be hydrogen emission lines that had been red shifted, indicating the object was moving away from the Earth. Hubble's law showed that the object was located several billion light-years away, and thus must be emitting the energy equivalent of hundreds of galaxies. The rate of light variations of the source, dubbed a quasi-stellar object, or quasar, suggested the emitting region had a diameter of one parsec or less. Four such sources had been identified by 1964.

In 1963, Fred Hoyle and W. A. Fowler proposed the existence of hydrogen burning supermassive stars (SMS) as an explanation for the compact dimensions and high energy output of quasars. These would have a mass of about 105 – 109 M. However, Richard Feynman noted stars above a certain critical mass are dynamically unstable and would collapse into a black hole, at least if they were non-rotating. Fowler then proposed that these supermassive stars would undergo a series of collapse and explosion oscillations, thereby explaining the energy output pattern. Appenzeller and Fricke (1972) built models of this behavior, but found that the resulting star would still undergo collapse, concluding that a non-rotating 0.75×106 M SMS "cannot escape collapse to a black hole by burning its hydrogen through the CNO cycle".

Edwin E. Salpeter and Yakov B. Zel'dovich made the proposal in 1964 that matter falling onto a massive compact object would explain the properties of quasars. It would require a mass of around 108 M to match the output of these objects. Donald Lynden-Bell noted in 1969 that the infalling gas would form a flat disk that spirals into the central "Schwarzschild throat". He noted that the relatively low output of nearby galactic cores implied these were old, inactive quasars. Meanwhile, in 1967, Martin Ryle and Malcolm Longair suggested that nearly all sources of extra-galactic radio emission could be explained by a model in which particles are ejected from galaxies at relativistic velocities; meaning they are moving near the speed of light. Martin Ryle, Malcolm Longair, and Peter Scheuer then proposed in 1973 that the compact central nucleus could be the original energy source for these relativistic jets.

Arthur M. Wolfe and Geoffrey Burbidge noted in 1970 that the large velocity dispersion of the stars in the nuclear region of elliptical galaxies could only be explained by a large mass concentration at the nucleus; larger than could be explained by ordinary stars. They showed that the behavior could be explained by a massive black hole with up to 1010 M, or a large number of smaller black holes with masses below 103 M. Dynamical evidence for a massive dark object was found at the core of the active elliptical galaxy Messier 87 in 1978, initially estimated at 5×109 M. Discovery of similar behavior in other galaxies soon followed, including the Andromeda Galaxy in 1984 and the Sombrero Galaxy in 1988.

Donald Lynden-Bell and Martin Rees hypothesized in 1971 that the center of the Milky Way galaxy would contain a massive black hole. Sagittarius A* was discovered and named on February 13 and 15, 1974, by astronomers Bruce Balick and Robert Brown using the Green Bank Interferometer of the National Radio Astronomy Observatory. They discovered a radio source that emits synchrotron radiation; it was found to be dense and immobile because of its gravitation. This was, therefore, the first indication that a supermassive black hole exists in the center of the Milky Way.

The Hubble Space Telescope, launched in 1990, provided the resolution needed to perform more refined observations of galactic nuclei. In 1994 the Faint Object Spectrograph on the Hubble was used to observe Messier 87, finding that ionized gas was orbiting the central part of the nucleus at a velocity of ±500 km/s. The data indicated a concentrated mass of (2.4±0.7)×109 M lay within a 0.25 span, providing strong evidence of a supermassive black hole. Using the Very Long Baseline Array to observe Messier 106 , Miyoshi et al. (1995) were able to demonstrate that the emission from an H2O maser in this galaxy came from a gaseous disk in the nucleus that orbited a concentrated mass of 3.6×107 M, which was constrained to a radius of 0.13 parsecs. They noted that a swarm of solar mass black holes within a radius this small would not survive for long without undergoing collisions, making a supermassive black hole the sole viable candidate.

Formation

An artist's conception of a supermassive black hole and accretion disk
 
The origin of supermassive black holes remains an open field of research. Astrophysicists agree that once a black hole is in place in the center of a galaxy, it can grow by accretion of matter and by merging with other black holes. There are, however, several hypotheses for the formation mechanisms and initial masses of the progenitors, or "seeds", of supermassive black holes. 

