Search This Blog

Saturday, October 26, 2019

Pyruvic acid

From Wikipedia, the free encyclopedia
 
Pyruvic acid
Brenztraubensäure.svg
Pyruvic-acid-3D-balls.png
Names
Preferred IUPAC name
2-Oxopropanoic acid
Other names
Pyruvic acid
α-Ketopropionic acid
Acetylformic acid
Pyroracemic acid
Identifiers
3D model (JSmol)
Abbreviations Pyr
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.004.387
KEGG
PubChem CID
UNII
Properties
C3H4O3
Molar mass 88.06 g/mol
Density 1.250 g/cm3
Melting point 11.8 °C (53.2 °F; 284.9 K)
Boiling point 165 °C (329 °F; 438 K)
Acidity (pKa) 2.50
Related compounds
Other anions
pyruvate ion Pyruvate skeletal.svg
Pyruvate-3D-balls.png
acetic acid
glyoxylic acid
oxalic acid
propionic acid
acetoacetic acid
Related compounds
propionaldehyde
glyceraldehyde
methylglyoxal
sodium pyruvate
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Pyruvic acid (CH3COCOOH) is the simplest of the alpha-keto acids, with a carboxylic acid and a ketone functional group. Pyruvate (/pˈrvt/), the conjugate base, CH3COCOO, is a key intermediate in several metabolic pathways throughout the cell.

Pyruvic acid can be made from glucose through glycolysis, converted back to carbohydrates (such as glucose) via gluconeogenesis, or to fatty acids through a reaction with acetyl-CoA. It can also be used to construct the amino acid alanine and can be converted into ethanol or lactic acid via fermentation.

Pyruvic acid supplies energy to cells through the citric acid cycle (also known as the Krebs cycle) when oxygen is present (aerobic respiration), and alternatively ferments to produce lactate when oxygen is lacking (lactic acid fermentation).

Chemistry

In 1834, Théophile-Jules Pelouze distilled tartaric acid and isolated glutaric acid and another unknown organic acid. Jöns Jacob Berzelius characterized this other acid the following year and named pyruvic acid because it was distilled using heat. Pyruvic acid is a colorless liquid with a smell similar to that of acetic acid and is miscible with water. In the laboratory, pyruvic acid may be prepared by heating a mixture of tartaric acid and potassium hydrogen sulfate, by the oxidation of propylene glycol by a strong oxidizer (e.g., potassium permanganate or bleach), or by the hydrolysis of acetyl cyanide, formed by reaction of acetyl chloride with potassium cyanide
CH3COCl + KCN → CH3COCN + KCl
CH3COCN → CH3COCOOH

Biochemistry

Pyruvate is an important chemical compound in biochemistry. It is the output of the metabolism of glucose known as glycolysis. One molecule of glucose breaks down into two molecules of pyruvate, which are then used to provide further energy, in one of two ways. Pyruvate is converted into acetyl-coenzyme A, which is the main input for a series of reactions known as the Krebs cycle (also known as the citric acid cycle or tricarboxylic acid cycle). Pyruvate is also converted to oxaloacetate by an anaplerotic reaction, which replenishes Krebs cycle intermediates; also, the oxaloacetate is used for gluconeogenesis. These reactions are named after Hans Adolf Krebs, the biochemist awarded the 1953 Nobel Prize for physiology, jointly with Fritz Lipmann, for research into metabolic processes. The cycle is also known as the citric acid cycle or tricarboxylic acid cycle, because citric acid is one of the intermediate compounds formed during the reactions. 

If insufficient oxygen is available, the acid is broken down anaerobically, creating lactate in animals and ethanol in plants and microorganisms (and carp). Pyruvate from glycolysis is converted by fermentation to lactate using the enzyme lactate dehydrogenase and the coenzyme NADH in lactate fermentation, or to acetaldehyde (with the enzyme pyruvate decarboxylase) and then to ethanol in alcoholic fermentation.

Pyruvate is a key intersection in the network of metabolic pathways. Pyruvate can be converted into carbohydrates via gluconeogenesis, to fatty acids or energy through acetyl-CoA, to the amino acid alanine, and to ethanol. Therefore, it unites several key metabolic processes.

Reference ranges for blood tests, comparing blood content of pyruvate (shown in violet near middle) with other constituents.

