Search This Blog

Monday, July 29, 2019

Theory of mind

From Wikipedia, the free encyclopedia
 
Theory of mind is the ability to attribute mental states — beliefs, intents, desires, emotions, knowledge, etc. — to oneself, and to others, and to understand that others have beliefs, desires, intentions, and perspectives that are different from one's own. Theory of mind is crucial for everyday human social interactions and is used when analyzing, judging, and inferring others' behaviors. Deficits can occur in people with autism spectrum disorders, schizophrenia, attention deficit hyperactivity disorder, cocaine addiction, and brain damage suffered from alcohol's neurotoxicity. Although philosophical approaches to this exist, the theory of mind as such is distinct from the philosophy of mind.

Definition

Theory of mind is a theory insofar as the mind is the only thing being directly observed. The presumption that others have a mind is termed a theory of mind because each human can only intuit the existence of their own mind through introspection, and no one has direct access to the mind of another. It is typically assumed that others have minds analogous to one's own, and this assumption is based on the reciprocal, social interaction, as observed in joint attention, the functional use of language, and the understanding of others' emotions and actions. Having theory of mind allows one to attribute thoughts, desires, and intentions to others, to predict or explain their actions, and to posit their intentions. As originally defined, it enables one to understand that mental states can be the cause of—and thus be used to explain and predict—the behavior of others. Being able to attribute mental states to others and understanding them as causes of behavior implies, in part, that one must be able to conceive of the mind as a "generator of representations". If a person does not have a complete theory of mind, it may be a sign of cognitive or developmental impairment. 

Theory of mind appears to be an innate potential ability in humans that requires social and other experience over many years for its full development. Different people may develop more, or less, effective theory of mind. Neo-Piagetian theories of cognitive development maintain that theory of mind is a byproduct of a broader hypercognitive ability of the human mind to register, monitor, and represent its own functioning.

Empathy is a related concept, meaning the recognition and understanding of the states of mind of others, including their beliefs, desires and particularly emotions. This is often characterized as the ability to "put oneself into another's shoes". Recent neuro-ethological studies of animal behaviour suggest that even rodents may exhibit ethical or empathetic abilities. While empathy is known as emotional perspective-taking, theory of mind is defined as cognitive perspective-taking.

Research on theory of mind, in humans and animals, adults and children, normally and atypically developing, has grown rapidly in the 35 years since Premack and Guy Woodruff's paper, "Does the chimpanzee have a theory of mind?" The emerging field of social neuroscience has also begun to address this debate, by imaging the brains of humans while they perform tasks demanding the understanding of an intention, belief or other mental state in others. 

An alternative account of theory of mind is given within operant psychology and provides significant empirical evidence for a functional account of both perspective-taking and empathy. The most developed operant approach is founded on research on derived relational responding and is subsumed within what is called relational frame theory. According to this view, empathy and perspective-taking comprise a complex set of derived relational abilities based on learning to discriminate and respond verbally to ever more complex relations between self, others, place, and time, and through established relations.

Philosophical and psychological roots

Contemporary discussions of Theory of Mind have their roots in philosophical debate—most broadly, from the time of Descartes' Second Meditation, which set the groundwork for considering the science of the mind. Most prominent recently are two contrasting approaches in the philosophical literature, to theory of mind: theory-theory and simulation theory. The theory-theorist imagines a veritable theory—"folk psychology"—used to reason about others' minds. The theory is developed automatically and innately, though instantiated through social interactions. It is also closely related to person perception and attribution theory from social psychology. 

The intuitive assumption that others are minded is an apparent tendency we all share. We anthropomorphize non-human animals, inanimate objects, and even natural phenomena. Daniel Dennett referred to this tendency as taking an "intentional stance" toward things: we assume they have intentions, to help predict future behavior. However, there is an important distinction between taking an "intentional stance" toward something and entering a "shared world" with it. The intentional stance is a detached and functional theory we resort to during interpersonal interactions. A shared world is directly perceived and its existence structures reality itself for the perceiver. It is not just automatically applied to perception; it in many ways constitutes perception.

The philosophical roots of the relational frame theory (RFT) account of Theory of Mind arise from contextual psychology and refer to the study of organisms (both human and non-human) interacting in and with a historical and current situational context. It is an approach based on contextualism, a philosophy in which any event is interpreted as an ongoing act inseparable from its current and historical context and in which a radically functional approach to truth and meaning is adopted. As a variant of contextualism, RFT focuses on the construction of practical, scientific knowledge. This scientific form of contextual psychology is virtually synonymous with the philosophy of operant psychology.

Development

The study of which animals are capable of attributing knowledge and mental states to others, as well as the development of this ability in human ontogeny and phylogeny, has identified several behavioral precursors to theory of mind. Understanding attention, understanding of others' intentions, and imitative experience with other people are hallmarks of a theory of mind that may be observed early in the development of what later becomes a full-fledged theory. In studies with non-human animals and pre-verbal humans, in particular, researchers look to these behaviors preferentially in making inferences about mind. 

Simon Baron-Cohen identified the infant's understanding of attention in others, a social skill found by 7 to 9 months of age, as a "critical precursor" to the development of theory of mind. Understanding attention involves understanding that seeing can be directed selectively as attention, that the looker assesses the seen object as "of interest", and that seeing can induce beliefs. Attention can be directed and shared by the act of pointing, a joint attention behavior that requires taking into account another person's mental state, particularly whether the person notices an object or finds it of interest. Baron-Cohen speculates that the inclination to spontaneously reference an object in the world as of interest ("protodeclarative pointing") and to likewise appreciate the directed attention and interests of another may be the underlying motive behind all human communication.

Understanding of others' intentions is another critical precursor to understanding other minds because intentionality, or "aboutness", is a fundamental feature of mental states and events. The "intentional stance" has been defined by Daniel Dennett as an understanding that others' actions are goal-directed and arise from particular beliefs or desires. Both 2- and 3-year-old children could discriminate when an experimenter intentionally vs. accidentally marked a box with stickers as baited. Even earlier in ontogeny, Andrew N. Meltzoff found that 18-month-old infants could perform target manipulations that adult experimenters attempted and failed, suggesting the infants could represent the object-manipulating behavior of adults as involving goals and intentions. While attribution of intention (the box-marking) and knowledge (false-belief tasks) is investigated in young humans and nonhuman animals to detect precursors to a theory of mind, Gagliardi et al. have pointed out that even adult humans do not always act in a way consistent with an attributional perspective. In the experiment, adult human subjects made choices about baited containers when guided by confederates who could not see (and therefore, not know) which container was baited. 

