Search This Blog

Tuesday, July 14, 2020

Clinical decision support system

From Wikipedia, the free encyclopedia
 
A clinical decision support system (CDSS) is a health information technology system that is designed to provide physicians and other health professionals with clinical decision support (CDS), that is, assistance with clinical decision-making tasks. A working definition has been proposed by Robert Hayward of the Centre for Health Evidence: "Clinical decision support systems link health observations with health knowledge to influence health choices by clinicians for improved health care". CDSSs constitute a major topic in artificial intelligence in medicine.

Characteristics

A clinical decision support system has been defined as an "active knowledge systems, which use two or more items of patient data to generate case-specific advice." This implies that a CDSS is simply a decision support system that is focused on using knowledge management in such a way so as to achieve clinical advice for patient care based on multiple items of patient data.

Purpose

The main purpose of modern CDSS is to assist clinicians at the point of care. This means that clinicians interact with a CDSS to help to analyse, and reach a diagnosis based on, patient data.

In the early days, CDSSs were conceived of as being used to literally make decisions for the clinician. The clinician would input the information and wait for the CDSS to output the "right" choice and the clinician would simply act on that output. However, the modern methodology of using CDSSs to assist means that the clinician interacts with the CDSS, utilizing both their own knowledge and the CDSS, to make a better analysis of the patient's data than either human or CDSS could make on their own. Typically, a CDSS makes suggestions for the clinician to look through, and the clinician is expected to pick out useful information from the presented results and discount erroneous CDSS suggestions.

The two main types of CDSS are knowledge-based and non-knowledge-based :

An example of how a clinical decision support system might be used by a clinician is a diagnosis decision support system. A DDSS requests some of the patients data and in response, proposes a set of appropriate diagnoses. The physician then takes the output of the DDSS and determines which diagnoses might be relevant and which are not, and if necessary orders further tests to narrow down the diagnosis.

Another example of a CDSS would be a case-based reasoning (CBR) system. A CBR system might use previous case data to help determine the appropriate amount of beams and the optimal beam angles for use in radiotherapy for brain cancer patients; medical physicists and oncologists would then review the recommended treatment plan to determine its viability.

Another important classification of a CDSS is based on the timing of its use. Physicians use these systems at point of care to help them as they are dealing with a patient, with the timing of use being either pre-diagnosis, during diagnosis, or post diagnosis. Pre-diagnosis CDSS systems are used to help the physician prepare the diagnoses. CDSS used during diagnosis help review and filter the physician's preliminary diagnostic choices to improve their final results. Post-diagnosis CDSS systems are used to mine data to derive connections between patients and their past medical history and clinical research to predict future events. As of 2012 it has been claimed that decision support will begin to replace clinicians in common tasks in the future.

Another approach, used by the National Health Service in England, is to use a DDSS (either, in the past, operated by the patient, or, today, by a phone operative who is not medically-trained) to triage medical conditions out of hours by suggesting a suitable next step to the patient (e.g. call an ambulance, or see a general practitioner on the next working day). The suggestion, which may be disregarded by either the patient or the phone operative if common sense or caution suggests otherwise, is based on the known information and an implicit conclusion about what the worst-case diagnosis is likely to be; it is not always revealed to the patient, because it might well be incorrect and is not based on a medically-trained person's opinion - it is only used for initial triage purposes.

Knowledge-based CDSS

Most CDSSs consist of three parts: the knowledge base, an inference engine, and a mechanism to communicate. The knowledge base contains the rules and associations of compiled data which most often take the form of IF-THEN rules. If this was a system for determining drug interactions, then a rule might be that IF drug X is taken AND drug Y is taken THEN alert user. Using another interface, an advanced user could edit the knowledge base to keep it up to date with new drugs. The inference engine combines the rules from the knowledge base with the patient's data. The communication mechanism allows the system to show the results to the user as well as have input into the system.

An expression language such as GELLO or CQL (Clinical Quality Language) is needed for expressing knowledge artifacts in a computable manner. For example: if a patient has diabetes mellitus, and if the last hemoglobin A1c test result was less than 7%, recommend re-testing if it has been over 6 months, but if the last test result was greater than or equal to 7%, then recommend re-testing if it has been over 3 months.