Pyruvic acid production by glycolysis

In glycolysis, phosphoenolpyruvate (PEP) is converted to pyruvate by pyruvate kinase. This reaction is strongly exergonic and irreversible; in gluconeogenesis, it takes two enzymes, pyruvate carboxylase and PEP carboxykinase, to catalyze the reverse transformation of pyruvate to PEP. 

phosphoenolpyruvate pyruvate kinase pyruvate
Phosphoenolpyruvate wpmp.svg   Pyruvic-acid-2D-skeletal.svg
ADP ATP
Biochem reaction arrow reversible YYYY horiz med.svg
ADP ATP
 
  pyruvate carboxylase and PEP carboxykinase
Compound C00074 at KEGG Pathway Database. Enzyme 2.7.1.40 at KEGG Pathway Database. Compound C00022 at KEGG Pathway Database.
[[File:
GlycolysisGluconeogenesis_WP534go to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to articlego to WikiPathwaysgo to articlego to Entrezgo to article
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
[[]]
GlycolysisGluconeogenesis_WP534
|{{{bSize}}}px|alt=Glycolysis and Gluconeogenesis edit]]
Glycolysis and Gluconeogenesis

Decarboxylation to acetyl CoA


pyruvate pyruvate dehydrogenase complex acetyl-CoA
Pyruvate wpmp.png   Acetyl-CoA.svg
CoA + NAD+ CO2 + NADH + H+
Biochem reaction arrow forward YYNN horiz med.svg
 


Carboxylation to oxaloacetate

Carboxylation by pyruvate carboxylase produces oxaloacetate

pyruvate pyruvate carboxylase oxaloacetate
Pyruvate wpmp.png   Oxaloacetate wpmp.png
ATP + CO2 ADP + Pi
Biochem reaction arrow forward YYNN horiz med.svg
 
 

Transamination to alanine

Transamination by alanine transaminase produces alanine

pyruvate alanine transaminase alanine
Pyruvate wpmp.png   L-alanine-skeletal.svg
glutamate α-ketoglutarate
Biochem reaction arrow reversible YYYY horiz med.svg
glutamate α-ketoglutarate
 
 

Reduction to lactate

Reduction by lactate dehydrogenase produces lactate

pyruvate lactate dehydrogenase lactate
Pyruvate wpmp.png   Lactic-acid-skeletal.svg
NADH NAD+
Biochem reaction arrow reversible YYYY horiz med.svg
NADH NAD+
 
 

Uses

Pyruvate is sold as a weight-loss supplement, though credible science has yet to back this claim. A systematic review of six trials found a statistically significant difference in body weight with pyruvate compared to placebo. However, all of the trials had methodological weaknesses and the magnitude of the effect was small. The review also identified adverse events associated with pyruvate such as diarrhea, bloating, gas, and increase in low-density lipoprotein (LDL) cholesterol. The authors concluded that there was insufficient evidence to support the use of pyruvate for weight loss.

There is also in vitro as well as in vivo evidence in hearts that pyruvate improves metabolism by NADH production stimulation and increases cardiac function.

Autonomic nervous system

From Wikipedia, the free encyclopedia
 
Autonomic nervous system
1503 Connections of the Parasympathetic Nervous System.jpg
Autonomic nervous system innervation.
Details
Identifiers
LatinAutonomici systematis nervosi
MeSHD001341
TAA14.3.00.001
FMA9905

The autonomic nervous system (ANS), formerly the vegetative nervous system, is a division of the peripheral nervous system that supplies smooth muscle and glands, and thus influences the function of internal organs. The autonomic nervous system is a control system that acts largely unconsciously and regulates bodily functions such as the heart rate, digestion, respiratory rate, pupillary response, urination, and sexual arousal. This system is the primary mechanism in control of the fight-or-flight response.

Within the brain, the autonomic nervous system is regulated by the hypothalamus. Autonomic functions include control of respiration, cardiac regulation (the cardiac control center), vasomotor activity (the vasomotor center), and certain reflex actions such as coughing, sneezing, swallowing and vomiting. Those are then subdivided into other areas and are also linked to ANS subsystems and nervous systems external to the brain. The hypothalamus, just above the brain stem, acts as an integrator for autonomic functions, receiving ANS regulatory input from the limbic system to do so.