Recent research in developmental psychology suggests that the infant's ability to imitate others lies at the origins of both theory of mind and other social-cognitive achievements like perspective-taking and empathy. According to Meltzoff, the infant's innate understanding that others are "like me" allows it to recognize the equivalence between the physical and mental states apparent in others and those felt by the self. For example, the infant uses his own experiences, orienting his head/eyes toward an object of interest to understand the movements of others who turn toward an object, that is, that they will generally attend to objects of interest or significance. Some researchers in comparative disciplines have hesitated to put a too-ponderous weight on imitation as a critical precursor to advanced human social-cognitive skills like mentalizing and empathizing, especially if true imitation is no longer employed by adults. A test of imitation by Alexandra Horowitz found that adult subjects imitated an experimenter demonstrating a novel task far less closely than children did. Horowitz points out that the precise psychological state underlying imitation is unclear and cannot, by itself, be used to draw conclusions about the mental states of humans. 

While much research has been done on infants, theory of mind develops continuously throughout childhood and into late adolescence as the synapses (neuronal connections) in the prefrontal cortex develop. The prefrontal cortex is thought to be involved in planning and decision-making. Children seem to develop theory of mind skills sequentially. The first skill to develop is the ability to recognize that others have diverse desires. Children are able to recognize that others have diverse beliefs soon after. The next skill to develop is recognizing that others have access to different knowledge bases. Finally, children are able to understand that others may have false beliefs and that others are capable of hiding emotions. While this sequence represents the general trend in skill acquisition, it seems that more emphasis is placed on some skills in certain cultures, leading to more valued skills to develop before those that are considered not as important. For example, in individualistic cultures such as the United States, a greater emphasis is placed on the ability to recognize that others have different opinions and beliefs. In a collectivistic culture, such as China, this skill may not be as important and therefore may not develop until later.

Language

There is evidence to believe that the development of theory of mind is closely intertwined with language development in humans. One meta-analysis showed a moderate to strong correlation (r = 0.43) between performance on theory of mind and language tasks. One might argue that this relationship is due solely to the fact that both language and theory of mind seem to begin to develop substantially around the same time in children (between ages 2–5). However, many other abilities develop during this same time period as well, and do not produce such high correlations with one another nor with theory of mind. There must be something else going on to explain the relationship between theory of mind and language. 

Pragmatic theories of communication assume that infants must possess an understanding of beliefs and mental states of others to infer the communicative content that proficient language users intend to convey. Since a verbal utterance is often underdetermined, and therefore, it can have different meanings depending on the actual context theory of mind abilities can play a crucial role in understanding the communicative and informative intentions of others and inferring the meaning of words. Some empirical results suggest that even 13-month-old infants have an early capacity for communicative mind-reading that enables them to infer what relevant information is transferred between communicative partners, which implies that human language relies at least partially on theory of mind skills.

Carol A. Miller posed further possible explanations for this relationship. One idea was that the extent of verbal communication and conversation involving children in a family could explain theory of mind development. The belief is that this type of language exposure could help introduce a child to the different mental states and perspectives of others. This has been suggested empirically by findings indicating that participation in family discussion predict scores on theory of mind tasks, as well as findings showing that deaf children who have hearing parents and may not be able to communicate with their parents much during early years of development tend to score lower on theory of mind tasks.

Another explanation of the relationship between language and theory of mind development has to do with a child's understanding of mental state words such as "think" and "believe". Since a mental state is not something that one can observe from behavior, children must learn the meanings of words denoting mental states from verbal explanations alone, requiring knowledge of the syntactic rules, semantic systems, and pragmatics of a language. Studies have shown that understanding of these mental state words predicts theory of mind in four-year-olds.

A third hypothesis is that the ability to distinguish a whole sentence ("Jimmy thinks the world is flat") from its embedded complement ("the world is flat") and understand that one can be true while the other can be false is related to theory of mind development. Recognizing these sentential complements as being independent of one another is a relatively complex syntactic skill and has been shown to be related to increased scores on theory of mind tasks in children.

In addition to these hypotheses, there is also evidence that the neural networks between the areas of the brain responsible for language and theory of mind are closely connected. The temporoparietal junction has been shown to be involved in the ability to acquire new vocabulary, as well as perceive and reproduce words. The temporoparietal junction also contains areas that specialize in recognizing faces, voices, and biological motion, in addition to theory of mind. Since all of these areas are located so closely together, it is reasonable to conclude that they work together. Moreover, studies have reported an increase in activity in the TPJ when patients are absorbing information through reading or images regarding other peoples' beliefs but not while observing information about physical control stimuli.

Theory of mind in adults

Neurotypical adults have the theory of mind concepts that they developed as children (concepts such as belief, desire, knowledge and intention). A focal question is how they use these concepts to meet the diverse demands of social life, ranging from snap decisions about how to trick an opponent in a competitive game, to keeping up with who knows what in a fast-moving conversation, to judging the guilt or innocence of the accused in a court of law.

Boaz Keysar, Dale Barr and colleagues found that adults often failed to use their theory of mind abilities to interpret a speaker’s message, even though they were perfectly well aware that the speaker lacked critical knowledge. Other studies converge in showing that adults are prone to “egocentric biases”, whereby they are influenced by their own beliefs, knowledge or preferences when judging those of other people, or else neglect other people’s perspectives entirely. There is also evidence that adults with greater memory and inhibitory capacity and greater motivation are more likely to use their theory of mind abilities.

In contrast, evidence from tasks looking for indirect effects of thinking about other people’s mental states suggests that adults may sometimes use their theory of mind automatically. Agnes Kovacs and colleagues measured the time it took adults to detect the presence of a ball as it was revealed from behind an occluder. They found that adults’ speed of response was influenced by whether or not an avatar in the scene thought there was a ball behind the occluder, even though adults were not asked to pay attention to what the avatar thought. Dana Samson and colleagues measured the time it took adults to judge the number of dots on the wall of a room. They found that adults responded more slowly when an avatar standing in the room happened to see fewer dots than they did, even when they had never been asked to pay attention to what the avatar could see. It has been questioned whether these “altercentric biases” truly reflect automatic processing of what another person is thinking or seeing, or whether they instead reflect attention and memory effects cued by the avatar, but not involving any representation of what they think or see.

Different theories have sought to explain these patterns of results. The idea that theory of mind is automatic is attractive because it would help explain how people keep up with the theory of mind demands of competitive games and fast-moving conversations. It might also explain evidence that human infants and some non-human species sometimes appear capable of theory of mind, despite their limited resources for memory and cognitive control. The idea that theory of mind is effortful and not automatic is attractive because it feels effortful to decide whether a defendant is guilty or innocent, or whether a negotiator is bluffing, and economy of effort would help explain why people sometimes neglect to use their theory of mind. Ian Apperly and Stephen Butterfill have suggested that people do in fact have “two systems” for theory of mind, in common with “two systems” accounts in many other areas of psychology. On this account, “system 1” is cognitively efficient and enables theory of mind for a limited but useful set of circumstances. “System 2” is cognitively effortful, but enables much more flexible theory of mind abilities. This account has been criticised by Peter Carruthers who suggests that the same core theory of mind abilities can be used in both simple and complex ways. The account has been criticised by Celia Heyes who suggests that “system 1” theory of mind abilities do not require representation of mental states of other people, and so are better thought of as “sub-mentalising”.

