Search This Blog

Saturday, May 9, 2020

Types of volcanic eruptions

From Wikipedia, the free encyclopedia
Some of the eruptive structures formed during volcanic activity (counterclockwise): a Plinian eruption column, Hawaiian pahoehoe flows, and a lava arc from a Strombolian eruption.

Several types of volcanic eruptions—during which lava, tephra (ash, lapilli, volcanic bombs and volcanic blocks), and assorted gases are expelled from a volcanic vent or fissure—have been distinguished by volcanologists. These are often named after famous volcanoes where that type of behavior has been observed. Some volcanoes may exhibit only one characteristic type of eruption during a period of activity, while others may display an entire sequence of types all in one eruptive series.

There are three different types of eruptions. The most well-observed are magmatic eruptions, which involve the decompression of gas within magma that propels it forward. Phreatomagmatic eruptions are another type of volcanic eruption, driven by the compression of gas within magma, the direct opposite of the process powering magmatic activity. The third eruptive type is the phreatic eruption, which is driven by the superheating of steam via contact with magma; these eruptive types often exhibit no magmatic release, instead causing the granulation of existing rock.

Within these wide-defining eruptive types are several subtypes. The weakest are Hawaiian and submarine, then Strombolian, followed by Vulcanian and Surtseyan. The stronger eruptive types are Pelean eruptions, followed by Plinian eruptions; the strongest eruptions are called "Ultra-Plinian." Subglacial and phreatic eruptions are defined by their eruptive mechanism, and vary in strength. An important measure of eruptive strength is Volcanic Explosivity Index (VEI), an order of magnitude scale ranging from 0 to 8 that often correlates to eruptive types.

Eruption mechanisms

Diagram showing the scale of VEI correlation with total ejecta volume.
Volcanic eruptions arise through three main mechanisms:
There are two types of eruptions in terms of activity, explosive eruptions and effusive eruptions. Explosive eruptions are characterized by gas-driven explosions that propels magma and tephra. Effusive eruptions, meanwhile, are characterized by the outpouring of lava without significant explosive eruption.

Volcanic eruptions vary widely in strength. On the one extreme there are effusive Hawaiian eruptions, which are characterized by lava fountains and fluid lava flows, which are typically not very dangerous. On the other extreme, Plinian eruptions are large, violent, and highly dangerous explosive events. Volcanoes are not bound to one eruptive style, and frequently display many different types, both passive and explosive, even in the span of a single eruptive cycle. Volcanoes do not always erupt vertically from a single crater near their peak, either. Some volcanoes exhibit lateral and fissure eruptions. Notably, many Hawaiian eruptions start from rift zones, and some of the strongest Surtseyan eruptions develop along fracture zones. Scientists believed that pulses of magma mixed together in the chamber before climbing upward—a process estimated to take several thousands of years. But Columbia University volcanologists found that the eruption of Costa Rica's Irazú Volcano in 1963 was likely triggered by magma that took a nonstop route from the mantle over just a few months.

Volcanic Explosivity Index

The Volcanic Explosivity Index (commonly shortened to VEI) is a scale, from 0 to 8, for measuring the strength of eruptions. It is used by the Smithsonian Institution's Global Volcanism Program in assessing the impact of historic and prehistoric lava flows. It operates in a way similar to the Richter scale for earthquakes, in that each interval in value represents a tenfold increasing in magnitude (it is logarithmic). The vast majority of volcanic eruptions are of VEIs between 0 and 2.

Volcanic eruptions by VEI index
VEI Plume height Eruptive volume * Eruption type Frequency ** Example
0 <100 font="" ft="" m="" nbsp=""> 1,000 m3 (35,300 cu ft) Hawaiian Continuous Kilauea
1 100–1,000 m (300–3,300 ft) 10,000 m3 (353,000 cu ft) Hawaiian/Strombolian Fortnightly Stromboli
2 1–5 km (1–3 mi) 1,000,000 m3 (35,300,000 cu ft) Strombolian/Vulcanian Monthly Galeras (1992)
3 3–15 km (2–9 mi) 10,000,000 m3 (353,000,000 cu ft) Vulcanian 3 months Nevado del Ruiz (1985)
4 10–25 km (6–16 mi) 100,000,000 m3 (0.024 cu mi) Vulcanian/Peléan 18 months Eyjafjallajökull (2010)
5 >25 km (16 mi) 1 km3 (0.24 cu mi) Plinian 10–15 years Mount St. Helens (1980)
6 >25 km (16 mi) 10 km3 (2 cu mi) Plinian/Ultra-Plinian 50–100 years Mount Pinatubo (1991)
7 >25 km (16 mi) 100 km3 (20 cu mi) Ultra-Plinian 500–1000 years Tambora (1815)
8 >25 km (16 mi) 1,000 km3 (200 cu mi) Supervolcanic 50,000+ years Lake Toba (74 k.y.a.)
* This is the minimum eruptive volume necessary for the eruption to be considered within the category.
** Values are a rough estimate. They indicate the frequencies for volcanoes of that magnitude OR HIGHER
There is a discontinuity between the 1st and 2nd VEI level; instead of increasing by a magnitude of 10, the value increases by a magnitude of 100 (from 10,000 to 1,000,000).

Magmatic eruptions

Magmatic eruptions produce juvenile clasts during explosive decompression from gas release. They range in intensity from the relatively small lava fountains on Hawaii to catastrophic Ultra-Plinian eruption columns more than 30 km (19 mi) high, bigger than the eruption of Mount Vesuvius in 79 that buried Pompeii.

Hawaiian

Diagram of a Hawaiian eruption. (key: 1. Ash plume 2. Lava fountain 3. Crater 4. Lava lake 5. Fumaroles 6. Lava flow 7. Layers of lava and ash 8. Stratum 9. Sill 10. Magma conduit 11. Magma chamber 12. Dike) Click for larger version.
Hawaiian eruptions are a type of volcanic eruption, named after the Hawaiian volcanoes with which this eruptive type is hallmark. Hawaiian eruptions are the calmest types of volcanic events, characterized by the effusive eruption of very fluid basalt-type lavas with low gaseous content. The volume of ejected material from Hawaiian eruptions is less than half of that found in other eruptive types. Steady production of small amounts of lava builds up the large, broad form of a shield volcano. Eruptions are not centralized at the main summit as with other volcanic types, and often occur at vents around the summit and from fissure vents radiating out of the center.

Hawaiian eruptions often begin as a line of vent eruptions along a fissure vent, a so-called "curtain of fire." These die down as the lava begins to concentrate at a few of the vents. Central-vent eruptions, meanwhile, often take the form of large lava fountains (both continuous and sporadic), which can reach heights of hundreds of meters or more. The particles from lava fountains usually cool in the air before hitting the ground, resulting in the accumulation of cindery scoria fragments; however, when the air is especially thick with clasts, they cannot cool off fast enough due to the surrounding heat, and hit the ground still hot, the accumulation of which forms spatter cones. If eruptive rates are high enough, they may even form splatter-fed lava flows. Hawaiian eruptions are often extremely long lived; Puʻu ʻŌʻō, a volcanic cone on Kilauea, erupted continuously for over 35 years. Another Hawaiian volcanic feature is the formation of active lava lakes, self-maintaining pools of raw lava with a thin crust of semi-cooled rock.

Ropey pahoehoe lava from Kilauea, Hawaiʻi.

Flows from Hawaiian eruptions are basaltic, and can be divided into two types by their structural characteristics. Pahoehoe lava is a relatively smooth lava flow that can be billowy or ropey. They can move as one sheet, by the advancement of "toes," or as a snaking lava column. A'a lava flows are denser and more viscous than pahoehoe, and tend to move slower. Flows can measure 2 to 20 m (7 to 66 ft) thick. A'a flows are so thick that the outside layers cools into a rubble-like mass, insulating the still-hot interior and preventing it from cooling. A'a lava moves in a peculiar way—the front of the flow steepens due to pressure from behind until it breaks off, after which the general mass behind it moves forward. Pahoehoe lava can sometimes become A'a lava due to increasing viscosity or increasing rate of shear, but A'a lava never turns into pahoehoe flow.