The autonomic nervous system has three branches: the sympathetic nervous system, the parasympathetic nervous system and the enteric nervous system. Some textbooks do not include the enteric nervous system as part of this system. The sympathetic nervous system is often considered the "fight or flight" system, while the parasympathetic nervous system is often considered the "rest and digest" or "feed and breed" system. In many cases, both of these systems have "opposite" actions where one system activates a physiological response and the other inhibits it. An older simplification of the sympathetic and parasympathetic nervous systems as "excitatory" and "inhibitory" was overturned due to the many exceptions found. A more modern characterization is that the sympathetic nervous system is a "quick response mobilizing system" and the parasympathetic is a "more slowly activated dampening system", but even this has exceptions, such as in sexual arousal and orgasm, wherein both play a role.

There are inhibitory and excitatory synapses between neurons. Relatively recently, a third subsystem of neurons that have been named non-noradrenergic, non-cholinergic transmitters (because they use nitric oxide as a neurotransmitter) have been described and found to be integral in autonomic function, in particular in the gut and the lungs.

Although the ANS is also known as the visceral nervous system, the ANS is only connected with the motor side. Most autonomous functions are involuntary but they can often work in conjunction with the somatic nervous system which provides voluntary control.

Structure

Autonomic nervous system, showing splanchnic nerves in middle, and the vagus nerve as "X" in blue. The heart and organs below in list to right are regarded as viscera.
 
The autonomic nervous system is divided into the sympathetic nervous system and parasympathetic nervous system. The sympathetic division emerges from the spinal cord in the thoracic and lumbar areas, terminating around L2-3. The parasympathetic division has craniosacral “outflow”, meaning that the neurons begin at the cranial nerves (specifically the oculomotor nerve, facial nerve, glossopharyngeal nerve and vagus nerve) and sacral (S2-S4) spinal cord.

The autonomic nervous system is unique in that it requires a sequential two-neuron efferent pathway; the preganglionic neuron must first synapse onto a postganglionic neuron before innervating the target organ. The preganglionic, or first, neuron will begin at the “outflow” and will synapse at the postganglionic, or second, neuron's cell body. The postganglionic neuron will then synapse at the target organ.

Sympathetic division

The sympathetic nervous system consists of cells with bodies in the lateral grey column from T1 to L2/3. These cell bodies are "GVE" (general visceral efferent) neurons and are the preganglionic neurons. There are several locations upon which preganglionic neurons can synapse for their postganglionic neurons:
  1. cervical ganglia (3)
  2. thoracic ganglia (12) and rostral lumbar ganglia (2 or 3)
  3. caudal lumbar ganglia and sacral ganglia
  • Prevertebral ganglia (celiac ganglion, aorticorenal ganglion, superior mesenteric ganglion, inferior mesenteric ganglion)
  • Chromaffin cells of the adrenal medulla (this is the one exception to the two-neuron pathway rule: the synapse is directly efferent onto the target cell bodies)
These ganglia provide the postganglionic neurons from which innervation of target organs follows. Examples of splanchnic (visceral) nerves are:
These all contain afferent (sensory) nerves as well, known as GVA (general visceral afferent) neurons.

Parasympathetic division

The parasympathetic nervous system consists of cells with bodies in one of two locations: the brainstem (Cranial Nerves III, VII, IX, X) or the sacral spinal cord (S2, S3, S4). These are the preganglionic neurons, which synapse with postganglionic neurons in these locations:
These ganglia provide the postganglionic neurons from which innervations of target organs follows. Examples are:
  • The postganglionic parasympathetic splanchnic (visceral) nerves
  • The vagus nerve, which passes through the thorax and abdominal regions innervating, among other organs, the heart, lungs, liver and stomach

Sensory neurons

The sensory arm is composed of primary visceral sensory neurons found in the peripheral nervous system (PNS), in cranial sensory ganglia: the geniculate, petrosal and nodose ganglia, appended respectively to cranial nerves VII, IX and X. These sensory neurons monitor the levels of carbon dioxide, oxygen and sugar in the blood, arterial pressure and the chemical composition of the stomach and gut content. They also convey the sense of taste and smell, which, unlike most functions of the ANS, is a conscious perception. Blood oxygen and carbon dioxide are in fact directly sensed by the carotid body, a small collection of chemosensors at the bifurcation of the carotid artery, innervated by the petrosal (IXth) ganglion. Primary sensory neurons project (synapse) onto “second order” visceral sensory neurons located in the medulla oblongata, forming the nucleus of the solitary tract (nTS), that integrates all visceral information. The nTS also receives input from a nearby chemosensory center, the area postrema, that detects toxins in the blood and the cerebrospinal fluid and is essential for chemically induced vomiting or conditional taste aversion (the memory that ensures that an animal that has been poisoned by a food never touches it again). All this visceral sensory information constantly and unconsciously modulates the activity of the motor neurons of the ANS.