Aging

In older age, theory of mind capacities decline, irrespective of how exactly they are tested (e.g. stories, eyes, videos, false belief-video, false belief-other, faux pas). However, the decline in other cognitive functions is even stronger, suggesting that social cognition is somewhat preserved. In contrast to theory of mind, empathy shows no impairments in aging.

There are two kinds of theory of mind representations: cognitive (concerning the mental states, beliefs, thoughts, and intentions of others) and affective (concerning the emotions of others). Cognitive theory of mind is further separated into first order (e.g., I think she thinks that…) and second order (e.g., he thinks that she thinks that…). There is evidence that cognitive and affective theory of mind processes are functionally independent from one another. In studies of Alzheimer’s disease, which typically occurs in older adults, the patients display impairment with second order cognitive theory of mind, but usually not with first order cognitive or affective theory of mind. However, it is difficult to discern a clear pattern of theory of mind variation due to age. There have been many discrepancies in the data collected thus far, likely due to small sample sizes and the use of different tasks that only explore one aspect of theory of mind. Many researchers suggest that the theory of mind impairment is simply due to the normal decline in cognitive function.

Cultural variations

Researchers have proposed that five key aspects of theory of mind develop sequentially for all children between the ages of three to five. This five-step theory of mind scale consists of the development of diverse desires (DD), diverse beliefs (DB), knowledge access (KA), false beliefs (FB), and hidden emotions (HE). Australian, American and European children acquire theory of mind in this exact order, and studies with children in Canada, India, Peru, Samoa, and Thailand indicate that they all pass the false belief task at around the same time, suggesting that the children develop theory of mind consistently around the world.

However, children from Iran and China develop theory of mind in a slightly different order. Although they begin the development of theory of mind around the same time, toddlers from these countries understand knowledge access (KA) before Western children but take longer to understand false beliefs (FB). Researchers believe this swap in the developmental order is related to the culture of collectivism in Iran and China, which emphasizes interdependence and shared knowledge as opposed to the culture of individualism in Western countries, which promotes individuality and conflicting opinions. Because of these different cultural values, Iranian and Chinese children might take longer to understand that other people have different, sometimes false, beliefs. This suggests that the development of theory of mind is not universal and solely determined by innate brain processes but also influenced by social and cultural factors.

Empirical investigation

Whether children younger than 3 or 4 years old may have any theory of mind is a topic of debate among researchers. It is a challenging question, due to the difficulty of assessing what pre-linguistic children understand about others and the world. Tasks used in research into the development of Theory of Mind must take into account the umwelt—(the German word Umwelt means "environment" or "surrounding world")—of the pre-verbal child.

False-belief task

One of the most important milestones in theory of mind development is gaining the ability to attribute false belief: that is, to recognize that others can have beliefs about the world that are diverging. To do this, it is suggested, one must understand how knowledge is formed, that people's beliefs are based on their knowledge, that mental states can differ from reality, and that people's behavior can be predicted by their mental states. Numerous versions of the false-belief task have been developed, based on the initial task done by Wimmer and Perner (1983).

In the most common version of the false-belief task (often called the "'Sally-Anne' test" or "'Sally-Anne' task"), children are told or shown a story involving two characters. For example, the child is shown two dolls, Sally and Anne, who have a basket and a box, respectively. Sally also has a marble, which she places into her basket, and then leaves the room. While she is out of the room, Anne takes the marble from the basket and puts it into the box. Sally returns, and the child is then asked where Sally will look for the marble. The child passes the task if she answers that Sally will look in the basket, where Sally put the marble; the child fails the task if she answers that Sally will look in the box, where the child knows the marble is hidden, even though Sally cannot know this, since she did not see it hidden there. To pass the task, the child must be able to understand that another's mental representation of the situation is different from their own, and the child must be able to predict behavior based on that understanding.

Another example is when a boy leaves chocolate on a shelf and then leaves the room. His mother puts it in the fridge. To pass the task, the child must understand that the boy, upon returning, holds the false belief that his chocolate is still on the shelf.

The results of research using false-belief tasks have been fairly consistent: most normally developing children are able to pass the tasks from around age four. Notably, while most children, including those with Down syndrome, are able to pass this test, in one study, 80% of children diagnosed with autism were unable to do so.

Also adults can experience problems with false beliefs. For instance, when they show hindsight bias, defined as: "the inclination to see events that have already happened as being more predictable than they were before they took place." In an experiment by Fischhoff in 1975, adult subjects who were asked for an independent assessment were unable to disregard information on actual outcome. Also in experiments with complicated situations, when assessing others' thinking, adults can be unable to disregard certain information that they have been given.

Unexpected contents

Other tasks have been developed to try to solve the problems inherent in the false-belief task. In the "Unexpected contents", or "Smarties" task, experimenters ask children what they believe to be the contents of a box that looks as though it holds a candy called "Smarties". After the child guesses (usually) "Smarties", it is shown that the box in fact contained pencils. The experimenter then re-closes the box and asks the child what she thinks another person, who has not been shown the true contents of the box, will think is inside. The child passes the task if he/she responds that another person will think that "Smarties" exist in the box, but fails the task if she responds that another person will think that the box contains pencils. Gopnik & Astington (1988) found that children pass this test at age four or five years.

Other tasks

The "false-photograph" task is another task that serves as a measure of theory of mind development. In this task, children must reason about what is represented in a photograph that differs from the current state of affairs. Within the false-photograph task, either a location or identity change exists. In the location-change task, the examiner puts an object in one location (e.g., chocolate in an open green cupboard), whereupon the child takes a Polaroid photograph of the scene. While the photograph is developing, the examiner moves the object to a different location (e.g., a blue cupboard), allowing the child to view the examiner's action. The examiner asks the child two control questions: "When we first took the picture, where was the object?" and "Where is the object now?". The subject is also asked a "false-photograph" question: "Where is the object in the picture?" The child passes the task if he/she correctly identifies the location of the object in the picture and the actual location of the object at the time of the question. However, the last question might be misinterpreted as: "Where in this room is the object that the picture depicts?" and therefore some examiners use an alternative phrasing.

To make it easier for animals, young children, and individuals with classical (Kanner-type) autism to understand and perform theory of mind tasks, researchers have developed tests in which verbal communication is de-emphasized: some whose administration does not involve verbal communication on the part of the examiner, some whose successful completion does not require verbal communication on the part of the subject, and some that meet both of the foregoing standards. One category of tasks uses a preferential looking paradigm, with looking time as the dependent variable. For instance, 9-month-old infants prefer looking at behaviors performed by a human hand over those made by an inanimate hand-like object. Other paradigms look at rates of imitative behavior, the ability to replicate and complete unfinished goal-directed acts, and rates of pretend play.