Hawaiian eruptions are responsible for several unique volcanological objects. Small volcanic particles are carried and formed by the wind, chilling quickly into teardrop-shaped glassy fragments known as Pele's tears (after Pele, the Hawaiian volcano deity). During especially high winds these chunks may even take the form of long drawn-out strands, known as Pele's hair. Sometimes basalt aerates into reticulite, the lowest density rock type on earth.

Although Hawaiian eruptions are named after the volcanoes of Hawaii, they are not necessarily restricted to them; the largest lava fountain ever recorded formed on the island of Izu Ōshima (on Mount Mihara) in 1986, a 1,600 m (5,249 ft) gusher that was more than twice as high as the mountain itself (which stands at 764 m (2,507 ft)).

Volcanoes known to have Hawaiian activity include:

Strombolian


Strombolian eruptions are a type of volcanic eruption, named after the volcano Stromboli, which has been erupting continuously for centuries. Strombolian eruptions are driven by the bursting of gas bubbles within the magma. These gas bubbles within the magma accumulate and coalesce into large bubbles, called gas slugs. These grow large enough to rise through the lava column. Upon reaching the surface, the difference in air pressure causes the bubble to burst with a loud pop, throwing magma in the air in a way similar to a soap bubble. Because of the high gas pressures associated with the lavas, continued activity is generally in the form of episodic explosive eruptions accompanied by the distinctive loud blasts. During eruptions, these blasts occur as often as every few minutes.

The term "Strombolian" has been used indiscriminately to describe a wide variety of volcanic eruptions, varying from small volcanic blasts to large eruptive columns. In reality, true Strombolian eruptions are characterized by short-lived and explosive eruptions of lavas with intermediate viscosity, often ejected high into the air. Columns can measure hundreds of meters in height. The lavas formed by Strombolian eruptions are a form of relatively viscous basaltic lava, and its end product is mostly scoria. The relative passivity of Strombolian eruptions, and its non-damaging nature to its source vent allow Strombolian eruptions to continue unabated for thousands of years, and also makes it one of the least dangerous eruptive types.

An example of the lava arcs formed during Strombolian activity. This image is of Stromboli itself.

Strombolian eruptions eject volcanic bombs and lapilli fragments that travel in parabolic paths before landing around their source vent. The steady accumulation of small fragments builds cinder cones composed completely of basaltic pyroclasts. This form of accumulation tends to result in well-ordered rings of tephra.

Strombolian eruptions are similar to Hawaiian eruptions, but there are differences. Strombolian eruptions are noisier, produce no sustained eruptive columns, do not produce some volcanic products associated with Hawaiian volcanism (specifically Pele's tears and Pele's hair), and produce fewer molten lava flows (although the eruptive material does tend to form small rivulets).

Volcanoes known to have Strombolian activity include:
  • Parícutin, Mexico, which erupted from a fissure in a cornfield in 1943. Two years into its life, pyroclastic activity began to wane, and the outpouring of lava from its base became its primary mode of activity. Eruptions ceased in 1952, and the final height was 424 m (1,391 ft). This was the first time that scientists are able to observe the complete life cycle of a volcano.
  • Mount Etna, Italy, which has displayed Strombolian activity in recent eruptions, for example in 1981, 1999, 2002–2003, and 2009.
  • Mount Erebus in Antarctica, the southernmost active volcano in the world, having been observed erupting since 1972. Eruptive activity at Erebus consists of frequent Strombolian activity.
  • Stromboli itself. The namesake of the mild explosive activity that it possesses has been active throughout historical time; essentially continuous Strombolian eruptions, occasionally accompanied by lava flows, have been recorded at Stromboli for more than a millennium.

Vulcanian

Diagram of a Vulcanian eruption. (key: 1. Ash plume 2. Lapilli 3. Lava fountain 4. Volcanic ash rain 5. Volcanic bomb 6. Lava flow 7. Layers of lava and ash 8. Stratum 9. Sill 10. Magma conduit 11. Magma chamber 12. Dike) Click for larger version.

Vulcanian eruptions are a type of volcanic eruption, named after the volcano Vulcano. It was named so following Giuseppe Mercalli's observations of its 1888–1890 eruptions. In Vulcanian eruptions, intermediate viscous magma within the volcano make it difficult for vesiculate gases to escape. Similar to Strombolian eruptions, this leads to the buildup of high gas pressure, eventually popping the cap holding the magma down and resulting in an explosive eruption. However, unlike Strombolian eruptions, ejected lava fragments are not aerodynamic; this is due to the higher viscosity of Vulcanian magma and the greater incorporation of crystalline material broken off from the former cap. They are also more explosive than their Strombolian counterparts, with eruptive columns often reaching between 5 and 10 km (3 and 6 mi) high. Lastly, Vulcanian deposits are andesitic to dacitic rather than basaltic.

Initial Vulcanian activity is characterized by a series of short-lived explosions, lasting a few minutes to a few hours and typified by the ejection of volcanic bombs and blocks. These eruptions wear down the lava dome holding the magma down, and it disintegrates, leading to much more quiet and continuous eruptions. Thus an early sign of future Vulcanian activity is lava dome growth, and its collapse generates an outpouring of pyroclastic material down the volcano's slope.


Deposits near the source vent consist of large volcanic blocks and bombs, with so-called "bread-crust bombs" being especially common. These deeply cracked volcanic chunks form when the exterior of ejected lava cools quickly into a glassy or fine-grained shell, but the inside continues to cool and vesiculate. The center of the fragment expands, cracking the exterior. However the bulk of Vulcanian deposits are fine grained ash. The ash is only moderately dispersed, and its abundance indicates a high degree of fragmentation, the result of high gas contents within the magma. In some cases these have been found to be the result of interaction with meteoric water, suggesting that Vulcanian eruptions are partially hydrovolcanic.

Volcanoes that have exhibited Vulcanian activity include:

Peléan


Peléan eruptions (or nuée ardente) are a type of volcanic eruption, named after the volcano Mount Pelée in Martinique, the site of a Peléan eruption in 1902 that is one of the worst natural disasters in history. In Peléan eruptions, a large amount of gas, dust, ash, and lava fragments are blown out the volcano's central crater, driven by the collapse of rhyolite, dacite, and andesite lava dome collapses that often create large eruptive columns. An early sign of a coming eruption is the growth of a so-called Peléan or lava spine, a bulge in the volcano's summit preempting its total collapse. The material collapses upon itself, forming a fast-moving pyroclastic flow (known as a block-and-ash flow) that moves down the side of the mountain at tremendous speeds, often over 150 km (93 mi) per hour. These landslides make Peléan eruptions one of the most dangerous in the world, capable of tearing through populated areas and causing serious loss of life. The 1902 eruption of Mount Pelée caused tremendous destruction, killing more than 30,000 people and completely destroying St. Pierre, the worst volcanic event in the 20th century.

Peléan eruptions are characterized most prominently by the incandescent pyroclastic flows that they drive. The mechanics of a Peléan eruption are very similar to that of a Vulcanian eruption, except that in Peléan eruptions the volcano's structure is able to withstand more pressure, hence the eruption occurs as one large explosion rather than several smaller ones.

