Search This Blog

Thursday, May 21, 2020

Public key certificate

From Wikipedia, the free encyclopedia

Client and server certificate of *.wikipedia.org

In cryptography, a public key certificate, also known as a digital certificate or identity certificate, is an electronic document used to prove the ownership of a public key. The certificate includes information about the key, information about the identity of its owner (called the subject), and the digital signature of an entity that has verified the certificate's contents (called the issuer). If the signature is valid, and the software examining the certificate trusts the issuer, then it can use that key to communicate securely with the certificate's subject. In email encryption, code signing, and e-signature systems, a certificate's subject is typically a person or organization. However, in Transport Layer Security (TLS) a certificate's subject is typically a computer or other device, though TLS certificates may identify organizations or individuals in addition to their core role in identifying devices. TLS, sometimes called by its older name Secure Sockets Layer (SSL), is notable for being a part of HTTPS, a protocol for securely browsing the web.

In a typical public-key infrastructure (PKI) scheme, the certificate issuer is a certificate authority (CA), usually a company that charges customers to issue certificates for them. By contrast, in a web of trust scheme, individuals sign each other's keys directly, in a format that performs a similar function to a public key certificate.

The most common format for public key certificates is defined by X.509. Because X.509 is very general, the format is further constrained by profiles defined for certain use cases, such as Public Key Infrastructure (X.509) as defined in RFC 5280.

Types of certificate

The roles of root certificate, intermediate certificate and end-entity certificate as in the chain of trust.

TLS/SSL server certificate

In TLS (an updated replacement for SSL), a server is required to present a certificate as part of the initial connection setup. A client connecting to that server will perform the certification path validation algorithm:
  1. The subject of the certificate matches the hostname (i.e. domain name) to which the client is trying to connect;
  2. The certificate is signed by a trusted certificate authority.
The primary hostname (domain name of the website) is listed as the Common Name in the Subject field of the certificate. A certificate may be valid for multiple hostnames (multiple websites). Such certificates are commonly called Subject Alternative Name (SAN) certificates or Unified Communications Certificates (UCC). These certificates contain the field Subject Alternative Name, though many CAs will also put them into the Subject Common Name field for backward compatibility. If some of the hostnames contain an asterisk (*), a certificate may also be called a wildcard certificate.

A TLS server may be configured with a self-signed certificate. When that is the case, clients will generally be unable to verify the certificate, and will terminate the connection unless certificate checking is disabled.

As per the applications, SSL Certificates can be classified into three types:
  • Domain Validation SSL;
  • Organization Validation SSL;
  • Extended Validation SSL.

TLS/SSL client certificate

Client certificates are less common than server certificates, and are used to authenticate the client connecting to a TLS service, for instance to provide access control. Because most services provide access to individuals, rather than devices, most client certificates contain an email address or personal name rather than a hostname. Also, because authentication is usually managed by the service provider, client certificates are not usually issued by a public CA that provides server certificates. Instead, the operator of a service that requires client certificates will usually operate their own internal CA to issue them. Client certificates are supported by many web browsers, but most services use passwords and cookies to authenticate users, instead of client certificates.

Client certificates are more common in RPC systems, where they are used to authenticate devices to ensure that only authorized devices can make certain RPC calls.

Email certificate

In the S/MIME protocol for secure email, senders need to discover which public key to use for any given recipient. They get this information from an email certificate. Some publicly trusted certificate authorities provide email certificates, but more commonly S/MIME is used when communicating within a given organization, and that organization runs its own CA, which is trusted by participants in that email system.

EMV certificate

EMV payment cards are preloaded with EMV Certificate, Card Issuer Certificate, signed by EMV Certificate Authority to validate authenticity of the payment card during the payment transaction. EMV CA Certificate public key is loaded on ATM or POS and used for validating Card Issuer Certificate.

Code signing certificate

Certificates can also be used to validate signatures on programs to ensure they were not tampered with during delivery.

Qualified certificate

A certificate identifying an individual, typically for electronic signature purposes. These are most commonly used in Europe, where the eIDAS regulation standardizes them and requires their recognition.

Root certificate

A self-signed certificate used to sign other certificates. Also sometimes called a trust anchor.

Intermediate certificate

A certificate used to sign other certificates. An intermediate certificate must be signed by another intermediate certificate, or a root certificate.

End-entity or leaf certificate

Any certificate that cannot be used to sign other certificates. For instance, TLS/SSL server and client certificates, email certificates, code signing certificates, and qualified certificates are all end-entity certificates.

Self-signed certificate

A certificate with a subject that matches its issuer, and a signature that can be verified by its own public key. Most types of certificate can be self-signed. Self-signed certificates are also often called snake oil certificates to emphasize their untrustworthiness.

Common fields

These are some of the most common fields in certificates. Most certificates contain a number of fields not listed here. Note that in terms of a certificate's X.509 representation, a certificate is not "flat" but contains these fields nested in various structures within the certificate.
  • Serial Number: Used to uniquely identify the certificate within a CA's systems. In particular this is used to track revocation information.
  • Subject: The entity a certificate belongs to: a machine, an individual, or an organization.
  • Issuer: The entity that verified the information and signed the certificate.
  • Not Before: The earliest time and date on which the certificate is valid. Usually set to a few hours or days prior to the moment the certificate was issued, to avoid clock skew problems.
  • Not After: The time and date past which the certificate is no longer valid.
  • Key Usage: The valid cryptographic uses of the certificate's public key. Common values include digital signature validation, key encipherment, and certificate signing.
  • Extended Key Usage: The applications in which the certificate may be used. Common values include TLS server authentication, email protection, and code signing.
  • Public Key: A public key belonging to the certificate subject.
  • Signature Algorithm: The algorithm used to sign the public key certificate.
  • Signature: A signature of the certificate body by the issuer's private key.

Sample certificate

This is an example of a decoded SSL/TLS certificate retrieved from SSL.com's website. The issuer's common name (CN) is shown as SSL.com EV SSL Intermediate CA RSA R3, identifying this as an Extended Validation (EV) certificate. Validated information about the website's owner (SSL Corp) is located in the Subject field. The X509v3 Subject Alternative Name field contains a list of domain names covered by the certificate. The X509v3 Extended Key Usage and X509v3 Key Usage fields show all appropriate uses.