The current focus of the HL7 CDS WG is to build on the Clinical Quality Language (CQL). CMS has announced that it plans to use CQL for the specification of eCQMs (https://ecqi.healthit.gov/cql).

Non-knowledge-based CDSS

CDSSs which do not use a knowledge base use a form of artificial intelligence called machine learning, which allow computers to learn from past experiences and/or find patterns in clinical data. This eliminates the need for writing rules and for expert input. However, since systems based on machine learning cannot explain the reasons for their conclusions, most clinicians do not use them directly for diagnoses, for reliability and accountability reasons. Nevertheless, they can be useful as post-diagnostic systems, for suggesting patterns for clinicians to look into in more depth.

As of 2012, three types of non-knowledge-based systems are support-vector machines, artificial neural networks and genetic algorithms.
  1. Artificial neural networks use nodes and weighted connections between them to analyse the patterns found in patient data to derive associations between symptoms and a diagnosis.
  2. Genetic algorithms are based on simplified evolutionary processes using directed selection to achieve optimal CDSS results. The selection algorithms evaluate components of random sets of solutions to a problem. The solutions that come out on top are then recombined and mutated and run through the process again. This happens over and over until the proper solution is discovered. They are functionally similar to neural networks in that they are also "black boxes" that attempt to derive knowledge from patient data.
  3. Non-knowledge-based networks often focus on a narrow list of symptoms, such as symptoms for a single disease, as opposed to the knowledge based approach which cover the diagnosis of many different diseases.

Regulations

United States

With the enactment of the American Recovery and Reinvestment Act of 2009 (ARRA), there is a push for widespread adoption of health information technology through the Health Information Technology for Economic and Clinical Health Act (HITECH). Through these initiatives, more hospitals and clinics are integrating electronic medical records (EMRs) and computerized physician order entry (CPOE) within their health information processing and storage. Consequently, the Institute of Medicine (IOM) promoted usage of health information technology including clinical decision support systems to advance quality of patient care. The IOM had published a report in 1999, To Err is Human, which focused on the patient safety crisis in the United States, pointing to the incredibly high number of deaths. This statistic attracted great attention to the quality of patient care.

With the enactment of the HITECH Act included in the ARRA, encouraging the adoption of health IT, more detailed case laws for CDSS and EMRs are still being defined by the Office of National Coordinator for Health Information Technology (ONC) and approved by Department of Health and Human Services (HHS). A definition of "Meaningful use" is yet to be published.

Despite the absence of laws, the CDSS vendors would almost certainly be viewed as having a legal duty of care to both the patients who may adversely be affected due to CDSS usage and the clinicians who may use the technology for patient care. However, duties of care legal regulations are not explicitly defined yet. 

With recent effective legislations related to performance shift payment incentives, CDSS are becoming more attractive.

Effectiveness

The evidence of the effectiveness of CDSS is mixed. There are certain disease entities, which benefit more from CDSS than other disease entities. A 2018 systematic review identified six medical conditions, in which CDSS improved patient outcomes in hospital settings, including: blood glucose management, blood transfusion management, physiologic deterioration prevention, pressure ulcer prevention, acute kidney injury prevention, and venous thromboembolism prophylaxis.  A 2014 systematic review did not find a benefit in terms of risk of death when the CDSS was combined with the electronic health record. There may be some benefits, however, in terms of other outcomes. A 2005 systematic review had concluded that CDSSs improved practitioner performance in 64% of the studies and patient outcomes in 13% of the studies. CDSSs features associated with improved practitioner performance included automatic electronic prompts rather than requiring user activation of the system.

A 2005 systematic review found... "Decision support systems significantly improved clinical practice in 68% of trials." The CDSS features associated with success included integration into the clinical workflow rather than as a separate log-in or screen., electronic rather than paper-based templates, providing decision support at the time and location of care rather than prior and providing recommendations for care.

However, later systematic reviews were less optimistic about the effects of CDS, with one from 2011 stating "There is a large gap between the postulated and empirically demonstrated benefits of [CDSS and other] eHealth technologies ... their cost-effectiveness has yet to be demonstrated".

A 5-year evaluation of the effectiveness of a CDSS in implementing rational treatment of bacterial infections was published in 2014; according to the authors, it was the first long term study of a CDSS.