Volcanoes known to have Peléan activity include:
  • Mount Pelée, Martinique. The 1902 eruption of Mount Pelée completely devastated the island, destroying St. Pierre and leaving only 3 survivors. The eruption was directly preceded by lava dome growth.
  • Mayon Volcano, the Philippines most active volcano. It has been the site of many different types of eruptions, Peléan included. Approximately 40 ravines radiate from the summit and provide pathways for frequent pyroclastic flows and mudslides to the lowlands below. Mayon's most violent eruption occurred in 1814 and was responsible for over 1200 deaths.
  • The 1951 Peléan eruption of Mount Lamington. Prior to this eruption the peak had not even been recognized as a volcano. Over 3,000 people were killed, and it has become a benchmark for studying large Peléan eruptions.

Plinian

Diagram of a Plinian eruption. (key: 1. Ash plume 2. Magma conduit 3. Volcanic ash rain 4. Layers of lava and ash 5. Stratum 6. Magma chamber) Click for larger version.

Plinian eruptions (or Vesuvian eruptions) are a type of volcanic eruption, named for the historical eruption of Mount Vesuvius in 79 AD that buried the Roman towns of Pompeii and Herculaneum and, specifically, for its chronicler Pliny the Younger. The process powering Plinian eruptions starts in the magma chamber, where dissolved volatile gases are stored in the magma. The gases vesiculate and accumulate as they rise through the magma conduit. These bubbles agglutinate and once they reach a certain size (about 75% of the total volume of the magma conduit) they explode. The narrow confines of the conduit force the gases and associated magma up, forming an eruptive column. Eruption velocity is controlled by the gas contents of the column, and low-strength surface rocks commonly crack under the pressure of the eruption, forming a flared outgoing structure that pushes the gases even faster.

These massive eruptive columns are the distinctive feature of a Plinian eruption, and reach up 2 to 45 km (1 to 28 mi) into the atmosphere. The densest part of the plume, directly above the volcano, is driven internally by gas expansion. As it reaches higher into the air the plume expands and becomes less dense, convection and thermal expansion of volcanic ash drive it even further up into the stratosphere. At the top of the plume, powerful prevailing winds drive the plume in a direction away from the volcano.

21 April 1990 eruptive column from Redoubt Volcano, as viewed to the west from the Kenai Peninsula.

These highly explosive eruptions are associated with volatile-rich dacitic to rhyolitic lavas, and occur most typically at stratovolcanoes. Eruptions can last anywhere from hours to days, with longer eruptions being associated with more felsic volcanoes. Although they are associated with felsic magma, Plinian eruptions can just as well occur at basaltic volcanoes, given that the magma chamber differentiates and has a structure rich in silicon dioxide.

Plinian eruptions are similar to both Vulcanian and Strombolian eruptions, except that rather than creating discrete explosive events, Plinian eruptions form sustained eruptive columns. They are also similar to Hawaiian lava fountains in that both eruptive types produce sustained eruption columns maintained by the growth of bubbles that move up at about the same speed as the magma surrounding them.

Regions affected by Plinian eruptions are subjected to heavy pumice airfall affecting an area 0.5 to 50 km3 (0 to 12 cu mi) in size. The material in the ash plume eventually finds its way back to the ground, covering the landscape in a thick layer of many cubic kilometers of ash.

Lahar flows from the 1985 eruption of Nevado del Ruiz, which totally destroyed Armero in Colombia

However the most dangerous eruptive feature are the pyroclastic flows generated by material collapse, which move down the side of the mountain at extreme speeds of up to 700 km (435 mi) per hour and with the ability to extend the reach of the eruption hundreds of kilometers. The ejection of hot material from the volcano's summit melts snowbanks and ice deposits on the volcano, which mixes with tephra to form lahars, fast moving mudslides with the consistency of wet concrete that move at the speed of a river rapid.

Major Plinian eruptive events include:
  • The AD 79 eruption of Mount Vesuvius buried the Roman towns of Pompeii and Herculaneum under a layer of ash and tephra. It is the model Plinian eruption. Mount Vesuvius has erupted several times since then. Its last eruption was in 1944 and caused problems for the allied armies as they advanced through Italy. It was the contemporary report by Pliny the Younger that led scientists to refer to Vesuvian eruptions as "Plinian".
  • The 1980 eruption of Mount St. Helens in Washington, which ripped apart the volcano's summit, was a Plinian eruption of Volcanic Explosivity Index (VEI) 5.
  • The strongest types of eruptions, with a VEI of 8, are so-called "Ultra-Plinian" eruptions, such as the one at Lake Toba 74 thousand years ago, which put out 2800 times the material erupted by Mount St. Helens in 1980.
  • Hekla in Iceland, an example of basaltic Plinian volcanism being its 1947–48 eruption. The past 800 years have been a pattern of violent initial eruptions of pumice followed by prolonged extrusion of basaltic lava from the lower part of the volcano.
  • Pinatubo in the Philippines on 15 June 1991, which produced 5 km3 (1 cu mi) of dacitic magma, a 40 km (25 mi) high eruption column, and released 17 megatons of sulfur dioxide.
Types of volcanoes and eruption features.jpg

Phreatomagmatic eruptions

Phreatomagmatic eruptions are eruptions that arise from interactions between water and magma. They are driven from thermal contraction (as opposed to magmatic eruptions, which are driven by thermal expansion) of magma when it comes in contact with water. This temperature difference between the two causes violent water-lava interactions that make up the eruption. The products of phreatomagmatic eruptions are believed to be more regular in shape and finer grained than the products of magmatic eruptions because of the differences in eruptive mechanisms.

There is debate about the exact nature of phreatomagmatic eruptions, and some scientists believe that fuel-coolant reactions may be more critical to the explosive nature than thermal contraction. Fuel coolant reactions may fragment the volcanic material by propagating stress waves, widening cracks and increasing surface area that ultimately leads to rapid cooling and explosive contraction-driven eruptions.

Surtseyan

A Surtseyan eruption (or hydrovolcanic) is a type of volcanic eruption caused by shallow-water interactions between water and lava, named so after its most famous example, the eruption and formation of the island of Surtsey off the coast of Iceland in 1963. Surtseyan eruptions are the "wet" equivalent of ground-based Strombolian eruptions, but because of where they are taking place they are much more explosive. This is because as water is heated by lava, it flashes in steam and expands violently, fragmenting the magma it is in contact with into fine-grained ash. Surtseyan eruptions are the hallmark of shallow-water volcanic oceanic islands, however they are not specifically confined to them. Surtseyan eruptions can happen on land as well, and are caused by rising magma that comes into contact with an aquifer (water-bearing rock formation) at shallow levels under the volcano. The products of Surtseyan eruptions are generally oxidized palagonite basalts (though andesitic eruptions do occur, albeit rarely), and like Strombolian eruptions Surtseyan eruptions are generally continuous or otherwise rhythmic.

A distinct defining feature of a Surtseyan eruption is the formation of a pyroclastic surge (or base surge), a ground hugging radial cloud that develops along with the eruption column. Base surges are caused by the gravitational collapse of a vaporous eruptive column, one that is denser overall than a regular volcanic column. The densest part of the cloud is nearest to the vent, resulting in a wedge shape. Associated with these laterally moving rings are dune-shaped depositions of rock left behind by the lateral movement. These are occasionally disrupted by bomb sags, rock that was flung out by the explosive eruption and followed a ballistic path to the ground. Accumulations of wet, spherical ash known as accretionary lapilli are another common surge indicator.

Over time Surtseyan eruptions tend to form maars, broad low-relief volcanic craters dug into the ground, and tuff rings, circular structures built of rapidly quenched lava. These structures are associated with a single vent eruption, however if eruptions arise along fracture zones a rift zone may be dug out; these eruptions tend to be more violent then the ones forming a tuff ring or maars, an example being the 1886 eruption of Mount Tarawera. Littoral cones are another hydrovolcanic feature, generated by the explosive deposition of basaltic tephra (although they are not truly volcanic vents). They form when lava accumulates within cracks in lava, superheats and explodes in a steam explosion, breaking the rock apart and depositing it on the volcano's flank. Consecutive explosions of this type eventually generate the cone.