Certificate:
    Data:
        Version: 3 (0x2)
        Serial Number:
            72:14:11:d3:d7:e0:fd:02:aa:b0:4e:90:09:d4:db:31
        Signature Algorithm: sha256WithRSAEncryption
        Issuer: C=US, ST=Texas, L=Houston, O=SSL Corp, CN=SSL.com EV SSL Intermediate CA RSA R3
        Validity
            Not Before: Apr 18 22:15:06 2019 GMT
            Not After : Apr 17 22:15:06 2021 GMT
        Subject: C=US, ST=Texas, L=Houston, O=SSL Corp/serialNumber=NV20081614243, CN=www.ssl.com/postalCode=77098/businessCategory=Private Organization/street=3100 Richmond Ave/jurisdictionST=Nevada/jurisdictionC=US
        Subject Public Key Info:
            Public Key Algorithm: rsaEncryption
                RSA Public-Key: (2048 bit)
                Modulus:
                    00:ad:0f:ef:c1:97:5a:9b:d8:1e ...
                Exponent: 65537 (0x10001)
        X509v3 extensions:
            X509v3 Authority Key Identifier: 
                keyid:BF:C1:5A:87:FF:28:FA:41:3D:FD:B7:4F:E4:1D:AF:A0:61:58:29:BD

            Authority Information Access: 
                CA Issuers - URI:http://www.ssl.com/repository/SSLcom-SubCA-EV-SSL-RSA-4096-R3.crt
                OCSP - URI:http://ocsps.ssl.com

            X509v3 Subject Alternative Name: 
                DNS:www.ssl.com, DNS:answers.ssl.com, DNS:faq.ssl.com, DNS:info.ssl.com, DNS:links.ssl.com, DNS:reseller.ssl.com, DNS:secure.ssl.com, DNS:ssl.com, DNS:support.ssl.com, DNS:sws.ssl.com, DNS:tools.ssl.com
            X509v3 Certificate Policies: 
                Policy: 2.23.140.1.1
                Policy: 1.2.616.1.113527.2.5.1.1
                Policy: 1.3.6.1.4.1.38064.1.1.1.5
                  CPS: https://www.ssl.com/repository

            X509v3 Extended Key Usage: 
                TLS Web Client Authentication, TLS Web Server Authentication
            X509v3 CRL Distribution Points:

                Full Name:
                  URI:http://crls.ssl.com/SSLcom-SubCA-EV-SSL-RSA-4096-R3.crl

            X509v3 Subject Key Identifier: 
                E7:37:48:DE:7D:C2:E1:9D:D0:11:25:21:B8:00:33:63:06:27:C1:5B
            X509v3 Key Usage: critical
                Digital Signature, Key Encipherment
            CT Precertificate SCTs: 
                Signed Certificate Timestamp:
                    Version   : v1 (0x0)
                    Log ID    : 87:75:BF:E7:59:7C:F8:8C:43:99 ...
                    Timestamp : Apr 18 22:25:08.574 2019 GMT
                    Extensions: none
                    Signature : ecdsa-with-SHA256
                                30:44:02:20:40:51:53:90:C6:A2 ...
                Signed Certificate Timestamp:
                    Version   : v1 (0x0)
                    Log ID    : A4:B9:09:90:B4:18:58:14:87:BB ...
                    Timestamp : Apr 18 22:25:08.461 2019 GMT
                    Extensions: none
                    Signature : ecdsa-with-SHA256
                                30:45:02:20:43:80:9E:19:90:FD ...
                Signed Certificate Timestamp:
                    Version   : v1 (0x0)
                    Log ID    : 55:81:D4:C2:16:90:36:01:4A:EA ...
                    Timestamp : Apr 18 22:25:08.769 2019 GMT
                    Extensions: none
                    Signature : ecdsa-with-SHA256
                                30:45:02:21:00:C1:3E:9F:F0:40 ...
    Signature Algorithm: sha256WithRSAEncryption
         36:07:e7:3b:b7:45:97:ca:4d:6c ...

Usage in the European Union

In the European Union, electronic signatures on legal documents are commonly performed using digital signatures with accompanying identity certificates. This is largely because such signatures are granted the same enforceability as handwritten signatures under eIDAS, an EU regulation.

Certificate authorities

The procedure of obtaining a Public key certificate

In the X.509 trust model, a certificate authority (CA) is responsible for signing certificates. These certificates act as an introduction between two parties, which means that a CA acts as a trusted third party. A CA processes requests from people or organizations requesting certificates (called subscribers), verifies the information, and potentially signs an end-entity certificate based on that information. To perform this role effectively, a CA needs to have one or more broadly trusted root certificates or intermediate certificates and the corresponding private keys. CAs may achieve this broad trust by having their root certificates included in popular software, or by obtaining a cross-signature from another CA delegating trust. Other CAs are trusted within a relatively small community, like a business, and are distributed by other mechanisms like Windows Group Policy.

Certificate authorities are also responsible for maintaining up-to-date revocation information about certificates they have issued, indicating whether certificates are still valid. They provide this information through Online Certificate Status Protocol (OCSP) and/or Certificate Revocation Lists (CRLs). Some of the larger certificate authorities in the market include IdenTrust, DigiCert, and Sectigo.

Root programs

Some major software contain a list of certificate authorities that are trusted by default. This makes it easier for end-users to validate certificates, and easier for people or organizations that request certificates to know which certificate authorities can issue a certificate that will be broadly trusted. This is particularly important in HTTPS, where a web site operator generally wants to get a certificate that is trusted by nearly all potential visitors to their web site.

The policies and processes a provider uses to decide which certificate authorities their software should trust are called root programs. The most influential root programs are:
Browsers other than Firefox generally use the operating system's facilities to decide which certificate authorities are trusted. So, for instance, Chrome on Windows trusts the certificate authorities included in the Microsoft Root Program, while on macOS or iOS, Chrome trusts the certificate authorities in the Apple Root Program. Edge and Safari use their respective operating system trust stores as well, but each is only available on a single OS. Firefox uses the Mozilla Root Program trust store on all platforms.