Early precursors

Recent research on the early precursors of theory of mind has looked at innovative ways at capturing preverbal infants' understanding of other people's mental states, including perception and beliefs. Using a variety of experimental procedures, studies have shown that infants from their first year of life have an implicit understanding of what other people see and what they know. A popular paradigm used to study infants' theory of mind is the violation of expectation procedure, which predicates on infants' tendency to look longer at unexpected and surprising events compared to familiar and expected events. Therefore, their looking-times measures would give researchers an indication of what infants might be inferring, or their implicit understanding of events. One recent study using this paradigm found that 16-month-olds tend to attribute beliefs to a person whose visual perception was previously witnessed as being "reliable", compared to someone whose visual perception was "unreliable". Specifically, 16-month-olds were trained to expect a person's excited vocalization and gaze into a container to be associated with finding a toy in the reliable-looker condition or an absence of a toy in the unreliable-looker condition. Following this training phase, infants witnessed, in an object-search task, the same persons either searching for a toy in the correct or incorrect location after they both witnessed the location of where the toy was hidden. Infants who experienced the reliable looker were surprised and therefore looked longer when the person searched for the toy in the incorrect location compared to the correct location. In contrast, the looking time for infants who experienced the unreliable looker did not differ for either search locations. These findings suggest that 16-month-old infants can differentially attribute beliefs about a toy's location based on the person's prior record of visual perception.

Deficits

The theory of mind impairment describes a difficulty someone would have with perspective-taking. This is also sometimes referred to as mind-blindness. This means that individuals with a theory of mind impairment would have a difficult time seeing phenomena from any other perspective than their own. Individuals who experience a theory of mind deficit have difficulty determining the intentions of others, lack understanding of how their behavior affects others, and have a difficult time with social reciprocity. Theory of Mind deficits have been observed in people with autism spectrum disorders, people with schizophrenia, people with nonverbal learning disorder, people with attention deficit disorder, persons under the influence of alcohol and narcotics, sleep-deprived persons, and persons who are experiencing severe emotional or physical pain. Theory of mind deficits have also been observed in deaf children who are late signers (i.e., are born to hearing parents), but the deficit is due to the delay in language learning, not any cognitive deficit, and therefore disappears once the child learns sign language.

Autism

In 1985 Simon Baron-Cohen, Alan M. Leslie and Uta Frith suggested that children with autism do not employ theory of mind and suggested that autistic children have particular difficulties with tasks requiring the child to understand another person's beliefs. These difficulties persist when children are matched for verbal skills and have been taken as a key feature of autism. 

Many individuals classified as autistic have severe difficulty assigning mental states to others, and they seem to lack theory of mind capabilities. Researchers who study the relationship between autism and theory of mind attempt to explain the connection in a variety of ways. One account assumes that theory of mind plays a role in the attribution of mental states to others and in childhood pretend play. According to Leslie, theory of mind is the capacity to mentally represent thoughts, beliefs, and desires, regardless of whether or not the circumstances involved are real. This might explain why some autistic individuals show extreme deficits in both theory of mind and pretend play. However, Hobson proposes a social-affective justification, which suggests that with an autistic person, deficits in theory of mind result from a distortion in understanding and responding to emotions. He suggests that typically developing human beings, unlike autistic individuals, are born with a set of skills (such as social referencing ability) that later lets them comprehend and react to other people's feelings. Other scholars emphasize that autism involves a specific developmental delay, so that autistic children vary in their deficiencies, because they experience difficulty in different stages of growth. Very early setbacks can alter proper advancement of joint-attention behaviors, which may lead to a failure to form a full theory of mind.

It has been speculated that Theory of Mind exists on a continuum as opposed to the traditional view of a discrete presence or absence. While some research has suggested that some autistic populations are unable to attribute mental states to others, recent evidence points to the possibility of coping mechanisms that facilitate a spectrum of mindful behavior. Tine et al. suggest that autistic children score substantially lower on measures of social theory of mind in comparison to children diagnosed with Asperger syndrome.

Generally, children with more advanced theory of mind abilities display more advanced social skills, greater adaptability to new situations, and greater cooperation with others. As a result, these children are typically well-liked. However, “children may use their mind-reading abilities to manipulate, outwit, tease, or trick their peers”. Individuals possessing inferior theory of mind skills, such as children with autism spectrum disorder, may be socially rejected by their peers since they are unable to communicate effectively. Social rejection has been proven to negatively impact a child’s development and can put the child at greater risk of developing depressive symptoms.

Peer-mediated interventions (PMI) are a school-based treatment approach for children and adolescents with autism spectrum disorder in which peers are trained to be role models in order to promote social behavior. Laghi et al. studied if analysis of prosocial (nice) and antisocial (nasty) theory of mind behaviors could be used, in addition to teacher recommendations, to select appropriate candidates for PMI programs. Selecting children with advanced theory of mind skills who use them in prosocial ways will theoretically make the program more effective. While the results indicated that analyzing the social uses of theory of mind of possible candidates for a PMI program is invaluable, it may not be a good predictor of a candidate's performance as a role model.

Schizophrenia

Individuals with the diagnosis of schizophrenia can show deficits in theory of mind. Mirjam Sprong and colleagues investigated the impairment by examining 29 different studies, with a total of over 1500 participants. This meta-analysis showed significant and stable deficit of theory of mind in people with schizophrenia. They performed poorly on false-belief tasks, which test the ability to understand that others can hold false beliefs about events in the world, and also on intention-inference tasks, which assess the ability to infer a character's intention from reading a short story. Schizophrenia patients with negative symptoms, such as lack of emotion, motivation, or speech, have the most impairment in theory of mind and are unable to represent the mental states of themselves and of others. Paranoid schizophrenic patients also perform poorly because they have difficulty accurately interpreting others' intentions. The meta-analysis additionally showed that IQ, gender, and age of the participants does not significantly affect the performance of theory of mind tasks.

Current research suggests that impairment in theory of mind negatively affects clinical insight, the patient's awareness of their mental illness. Insight requires theory of mind—a patient must be able to adopt a third-person perspective and see the self as others do. A patient with good insight would be able to accurately self-represent, by comparing oneself with others and by viewing oneself from the perspective of others. Insight allows a patient to recognize and react appropriately to his symptoms; however, a patient who lacks insight would not realize that he has a mental illness, because of his inability to accurately self-represent. Therapies that teach patients perspective-taking and self-reflection skills can improve abilities in reading social cues and taking the perspective of another person.

The majority of the current literature supports the argument that the theory of mind deficit is a stable trait-characteristic rather than a state-characteristic of schizophrenia. The meta-analysis conducted by Sprong et al. showed that patients in remission still had impairment in theory of mind. The results indicate that the deficit is not merely a consequence of the active phase of schizophrenia.