Volcanoes known to have Surtseyan activity include:

Submarine


Submarine eruptions are a type of volcanic eruption that occurs underwater. An estimated 75% of the total volcanic eruptive volume is generated by submarine eruptions near mid ocean ridges alone, however because of the problems associated with detecting deep sea volcanics, they remained virtually unknown until advances in the 1990s made it possible to observe them.

Submarine eruptions may produce seamounts which may break the surface to form volcanic islands and island chains.

Submarine volcanism is driven by various processes. Volcanoes near plate boundaries and mid-ocean ridges are built by the decompression melting of mantle rock that rises on an upwelling portion of a convection cell to the crustal surface. Eruptions associated with subducting zones, meanwhile, are driven by subducting plates that add volatiles to the rising plate, lowering its melting point. Each process generates different rock; mid-ocean ridge volcanics are primarily basaltic, whereas subduction flows are mostly calc-alkaline, and more explosive and viscous.

Spreading rates along mid-ocean ridges vary widely, from 2 cm (0.8 in) per year at the Mid-Atlantic Ridge, to up to 16 cm (6 in) along the East Pacific Rise. Higher spreading rates are a probable cause for higher levels of volcanism. The technology for studying seamount eruptions did not exist until advancements in hydrophone technology made it possible to "listen" to acoustic waves, known as T-waves, released by submarine earthquakes associated with submarine volcanic eruptions. The reason for this is that land-based seismometers cannot detect sea-based earthquakes below a magnitude of 4, but acoustic waves travel well in water and over long periods of time. A system in the North Pacific, maintained by the United States Navy and originally intended for the detection of submarines, has detected an event on average every 2 to 3 years.

The most common underwater flow is pillow lava, a circular lava flow named after its unusual shape. Less common are glassy, marginal sheet flows, indicative of larger-scale flows. Volcaniclastic sedimentary rocks are common in shallow-water environments. As plate movement starts to carry the volcanoes away from their eruptive source, eruption rates start to die down, and water erosion grinds the volcano down. The final stages of eruption cap the seamount in alkalic flows. There are about 100,000 deepwater volcanoes in the world, although most are beyond the active stage of their life. Some exemplary seamounts are Loihi Seamount, Bowie Seamount, Davidson Seamount, and Axial Seamount.

Subglacial


Subglacial eruptions are a type of volcanic eruption characterized by interactions between lava and ice, often under a glacier. The nature of glaciovolcanism dictates that it occurs at areas of high latitude and high altitude. It has been suggested that subglacial volcanoes that are not actively erupting often dump heat into the ice covering them, producing meltwater. This meltwater mix means that subglacial eruptions often generate dangerous jökulhlaups (floods) and lahars.

The study of glaciovolcanism is still a relatively new field. Early accounts described the unusual flat-topped steep-sided volcanoes (called tuyas) in Iceland that were suggested to have formed from eruptions below ice. The first English-language paper on the subject was published in 1947 by William Henry Mathews, describing the Tuya Butte field in northwest British Columbia, Canada. The eruptive process that builds these structures, originally inferred in the paper, begins with volcanic growth below the glacier. At first the eruptions resemble those that occur in the deep sea, forming piles of pillow lava at the base of the volcanic structure. Some of the lava shatters when it comes in contact with the cold ice, forming a glassy breccia called hyaloclastite. After a while the ice finally melts into a lake, and the more explosive eruptions of Surtseyan activity begins, building up flanks made up of mostly hyaloclastite. Eventually the lake boils off from continued volcanism, and the lava flows become more effusive and thicken as the lava cools much more slowly, often forming columnar jointing. Well-preserved tuyas show all of these stages, for example Hjorleifshofdi in Iceland.

Products of volcano-ice interactions stand as various structures, whose shape is dependent on complex eruptive and environmental interactions. Glacial volcanism is a good indicator of past ice distribution, making it an important climatic marker. Since they are embedded in ice, as glacial ice retreats worldwide there are concerns that tuyas and other structures may destabilize, resulting in mass landslides. Evidence of volcanic-glacial interactions are evident in Iceland and parts of British Columbia, and it is even possible that they play a role in deglaciation.


Glaciovolcanic products have been identified in Iceland, the Canadian province of British Columbia, the U.S. states of Hawaii and Alaska, the Cascade Range of western North America, South America and even on the planet Mars. Volcanoes known to have subglacial activity include:
  • Mauna Kea in tropical Hawaii. There is evidence of past subglacial eruptive activity on the volcano in the form of a subglacial deposit on its summit. The eruptions originated about 10,000 years ago, during the last ice age, when the summit of Mauna Kea was covered in ice.
  • In 2008, the British Antarctic Survey reported a volcanic eruption under the Antarctica ice sheet 2,200 years ago. It is believed to be that this was the biggest eruption in Antarctica in the last 10,000 years. Volcanic ash deposits from the volcano were identified through an airborne radar survey, buried under later snowfalls in the Hudson Mountains, close to Pine Island Glacier.
  • Iceland, well known for both glaciers and volcanoes, is often a site of subglacial eruptions. An example an eruption under the Vatnajökull ice cap in 1996, which occurred under an estimated 2,500 ft (762 m) of ice.
  • As part of the search for life on Mars, scientists have suggested that there may be subglacial volcanoes on the red planet. Several potential sites of such volcanism have been reviewed, and compared extensively with similar features in Iceland:
Viable microbial communities have been found living in deep (−2800 m) geothermal groundwater at 349 K and pressures >300 bar. Furthermore, microbes have been postulated to exist in basaltic rocks in rinds of altered volcanic glass. All of these conditions could exist in polar regions of Mars today where subglacial volcanism has occurred.

Phreatic eruptions

Diagram of a phreatic eruption. (key: 1. Water vapor cloud 2. Magma conduit 3. Layers of lava and ash 4. Stratum 5. Water table 6. Explosion 7. Magma chamber)

Phreatic eruptions (or steam-blast eruptions) are a type of eruption driven by the expansion of steam. When cold ground or surface water come into contact with hot rock or magma it superheats and explodes, fracturing the surrounding rock and thrusting out a mixture of steam, water, ash, volcanic bombs, and volcanic blocks. The distinguishing feature of phreatic explosions is that they only blast out fragments of pre-existing solid rock from the volcanic conduit; no new magma is erupted.[51] Because they are driven by the cracking of rock strata under pressure, phreatic activity does not always result in an eruption; if the rock face is strong enough to withstand the explosive force, outright eruptions may not occur, although cracks in the rock will probably develop and weaken it, furthering future eruptions.

Often a precursor of future volcanic activity, phreatic eruptions are generally weak, although there have been exceptions. Some phreatic events may be triggered by earthquake activity, another volcanic precursor, and they may also travel along dike lines. Phreatic eruptions form base surges, lahars, avalanches, and volcanic block "rain." They may also release deadly toxic gas able to suffocate anyone in range of the eruption.

Volcanoes known to exhibit phreatic activity include:

Eruption of Mount Vesuvius in 79 AD

From Wikipedia, the free encyclopedia
  
79 AD eruption of Mount Vesuvius
Destruction of Pompeii and Herculaneum.jpg
VolcanoMount Vesuvius
DateAugust 24–25 (Traditional) or c. October/November (modern hypothesis), 79 AD
TypePlinian, Peléan
LocationCampania, Italy
40°49′N 14°26′ECoordinates: 40°49′N 14°26′E
VEI5
ImpactBuried the Roman settlements of Pompeii, Herculaneum, Oplontis and Stabiae.