The Mozilla Root Program is operated publicly, and its certificate list is part of the open source Firefox web browser, so it is broadly used outside Firefox. For instance, while there is no common Linux Root Program, many Linux distributions, like Debian, include a package that periodically copies the contents of the Firefox trust list, which is then used by applications.

Root programs generally provide a set of valid purposes with the certificates they include. For instance, some CAs may be considered trusted for issuing TLS server certificates, but not for code signing certificates. This is indicated with a set of trust bits in a root certificate storage system.

Certificates and website security

The most common use of certificates is for HTTPS-based web sites. A web browser validates that an HTTPS web server is authentic, so that the user can feel secure that his/her interaction with the web site has no eavesdroppers and that the web site is who it claims to be. This security is important for electronic commerce. In practice, a web site operator obtains a certificate by applying to a certificate authority with a certificate signing request. The certificate request is an electronic document that contains the web site name, company information and the public key. The certificate provider signs the request, thus producing a public certificate. During web browsing, this public certificate is served to any web browser that connects to the web site and proves to the web browser that the provider believes it has issued a certificate to the owner of the web site.

As an example, when a user connects to https://www.example.com/ with their browser, if the browser does not give any certificate warning message, then the user can be theoretically sure that interacting with https://www.example.com/ is equivalent to interacting with the entity in contact with the email address listed in the public registrar under "example.com", even though that email address may not be displayed anywhere on the web site. No other surety of any kind is implied. Further, the relationship between the purchaser of the certificate, the operator of the web site, and the generator of the web site content may be tenuous and is not guaranteed. At best, the certificate guarantees uniqueness of the web site, provided that the web site itself has not been compromised (hacked) or the certificate issuing process subverted.

A certificate provider can opt to issue three types of certificates, each requiring its own degree of vetting rigor. In order of increasing rigor (and naturally, cost) they are: Domain Validation, Organization Validation and Extended Validation. These rigors are loosely agreed upon by voluntary participants in the CA/Browser Forum.

Validation levels

Domain validation

A certificate provider will issue a Domain Validation (DV) class certificate to a purchaser if the purchaser can demonstrate one vetting criterion: the right to administratively manage a domain name.

Organization validation

A certificate provider will issue an Organization Validation (OV) class certificate to a purchaser if the purchaser can meet two criteria: the right to administratively manage the domain name in question, and perhaps, the organization's actual existence as a legal entity. A certificate provider publishes its OV vetting criteria through its Certificate Policy.

Extended validation

To acquire an Extended Validation (EV) certificate, the purchaser must persuade the certificate provider of its legal identity, including manual verification checks by a human. As with OV certificates, a certificate provider publishes its EV vetting criteria through its Certificate Policy.

Browsers will generally offer users a visual indication of the legal identity when a site presents an EV certificate. Most browsers show the legal name before the domain, and use a bright green color to highlight the change. In this way, the user can see the legal identity of the owner has been verified.

Weaknesses

A web browser will give no warning to the user if a web site suddenly presents a different certificate, even if that certificate has a lower number of key bits, even if it has a different provider, and even if the previous certificate had an expiry date far into the future. However a change from an EV certificate to a non-EV certificate will be apparent as the green bar will no longer be displayed. Where certificate providers are under the jurisdiction of governments, those governments may have the freedom to order the provider to generate any certificate, such as for the purposes of law enforcement. Subsidiary wholesale certificate providers also have the freedom to generate any certificate.

All web browsers come with an extensive built-in list of trusted root certificates, many of which are controlled by organizations that may be unfamiliar to the user. Each of these organizations is free to issue any certificate for any web site and have the guarantee that web browsers that include its root certificates will accept it as genuine. In this instance, end users must rely on the developer of the browser software to manage its built-in list of certificates and on the certificate providers to behave correctly and to inform the browser developer of problematic certificates. While uncommon, there have been incidents in which fraudulent certificates have been issued: in some cases, the browsers have detected the fraud; in others, some time passed before browser developers removed these certificates from their software.

The list of built-in certificates is also not limited to those provided by the browser developer: users (and to a degree applications) are free to extend the list for special purposes such as for company intranets. This means that if someone gains access to a machine and can install a new root certificate in the browser, that browser will recognize websites that use the inserted certificate as legitimate.

For provable security, this reliance on something external to the system has the consequence that any public key certification scheme has to rely on some special setup assumption, such as the existence of a certificate authority.

Usefulness versus unsecured web sites

In spite of the limitations described above, certificate-authenticated TLS is considered mandatory by all security guidelines whenever a web site hosts confidential information or performs material transactions. This is because, in practice, in spite of the weaknesses described above, web sites secured by public key certificates are still more secure than unsecured http:// web sites.

Standards

The National Institute of Standards and Technology(NIST) Computer Security Division provides guidance documents for Public Key Certificates:
  • SP 800-32 Introduction to Public Key Technology and the Federal PKI Infrastructure
  • SP 800-25 Federal Agency Use of Public Key Technology for Digital Signatures and Authentication

Public key infrastructure

From Wikipedia, the free encyclopedia
 
Diagram of a public key infrastructure

A public key infrastructure (PKI) is a set of roles, policies, hardware, software and procedures needed to create, manage, distribute, use, store and revoke digital certificates and manage public-key encryption. The purpose of a PKI is to facilitate the secure electronic transfer of information for a range of network activities such as e-commerce, internet banking and confidential email. It is required for activities where simple passwords are an inadequate authentication method and more rigorous proof is required to confirm the identity of the parties involved in the communication and to validate the information being transferred.

In cryptography, a PKI is an arrangement that binds public keys with respective identities of entities (like people and organizations). The binding is established through a process of registration and issuance of certificates at and by a certificate authority (CA). Depending on the assurance level of the binding, this may be carried out by an automated process or under human supervision.

The PKI role that assures valid and correct registration is called a registration authority (RA). An RA is responsible for accepting requests for digital certificates and authenticating the entity making the request. In a Microsoft PKI, a registration authority is usually called a subordinate CA.