Innervation

Autonomic nerves travel to organs throughout the body. Most organs receive parasympathetic supply by the vagus nerve and sympathetic supply by splanchnic nerves. The sensory part of the latter reaches the spinal column at certain spinal segments. Pain in any internal organ is perceived as referred pain, more specifically as pain from the dermatome corresponding to the spinal segment.

Autonomic nervous supply to organs in the human body
Organ Nerves Spinal column origin
stomach T5, T6, T7, T8, T9, sometimes T10
duodenum T5, T6, T7, T8, T9, sometimes T10
jejunum and ileum T5, T6, T7, T8, T9
spleen T6, T7, T8
gallbladder and liver T6, T7, T8, T9
colon
pancreatic head T8, T9
appendix T10
kidneys and ureters T11, T12

Motor neurons

Motor neurons of the autonomic nervous system are found in ‘’autonomic ganglia’’. Those of the parasympathetic branch are located close to the target organ whilst the ganglia of the sympathetic branch are located close to the spinal cord.

The sympathetic ganglia here, are found in two chains: the pre-vertebral and pre-aortic chains. The activity of autonomic ganglionic neurons is modulated by “preganglionic neurons” located in the central nervous system. Preganglionic sympathetic neurons are located in the spinal cord, at the thorax and upper lumbar levels. Preganglionic parasympathetic neurons are found in the medulla oblongata where they form visceral motor nuclei; the dorsal motor nucleus of the vagus nerve; the nucleus ambiguus, the salivatory nuclei, and in the sacral region of the spinal cord.

Function

Function of the autonomic nervous system
 
Sympathetic and parasympathetic divisions typically function in opposition to each other. But this opposition is better termed complementary in nature rather than antagonistic. For an analogy, one may think of the sympathetic division as the accelerator and the parasympathetic division as the brake. The sympathetic division typically functions in actions requiring quick responses. The parasympathetic division functions with actions that do not require immediate reaction. The sympathetic system is often considered the "fight or flight" system, while the parasympathetic system is often considered the "rest and digest" or "feed and breed" system. 

However, many instances of sympathetic and parasympathetic activity cannot be ascribed to "fight" or "rest" situations. For example, standing up from a reclining or sitting position would entail an unsustainable drop in blood pressure if not for a compensatory increase in the arterial sympathetic tonus. Another example is the constant, second-to-second, modulation of heart rate by sympathetic and parasympathetic influences, as a function of the respiratory cycles. In general, these two systems should be seen as permanently modulating vital functions, in usually antagonistic fashion, to achieve homeostasis. Higher organisms maintain their integrity via homeostasis which relies on negative feedback regulation which, in turn, typically depends on the autonomic nervous system. Some typical actions of the sympathetic and parasympathetic nervous systems are listed below.
Target organ/system Parasympathetic Sympathetic
Digestive system Increase peristalsis and amount of secretion by digestive glands Decrease activity of digestive system
Liver No effect Causes glucose to be release to blood
Lungs Constricts bronchioles Dilates bronchioles
Urinary bladder/ Urethra Relaxes sphincter Constricts sphincter
Kidneys No effects Decrease urine output
Heart Decreases rate Increase rate
Blood vessels No effect on most blood vessels Constricts blood vessels in viscera; increase BP
Salivary and Lacrimal glands Stimulates; increases production of saliva and tears Inhibits; result in dry mouth and dry eyes
Eye (iris) Stimulates constrictor muscles; constrict pupils Stimulate dilator muscle; dilates pupils
Eye (ciliary muscles) Stimulates to increase bulging of lens for close vision Inhibits; decrease bulging of lens; prepares for distant vision
Adrenal Medulla No effect Stimulate medulla cells to secrete epinephrine and norepinephrine
Sweat gland of skin No effect Stimulate to produce perspiration