Of the many eruptions of Mount Vesuvius in Italy, the most famous is the eruption in 79 AD. This eruption is one of the deadliest in European history.

Mount Vesuvius violently spewed forth a deadly cloud of super-heated tephra and gases to a height of 33 km (21 mi), ejecting molten rock, pulverized pumice and hot ash at 1.5 million tons per second, ultimately releasing 100,000 times the thermal energy of the Hiroshima-Nagasaki bombings. The event gives its name to the Vesuvian type of volcanic eruptions, characterised by eruption columns of hot gases and ash exploding into the stratosphere, although the event also included pyroclastic flows associated with Pelean eruptions.

Several Roman cities were obliterated and buried underneath massive pyroclastic surges and ashfall deposits, the best known being Pompeii and Herculaneum. After archaeological excavations revealed much about the lives of the inhabitants, the area became a major tourist attraction, and is now a UNESCO World Heritage Site, and part of Vesuvius National Park.

The total population of both cities was over 20,000. The remains of over 1,500 people have so far been found at Pompeii and Herculaneum, although the total death toll remains unknown.

Precursors and foreshocks

The Last Day of Pompeii. Painting by Karl Brullov, 1830–1833

The inhabitants had been accustomed to minor earth tremors in the region; the writer Pliny the Younger wrote that they "were not particularly alarming because they are frequent in Campania". 

The first major earthquake since 217 BC occurred on February 5, 62 AD causing widespread destruction around the Bay of Naples, and particularly to Pompeii. Some of the damage had still not been repaired when the volcano erupted.

Another smaller earthquake took place in 64 AD; it was recorded by Suetonius in his biography of Nero, and by Tacitus in Annales because it took place while Nero was in Naples performing for the first time in a public theatre. Suetonius recorded that the emperor continued singing through the earthquake until he had finished his song, while Tacitus wrote that the theatre collapsed shortly after being evacuated.

Small earthquakes were felt for four days before the eruption, becoming more frequent, but the warnings were not recognised.

Nature of the eruption

Reconstructions of the eruption and its effects vary considerably in the details but have the same overall features. The eruption lasted for two days. The morning of the first day was perceived as normal by the only eyewitness to leave a surviving document, Pliny the Younger, who at that point was staying at Misenum, on the other side of the Bay of Naples about 29 kilometres (18 mi) from the volcano, which may have prevented him from noticing the early signs of the eruption. He was not to have any opportunity, during the next two days, to talk to people who had witnessed the eruption from Pompeii or Herculaneum (indeed he never mentions Pompeii in his letter), so he would not have noticed early, smaller fissures and releases of ash and smoke on the mountain, if such had occurred earlier in the morning.

Around 1:00 p.m., Mount Vesuvius violently erupted, spewing up a high-altitude column from which ash and pumice began to fall, blanketing the area. Rescues and escapes occurred during this time. At some time in the night or early the next day, pyroclastic flows in the close vicinity of the volcano began. Lights seen on the mountain were interpreted as fires. People as far away as Misenum fled for their lives. The flows were rapid-moving, dense, and very hot, knocking down wholly or partly all structures in their path, incinerating or suffocating the remaining population and altering the landscape, including the coastline. These were accompanied by additional light tremors and a mild tsunami in the Bay of Naples. By evening of the second day, the eruption was over, leaving only haze in the atmosphere through which the sun shone weakly.

Pliny the Younger wrote an account of the eruption:
Broad sheets of flame were lighting up many parts of Vesuvius; their light and brightness were the more vivid for the darkness of the night... it was daylight now elsewhere in the world, but there the darkness was darker and thicker than any night.

Stratigraphic studies

Pompeii and Herculaneum, as well as other cities affected by the eruption of Mount Vesuvius. The black cloud represents the general distribution of ash, pumice and cinders. Modern coast lines are shown; Pliny the Younger was at Misenum.
 
Sigurðsson, Cashdollar, and Sparks undertook a detailed stratigraphic study of the layers of ash, based on excavations and surveys, which was published in 1982. Their conclusion was that the eruption of Vesuvius of 79 AD unfolded in two phases, Vesuvian and Pelean, which alternated six times. 

First, the Plinian eruption, which consisted of a column of volcanic debris and hot gases ejected between 15 km (9 mi) and 30 km (19 mi) high into the stratosphere, lasted eighteen to twenty hours and produced a fall of pumice and ashes southward of the volcano that accumulated up to depths of 2.8 m (9 ft) at Pompeii.

Then, in the Pelean eruption phase, pyroclastic surges of molten rock and hot gases flowed over the ground, reaching as far as Misenum, which were concentrated to the west and northwest. Two pyroclastic surges engulfed Pompeii with a 1.8 m (6 ft) deep layer, burning and asphyxiating any living beings who had remained behind. Herculaneum and Oplontis received the brunt of the surges and were buried in fine pyroclastic deposits, pulverized pumice and lava fragments up to 20 m (70 ft) deep. Surges 4 and 5 are believed by the authors to have destroyed and buried Pompeii. Surges are identified in the deposits by dune and cross-bedding formations, which are not produced by fallout.

The eruption is viewed as primarily phreatomagmatic, where the chief energy supporting the blast column came from escaping steam created from seawater seeping over time into the deep-seated faults of the region, coming into contact with hot magma.

Timing of explosions

In an article published in 2002, Sigurðsson and Casey concluded that an early explosion produced a column of ash and pumice which rained on Pompeii to the southeast but not on Herculaneum, which was upwind. Subsequently, the cloud collapsed as the gases densified and lost their capability to support their solid contents.

The authors suggest that the first ash falls are to be interpreted as early-morning, low-volume explosions not seen from Misenum, causing Rectina to send her messenger on a ride of several hours around the Bay of Naples, then passable, providing an answer to the paradox of how the messenger might miraculously appear at Pliny's villa so shortly after a distant eruption that would have prevented him.

Magnetic studies

Inside the crater of Vesuvius
 
A 2006 study by Zanella, Gurioli, Pareschi, and Lanza used the magnetic characteristics of over 200 samples of lithic, roof-tile, and plaster fragments collected from pyroclastic deposits in and around Pompeii to estimate the equilibrium temperatures of the deposits. The deposits were placed by pyroclastic density currents (PDCs) resulting from the collapses of the Plinian column. The authors argue that fragments over 2–5 cm (0.8–2 in) were not in the current long enough to acquire its temperature, which would have been much higher, and therefore they distinguish between the depositional temperatures, which they estimated, and the emplacement temperatures, which in some cases based on the cooling characteristics of some types and fragment sizes of rocks they believed they also could estimate. Final figures are considered to be those of the rocks in the current just before deposition.

All crystal rock contains some iron or iron compounds, rendering it ferromagnetic, as do Roman roof tiles and plaster. These materials may acquire a residual field from a number of sources. When individual molecules, which are magnetic dipoles, are held in alignment by being bound in a crystalline structure, the small fields reinforce each other to form the rock's residual field. Heating the material adds internal energy to it. At the Curie temperature, the vibration of the molecules is sufficient to disrupt the alignment; the material loses its residual magnetism and assumes whatever magnetic field might be applied to it only for the duration of the application. The authors term this phenomenon unblocking. Residual magnetism is considered to "block out" non-residual fields.

A rock is a mixture of minerals, each with its own Curie temperature; the authors therefore looked for a spectrum of temperatures rather than a single temperature. In the ideal sample, the PDC did not raise the temperature of the fragment beyond the highest blocking temperature. Some constituent material retained the magnetism imposed by the Earth's field when the item was formed. The temperature was raised above the lowest blocking temperature and therefore some minerals on recooling acquired the magnetism of the Earth as it was in 79 AD. The overall field of the sample was the vector sum of the fields of the high-blocking material and the low-blocking material.