An entity must be uniquely identifiable within each CA domain on the basis of information about that entity. A third-party validation authority (VA) can provide this entity information on behalf of the CA. 

The X.509 standard defines the most commonly used format for public key certificates.

Design

Public key cryptography is a cryptographic technique that enables entities to securely communicate on an insecure public network, and reliably verify the identity of an entity via digital signatures.

A public key infrastructure (PKI) is a system for the creation, storage, and distribution of digital certificates which are used to verify that a particular public key belongs to a certain entity. The PKI creates digital certificates which map public keys to entities, securely stores these certificates in a central repository and revokes them if needed.

A PKI consists of:
  • A certificate authority (CA) that stores, issues and signs the digital certificates;
  • A registration authority (RA) which verifies the identity of entities requesting their digital certificates to be stored at the CA;
  • A central directory—i.e., a secure location in which keys are stored and indexed;
  • A certificate management system managing things like the access to stored certificates or the delivery of the certificates to be issued;
  • A certificate policy stating the PKI's requirements concerning its procedures. Its purpose is to allow outsiders to analyze the PKI's trustworthiness.

Methods of certification

Broadly speaking, there have traditionally been three approaches to getting this trust: certificate authorities (CAs), web of trust (WoT), and simple public key infrastructure (SPKI).

Certificate authorities

The primary role of the CA is to digitally sign and publish the public key bound to a given user. This is done using the CA's own private key, so that trust in the user key relies on one's trust in the validity of the CA's key. When the CA is a third party separate from the user and the system, then it is called the Registration Authority (RA), which may or may not be separate from the CA. The key-to-user binding is established, depending on the level of assurance the binding has, by software or under human supervision.

The term trusted third party (TTP) may also be used for certificate authority (CA). Moreover, PKI is itself often used as a synonym for a CA implementation.

Issuer market share

In this model of trust relationships, a CA is a trusted third party – trusted both by the subject (owner) of the certificate and by the party relying upon the certificate. 

According to NetCraft report from 2015, the industry standard for monitoring Active Transport Layer Security (TLS) certificates, states that- "Although the global [TLS] ecosystem is competitive, it is dominated by a handful of major CAs — three certificate authorities (Symantec, Sectigo, GoDaddy) account for three-quarters of all issued [TLS] certificates on public-facing web servers. The top spot has been held by Symantec (or VeriSign before it was purchased by Symantec) ever since [our] survey began, with it currently accounting for just under a third of all certificates. To illustrate the effect of differing methodologies, amongst the million busiest sites Symantec issued 44% of the valid, trusted certificates in use — significantly more than its overall market share." 

Following to major issues in how certificate issuing were managed, all major players gradually distrusted Symantec issued certificates starting from 2017.

Temporary certificates and single sign-on

This approach involves a server that acts as an offline certificate authority within a single sign-on system. A single sign-on server will issue digital certificates into the client system, but never stores them. Users can execute programs, etc. with the temporary certificate. It is common to find this solution variety with X.509-based certificates.

Web of trust

An alternative approach to the problem of public authentication of public key information is the web-of-trust scheme, which uses self-signed certificates and third party attestations of those certificates. The singular term "web of trust" does not imply the existence of a single web of trust, or common point of trust, but rather one of any number of potentially disjoint "webs of trust". Examples of implementations of this approach are PGP (Pretty Good Privacy) and GnuPG (an implementation of OpenPGP, the standardized specification of PGP). Because PGP and implementations allow the use of e-mail digital signatures for self-publication of public key information, it is relatively easy to implement one's own web of trust.

One of the benefits of the web of trust, such as in PGP, is that it can inter-operate with a PKI CA fully trusted by all parties in a domain (such as an internal CA in a company) that is willing to guarantee certificates, as a trusted introducer. If the "web of trust" is completely trusted then, because of the nature of a web of trust, trusting one certificate is granting trust to all the certificates in that web. A PKI is only as valuable as the standards and practices that control the issuance of certificates and including PGP or a personally instituted web of trust could significantly degrade the trustworthiness of that enterprise's or domain's implementation of PKI.

The web of trust concept was first put forth by PGP creator Phil Zimmermann in 1992 in the manual for PGP version 2.0:
As time goes on, you will accumulate keys from other people that you may want to designate as trusted introducers. Everyone else will each choose their own trusted introducers. And everyone will gradually accumulate and distribute with their key a collection of certifying signatures from other people, with the expectation that anyone receiving it will trust at least one or two of the signatures. This will cause the emergence of a decentralized fault-tolerant web of confidence for all public keys.

Simple public key infrastructure

Another alternative, which does not deal with public authentication of public key information, is the simple public key infrastructure (SPKI) that grew out of three independent efforts to overcome the complexities of X.509 and PGP's web of trust. SPKI does not associate users with persons, since the key is what is trusted, rather than the person. SPKI does not use any notion of trust, as the verifier is also the issuer. This is called an "authorization loop" in SPKI terminology, where authorization is integral to its design. This type of PKI is specially useful for making integrations of PKI that do not rely on third parties for certificate authorization, certificate information, etc.; A good example of this is an Air-gapped network in an office.

Blockchain-based PKI

An emerging approach for PKI is to use the blockchain technology commonly associated with modern cryptocurrency. Since blockchain technology aims to provide a distributed and unalterable ledger of information, it has qualities considered highly suitable for the storage and management of public keys. Some cryptocurrencies support the storage of different public key types (SSH, GPG, RFC 2230, etc.) and provides open source software that directly supports PKI for OpenSSH servers. While blockchain technology can approximate the proof of work often underpinning the confidence in trust that relying parties have in a PKI, issues remain such as administrative conformance to policy, operational security and software implementation quality. A Certificate Authority paradigm has these issues regardless of the underlying cryptographic methods and algorithms employed, and PKI that seeks to endow certificates with trustworthy properties must also address these issues.

Here is a list of known Blockchain-based PKI:
  • CertCoin
  • FlyClient
  • BlockQuick

History

Developments in PKI occurred in the early 1970s at the British intelligence agency GCHQ, where James Ellis, Clifford Cocks and others made important discoveries related to encryption algorithms and key distribution. Because developments at GCHQ are highly classified, the results of this work were kept secret and not publicly acknowledged until the mid-1990s. 