One hypothesis is that the seeds are black holes of tens or perhaps hundreds of solar masses that are left behind by the explosions of massive stars and grow by accretion of matter. Another model hypothesizes that before the first stars, large gas clouds could collapse into a "quasi-star", which would in turn collapse into a black hole of around 20 M. The "quasi-star" becomes unstable to radial perturbations because of electron-positron pair production in its core and could collapse directly into a black hole without a supernova explosion (which would eject most of its mass, preventing the black hole from growing as fast). Given sufficient mass nearby, the black hole could accrete to become intermediate-mass black hole and possibly a SMBH if the accretion rate persists.

Artist's impression of the huge outflow ejected from the quasar SDSS J1106+1939
 
Artist's illustration of galaxy with jets from a supermassive black hole.
 
Another model involves a dense stellar cluster undergoing core-collapse as the negative heat capacity of the system drives the velocity dispersion in the core to relativistic speeds. Finally, primordial black holes could have been produced directly from external pressure in the first moments after the Big Bang. These primordial black holes would then have more time than any of the above models to accrete, allowing them sufficient time to reach supermassive sizes. Formation of black holes from the deaths of the first stars has been extensively studied and corroborated by observations. The other models for black hole formation listed above are theoretical. 

The difficulty in forming a supermassive black hole resides in the need for enough matter to be in a small enough volume. This matter needs to have very little angular momentum in order for this to happen. Normally, the process of accretion involves transporting a large initial endowment of angular momentum outwards, and this appears to be the limiting factor in black hole growth. This is a major component of the theory of accretion disks. Gas accretion is the most efficient and also the most conspicuous way in which black holes grow. The majority of the mass growth of supermassive black holes is thought to occur through episodes of rapid gas accretion, which are observable as active galactic nuclei or quasars. Observations reveal that quasars were much more frequent when the Universe was younger, indicating that supermassive black holes formed and grew early. A major constraining factor for theories of supermassive black hole formation is the observation of distant luminous quasars, which indicate that supermassive black holes of billions of solar masses had already formed when the Universe was less than one billion years old. This suggests that supermassive black holes arose very early in the Universe, inside the first massive galaxies. 

Artist’s impression of stars born in winds from supermassive black holes.
 
A vacancy exists in the observed mass distribution of black holes. Black holes that spawn from dying stars have masses 5–80 M. The minimal supermassive black hole is approximately a hundred thousand solar masses. Mass scales between these ranges are dubbed intermediate-mass black holes. Such a gap suggests a different formation process. However, some models suggest that ultraluminous X-ray sources (ULXs) may be black holes from this missing group. 

There is, however, an upper limit to how large supermassive black holes can grow. So-called ultramassive black holes (UMBHs), which are at least ten times the size of supermassive black holes, appear to have a theoretical upper limit of around 50 billion solar masses, as anything above this slows growth down to a crawl (the slowdown tends to start around 10 billion solar masses) and causes the unstable accretion disk surrounding the black hole to coalesce into stars that orbit it.

A small minority of sources argue that distant supermassive black holes whose large size is hard to explain so soon after the Big Bang, such as ULAS J1342+0928, may be evidence that our universe is the result of a Big Bounce, instead of a Big Bang, with these supermassive black holes being formed before the Big Bounce.

Doppler measurements

Side view of black hole with transparent toroidal ring of ionised matter according to a proposed model for Sgr A*. This image shows the result of bending of light from behind the black hole, and it also shows the asymmetry arising by the Doppler effect from the extremely high orbital speed of the matter in the ring.
 
Some of the best evidence for the presence of black holes is provided by the Doppler effect whereby light from nearby orbiting matter is red-shifted when receding and blue-shifted when advancing. For matter very close to a black hole the orbital speed must be comparable with the speed of light, so receding matter will appear very faint compared with advancing matter, which means that systems with intrinsically symmetric discs and rings will acquire a highly asymmetric visual appearance. This effect has been allowed for in modern computer generated images such as the example presented here, based on a plausible model for the supermassive black hole in Sgr A* at the centre of our own galaxy. However the resolution provided by presently available telescope technology is still insufficient to confirm such predictions directly. 