Challenges to adoption

Clinical challenges

Much effort has been put forth by many medical institutions and software companies to produce viable CDSSs to support all aspects of clinical tasks. However, with the complexity of clinical workflows and the demands on staff time high, care must be taken by the institution deploying the support system to ensure that the system becomes a fluid and integral part of the clinical workflow. Some CDSSs have met with varying amounts of success, while others have suffered from common problems preventing or reducing successful adoption and acceptance.

Two sectors of the healthcare domain in which CDSSs have had a large impact are the pharmacy and billing sectors. There are commonly used pharmacy and prescription ordering systems that now perform batch-based checking of orders for negative drug interactions and report warnings to the ordering professional. Another sector of success for CDSS is in billing and claims filing. Since many hospitals rely on Medicare reimbursements to stay in operation, systems have been created to help examine both a proposed treatment plan and the current rules of Medicare in order to suggest a plan that attempts to address both the care of the patient and the financial needs of the institution.

Other CDSSs that are aimed at diagnostic tasks have found success, but are often very limited in deployment and scope. The Leeds Abdominal Pain System went operational in 1971 for the University of Leeds hospital, and was reported to have produced a correct diagnosis in 91.8% of cases, compared to the clinicians' success rate of 79.6%.

Despite the wide range of efforts by institutions to produce and use these systems, widespread adoption and acceptance has still not yet been achieved for most offerings. One large roadblock to acceptance has historically been workflow integration. A tendency to focus only on the functional decision making core of the CDSS existed, causing a deficiency in planning for how the clinician will actually use the product in situ. Often CDSSs were stand-alone applications, requiring the clinician to cease working on their current system, switch to the CDSS, input the necessary data (even if it had already been inputted into another system), and examine the results produced. The additional steps break the flow from the clinician's perspective and cost precious time.

Technical challenges and barriers to implementation

Clinical decision support systems face steep technical challenges in a number of areas. Biological systems are profoundly complicated, and a clinical decision may utilize an enormous range of potentially relevant data. For example, an electronic evidence-based medicine system may potentially consider a patient's symptoms, medical history, family history and genetics, as well as historical and geographical trends of disease occurrence, and published clinical data on medicinal effectiveness when recommending a patient's course of treatment. 

Clinically, a large deterrent to CDSS acceptance is workflow integration. 

Another source of contention with many medical support systems is that they produce a massive number of alerts. When systems produce high volume of warnings (especially those that do not require escalation), aside from the annoyance, clinicians may pay less attention to warnings, causing potentially critical alerts to be missed.

Maintenance

One of the core challenges facing CDSS is difficulty in incorporating the extensive quantity of clinical research being published on an ongoing basis. In a given year, tens of thousands of clinical trials are published. Currently, each one of these studies must be manually read, evaluated for scientific legitimacy, and incorporated into the CDSS in an accurate way. In 2004, it was stated that the process of gathering clinical data and medical knowledge and putting them into a form that computers can manipulate to assist in clinical decision-support is "still in its infancy".

Nevertheless, it is more feasible for a business to do this centrally, even if incompletely, than for each individual doctor to try to keep up with all the research being published.

In addition to being laborious, integration of new data can sometimes be difficult to quantify or incorporate into the existing decision support schema, particularly in instances where different clinical papers may appear conflicting. Properly resolving these sorts of discrepancies is often the subject of clinical papers itself, which often take months to complete.

Evaluation

In order for a CDSS to offer value, it must demonstrably improve clinical workflow or outcome. Evaluation of CDSS is the process of quantifying its value to improve a system's quality and measure its effectiveness. Because different CDSSs serve different purposes, there is no generic metric which applies to all such systems; however, attributes such as consistency (with itself, and with experts) often apply across a wide spectrum of systems.

The evaluation benchmark for a CDSS depends on the system's goal: for example, a diagnostic decision support system may be rated based upon the consistency and accuracy of its classification of disease (as compared to physicians or other decision support systems). An evidence-based medicine system might be rated based upon a high incidence of patient improvement, or higher financial reimbursement for care providers.