The public disclosure of both secure key exchange and asymmetric key algorithms in 1976 by Diffie, Hellman, Rivest, Shamir, and Adleman changed secure communications entirely. With the further development of high-speed digital electronic communications (the Internet and its predecessors), a need became evident for ways in which users could securely communicate with each other, and as a further consequence of that, for ways in which users could be sure with whom they were actually interacting.

Assorted cryptographic protocols were invented and analyzed within which the new cryptographic primitives could be effectively used. With the invention of the World Wide Web and its rapid spread, the need for authentication and secure communication became still more acute. Commercial reasons alone (e.g., e-commerce, online access to proprietary databases from web browsers) were sufficient. Taher Elgamal and others at Netscape developed the SSL protocol ('https' in Web URLs); it included key establishment, server authentication (prior to v3, one-way only), and so on. A PKI structure was thus created for Web users/sites wishing secure communications.

Vendors and entrepreneurs saw the possibility of a large market, started companies (or new projects at existing companies), and began to agitate for legal recognition and protection from liability. An American Bar Association technology project published an extensive analysis of some of the foreseeable legal aspects of PKI operations (see ABA digital signature guidelines), and shortly thereafter, several U.S. states (Utah being the first in 1995) and other jurisdictions throughout the world began to enact laws and adopt regulations. Consumer groups raised questions about privacy, access, and liability considerations, which were more taken into consideration in some jurisdictions than in others.

The enacted laws and regulations differed, there were technical and operational problems in converting PKI schemes into successful commercial operation, and progress has been much slower than pioneers had imagined it would be.

By the first few years of the 21st century, the underlying cryptographic engineering was clearly not easy to deploy correctly. Operating procedures (manual or automatic) were not easy to correctly design (nor even if so designed, to execute perfectly, which the engineering required). The standards that existed were insufficient.

PKI vendors have found a market, but it is not quite the market envisioned in the mid-1990s, and it has grown both more slowly and in somewhat different ways than were anticipated. PKIs have not solved some of the problems they were expected to, and several major vendors have gone out of business or been acquired by others. PKI has had the most success in government implementations; the largest PKI implementation to date is the Defense Information Systems Agency (DISA) PKI infrastructure for the Common Access Cards program.

Uses

PKIs of one type or another, and from any of several vendors, have many uses, including providing public keys and bindings to user identities which are used for:

Open source implementations

  • OpenSSL is the simplest form of CA and tool for PKI. It is a toolkit, developed in C, that is included in all major Linux distributions, and can be used both to build your own (simple) CA and to PKI-enable applications. (Apache licensed)
  • EJBCA is a full featured, Enterprise grade, CA implementation developed in Java. It can be used to set up a CA both for internal use and as a service. (LGPL licensed)
  • XiPKI, CA and OCSP responder. With SHA3 support, implemented in Java. (Apache licensed)
  • OpenCA is a full featured CA implementation using a number of different tools. OpenCA uses OpenSSL for the underlying PKI operations.
  • XCA is a graphical interface, and database. XCA uses OpenSSL for the underlying PKI operations.
  • (Discontinued) TinyCA was a graphical interface for OpenSSL.
  • IoT_pki is a simple PKI built using the python cryptography library
  • DogTag is a full featured CA developed and maintained as part of the Fedora Project.
  • CFSSL open source toolkit developed by CloudFlare for signing, verifying, and bundling TLS certificates. (BSD 2-clause licensed)
  • Vault tool for securely managing secrets (TLS certificates included) developed by HashiCorp. (Mozilla Public License 2.0 licensed)
  • Libhermetik is a self-contained public-key infrastructure system embedded in a C-language library. Hermetik utilizes LibSodium for all cryptographic operations, and SQLite for all data persistence operations. The software is open-source and released under the ISC license.

Criticism

Some argue that purchasing certificates for securing websites by SSL and securing software by code signing is a costly venture for small businesses. However, the emergence of free alternatives such as Let's Encrypt, has changed this. HTTP/2, the latest version of HTTP protocol allows unsecured connections in theory, in practice major browser companies have made it clear that they would support this protocol only over a PKI secured TLS connection. Web browser implementation of HTTP/2 including Edge from Microsoft, Chrome from Google, Firefox from Mozilla, and Opera supports HTTP/2 only over TLS by using ALPN extension of TLS protocol. This would mean that to get the speed benefits of HTTP/2, website owners would be forced to purchase SSL certificates controlled by corporations.

Current web browsers carry pre-installed intermediary certificates issued and signed by a Certificate Authority. This means browsers need to carry a large number of different certificate providers, increasing the risk of a key compromise.

When a key is known to be compromised it could be fixed by revoking the certificate, but such a compromise is not easily detectable and can be a huge security breach. Browsers have to issue a security patch to revoke intermediary certificates issued by a compromised root certificate authority. Some practical security vulnerabilities of X.509 certificates and known cases where keys were stolen from a major Certificate Authority are listed below.

SAP ERP

From Wikipedia, the free encyclopedia
 
ERP
Developer(s)SAP SE
Written inC, C++, ABAP/4
TypeERP
Websitewww.sap.com/products/erp.html

SAP ERP is enterprise resource planning software developed by the German company SAP SE. SAP ERP incorporates the key business functions of an organization. The latest version of SAP ERP (V.6.0) was made available in 2006. The most recent Enhancement Package (EHP8) for SAP ERP 6.0 was released in 2016.

Business Processes included in SAP ERP are Operations (Sales & Distribution, Materials Management, Production Planning, Logistics Execution, and Quality Management), Financials (Financial Accounting, Management Accounting, Financial Supply Chain Management), Human Capital Management (Training, Payroll, e-Recruiting) and Corporate Services (Travel Management, Environment, Health and Safety, and Real-Estate Management).

Development

An ERP was built based on the former SAP R/3 software. SAP R/3, which was officially launched on 6 July 1992, consisted of various applications on top of SAP Basis, SAP's set of middleware programs and tools. All applications were built on top of the SAP Web Application Server. Extension sets were used to deliver new features and keep the core as stable as possible. The Web Application Server contained all the capabilities of SAP Basis.