Sympathetic nervous system

Promotes a fight-or-flight response, corresponds with arousal and energy generation, and inhibits digestion

Parasympathetic nervous system

The parasympathetic nervous system has been said to promote a "rest and digest" response, promotes calming of the nerves return to regular function, and enhancing digestion. Functions of nerves within the parasympathetic nervous system include:
  • Dilating blood vessels leading to the GI tract, increasing the blood flow.
  • Constricting the bronchiolar diameter when the need for oxygen has diminished
  • Dedicated cardiac branches of the vagus and thoracic spinal accessory nerves impart parasympathetic control of the heart (myocardium)
  • Constriction of the pupil and contraction of the ciliary muscles, facilitating accommodation and allowing for closer vision
  • Stimulating salivary gland secretion, and accelerates peristalsis, mediating digestion of food and, indirectly, the absorption of nutrients
  • Sexual. Nerves of the peripheral nervous system are involved in the erection of genital tissues via the pelvic splanchnic nerves 2–4. They are also responsible for stimulating sexual arousal.

Enteric nervous system

The enteric nervous system is the intrinsic nervous system of the gastrointestinal system. It has been described as "the Second Brain of the Human Body". Its functions include:
  • Sensing chemical and mechanical changes in the gut
  • Regulating secretions in the gut
  • Controlling peristalsis and some other movements

Neurotransmitters

A flow diagram showing the process of stimulation of adrenal medulla that makes it release adrenaline, that further acts on adrenoreceptors, indirectly mediating or mimicking sympathetic activity.
 
At the effector organs, sympathetic ganglionic neurons release noradrenaline (norepinephrine), along with other cotransmitters such as ATP, to act on adrenergic receptors, with the exception of the sweat glands and the adrenal medulla:
  • Acetylcholine is the preganglionic neurotransmitter for both divisions of the ANS, as well as the postganglionic neurotransmitter of parasympathetic neurons. Nerves that release acetylcholine are said to be cholinergic. In the parasympathetic system, ganglionic neurons use acetylcholine as a neurotransmitter to stimulate muscarinic receptors.
  • At the adrenal medulla, there is no postsynaptic neuron. Instead the presynaptic neuron releases acetylcholine to act on nicotinic receptors. Stimulation of the adrenal medulla releases adrenaline (epinephrine) into the bloodstream, which acts on adrenoceptors, thereby indirectly mediating or mimicking sympathetic activity.

Caffeine effects

Caffeine is a bio-active ingredient found in commonly consumed beverages such as coffee, tea, and sodas. Short-term physiological effects of caffeine include increased blood pressure and sympathetic nerve outflow. Habitual consumption of caffeine may inhibit physiological short-term effects. Consumption of caffeinated espresso increases parasympathetic activity in habitual caffeine consumers; however, decaffeinated espresso inhibits parasympathetic activity in habitual caffeine consumers. It is possible that other bio-active ingredients in decaffeinated espresso may also contribute to the inhibition of parasympathetic activity in habitual caffeine consumers.

Caffeine is capable of increasing work capacity while individuals perform strenuous tasks. In one study, caffeine provoked a greater maximum heart rate while a strenuous task was being performed compared to a placebo. This tendency is likely due to caffeine's ability to increase sympathetic nerve outflow. Furthermore, this study found that recovery after intense exercise was slower when caffeine was consumed prior to exercise. This finding is indicative of caffeine's tendency to inhibit parasympathetic activity in non-habitual consumers. The caffeine-stimulated increase in nerve activity is likely to evoke other physiological effects as the body attempts to maintain homeostasis.

The effects of caffeine on parasympathetic activity may vary depending on the position of the individual when autonomic responses are measured. One study found that the seated position inhibited autonomic activity after caffeine consumption (75 mg); however, parasympathetic activity increased in the supine position. This finding may explain why some habitual caffeine consumers (75 mg or less) do not experience short-term effects of caffeine if their routine requires many hours in a seated position. It is important to note that the data supporting increased parasympathetic activity in the supine position was derived from an experiment involving participants between the ages of 25 and 30 who were considered healthy and sedentary. Caffeine may influence autonomic activity differently for individuals who are more active or elderly.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...