Combining with electronic health records

Implementing EHRs was an inevitable challenge. The reasons behind this challenge are that it is a relatively uncharted area, and there are many issues and complications during the implementation phase of an EHR. This can be seen in the numerous studies that have been undertaken. However, challenges in implementing electronic health records (EHRs) have received some attention, but less is known about the process of transitioning from legacy EHRs to newer systems.

EHRs are a way to capture and utilise real-time data to provide high-quality patient care, ensuring efficiency and effective use of time and resources. Incorporating EHR and CDSS together into the process of medicine has the potential to change the way medicine has been taught and practiced. It has been said that "the highest level of EHR is a CDSS".

Since "clinical decision support systems (CDSS) are computer systems designed to impact clinician decision making about individual patients at the point in time that these decisions are made", it is clear that it would be beneficial to have a fully integrated CDSS and EHR. 

Even though the benefits can be seen, to fully implement a CDSS that is integrated with an EHR has historically required significant planning by the healthcare facility/organisation, in order for the purpose of the CDSS to be successful and effective. The success and effectiveness can be measured by the increase in patient care being delivered and reduced adverse events occurring. In addition, there would be a saving of time and resources, and benefits in terms of autonomy and financial benefits to the healthcare facility/organisation.

Benefits of CDSS combined with EHR

A successful CDSS/EHR integration will allow the provision of best practice, high quality care to the patient, which is the ultimate goal of healthcare.

Errors have always occurred in healthcare, so trying to minimise them as much as possible is important in order to provide quality patient care. Three areas that can be addressed with the implementation of CDSS and Electronic Health Records (EHRs), are:
  1. Medication prescription errors
  2. Adverse drug events
  3. Other medical errors
CDSSs will be most beneficial in the future when healthcare facilities are "100% electronic" in terms of real-time patient information, thus simplifying the number of modifications that have to occur to ensure that all the systems are up to date with each other.

The measurable benefits of clinical decision support systems on physician performance and patient outcomes remain the subject of ongoing research.

Barriers

Implementing electronic health records (EHR) in healthcare settings incurs challenges; none more important than maintaining efficiency and safety during rollout, but in order for the implementation process to be effective, an understanding of the EHR users' perspectives is key to the success of EHR implementation projects. In addition to this, adoption needs to be actively fostered through a bottom-up, clinical-needs-first approach. The same can be said for CDSS.

As of 2007, the main areas of concern with moving into a fully integrated EHR/CDSS system have been:
  1. Privacy
  2. Confidentiality
  3. User-friendliness
  4. Document accuracy and completeness
  5. Integration
  6. Uniformity
  7. Acceptance
  8. Alert desensitisation
as well as the key aspects of data entry that need to be addressed when implementing a CDSS to avoid potential adverse events from occurring. These aspects include whether:
  • correct data is being used
  • all the data has been entered into the system
  • current best practice is being followed
  • the data is evidence-based
A service oriented architecture has been proposed as a technical means to address some of these barriers.

Status in Australia

As of July 2015, the planned transition to EHRs in Australia is facing difficulties. The majority of healthcare facilities are still running completely paper-based systems, and some are in a transition phase of scanned EHRs, or are moving towards such a transition phase.

Victoria has attempted to implement EHR across the state with its HealthSMART program, but due to unexpectedly high costs it has cancelled the project.

South Australia (SA) however is slightly more successful than Victoria in the implementation of an EHR. This may be due to all public healthcare organisations in SA being centrally run. 

(However, on the other hand, the UK's National Health Service is also centrally administered, and its National Programme for IT in the 2000s, which included EHRs in its remit, was an expensive disaster.) 

SA is in the process of implementing "Enterprise patient administration system (EPAS)". This system is the foundation for all public hospitals and health care sites for an EHR within SA and it was expected that by the end of 2014 all facilities in SA will be connected to it. This would allow for successful integration of CDSS into SA and increase the benefits of the EHR. By July 2015 it was reported that only 3 out of 75 health care facilities implemented EPAS.

With the largest health system in the country and a federated rather than centrally administered model, New South Wales is making consistent progress towards statewide implementation of EHRs. The current iteration of the state's technology, eMR2, includes CDSS features such as a sepsis pathway for identifying at-risk patients based upon data input to the electronic record. As of June 2016, 93 of 194 sites in-scope for the initial roll-out had implemented eMR2.