A complete architecture change took place with the introduction of mySAP ERP in 2004. R/3 Enterprise was replaced with the introduction of ERP Central Component (SAP ECC). The SAP Business Warehouse, SAP Strategic Enterprise Management and Internet Transaction Server were also merged into SAP ECC, allowing users to run them under one instance. The SAP Web Application Server was wrapped into SAP NetWeaver, which was introduced in 2003. Architectural changes were also made to support an enterprise service architecture to transition customers to a Service-oriented architecture.

The latest version, SAP ERP 6.0, was released in 2006. SAP ERP 6.0 has since then been updated through SAP enhancement packs, the most recent: SAP enhancement package 8 for SAP ERP 6.0 in 2016.

Implementation

SAP ERP consists of several modules, including Financial Accounting (FI), Controlling (CO), Asset Accounting (AA), Sales & Distribution (SD), Material Management (MM), Production Planning (PP), Quality Management (QM), Project System (PS), Plant Maintenance (PM), Human Resources (HR), Warehouse Management (WM).
  • Phase 1 – Project Preparation
  • Phase 2 – Business Blueprint
  • Phase 3 – Realization
  • Phase 4 – Final Preparation
  • Phase 5 – Go Live Support

Deployment and maintenance costs

It is estimated that "for a Fortune 500 company, software, hardware, and consulting costs can easily exceed $100 million (around $50 million to $500 million). Large companies can also spend $50 million to $100 million on upgrades. Full implementation of all modules can take years", which also adds to the end price. Midsized companies (fewer than 1,000 employees) are more likely to spend around $10 million to $20 million at most, and small companies are not likely to have the need for a fully integrated SAP ERP system unless they have the likelihood of becoming midsized and then the same data applies as would a midsized company. Independent studies have shown that deployment and maintenance costs of a SAP solution can vary depending on the organization. For example, some point out that because of the rigid model imposed by SAP tools, a lot of customization code to adapt to the business process may have to be developed and maintained. Some others pointed out that a return on investment could only be obtained when there was both a sufficient number of users and sufficient frequency of use.

SAP Transport Management System

SAP Transport Management System (STMS) is a tool within SAP ERP systems to manage software updates, termed transports, on one or more connected SAP systems. The tool can be accessed from transaction code STMS. This should not be confused with SAP Transportation Management, a stand-alone module for facilitating logistics and supply chain management in the transportation of goods and materials.

SAP Enhancement Packages for SAP ERP 6.0 (SAP EhPs)

The latest version (SAP ERP 6.0) was made available in 2006. Since then, additional functionality for SAP ERP 6.0 has been delivered through SAP Enhancement Packages (EhP). These Enhancement Packages allow SAP ERP customers to manage and deploy new software functionality. Enhancement Packages are optional; customers choose which new capabilities to implement.

SAP EhPs do not require a classic system upgrade. The installation process of Enhancement Packages consists of two different steps:
  • Technical installation of an Enhancement Package
  • Activation of new functions
The technical installation of business functions does not change the system behavior. The installation of new functionalities is decoupled from its activation and companies can choose which business functions they want to activate. This means that even after installing a new business function, there is no change to existing functionality before activation. Activating a business function for one process will have no effect on users working with other functionalities. The most recent SAP Enhancement Package for SAP ERP 6.0 was EhP8, which was released in 2016. EhP8 delivers innovations and serves as a foundation to transition to SAP's new business suite: SAP S/4HANA.

SAP implementation

From Wikipedia, the free encyclopedia
 
SAP implementation (Systems, Applications & Products implementation) refers to the name of the German company SAP SE, and is the whole of processes that defines a method to implement the SAP ERP enterprise resource planning software in an organization. The SAP implementation method described in this entry is a generic method and not a specific implementation method as such. It is based on best practices and case studies from various literature sources and presents a collection of processes and products that make up a complete implementation method to allow any organization to plan and execute the implementation of SAP software.

Introduction

The implement of SAP software, such as SAP R/3 is almost always a massive operation that brings a lot of changes in the organization. The whole process can take up to several years. Virtually every person in the organization is involved, whether they are part of the SAP technical support organization (TSO) or the actual end-users of the SAP software. The resulting changes that the implementation of SAP generates are intended to reach high level goals, such as improved communication and increased return on information (as people will work with the same information). It is therefore important that the implementation process is planned and executed using a solid method. There are various SAP implementation methods. An example of how one company, Robert Bosch GmbH, implemented SAP R/3 over 10 years is available. This study shows that designing IT architecture is critical in SAP implementation practices.

IEEE scholar journal reports an industrial case in which the senior management successfully dealt with a troubled SAP R/3 implementation in an international fast-moving consumer goods (FMCG) company during 2001 and 2002. (Lui 2008)