This type of sample made possible estimation of the low unblocking temperature. Using special equipment that measured field direction and strength at various temperatures, the experimenters raised the temperature of the sample in increments of 40 °C (70 °F) from 100 °C (210 °F) until it reached the low unblocking temperature. Deprived of one of its components, the overall field changed direction. A plot of direction at each increment identified the increment at which the sample's resultant magnetism had formed. That was considered to be the equilibrium temperature of the deposit. Considering the data for all the deposits of the surge arrived at a surge deposit estimate. The authors discovered that the city, Pompeii, was a relatively cool spot within a much hotter field, which they attributed to interaction of the surge with the "fabric" of the city.

The investigators reconstruct the sequence of volcanic events as follows:
  • On the first day of the eruption a fall of white pumice containing clastic fragments of up to 3 centimetres (1 in) fell for several hours. It heated the roof tiles to 120–140 °C (250–280 °F). This period would have been the last opportunity to escape. Subsequently, a second column deposited a grey pumice with clastics up to 10 cm (4 in), temperature unsampled, but presumed to be higher, for 18 hours. These two falls were the Plinian phase. The collapse of the edges of these clouds generated the first dilute PDCs, which must have been devastating to Herculaneum, but did not enter Pompeii.
  • Early in the morning of the second day the grey cloud began to collapse to a greater degree. Two major surges struck and destroyed Pompeii. Herculaneum and all its population no longer existed. The emplacement temperature range of the first surge was 180–220 °C (360–430 °F), minimum temperatures; of the second, 220–260 °C (430–500 °F). The depositional temperature of the first was 140–300 °C (280–570 °F). Upstream and downstream of the flow it was 300–360 °C (570–680 °F).
The variable temperature of the first surge was due to interaction with the buildings. Any population remaining in structural refuges could not have escaped, as the city was surrounded by gases of incinerating temperatures. The lowest temperatures were in rooms under collapsed roofs. These were as low as 100 °C (212 °F), the boiling point of water. The authors suggest that elements of the bottom of the flow were decoupled from the main flow by topographic irregularities and were made cooler by the introduction of ambient turbulent air. In the second surge the irregularities were gone and the city was as hot as the surrounding environment.




During the last surge, which was very dilute, one metre more of deposits fell over the region.

The Two Plinys

Pompeii, with Vesuvius towering above

The only surviving eyewitness account of the event consists of two letters by Pliny the Younger, who was 17 at the time of the eruption, to the historian Tacitus and written some 25 years after the event. Observing the first volcanic activity from Misenum across the Bay of Naples from the volcano, approximately 29 kilometres (18 mi) away, the elder Pliny launched a rescue fleet and went himself to the rescue of a personal friend. His nephew declined to join the party. One of the nephew's letters relates what he could discover from witnesses of his uncle's experiences. In a second letter, the younger Pliny details his own observations after the departure of his uncle.

Pliny the Younger

Pliny the Younger saw an extraordinarily dense cloud rising rapidly above the mountain:
the appearance of which I cannot give you a more exact description of than by likening it to that of a pine-tree, for it shot up to a great height in the form of a very tall trunk, which spread itself out at the top into a sort of branches. [...] it appeared sometimes bright and sometimes dark and spotted, according as it was either more or less impregnated with earth and cinders.
These events and a request by messenger for an evacuation by sea prompted the elder Pliny to order rescue operations in which he sailed away to participate. His nephew attempted to resume a normal life, continuing to study, and bathing, but that night a tremor woke him and his mother, prompting them to abandon the house for the courtyard. At another tremor near dawn the population abandoned the village. After still a third "the sea seemed to roll back upon itself, and to be driven from its banks", which is evidence for a tsunami. There is, however, no evidence of extensive damage from wave action.

The early light was obscured by a black cloud through which shone flashes, which Pliny likens to sheet lightning, but more extensive. The cloud obscured Point Misenum near at hand and the island of Capraia (Capri) across the bay. Fearing for their lives the population began to call to each other and move back from the coast along the road. Pliny's mother requested him to abandon her and save his own life, as she was too corpulent and aged to go further, but seizing her hand he led her away as best he could. A rain of ash fell. Pliny found it necessary to shake off the ash periodically to avoid being buried. Later that same day the ash stopped falling and the sun shone weakly through the cloud, encouraging Pliny and his mother to return to their home and wait for news of Pliny the Elder. The letter compares the ash to a blanket of snow. Evidently the earthquake and tsunami damage at that location were not severe enough to prevent continued use of the home.

Pliny the Elder

Pliny's uncle Pliny the Elder was in command of the Roman fleet at Misenum, and had meanwhile decided to investigate the phenomenon at close hand in a light vessel. As the ship was preparing to leave the area, a messenger came from his friend Rectina (wife of Bassus) living on the coast near the foot of the volcano, explaining that her party could only get away by sea and asking for rescue. Pliny ordered the immediate launching of the fleet galleys to the evacuation of the coast. He continued in his light ship to the rescue of Rectina's party.

He set off across the bay but in the shallows on the other side encountered thick showers of hot cinders, lumps of pumice, and pieces of rock. Advised by the helmsman to turn back he stated "Fortune favors the brave" and ordered him to continue on to Stabiae (about 4.5 km or 2.8 mi from Pompeii), where Pomponianus was. Pomponianus had already loaded a ship with possessions and was preparing to leave, but the same onshore wind that brought Pliny's ship to the location had prevented anyone from leaving.

Pliny and his party saw flames coming from several parts of the mountain, which Pliny and his friends attributed to burning villages. After staying overnight, the party was driven from the building by an accumulation of material which threatened to block all egress. They woke Pliny, who had been napping and snoring loudly. They elected to take to the fields with pillows tied to their heads to protect them from rockfall. They approached the beach again, but the wind had not changed. Pliny sat down on a sail that had been spread for him and could not rise, even with assistance. His friends then departed, escaping ultimately by land. Very likely, he had collapsed and died, the most popular explanation for why his friends abandoned him, although Suetonius offers an alternative story of his ordering a slave to kill him to avoid the pain of incineration. How the slave would have escaped to tell the tale remains a mystery. There is no mention of such an event in his nephew's letters.

In the first letter to Tacitus his nephew suggested that his death was due to the reaction of his weak lungs to a cloud of poisonous, sulphurous gas that wafted over the group. However, Stabiae was 16 km (9.9 mi) from the vent (roughly where the modern town of Castellammare di Stabia is situated) and his companions were apparently unaffected by the fumes, and so it is more likely that the corpulent Pliny died from some other cause, such as a stroke or heart attack. An asthmatic attack is also not out of the question. His body was found with no apparent injuries on the next day, after dispersal of the plume.

Casualties from the eruption

The casts of some victims in the so-called "Garden of the Fugitives", Pompeii.

Along with Pliny the Elder, the only other notable casualties of the eruption to be known by name were the Jewish princess Drusilla and her son Agrippa, who was born in her marriage with the procurator Antonius Felix. It is also said that the poet Caesius Bassus died in the eruption.

By 2003, approximately 1,044 casts made from impressions of bodies in the ash deposits had been recovered in and around Pompeii, with the scattered bones of another 100. The remains of about 332 bodies have been found at Herculaneum (300 in arched vaults discovered in 1980). The total number of fatalities remains unknown. 

The skeleton called the "Ring Lady" unearthed in Herculaneum
 
Thirty-eight percent of the 1,044 were found in the ash fall deposits, the majority inside buildings. This differs from modern experience over the last 400 years when only around 4% of victims have been killed by ash falls during explosive eruptions. This cohort was possibly sheltering in buildings when they were overcome. The remaining 62% of bodies found at Pompeii lay in the pyroclastic surge deposits which probably killed them. It was initially believed that due to the state of the bodies found at Pompeii and the outline of clothes on the bodies it was unlikely that high temperatures were a significant cause. Later studies indicated that during the fourth pyroclastic surge (the first surge to reach Pompeii) temperatures reached 300 °C (572 °F) which was enough to kill people in a fraction of a second. The contorted postures of bodies as if frozen in suspended action were not the effects of long agony, but of the cadaveric spasm, a consequence of heat shock on corpses. The heat was so intense that organs and blood were vaporised, and at least one victim's brain was vitrified by the temperature.