Schizophrenic patients' deficit in theory of mind impairs their daily interactions with others. An example of a disrupted interaction is one between a schizophrenic parent and a child. Theory of mind is particularly important for parents, who must understand the thoughts and behaviors of their children and react accordingly. Dysfunctional parenting is associated with deficits in the first-order theory of mind, the ability to understand another person's thoughts, and the second-order theory of mind, the ability to infer what one person thinks about another person's thoughts. Compared with healthy mothers, mothers with schizophrenia are found to be more remote, quiet, self-absorbed, insensitive, unresponsive, and to have fewer satisfying interactions with their children. They also tend to misinterpret their children's emotional cues, and often misunderstand neutral faces as negative. Activities such as role-playing and individual or group-based sessions are effective interventions that help the parents improve on perspective-taking and theory of mind. Although there is a strong association between theory of mind deficit and parental role dysfunction, future studies could strengthen the relationship by possibly establishing a causal role of theory of mind on parenting abilities.

Alcohol use disorders

Impairments in theory of mind, as well as other social-cognitive deficits are commonly found in people suffering from alcoholism, due to the neurotoxic effects of alcohol on the brain, particularly the prefrontal cortex.

Depression and dysphoria

Individuals in a current major depressive episode, a disorder characterized by social impairment, show deficits in theory of mind decoding. Theory of mind decoding is the ability to use information available in the immediate environment (e.g., facial expression, tone of voice, body posture) to accurately label the mental states of others. The opposite pattern, enhanced theory of mind, is observed in individuals vulnerable to depression, including those individuals with past major depressive disorder (MDD), dysphoric individuals, and individuals with a maternal history of MDD.

Developmental language disorder

Children diagnosed with developmental language disorder (DLD) exhibit much lower scores on reading and writing sections of standardized tests, yet have a normal nonverbal IQ. These language deficits can be any specific deficits in lexical semantics, syntax, or pragmatics, or a combination of multiple problems. They often exhibit poorer social skills than normally developing children, and seem to have problems decoding beliefs in others. A recent meta-analysis confirmed that children with DLD have substantially lower scores on theory of mind tasks compared to typically developing children.  This strengthens the claim that language development is related to theory of mind.

Brain mechanisms

In typically developing humans

Research on theory of mind in autism led to the view that mentalizing abilities are subserved by dedicated mechanisms that can - in some cases - be impaired while general cognitive function remains largely intact. 

Neuroimaging research has supported this view, demonstrating specific brain regions consistently engaged during theory of mind tasks. PET research on theory of mind, using verbal and pictorial story comprehension tasks, has identified a set of brain regions including the medial prefrontal cortex (mPFC), and area around posterior superior temporal sulcus (pSTS), and sometimes precuneus and amygdala/temporopolar cortex. Subsequently, research on the neural basis of theory of mind has diversified, with separate lines of research focused on the understanding of beliefs, intentions, and more complex properties of minds such as psychological traits.

Studies from Rebecca Saxe's lab at MIT, using a false-belief versus false-photograph task contrast aimed at isolating the mentalizing component of the false-belief task, have very consistently found activation in mPFC, precuneus, and temporo-parietal junction (TPJ), right-lateralized. In particular, it has been proposed that the right TPJ (rTPJ) is selectively involved in representing the beliefs of others. However, some debate exists, as some scientists have noted that the same rTPJ region has been consistently activated during spatial reorienting of visual attention; Jean Decety from the University of Chicago and Jason Mitchell from Harvard have thus proposed that the rTPJ subserves a more general function involved in both false-belief understanding and attentional reorienting, rather than a mechanism specialized for social cognition. However, it is possible that the observation of overlapping regions for representing beliefs and attentional reorienting may simply be due to adjacent, but distinct, neuronal populations that code for each. The resolution of typical fMRI studies may not be good enough to show that distinct/adjacent neuronal populations code for each of these processes. In a study following Decety and Mitchell, Saxe and colleagues used higher-resolution fMRI and showed that the peak of activation for attentional reorienting is approximately 6-10mm above the peak for representing beliefs. Further corroborating that differing populations of neurons may code for each process, they found no similarity in the patterning of fMRI response across space.

Functional imaging has also been used to study the detection of mental state information in Heider-Simmel-esque animations of moving geometric shapes, which typical humans automatically perceive as social interactions laden with intention and emotion. Three studies found remarkably similar patterns of activation during the perception of such animations versus a random or deterministic motion control: mPFC, pSTS, fusiform face area (FFA), and amygdala were selectively engaged during the Theory of Mind condition. Another study presented subjects with an animation of two dots moving with a parameterized degree of intentionality (quantifying the extent to which the dots chased each other), and found that pSTS activation correlated with this parameter.

A separate body of research has implicated the posterior superior temporal sulcus in the perception of intentionality in human action; this area is also involved in perceiving biological motion, including body, eye, mouth, and point-light display motion. One study found increased pSTS activation while watching a human lift his hand versus having his hand pushed up by a piston (intentional versus unintentional action). Several studies have found increased pSTS activation when subjects perceive a human action that is incongruent with the action expected from the actor's context and inferred intention. Examples would be: a human performing a reach-to-grasp motion on empty space next to an object, versus grasping the object; a human shifting eye gaze toward empty space next to a checkerboard target versus shifting gaze toward the target; an unladen human turning on a light with his knee, versus turning on a light with his knee while carrying a pile of books; and a walking human pausing as he passes behind a bookshelf, versus walking at a constant speed. In these studies, actions in the "congruent" case have a straightforward goal, and are easy to explain in terms of the actor's intention. The incongruent actions, on the other hand, require further explanation (why would someone twist empty space next to a gear?), and then apparently would demand more processing in the STS. Note that this region is distinct from the temporo-parietal area activated during false belief tasks. Also note that pSTS activation in most of the above studies was largely right-lateralized, following the general trend in neuroimaging studies of social cognition and perception. Also right-lateralized are the TPJ activation during false belief tasks, the STS response to biological motion, and the FFA response to faces. 

Neuropsychological evidence has provided support for neuroimaging results regarding the neural basis of theory of mind. Studies with patients suffering from a lesion of the frontal lobes and the temporoparietal junction of the brain (between the temporal lobe and parietal lobe) reported that they have difficulty with some theory of mind tasks. This shows that theory of mind abilities are associated with specific parts of the human brain. However, the fact that the medial prefrontal cortex and temporoparietal junction are necessary for theory of mind tasks does not imply that these regions are specific to that function. TPJ and mPFC may subserve more general functions necessary for Theory of Mind. 

Research by Vittorio Gallese, Luciano Fadiga and Giacomo Rizzolatti (reviewed in) has shown that some sensorimotor neurons, which are referred to as mirror neurons, first discovered in the premotor cortex of rhesus monkeys, may be involved in action understanding. Single-electrode recording revealed that these neurons fired when a monkey performed an action, as well as when the monkey viewed another agent carrying out the same task. Similarly, fMRI studies with human participants have shown brain regions (assumed to contain mirror neurons) that are active when one person sees another person's goal-directed action. These data have led some authors to suggest that mirror neurons may provide the basis for theory of mind in the brain, and to support simulation theory of mind reading (see above).