Status in Finland

Duodecim EBMEDS Clinical Decision Support service is used by more than 60% of Finnish public health care doctors. 

DeepMind

From Wikipedia, the free encyclopedia
 
DeepMind Technologies Limited
DeepMind logo.png
Type of businessSubsidiary
Founded23 September 2010;
Headquarters
6 Pancras Square,
London N1C 4AG, UK
Founder(s)
CEODemis Hassabis
General managerLila Ibrahim
IndustryArtificial Intelligence
Employees1,000+ as of June 2020
ParentIndependent (2010–2014)
Google Inc. (2014–2015)
Alphabet Inc. (2015–present)
URLwww.deepmind.com
Entrance of building where Google and DeepMind are located at 6 Pancras Square, London, UK.

DeepMind Technologies is a UK artificial intelligence company founded in September 2010, and acquired by Google in 2014. The company is based in London, with research centres in Canada, France, and the United States. In 2015, it became a wholly owned subsidiary of Alphabet Inc.
 
The company has created a neural network that learns how to play video games in a fashion similar to that of humans, as well as a Neural Turing machine, or a neural network that may be able to access an external memory like a conventional Turing machine, resulting in a computer that mimics the short-term memory of the human brain.

The company made headlines in 2016 after its AlphaGo program beat a human professional Go player Lee Sedol, the world champion, in a five-game match, which was the subject of a documentary film. A more general program, AlphaZero, beat the most powerful programs playing go, chess and shogi (Japanese chess) after a few days of play against itself using reinforcement learning.

History


During one of the interviews, Demis Hassabis said that the start-up began working on artificial intelligence technology by teaching it how to play old games from the seventies and eighties, which are relatively primitive compared to the ones that are available today. Some of those games included Breakout, Pong and Space Invaders. AI was introduced to one game at a time, without any prior knowledge of its rules. After spending some time on learning the game, AI would eventually become an expert in it. “The cognitive processes which the AI goes through are said to be very like those a human who had never seen the game would use to understand and attempt to master it.” The goal of the founders is to create a general-purpose AI that can be useful and effective for almost anything.

Major venture capital firms Horizons Ventures and Founders Fund invested in the company, as well as entrepreneurs Scott Banister, Peter Thiel, and Elon Musk. Jaan Tallinn was an early investor and an adviser to the company. On 26 January 2014, Google announced the company had acquired DeepMind for $500 million, and that it had agreed to take over DeepMind Technologies. The sale to Google took place after Facebook reportedly ended negotiations with DeepMind Technologies in 2013. The company was afterwards renamed Google DeepMind and kept that name for about two years.

In 2014, DeepMind received the "Company of the Year" award from Cambridge Computer Laboratory.

In September 2015, DeepMind and the Royal Free NHS Trust signed their initial Information Sharing Agreement (ISA) to co-develop a clinical task management app, Streams.

After Google's acquisition the company established an artificial intelligence ethics board. The ethics board for AI research remains a mystery, with both Google and DeepMind declining to reveal who sits on the board. DeepMind, together with Amazon, Google, Facebook, IBM and Microsoft, is a founding member of Partnership on AI, an organization devoted to the society-AI interface. DeepMind has opened a new unit called DeepMind Ethics and Society and focused on the ethical and societal questions raised by artificial intelligence featuring prominent philosopher Nick Bostrom as advisor. In October 2017, DeepMind launched a new research team to investigate AI ethics.

In December 2019, Co-founder Suleyman announced he would be leaving DeepMind to join Google, working in a policy role.

Machine learning

DeepMind Technologies' goal is to "solve intelligence", which they are trying to achieve by combining "the best techniques from machine learning and systems neuroscience to build powerful general-purpose learning algorithms". They are trying to formalize intelligence in order to not only implement it into machines, but also understand the human brain, as Demis Hassabis explains:
[...] attempting to distil intelligence into an algorithmic construct may prove to be the best path to understanding some of the enduring mysteries of our minds.
Google Research has released a paper in 2016 regarding AI Safety and avoiding undesirable behaviour during the AI learning process. Deepmind has also released several publications via its website. In 2017 DeepMind released GridWorld, an open-source testbed for evaluating whether an algorithm learns to disable its kill switch or otherwise exhibits certain undesirable behaviours.