Herculaneum, which was much closer to the crater, was saved from tephra falls by the wind direction but was buried under 23 metres (75 ft) of material deposited by pyroclastic surges. It is likely that most, or all, of the known victims in this town were killed by the surges, particularly given evidence of high temperatures found on the skeletons of the victims found in the arched vaults on the seashore and the existence of carbonised wood in many of the buildings. These people were concentrated in the vaults at a density as high as three per square metre and were all caught by the first surge, dying of thermal shock and partly carbonised by later and hotter surges. The vaults were most likely boathouses, as the crossbeams overhead were probably for the suspension of boats used for the earlier escape of some of the population. As only 85 metres (279 ft) of the coast have been excavated, more casualties may be waiting to be excavated.

Date of the eruption

In October 2018, Italian archaeologists uncovered a charcoal inscription dated October 17 (of 79 AD as it was unlikely to have been a year old) which sets the earliest possible date for the eruption. Support for an October/November eruption has long been known in several respects: bodies buried in the ash were wearing heavier clothing than the light summer clothes typical of August; fresh fruit and vegetables in the shops are typical of October, and the summer fruit typical of August was already being sold in dried or conserved form; wine fermenting jars had been sealed, which would have happened around the end of October; coins found in the purse of a woman buried in the ash include one with a 15th imperatorial acclamation among the emperor's titles and could not have been minted before the second week of September.

Vesuvius and its destructive eruption are mentioned in first-century Roman sources, but not the day of the eruption. For example, Josephus in his Antiquities of the Jews mentions that the eruption occurred "in the days of Titus Caesar."

Suetonius, a second-century historian, in his Life of Titus simply says that, "There were some dreadful disasters during his reign, such as the eruption of Mount Vesuvius in Campania."

Writing well over a century after the actual event, Roman historian Cassius Dio (as translated in the Loeb Classical Library 1925 edition) wrote that, "In Campania remarkable and frightful occurrences took place; for a great fire suddenly flared up at the very end of the summer."

For the past five centuries, articles about the eruption of Vesuvius have typically said that the eruption began on August 24 of 79 AD. This date came from a 1508 printed version of a letter between Pliny the Younger and the Roman historian Tacitus, written some 25 years after the event. Pliny was a witness to the eruption and provides the only known eyewitness account. Over fourteen centuries of manuscript hand-copying up to the 1508 printing of his letters, the date given in Pliny's original letter may have been corrupted. Manuscript experts believe that the date originally given by Pliny was one of August 24, October 30, November 1, or November 23. This odd scattered set of dates is due to the Romans' convention for describing calendar dates. The large majority of extant medieval manuscript copies – there are no surviving Roman copies – indicate a date corresponding to August 24, and from the discovery of the cities into the 21st century this was accepted by most scholars and by nearly all books written about Pompeii and Herculaneum for the general public.

Since at least the late 18th century, a minority among archaeologists and other scientists have suggested that the eruption began after August 24, during the autumn, perhaps in October or November. In 1797 the researcher Carlo Rosini reported that excavations at Pompeii and Herculaneum had uncovered traces of fruits and braziers indicative of the autumn, not the summer.

More recently, in 1990 and 2001, archaeologists discovered more remnants of autumnal fruits (such as the pomegranate), the remains of victims of the eruption in heavy clothing, and large earthenware storage vessels laden with wine (at the time of their burial by Vesuvius). The wine-related discovery may show that the eruption was after the year's grape harvest and wine making.

In 2007 a study of prevailing winds in Campania showed that the southeasterly debris pattern of the first-century eruption is quite consistent with an autumn event, and inconsistent with an August date. During June, July, and August, the prevailing winds flow to the west – an arc between the southwest and northwest – virtually all the time. (Note that the Julian calendar was in place throughout the first century AD – that is, the months of the Roman calendar were aligned with the seasons.) 

As Emperor Titus of the Flavian dynasty (reigning June 24, 79 to September 13, 81) garnered victories on the battlefield (including his capture of the Temple of Jerusalem), and other honors, his administration issued coins enumerating his ever-growing accolades. Given the limited space on each coin, his achievements were stamped on the coins using an arcane encoding. Two of these coins, from early in Titus' reign, were found in a hoard recovered at Pompeii's House of the Golden Bracelet. Although the coins' minting dates are somewhat in dispute, a numismatic expert at the British Museum, Richard Abdy, concluded that the latest coin in the hoard was minted on or after June 24 (the first date of Titus' reign) and before September 1 of 79 AD. Abdy states that it is "remarkable that both coins will have taken just two months after minting to enter circulation and reach Pompeii before the disaster."
 

Pliny the Younger

From Wikipedia, the free encyclopedia
  
Pliny the Younger
Gaius Plinius Caecilius Secundus
Como 015.JPG
Statue of Pliny the Younger on the facade of Cathedral of S. Maria Maggiore in Como
Born
Gaius Caecilius Cilo

61 AD
Diedc. 113 AD (aged approx. 52)
OccupationPolitician, judge, author
Parent(s)Lucius Caecilius Cilo and Plinia Marcella

Gaius Plinius Caecilius Secundus, born Gaius Caecilius or Gaius Caecilius Cilo (61 – c. 113), better known as Pliny the Younger (/ˈplɪni/), was a lawyer, author, and magistrate of Ancient Rome. Pliny's uncle, Pliny the Elder, helped raise and educate him.

Pliny the Younger wrote hundreds of letters, of which 247 survive and are of great historical value. Some are addressed to reigning emperors or to notables such as the historian Tacitus. Pliny served as an imperial magistrate under Trajan (reigned 98–117), and his letters to Trajan provide one of the few surviving records of the relationship between the imperial office and provincial governors.

Pliny rose through a series of civil and military offices, the cursus honorum. He was a friend of the historian Tacitus and might have employed the biographer Suetonius on his staff. Pliny also came into contact with other well-known men of the period, including the philosophers Artemidorus and Euphrates the Stoic, during his time in Syria.

Background

Childhood

Como and Lake Como in 1834, painted by Jean-Baptiste-Camille Corot

Pliny the Younger was born in Novum Comum (Como, Northern Italy) around 61 AD, the son of Lucius Caecilius Cilo, born there, and his wife Plinia Marcella, a sister of Pliny the Elder. He was the grandson of Senator and landowner Gaius Caecilius, revered his uncle, Pliny the Elder (who at this time was extremely famous around the Roman Empire), and provided sketches of how his uncle worked on the Naturalis Historia.

Cilo died at an early age, when Pliny was still young. As a result, the boy probably lived with his mother. His guardian and preceptor in charge of his education was Lucius Verginius Rufus, famed for quelling a revolt against Nero in 68 AD. After being first tutored at home, Pliny went to Rome for further education. There he was taught rhetoric by Quintilian, a great teacher and author, and Nicetes Sacerdos of Smyrna. It was at this time that Pliny became closer to his uncle Pliny the Elder. When Pliny the Younger was 17 or 18, his uncle Pliny the Elder died attempting to rescue victims of the Vesuvius eruption, and the terms of the Elder Pliny's will passed his estate to his nephew. In the same document the younger Pliny was adopted by his uncle. As a result, Pliny the Younger changed his name from Gaius Caecilius Cilo to Gaius Plinius Caecilius Secundus (his official title was Gaius Plinius Luci filius Caecilius Secundus).