There is also evidence against the link between mirror neurons and theory of mind. First, macaque monkeys have mirror neurons but do not seem to have a 'human-like' capacity to understand theory of mind and belief. Second, fMRI studies of theory of mind typically report activation in the mPFC, temporal poles and TPJ or STS, but these brain areas are not part of the mirror neuron system. Some investigators, like developmental psychologist Andrew Meltzoff and neuroscientist Jean Decety, believe that mirror neurons merely facilitate learning through imitation and may provide a precursor to the development of Theory of Mind. Others, like philosopher Shaun Gallagher, suggest that mirror-neuron activation, on a number of counts, fails to meet the definition of simulation as proposed by the simulation theory of mindreading.

In a recent paper, Keren Haroush and Ziv Williams outlined the case for a group of neurons in primates' brains that uniquely predicted the choice selection of their interacting partner. These primates' neurons, located in the anterior cingulate cortex of rhesus monkeys, were observed using single-unit recording while the monkeys played a variant of the iterative prisoner's dilemma game. By identifying cells that represent the yet unknown intentions of a game partner, Haroush & Williams' study supports the idea that theory of mind may be a fundamental and generalized process, and suggests that anterior cingulate cortex neurons may potentially act to complement the function of mirror neurons during social interchange.

In autism

Several neuroimaging studies have looked at the neural basis theory of mind impairment in subjects with Asperger syndrome and high-functioning autism (HFA). The first PET study of theory of mind in autism (also the first neuroimaging study using a task-induced activation paradigm in autism) replicated a prior study in normal individuals, which employed a story-comprehension task. This study found displaced and diminished mPFC activation in subjects with autism. However, because the study used only six subjects with autism, and because the spatial resolution of PET imaging is relatively poor, these results should be considered preliminary.

A subsequent fMRI study scanned normally developing adults and adults with HFA while performing a "reading the mind in the eyes" task: viewing a photo of a human's eyes and choosing which of two adjectives better describes the person's mental state, versus a gender discrimination control. The authors found activity in orbitofrontal cortex, STS, and amygdala in normal subjects, and found no amygdala activation and abnormal STS activation in subjects with autism. 

A more recent PET study looked at brain activity in individuals with HFA and Asperger syndrome while viewing Heider-Simmel animations (see above) versus a random motion control. In contrast to normally developing subjects, those with autism showed no STS or FFA activation, and significantly less mPFC and amygdala activation. Activity in extrastriate regions V3 and LO was identical across the two groups, suggesting intact lower-level visual processing in the subjects with autism. The study also reported significantly less functional connectivity between STS and V3 in the autism group. Note, however, that decreased temporal correlation between activity in STS and V3 would be expected simply from the lack of an evoked response in STS to intent-laden animations in subjects with autism. A more informative analysis would be to compute functional connectivity after regressing out evoked responses from all-time series.

A subsequent study, using the incongruent/congruent gaze-shift paradigm described above, found that in high-functioning adults with autism, posterior STS (pSTS) activation was undifferentiated while they watched a human shift gaze toward a target and then toward adjacent empty space. The lack of additional STS processing in the incongruent state may suggest that these subjects fail to form an expectation of what the actor should do given contextual information, or that feedback about the violation of this expectation doesn't reach STS. Both explanations involve an impairment in the ability to link eye gaze shifts with intentional explanations. This study also found a significant anticorrelation between STS activation in the incongruent-congruent contrast and social subscale score on the Autism Diagnostic Interview-Revised, but not scores on the other subscales. 

In 2011, an fMRI study demonstrated that the right temporoparietal junction (rTPJ) of higher-functioning adults with autism was not more selectively activated for mentalizing judgments when compared to physical judgments about self and other. rTPJ selectivity for mentalizing was also related to individual variation on clinical measures of social impairment: individuals whose rTPJ was increasingly more active for mentalizing compared to physical judgments were less socially impaired, while those who showed little to no difference in response to mentalizing or physical judgments were the most socially impaired. This evidence builds on work in typical development that suggests rTPJ is critical for representing mental state information, irrespective of whether it is about oneself or others. It also points to an explanation at the neural level for the pervasive mind-blindness difficulties in autism that are evident throughout the lifespan.

In schizophrenia

The brain regions associated with theory of mind include the superior temporal gyrus (STS), the temporoparietal junction (TPJ), the medial prefrontal cortex (MPFC), the precuneus, and the amygdala. The reduced activity in the MPFC of individuals with schizophrenia is associated with the Theory of mind deficit and may explain impairments in social function among people with schizophrenia. Increased neural activity in MPFC is related to better perspective-taking, emotion management, and increased social functioning. Disrupted brain activities in areas related to theory of mind may increase social stress or disinterest in social interaction, and contribute to the social dysfunction associated with schizophrenia.

Practical validity

Group member average scores of theory of mind abilities, measured with the Reading the Mind in the Eyes test (RME), are suggested as drivers of successful group performance. In particular, high group average scores on the RME are shown to be correlated with the collective intelligence factor c defined as a group's ability to perform a wide range of mental tasks, a group intelligence measure similar to the g factor for general individual intelligence. RME is a Theory of Mind test for adults that shows sufficient test-retest reliability and constantly differentiates control groups from individuals with functional autism or Asperger syndrome. It is one of the most widely accepted and well-validated tests for Theory of Mind abilities within adults.

Evolution

The evolutionary origin of theory of mind remains obscure. While many theories make claims about its role in the development of human language and social cognition few of them specify in detail any evolutionary neurophysiological precursors. A recent theory claims that Theory of Mind has its roots in two defensive reactions, namely immobilization stress and tonic immobility, which are implicated in the handling of stressful encounters and also figure prominently in mammalian childrearing practices (Tsoukalas, 2018). Their combined effect seems capable of producing many of the hallmarks of theory of mind, e.g., eye-contact, gaze-following, inhibitory control and intentional attributions.

Non-human

An open question is whether other animals besides humans have a genetic endowment and social environment that allows them to acquire a theory of mind in the same way that human children do. This is a contentious issue because of the problem of inferring from animal behavior the existence of thinking or of particular thoughts, or the existence of a concept of self or self-awareness, consciousness and qualia. One difficulty with non-human studies of theory of mind is the lack of sufficient numbers of naturalistic observations, giving insight into what the evolutionary pressures might be on a species' development of theory of mind. 

Non-human research still has a major place in this field, however, and is especially useful in illuminating which nonverbal behaviors signify components of theory of mind, and in pointing to possible stepping points in the evolution of what many claim to be a uniquely human aspect of social cognition. While it is difficult to study human-like theory of mind and mental states in species whose potential mental states we have an incomplete understanding, researchers can focus on simpler components of more complex capabilities. For example, many researchers focus on animals' understanding of intention, gaze, perspective, or knowledge (or rather, what another being has seen). A study that looked at understanding of intention in orangutans, chimpanzees and children showed that all three species understood the difference between accidental and intentional acts. Part of the difficulty in this line of research is that observed phenomena can often be explained as simple stimulus-response learning, as it is in the nature of any theorizers of mind to have to extrapolate internal mental states from observable behavior. Recently, most non-human theory of mind research has focused on monkeys and great apes, who are of most interest in the study of the evolution of human social cognition. Other studies relevant to attributions theory of mind have been conducted using plovers and dogs, and have shown preliminary evidence of understanding attention—one precursor of theory of mind—in others. 