Overview

Concept Definition
CHANGE MANAGEMENT Activities involved in (1) defining and installing new values, attitudes, norms, and behaviors within an organization that support new ways of doing work and overcome resistance to change; (2) building consensus among customers and stakeholders on specific changes designed to better meet their needs; and (3) planning, testing, and implementing all aspects of the transition from one organizational structure or business process to another. (www.gao.gov)
CHANGE MANAGEMENT DOCUMENTATION. All documentation that is required and being delivered whilst performing change management, e.g. the functional test cases and all the other documents a new end-user of SAP requires and the various tools and approaches used to manage change by the TSO. (Anderson, 2003)
COST OF OWNERSHIP ANALYSIS Determination of where and when the costs are inquired within the context of the SAP solution stack and ongoing operations. The analysis addresses all internal and external costs, both one-time as well as recurring (Anderson, 2003)
CUTOVER The process of transitioning from one system to a new system
DATA CENTER A data center is a facility used for housing a large amount of electronic equipment, typically computers and communications equipment.
DATA CENTER REQUIREMENT A requirement for the SAP data center, i.e. a physical requirement like power requirements, a rack requirement, a network infrastructure requirement or a requirement to the network server. (Anderson, 2003)
DISASTER RECOVERY (DR) REQUIREMENT Requirement that focuses on downtime that lasts many hours to days or even weeks (Anderson, 2003)
FUNCTIONAL TEST CASE A set of conditions or variables under which a tester will determine if a certain business process works
HIGH AVAILABILITY (HA) REQUIREMENT Requirements that describes the amount of time that the system needs to be available to satisfy the needs of the users. (Anderson, 2003)
INSTALLATION DOCUMENTATION All documentation related to the installation of an end-to-end SAP solution (Anderson, 2003)
OPERATIONS MANUAL The collection of current state system documentation, day-to-day and other regularly scheduled operations tasks, various installation and operations checklists and how-to process documents. (Anderson, 2003)
SAP SAP SE is Europe's biggest software company. The head office is in Walldorf, Germany. SAP was founded in 1972 as Systemanalyse and Programmentwicklung ("Systems Analysis and Program Development") by five former IBM employees in Mannheim, Germany.
SAP IMPLEMENTATION PROJECT PLAN A comprehensive project plan that contains all products that are delivered whilst performing an SAP implementation project (Anderson, 2003)
SOLUTION STACK Set of software subsystems or components needed to deliver a fully functional solution, e.g. a product or service.
SOLUTION STACK PARTNERS LIST A list of all vendors that deliver the products that make up the SAP solution stack (Anderson, 2003)
SOLUTION VISION A vision of the future-state of the SAP solution (Anderson, 2003)
STRESS TEST PLAN A test plan that is focused at determining the stability of a given system or entity. It involves testing beyond normal operational capacity, often to a breaking point, in order to observe the results.
TEST PLAN A detail of how the test will proceed, who will do the testing, what will be tested, in how much time the test will take place, and to what quality level the test will be performed. (IEEE 829)
TRAINING The acquisition of knowledge, skills, and attitudes as a result of the teaching of vocational or practical skills and knowledge that relates to specific useful skills (www.practicalsap.com)
TRAINING PLAN Consisting of training units, a training plan is the result of hierarchical decompositions of a training goal, tailored according to the learning preferences and prior knowledge of the trainee. A plan is the means by which the trainee satisfies the goal. (www.ece.eps.hw.ac.uk/)
TSO Technical Support Organization. The people that are committed to implementation and management of SAP. (Anderson, 2003)
TSO CHART A chart that depicts the structure of the TSO. (Anderson, 2003)

Activity table

The following table provides a summary of all of the activities that form the SAP implementation process. These activities will be described with more detail and elaborated with examples in the rest of this entry.

Activity Sub-Activity Description
Project preparation Craft solution vision Refine and communicate a SOLUTION VISION of the future-state of the SAP solution, to sketch a design that meets both business and financial requirements. The focus should be on the company's core business and how the SAP solution will better enable that core business to be successful. Some of the guidance and key requirements for how to put together an ERP and SAP business case for ROI, business benefit, and success includes focusing on competitive pressures, value propositions, and how the solution enables success.
Design and initially staff the SAP TSO Design and staff the key positions of the SAP Technical Support Organization (TSO), the organization that is charged with addressing, designing, implementing and supporting the SAP solution.
Sizing and blueprinting Perform cost of ownership analysis Perform a COST OF OWNERSHIP ANALYSIS to determine how to get the best business solution for the least money i.e. to determine where and when the costs are incurred within the context of the SAP solution stack.
Identify high availability and disaster recovery requirements Determine all HIGH AVAILABILITY and DISASTER RECOVERY REQUIREMENTS, to plan what to do with later downtime of the SAP system
Engage SAP solution stack vendors Select the best SAP hardware and software technology partners for all layers and components of the SAP SOLUTION STACK, based on a side-by-side sizing comparison
Staff TSO Staff the bulk of the TSO, i.e. fill the positions that directly support the near-term objectives of the implementation, which are to develop and begin installation/implementation of the SAP data center.
Execute training Train the various members of the SAP TSO, like data center specialists, high availability specialist and network specialists and train the end-users to give all the required SAP knowledge and skills
Setup SAP DATA CENTER Build a new SAP DATA CENTER facility or transform the current data center into a foundation capable of supporting the SAP SOLUTION STACK
Perform installations Install the (My)SAP components and technological foundations like a web application server or enterprise portal.
Round out support for SAP Identify and staff the remaining TSO roles, e.g. roles that relate to help desk work and other such support providing work.
SAP functional development Address Change Management Develop a planned approach to the changes in the organization. The objective is to maximize the collective efforts of all people involved in the change and minimize the risk of failure of implementing the changes related to the SAP implementation.
Address SAP systems and operations management Create a foundation for the SAP systems management and SAP computer operations, by creating a SAP OPERATIONS MANUAL and by evaluating SAP management applications.
Perform functional, integration and regression tests Test the SAP business processes, by executing functional tests to ensure that business processes work, integration tests to ensure that the organization's business processes work together with other business processes and regression tests to prove that a specific set of data and processes yield consistent and repeatable results.
Final Preparation Perform systems and stress testsPlan, script, execute and monitor SAP STRESS TESTS, to see if the expectations of the end users, defined in service level agreements, will be met.
Prepare for cutover Plan, prepare and execute the CUTOVER, by creating a CUTOVER PLAN that describes all cutover tasks that have to be performed before the actual go-live
Go Live Turn on the SAP system for the end-users

Implementation processes

Project preparation

Mission Key is also what defines slack.

Design and initially staff the SAP TSO.
 
The first major step of the project preparation phase is to design and initially staff an SAP technical support organization (TSO), which is the organization that is charged with addressing and designing a  
Craft solution vision.

The second project preparation job is to define a so-called solution vision, i.e. a vision of the future-state of the SAP solution, where it is important to address both business and financial requirements (budgets). The main focus within the vision should be on the company’s core business and how the SAP solution will better enable that core business to be successful. Next to that, the shortcomings of the current systems should be described and short but clear requirements should be provided regarding availability (uptime), security, manageability and scalability of the SAP system.

Sizing and blueprinting.

The next phase is often referred to as the sizing and blueprinting phase and forms the main chunk of the implementation process. The phase is illustrated below.