The Younger Pliny Reproved, colorized copperplate print by Thomas Burke (1749–1815)

There is some evidence that Pliny had a sibling. A memorial erected in Como (now CIL V, 5279) repeats the terms of a will by which the aedile Lucius Caecilius Cilo, son of Lucius, established a fund, the interest of which was to buy oil (used for soap) for the baths of the people of Como. The trustees are apparently named in the inscription: "L. Caecilius Valens and P. Caecilius Secundus, sons of Lucius, and the contubernalis Lutulla." The word contubernalis describing Lutulla is the military term meaning "tent-mate", which can only mean that she was living with Lucius, not as his wife. The first man mentioned, L. Caecilius Valens, is probably the older son. Pliny the Younger confirms that he was a trustee for the largesse "of my ancestors". It seems unknown to Pliny the Elder, so Valens' mother was probably not his sister Plinia; perhaps Valens was Lutulla's son from an earlier relationship.

Marriages

Pliny the Younger married three times, firstly, when he was very young (about 18), to a stepdaughter of Veccius Proculus', who died at age 37; secondly, at an unknown date, to the daughter of Pompeia Celerina; and thirdly to Calpurnia, daughter of Calpurnius and granddaughter of Calpurnius Fabatus of Comum. Letters survive in which Pliny recorded this last marriage taking place, his attachment to Calpurnia, and his sadness when she miscarried their child.

Death

Pliny is thought to have died suddenly during his convention in Bithynia-Pontus, around 113 AD, since no events referred to in his letters date later than that.

Career

Pliny was by birth of equestrian rank, that is, a member of the aristocratic order of equites (knights), the lower (beneath the senatorial order) of the two Roman aristocratic orders that monopolised senior civil and military offices during the early Empire. His career began at the age of 18 and initially followed a normal equestrian route. But, unlike most equestrians, he achieved entry into the upper order by being elected Quaestor in his late twenties.

Pliny was active in the Roman legal system, especially in the sphere of the Roman centumviral court, which dealt with inheritance cases. Later, he was a well-known prosecutor and defender at the trials of a series of provincial governors, including Baebius Massa, governor of Baetica; Marius Priscus, governor of Africa; Gaius Caecilius Classicus, governor of Baetica; and most ironically in light of his later appointment to this province, Gaius Julius Bassus and Varenus Rufus, both governors of Bithynia and Pontus.

Pliny's career is commonly considered as a summary of the main Roman public charges and is the best-documented example from this period, offering proof for many aspects of imperial culture. Effectively, Pliny crossed all the principal fields of the organization of the early Roman Empire. It is an achievement for a man to have not only survived the reigns of several disparate emperors, especially the much-detested Domitian, but also to have risen in rank throughout.

Career summary

c. 81 One of the presiding judges in the centumviral court (decemvir litibus iudicandis)
c. 81 Tribunus militum (staff officer) of Legio III Gallica in Syria, probably for six months
80s Officer of the noble order of knights (sevir equitum Romanorum)
Later 80s Entered the Senate
88 or 89 Quaestor attached to the Emperor's staff (quaestor imperatoris)
91 Tribune of the People (tribunus plebis)
93 Praetor
94–96 Prefect of the military treasury (praefectus aerarii militaris)
98–100 Prefect of the treasury of Saturn (praefectus aerari Saturni)
100 Suffect consul with Cornutus Tertullus
103–104 Publicly elected Augur
104–106 Superintendent for the banks of the Tiber (curator alvei Tiberis)
104–107 Three times a member of Trajan's judicial council.
110 The imperial governor (legatus Augusti) of Bithynia et Pontus province

Writings

Pliny penned his first work at age 14: a tragedy in Greek. Additionally, in the course of his life, he wrote numerous poems, most of which are lost. He was also known as a notable orator; though he professed himself a follower of Cicero's, Pliny's prose was more magniloquent and less direct than Cicero's.

Pliny's only oration that now survives is the Panegyricus Traiani. This was delivered in the Senate in 100 and is a description of Trajan's figure and actions in an adulatory and emphatic form, especially contrasting him with the Emperor Domitian. It is, however, a relevant document that reveals many details about the Emperor's actions in several fields of his administrative power such as taxes, justice, military discipline, and commerce. Recalling the speech in one of his letters, Pliny shrewdly defines his own motives thus:
I hoped in the first place to encourage our Emperor in his virtues by a sincere tribute and, secondly, to show his successors what path to follow to win the same renown, not by offering instruction but by setting his example before them. To proffer advice on an Emperor's duties might be a noble enterprise, but it would be a heavy responsibility verging on insolence, whereas to praise an excellent ruler (optimum principem) and thereby shine a beacon on the path posterity should follow would be equally effective without appearing presumptuous.

Epistulae

Eruption of Vesuvius, 1826 painting by I.C. Dahl
 
The largest surviving body of Pliny's work is his Epistulae (Letters), a series of personal missives directed to his friends and associates. These letters are a unique testimony of Roman administrative history and everyday life in the 1st century AD. Especially noteworthy among the letters are two in which he describes the eruption of Mount Vesuvius in October 79, during which his uncle Pliny the Elder died (Epistulae VI.16, VI.20), and one in which he asks the Emperor for instructions regarding official policy concerning Christians (Epistulae X.96).

Epistles concerning the eruption of Mount Vesuvius

Pliny wrote the two letters describing the eruption of Mount Vesuvius approximately 25 years after the event, and both were sent in response to the request of his friend, the historian Tacitus, who wanted to know more about Pliny the Elder's death. The two letters have great historical value due to their accurate description of Vesuvius' eruption; Pliny's attention to detail in the letters about Vesuvius is so keen that modern volcanologists describe those types of eruptions as "Plinian eruptions".

Epistle concerning the Christian religion

As the Roman governor of Bithynia-Pontus (now in modern Turkey) Pliny wrote a letter to Emperor Trajan around 112 AD and asked for counsel on dealing with Christians. In the letter (Epistulae X.96) Pliny detailed an account of how he conducted trials of suspected Christians who appeared before him as a result of anonymous accusations and asked for the Emperor's guidance on how they should be treated. Pliny had never performed a legal investigation of Christians and thus consulted Trajan in order to be on solid ground regarding his actions. Pliny saved his letters and Trajan's replies and these are the earliest surviving Roman documents to refer to early Christians.

Manuscripts

The first – incomplete – edition of Pliny's Epistles was published in Italy in 1471. Sometime between 1495 and 1500 Giovanni Giocondo discovered a manuscript in Paris of Pliny's tenth book of letters, containing his correspondence with Trajan, and published it in Paris, dedicating the work to Louis XII. The first complete edition was produced by the press of Aldus Manutius in 1508.

Villas, farms and estates

View of Bellagio in Lake Como. The institution on the hill is Villa Serbelloni, believed to have been constructed on the site of Pliny's villa "Tragedy."
 
Pliny loved villas. Being wealthy, he owned many, and wrote in detail about his villa near Ostia, at Laurentium. Others were the one in Lake Como named "Tragedy" because of its location high on a hill, and, on the shore of the lake, "Comedy," so called because it was sited low down. Pliny's main estate in Italy was in the north of Umbria, by Tifernum Tiberinum, under the passes of Bocca Trabaria and Bocca Serriola, where wood was harvested for Roman ships and sent to Rome via the Tiber.

According to G. E. M. de Ste. Croix, as a response to "declining returns from his north Italian farms", Pliny begins to contemplate switching the administration of his estate to a sharecropping system called colonia partiaria. Under the sharecropping system Pliny's slaves would act as overseers. Ste. Croix speculated this may have been an intermediary period before serfdom fully replaces slavery in later centuries.

Entropy (information theory)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Entropy_(information_theory) In info...