There has been some controversy over the interpretation of evidence purporting to show theory of mind ability—or inability—in animals. Two examples serve as demonstration: first, Povinelli et al. (1990) presented chimpanzees with the choice of two experimenters from whom to request food: one who had seen where food was hidden, and one who, by virtue of one of a variety of mechanisms (having a bucket or bag over his head; a blindfold over his eyes; or being turned away from the baiting) does not know, and can only guess. They found that the animals failed in most cases to differentially request food from the "knower". By contrast, Hare, Call, and Tomasello (2001) found that subordinate chimpanzees were able to use the knowledge state of dominant rival chimpanzees to determine which container of hidden food they approached. William Field and Sue Savage-Rumbaugh believe that bonobos have developed theory of mind, and cite their communications with a captive bonobo, Kanzi, as evidence.

In a 2016 experiment, ravens Corvus corax were shown to take into account visual access of unseen conspecifics. The researchers argued that "ravens can generalize from their own perceptual experience to infer the possibility of being seen".

A 2016 study published by evolutionary anthropologist Christopher Krupenye brings new light to the existence of Theory of Mind, and particularly false beliefs, in non-human primates.

Neuroscience and intelligence

From Wikipedia, the free encyclopedia
Neuroscience and intelligence refers to the various neurological factors that are partly responsible for the variation of intelligence within a species or between different species. A large amount of research in this area has been focused on the neural basis of human intelligence. Historic approaches to study the neuroscience of intelligence consisted of correlating external head parameters, for example head circumference, to intelligence. Post-mortem measures of brain weight and brain volume have also been used. More recent methodologies focus on examining correlates of intelligence within the living brain using techniques such as magnetic resonance imaging (MRI), functional MRI (fMRI), electroencephalography (EEG), positron emission tomography and other non-invasive measures of brain structure and activity.

Researchers have been able to identify correlates of intelligence within the brain and its functioning. These include overall brain volume, grey matter volume, white matter volume, white matter integrity, cortical thickness and neural efficiency. Although the evidence base for our understanding of the neural basis of human intelligence has increased greatly over the past 30 years, even more research is needed to fully understand it.

The neural basis of intelligence has also been examined in animals such as primates, cetaceans and rodents.

Humans

Brain volume

One of the main methods used to establish a relationship between intelligence and the brain is to use measures of Brain volume. The earliest attempts at estimating brain volume were done using measures of external head parameters, such as head circumference as a proxy for brain size. More recent methodologies employed to study this relationship include post-mortem measures of brain weight and volume. These have their own limitations and strengths. The advent of MRI as a non-invasive highly-accurate measure of living brain structure and function (using fMRI) made this the pre-dominant and preferred method for measuring brain volume.

Overall, larger brain size and volume is associated with better cognitive functioning and higher intelligence. The specific regions that show the most robust correlation between volume and intelligence are the frontal, temporal and parietal lobes of the brain. A large number of studies have been conducted with uniformly positive correlations, leading to the generally safe conclusion that larger brains predict greater intelligence. In healthy adults, the correlation of total brain volume and IQ is ~ 0.4 

Less is known about variation on scales less than total brain volume. A meta-analytic review by McDaniel found that the correlation between Intelligence and in vivo brain size was larger for females (0.40) than for males (0.25). The same study also found that the correlation between brain size and Intelligence increased with age, with children showing smaller correlations. It has been suggested that the link between larger brain volumes and higher intelligence is related to variation in specific brain regions: a whole-brain measure would under-estimate these links. For functions more specific than general intelligence, regional effects may be more important. For instance evidence suggests that in adolescents learning new words, vocabulary growth is associated with gray matter density in bilateral posterior supramarginal gyri. Small studies have shown transient changes in gray-matter associated with developing a new physical skill (juggling) occipito-temporal cortex.
 
Brain volume is not a perfect account of intelligence: the relationship explains a modest amount of variance in intelligence – 12% to 36% of the variance. The amount of variance explained by brain volume may also depend on the type of intelligence measured. Up to 36% of variance in verbal intelligence can be explained by brain volume, while only approximately 10% of variance in visuospatial intelligence can be explained by brain volume. A 2015 study by researcher Stuart J. Ritchie found that brain size explained 12% of the variance in intelligence among individuals. These caveats imply that there are other major factors influencing how intelligent an individual is apart from brain size. In a large meta-analysis consisting of 88 studies Pietschnig et al. (2015) estimated the correlation between brain volume and intelligence to be about correlation coefficient of 0.24 which equates to 6% variance. Taking into account measurement quality, and sample type and IQ-range, the meta-analytic association of brain volume in appears to be ~ .4 in normal adults. Researcher Jakob Pietschnig argued that the strength of the positive association of brain volume and IQ remains robust, but has been overestimated in the literature. He has stated that "It is tempting to interpret this association in the context of human cognitive evolution and species differences in brain size and cognitive ability, we show that it is not warranted to interpret brain size as an isomorphic proxy of human intelligence differences".

Grey matter

Grey matter has been examined as a potential biological foundation for differences in intelligence. Similarly to brain volume, global grey matter volume is positively associated with intelligence. More specifically, higher intelligence has been associated with larger cortical grey matter in the prefrontal and posterior temporal cortex in adults. Furthermore, both verbal and nonverbal intelligence have been shown to be positively correlated with grey matter volume across the parietal, temporal and occipital lobes in young healthy adults, implying that intelligence is associated with a wide variety of structures within the brain.

There appear to be sex differences between the relationship of grey matter to intelligence between men and women. Men appear to show more intelligence to grey matter correlations in the frontal and parietal lobes, while the strongest correlations between intelligence and grey matter in women can be found in the frontal lobes and Broca's area. However, these differences do not seem to impact overall Intelligence, implying that the same cognitive ability levels can be attained in different ways.

One specific methodology used to study grey matter correlates of intelligence in areas of the brain is known as voxel-based morphometry (VBM). VBM allows researchers to specify areas of interest with great spatial resolution, allowing the examination of grey matter areas correlated with intelligence with greater special resolution. VBM has been used to correlate grey matter positively with intelligence in the frontal, temporal, parietal, and occipital lobes in healthy adults. VBM has also been used to show that grey matter volume in the medial region of the prefrontal cortex and the dorsomedial prefrontal cortex correlate positively with intelligence in a group of 55 healthy adults. VBM has also been successfully used to establish a positive correlation between grey matter volumes in the anterior cingulate and intelligence in children aged 5 to 18 years old.