What already has been observed directly in many systems are the lower non-relativistic velocities of matter orbiting further out from what are presumed to be black holes. Direct Doppler measures of water masers surrounding the nuclei of nearby galaxies have revealed a very fast Keplerian motion, only possible with a high concentration of matter in the center. Currently, the only known objects that can pack enough matter in such a small space are black holes, or things that will evolve into black holes within astrophysically short timescales. For active galaxies farther away, the width of broad spectral lines can be used to probe the gas orbiting near the event horizon. The technique of reverberation mapping uses variability of these lines to measure the mass and perhaps the spin of the black hole that powers active galaxies. 

Gravitation from supermassive black holes in the center of many galaxies is thought to power active objects such as Seyfert galaxies and quasars.

An empirical correlation between the size of supermassive black holes and the stellar velocity dispersion of a galaxy bulge is called the M-sigma relation.

In the Milky Way

Inferred orbits of 6 stars around supermassive black hole candidate Sagittarius A* at the Milky Way galactic center
 
Astronomers are very confident that the Milky Way galaxy has a supermassive black hole at its center, 26,000 light-years from the Solar System, in a region called Sagittarius A* because:
  • The star S2 follows an elliptical orbit with a period of 15.2 years and a pericenter (closest distance) of 17 light-hours (1.8×1013 m or 120 AU) from the center of the central object.
  • From the motion of star S2, the object's mass can be estimated as 4.1 million M, or about 8.2×1036 kg.
  • The radius of the central object must be less than 17 light-hours, because otherwise S2 would collide with it. Observations of the star S14 indicate that the radius is no more than 6.25 light-hours, about the diameter of Uranus' orbit.
  • No known astronomical object other than a black hole can contain 4.1 million M in this volume of space.
Infrared observations of bright flare activity near Sagittarius A* show orbital motion of plasma with a period of 45±15 min at a separation of six to ten times the gravitational radius of the candidate SMBH. This emission is consistent with a circularized orbit of a polarized "hot spot" on an accretion disk in a strong magnetic field. The radiating matter is orbiting at 30% of the speed of light just outside the innermost stable circular orbit.

On January 5, 2015, NASA reported observing an X-ray flare 400 times brighter than usual, a record-breaker, from Sagittarius A*. The unusual event may have been caused by the breaking apart of an asteroid falling into the black hole or by the entanglement of magnetic field lines within gas flowing into Sagittarius A*, according to astronomers.

Detection of an unusually bright X-ray flare from Sagittarius A*, a supermassive black hole in the center of the Milky Way galaxy.

Outside the Milky Way

Artist's impression of a supermassive black hole tearing apart a star. Below: supermassive black hole devouring a star in galaxy RX J1242-11 – X-ray (left) and optical (right).
 
Unambiguous dynamical evidence for supermassive black holes exists only in a handful of galaxies; these include the Milky Way, the Local Group galaxies M31 and M32, and a few galaxies beyond the Local Group, e.g. NGC 4395. In these galaxies, the mean square (or rms) velocities of the stars or gas rises proportionally to 1/r near the center, indicating a central point mass. In all other galaxies observed to date, the rms velocities are flat, or even falling, toward the center, making it impossible to state with certainty that a supermassive black hole is present. Nevertheless, it is commonly accepted that the center of nearly every galaxy contains a supermassive black hole. The reason for this assumption is the M-sigma relation, a tight (low scatter) relation between the mass of the hole in the 10 or so galaxies with secure detections, and the velocity dispersion of the stars in the bulges of those galaxies. This correlation, although based on just a handful of galaxies, suggests to many astronomers a strong connection between the formation of the black hole and the galaxy itself.

Hubble Space Telescope photograph of the 4,400 light-year long relativistic jet of Messier 87, which is matter being ejected by the 6.4×109 M supermassive black hole at the center of the galaxy
 
The nearby Andromeda Galaxy, 2.5 million light-years away, contains a (1.1–2.3)×108 (110–230 million) M central black hole, significantly larger than the Milky Way's. The largest supermassive black hole in the Milky Way's vicinity appears to be that of M87, at a mass of (6.4±0.5)×109 (c. 6.4 billion) M at a distance of 53.5 million light-years. The supergiant elliptical galaxy NGC 4889, at a distance of 336 million light-years away in the Coma Berenices constellation, contains a black hole measured to be 2.1×1010 (21 billion) M.