This phase starts with performing a total cost of ownership analysis (TCO analysis) to determine how to get the best business solution at the lowest costs. This means to compare SAP solution stack options and alternatives and then determine what costs each part of the stack will bring and when these costs will be incurred. Parts of the stack are for example the hardware, operating system and database, which form the acquisition costs. Next to that, there should be taken a look at recurring costs like maintenance costs and downtime costs. Instead of performing a complete TCO analysis for various solution stack alternatives that would like to compare, it can be wise just to do a so-called delta analysis, where only the differences between solutions (stacks) are identified and analyzed. The image at the right depicts the essence of a delta analysis.
 
Identify high availability and disaster recovery requirements

The next step is identifying the high availability requirements and the more serious disaster recovery requirements. This is to plan what to do with later downtime of the SAP system, caused by e.g. hardware failures, application failures or power outages. It is important to calculate the cost of downtime, so that an organization has a good idea of its actual availability requirements.

Engage SAP solution stack vendors

A true sizing process is to engage the SAP solution stack vendors, which is the next step. This means selecting the best SAP hardware and software technology partners for all layers and components of the solution stack, based on a side-by-side sizing comparison. The most important factors that are of influence here are the estimated numbers of (concurrent) users and batch sizes. A wise thing to do is to involve SAP SE itself to let them create a sizing proposal stating the advised solution stack, before moving to SAP's technology partners/SAP vendors, like Accenture, HP and IBM. A simplified solution stack is depicted at the right, showing the many layers for which software and hardware has to be acquired. Note the overlap with the OSI model

Staff TSO
The TSO (Technical Support Organisation) is the most important resource for an organization that is implementing SAP, so staffing the TSO is a vital job which can consume a lot of time. In a previous phase, the organization should already have staffed the most vital positions. At this point the organization should staff the bulk of the TSO, i.e. fill the positions that directly support the near-term objectives of the implementation, which are to develop and begin the installation/implementation of the SAP data center. Examples are: data center experts, network infrastructure experts, security specialists and database administration experts.

There are many ways to find the right people within or outside the organization for all of the TSO positions and it depends on the organization how much time it wants to spend on staffing.

Training
 
One of the most vital stages of the implementation process is training. Few people within an organization are SAP experts or even have worked with SAP software. It is therefore important to train the end users but especially the SAP TSO: the people who design and implement the solution. The usual activity is to train a group of key users who in turn train the staff (source: practicalsap.com). The organisation's key users must be involved in the implementation project and testing of the system. Many people within the TSO need all kinds of training. Some examples of these positions:
All of these people need to acquire the required SAP knowledge and skills or even SAP certifications through training. Moreover, people need to learn to do business in a totally new way. To define how much SAP training every person needs, a company can make use of a skillset matrix. With this matrix, a manager can identify who possesses what knowledge, to manage and plan training, by defining the height of expertise with a number between e.g. 1 and 4 for each skill for each employee.

Setup SAP data center

The next step is to set up the SAP data center. This means either building a new data center facility or transforming the current data center into a foundation capable of supporting the SAP solution stack, i.e. all of the technology layers and components (SAP software products) in a productive SAP installation. The most important factor when designing the data center is availability. The high availability and disaster recovery requirements which should have been defined earlier, give a good idea of the required data center requirements to host the SAP software. Data center requirements can be a:
  • Physical requirement like power requirements
  • Rack requirement
  • Network infrastructure requirement or
  • Requirement to the network server.
Perform installations
 
The following step is to install the required SAP software parts which are called components and technological foundations like a web application server or enterprise portals, to a state ready for business process configuration. The most vital sub steps are to prepare your OS, prepare the database server and then start installing SAP software. Here it is important to use installation guides, which are published for each SAP component or technology solution by SAP SE. Examples of SAP components are:
Round out support for SAP

Before moving into the functional development phase, the organization should identify and staff the remaining TSO roles, e.g. roles that relate to helpdesk work and other such support providing work.

Realization

The next phase is the functional development phase, where it is all about change management and testing. This phase is depicted below.

Address change management

The next challenge for an organization is all about change management / change control, which means to develop a planned approach to the changes the organization faces. The objective here is to maximize the collective efforts of all people involved in the change and to minimize the risk of failure of implementing the changes related to the SAP implementation.

The implementation of SAP software will most surely come with many changes and an organization can expect many natural reactions, i.e. denial, to these changes. To fight this, it is most important to create a solid project team dedicated to change management and to communicate the solution vision and goals of this team. This team should be prepared to handle the many change issues that come from various sources like:
SAP systems and operations management
 
Next thing is to create a foundation for the SAP systems management and SAP computer operations, by creating a SAP operations manual and by evaluating SAP management applications. The manual is a collection of current state system documentation, day-to-day and other regularly scheduled operations tasks, various installation and operations checklists and how-to process documents.

Functional, integration and regression testing

Testing is important before going live with any system. Before going live with a SAP system, it is vital to do many different kinds of testing, since there is often a large, complex infrastructure of hardware and software involved. Both requirements as well as quality parameters are to be tested. Important types of testing are:
  • Functional testing: to test using functional use cases, i.e. a set of conditions or variables under which a tester will determine if a certain business process works
  • Integration testing
  • Regression testing
All tests should be preceded by creating solid test plans

Agreements will be met. This can be done with SAP's standard application benchmarks, to benchmark the organization's configurations against configurations that have been tested by SAP's hardware technology partners. Again, a test plan should be created at first.

Final preparation

Prepare for cutover
 
The final phase before going live with SAP is often referred to as the cutover phase, which is the process of transitioning from one system to a new one. The organization needs to plan, prepare and execute the cutover, by creating a cutover plan that describes all cutover tasks that have to be performed before the actual go-live. Examples of cutover tasks are:
  • Review and update all systems-related operations procedures like backup policies and system monitoring
  • Assign ownership of SAP's functional processes to individuals
  • Let SAP SE do a GoingLive check, to get their blessing to go live with the system
  • Lock down the system, i.e. do not make any more changes to the SAP system

Thermodynamic diagrams

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Thermodynamic_diagrams Thermodynamic diagrams are diagrams used to repr...