Grey matter has also been shown to positively correlate with intelligence in children. Reis and colleagues have found that grey matter in the prefrontal cortex contributes most robustly to variance in Intelligence in children between 5 and 17, while subcortical grey matter is related to intelligence to a lesser extent. Frangou and colleagues examined the relationship between grey matter and intelligence in children and young adults aged between 12 and 21, and found that grey matter in the orbitofrontal cortex, cingulate gyrus, cerebellum and thalamus was positively correlated to intelligence, while grey matter in the caudate nucleus is negatively correlated with intelligence. However, the relationship between grey matter volume and intelligence only develops over time, as no significant positive relationship can be found between grey matter volume and intelligence in children under 11.

An underlying caveat to research into the relationship of grey matter volume and intelligence is demonstrated by the hypothesis of neural efficiency. The findings that more intelligent individuals are more efficient at using their neurons might indicate that the correlation of grey matter to intelligence reflects selective elimination of unused synapses, and thus a better brain circuitry.

White matter

Similar to grey matter, white matter has been shown to correlate positively with intelligence in humans. White matter consists mainly of myelinated neuronal axons, responsible for delivering signals between neurons. The pinkish-white color of white matter is actually a result of these myelin sheaths that electrically insulate neurons that are transmitting signals to other neurons. White matter connects different regions of grey matter in the cerebrum together. These interconnections make transport more seamless and allow us to perform tasks easier. Significant correlations between intelligence and the corpus callosum have been found, as larger callosal areas have been positively correlated with cognitive performance. However, there appear to be differences in importance for white matter between verbal and nonverbal intelligence, as although both verbal and nonverbal measures of intelligence correlate positively with the size of the corpus callosum, the correlation for intelligence and corpus callosum size was larger (.47) for nonverbal measures than that for verbal measures (.18). Anatomical mesh-based geometrical modelling has also shown positive correlations between the thickness of the corpus callosum and Intelligence in healthy adults.

White matter integrity has also been found to be related to Intelligence. White matter tract integrity is important for information processing speed, and therefore reduced white matter integrity is related to lower intelligence. The effect of white matter integrity is mediate entirely through information processing speed. These findings indicate that the brain is structurally interconnected and that axonal fibres are integrally important for fast information process, and thus general intelligence.

Contradicting the findings described above, VBM failed to find a relationship between the corpus callosum and intelligence in healthy adults. This contradiction can be viewed to signify that the relationship between white matter volume and intelligence is not as robust as that of grey matter and intelligence.

Cortical thickness

Cortical thickness has also been found to correlate positively with intelligence in humans. However, the rate of growth of cortical thickness is also related to intelligence. In early childhood, cortical thickness displays a negative correlation with intelligence, while by late childhood this correlation has shifted to a positive one. More intelligent children were found to develop cortical thickness more steadily and over longer periods of time than less bright children. Studies have found cortical thickness to explain 5% in the variance of intelligence among individuals. In a study conducted to find associations between cortical thickness and general intelligence between different groups of people, sex did not play a role in intelligence. Although it is hard to pin intelligence on age based on cortical thickness due to different socioeconomic circumstances and education levels, older subjects (17 - 24) tended to have less variances in terms of intelligence than when compared to younger subjects (19 - 17).

Cortical convolution

Cortical convolution has increased the folding of the brain’s surface over the course of human evolution. It has been hypothesized that the high degree of cortical convolution may be a neurological substrate that supports some of the human brain's most distinctive cognitive abilities. Consequently, individual intelligence within the human species might be modulated by the degree of cortical convolution.

An analysis published in 2019 found the contours of 677 kids' brain had a genetic correlation of almost 1 between IQ and surface area of the supramarginal gyrus on the left side of the brain.

Neural efficiency

The neural efficiency hypothesis postulates that more intelligent individuals display less activation in the brain during cognitive tasks, as measured by Glucose metabolism. A small sample of participants (N=8) displayed negative correlations between intelligence and absolute regional metabolic rates ranging from -0.48 to -0.84, as measured by PET scans, indicating that brighter individuals were more effective processors of information, as they use less energy. According to an extensive review by Neubauer & Fink a large number of studies (N=27) have confirmed this finding using methods such as PET scans, EEG and fMRI.

fMRI and EEG studies have revealed that task difficulty is an important factor affecting neural efficiency. More intelligent individuals display neural efficiency only when faced with tasks of subjectively easy to moderate difficulty, while no neural efficiency can be found during difficult tasks. In fact, more able individuals appear to invest more cortical resources in tasks of high difficulty. This appears to be especially true for the Prefrontal Cortex, as individuals with higher intelligence displayed increased activation of this area during difficult tasks compared to individuals with lower intelligence. It has been proposed that the main reason for the neural efficiency phenomenon could be that individuals with high intelligence are better at blocking out interfering information than individuals with low intelligence.

Further research

Some scientists prefer to look at more qualitative variables to relate to the size of measurable regions of known function, for example relating the size of the primary visual cortex to its corresponding functions, that of visual performance.

In a study of the head growth of 633 term-born children from the Avon Longitudinal Study of Parents and Children cohort, it was shown that prenatal growth and growth during infancy were associated with subsequent IQ. The study’s conclusion was that the brain volume a child achieves by the age of 1 year helps determine later intelligence. Growth in brain volume after infancy may not compensate for poorer earlier growth.

There is an association between IQ and myopia. One suggested explanation is that one or several pleiotropic gene(s) affect the size of the neocortex part of the brain and eyes simultaneously.

Parieto-frontal integration theory

In 2007, Behavioral and Brain Sciences published a target article that put forth a biological model of intelligence based on 37 peer-reviewed neuroimaging studies (Jung & Haier, 2007). Their review of a wealth of data from functional imaging (functional magnetic resonance imaging and positron emission tomography) and structural imaging (diffusion MRI, voxel-based morphometry, in vivo magnetic resonance spectroscopy) argues that human intelligence arises from a distributed and integrated neural network comprising brain regions in the frontal and parietal lobes.

A recent lesion mapping study conducted by Barbey and colleagues provides evidence to support the P-FIT theory of intelligence.

Brain injuries at an early age isolated to one side of the brain typically results in relatively spared intellectual function and with IQ in the normal range.

Primates

Brain size

Another theory of brain size in vertebrates is that it may relate to social rather than mechanical skill. Cortical size relates directly to a pairbonding life style and among primates cerebral cortex size varies directly with the demands of living in a large complex social network. Compared to other mammals, primates have significantly larger brain size. Additionally, most primates are found to be polygynandrous, having many social relationships with others. Although inconclusive, some studies have shown that this polygnandrous statue correlates to brain size.

Intelligence in chimpanzees has been found to be relate to brain size, grey matter volume, and cortical thickness, as in humans.

Health

Several environmental factors related to health can lead to significant cognitive impairment, particularly if they occur during pregnancy and childhood when the brain is growing and the blood–brain barrier is less effective. Developed nations have implemented several health policies regarding nutrients and toxins known to influence cognitive function. These include laws requiring fortification of certain food products and laws establishing safe levels of pollutants (e.g. lead, mercury, and organochlorides). Comprehensive policy recommendations targeting reduction of cognitive impairment in children have been proposed.

State function

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/State_function In the thermodynamics of equ...