Masses of black holes in quasars can be estimated via indirect methods that are subject to substantial uncertainty. The quasar TON 618 is an example of an object with an extremely large black hole, estimated at 6.6×1010 (66 billion) M. Its redshift is 2.219. Other examples of quasars with large estimated black hole masses are the hyperluminous quasar APM 08279+5255, with an estimated mass of 2.3×1010 (23 billion) M, and the quasar S5 0014+81, with a mass of 4.0×1010 (40 billion) M, or 10,000 times the mass of the black hole at the Milky Way Galactic Center. 

Some galaxies, such as the galaxy 4C +37.11, appear to have two supermassive black holes at their centers, forming a binary system. If they collided, the event would create strong gravitational waves. Binary supermassive black holes are believed to be a common consequence of galactic mergers. The binary pair in OJ 287, 3.5 billion light-years away, contains the most massive black hole in a pair, with a mass estimated at 18 billion M. In 2011, a super-massive black hole was discovered in the dwarf galaxy Henize 2-10, which has no bulge. The precise implications for this discovery on black hole formation are unknown, but may indicate that black holes formed before bulges.

On March 28, 2011, a supermassive black hole was seen tearing a mid-size star apart. That is the only likely explanation of the observations that day of sudden X-ray radiation and the follow-up broad-band observations. The source was previously an inactive galactic nucleus, and from study of the outburst the galactic nucleus is estimated to be a SMBH with mass of the order of a million solar masses. This rare event is assumed to be a relativistic outflow (material being emitted in a jet at a significant fraction of the speed of light) from a star tidally disrupted by the SMBH. A significant fraction of a solar mass of material is expected to have accreted onto the SMBH. Subsequent long-term observation will allow this assumption to be confirmed if the emission from the jet decays at the expected rate for mass accretion onto a SMBH. 

File:A Black Hole’s Dinner is Fast Approaching - Part 2.ogv 
A gas cloud with several times the mass of the Earth is accelerating towards a supermassive black hole at the center of the Milky Way.
 
In 2012, astronomers reported an unusually large mass of approximately 17 billion M for the black hole in the compact, lenticular galaxy NGC 1277, which lies 220 million light-years away in the constellation Perseus. The putative black hole has approximately 59 percent of the mass of the bulge of this lenticular galaxy (14 percent of the total stellar mass of the galaxy). Another study reached a very different conclusion: this black hole is not particularly overmassive, estimated at between 2 and 5 billion M with 5 billion M being the most likely value. On 28 February 2013 astronomers reported on the use of the NuSTAR satellite to accurately measure the spin of a supermassive black hole for the first time, in NGC 1365, reporting that the event horizon was spinning at almost the speed of light.

Hubble view of a supermassive black hole "burping".
 
In September 2014, data from different X-ray telescopes has shown that the extremely small, dense, ultracompact dwarf galaxy M60-UCD1 hosts a 20 million solar mass black hole at its center, accounting for more than 10% of the total mass of the galaxy. The discovery is quite surprising, since the black hole is five times more massive than the Milky Way's black hole despite the galaxy being less than five-thousandths the mass of the Milky Way. 

Some galaxies, however, lack any supermassive black holes in their centers. Although most galaxies with no supermassive black holes are very small, dwarf galaxies, one discovery remains mysterious: The supergiant elliptical cD galaxy A2261-BCG has not been found to contain an active supermassive black hole, despite the galaxy being one of the largest galaxies known; ten times the size and one thousand times the mass of the Milky Way. Since a supermassive black hole will only be visible while it is accreting, a supermassive black hole can be nearly invisible, except in its effects on stellar orbits. 

In December 2017, astronomers reported the detection of the most distant quasar currently known, ULAS J1342+0928, containing the most distant supermassive black hole, at a reported redshift of z = 7.54, surpassing the redshift of 7 for the previously known most distant quasar ULAS J1120+0641.

Hawking evaporation

If black holes evaporate via Hawking radiation, a supermassive black hole with a mass of 1011 (100 billion) M will evaporate in around 2×10100 years.

Some monster black holes in the universe are predicted to continue to grow up to perhaps 1014 M during the collapse of superclusters of galaxies. Even these would evaporate over a timescale of up to 10106 years.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...