To date, the company has published research on computer systems that are able to play games, and developing these systems, ranging from strategy games such as Go to arcade games. According to Shane Legg, human-level machine intelligence can be achieved "when a machine can learn to play a really wide range of games from perceptual stream input and output, and transfer understanding across games[...]."

Research describing an AI playing seven different Atari 2600 video games (the Pong game in Video Olympics, Breakout, Space Invaders, Seaquest, Beamrider, Enduro, and Q*bert) reportedly led to the company's acquisition by Google. Hassabis has mentioned the popular e-sport game StarCraft as a possible future challenge, since it requires a high level of strategic thinking and handling imperfect information. The first demonstration of the DeepMind progress in StarCraft II occurred on 24 January 2019, on StarCrafts Twitch channel and DeepMind's YouTube channel.

In July 2018, researchers from DeepMind trained one of its systems to play the famous computer game Quake III Arena.

As of 2020, DeepMind has published over a thousand papers, including thirteen papers that were accepted by Nature or Science. DeepMind has received substantial media attention, especially during the AlphaGo period; according to a LexisNexis search, 1842 published news stories mentioned DeepMind in 2016, declining to 1363 in 2019.

Deep reinforcement learning

As opposed to other AIs, such as IBM's Deep Blue or Watson, which were developed for a pre-defined purpose and only function within its scope, DeepMind claims that its system is not pre-programmed: it learns from experience, using only raw pixels as data input. Technically it uses deep learning on a convolutional neural network, with a novel form of Q-learning, a form of model-free reinforcement learning. They test the system on video games, notably early arcade games, such as Space Invaders or Breakout. Without altering the code, the AI begins to understand how to play the game, and after some time plays, for a few games (most notably Breakout), a more efficient game than any human ever could.

In 2013, DeepMind demonstrated an AI system could surpass human abilities in games such as Pong, Breakout and Enduro, while surpassing state of the art performance on Seaquest, Beamrider, and Q*bert. DeepMind's AI had been applied to video games made in the 1970s and 1980s; work was ongoing for more complex 3D games such as Doom, which first appeared in the early 1990s.

In 2020, DeepMind published Agent57, an AI Agent which surpasses human level performance on all 57 games of the Atari2600 suite.

AlphaGo and successors

In October 2015, a computer Go program called AlphaGo, developed by DeepMind, beat the European Go champion Fan Hui, a 2 dan (out of 9 dan possible) professional, five to zero. This is the first time an artificial intelligence (AI) defeated a professional Go player. Previously, computers were only known to have played Go at "amateur" level. Go is considered much more difficult for computers to win compared to other games like chess, due to the much larger number of possibilities, making it prohibitively difficult for traditional AI methods such as brute-force.

In March 2016 it beat Lee Sedol—a 9th dan Go player and one of the highest ranked players in the world—with a score of 4-1 in a five-game match.

In the 2017 Future of Go Summit, AlphaGo won a three-game match with Ke Jie, who at the time continuously held the world No. 1 ranking for two years. It used a supervised learning protocol, studying large numbers of games played by humans against each other.

In 2017, an improved version, AlphaGo Zero, defeated AlphaGo 100 games to 0. AlphaGo Zero's strategies were self-taught. AlphaGo Zero was able to beat its predecessor after just three days with less processing power than AlphaGo; in comparison, the original AlphaGo needed months to learn how to play.

Later that year, AlphaZero, a modified version of AlphaGo Zero but for handling any two-player game of perfect information, gained superhuman abilities at chess and shogi. Like AlphaGo Zero, AlphaZero learned solely through self-play.

Technology

AlphaGo technology was developed based on the deep reinforcement learning approach. This makes AlphaGo different from the rest of AI technologies on the market. With that said, AlphaGo's ‘brain’ was introduced to various moves based on the historical tournament data. The number of moves was increased gradually until it eventually processed over 30 million of them. The aim was to have the system mimic the human player and eventually become better. It played against itself and learned not only from its own defeats but wins as well; thus, it learned to improve itself over the time and increased its winning rate as a result.

AlphaGo used two deep neural networks: a policy network to evaluate move probabilities and a value network to assess positions. The policy network trained via supervised learning, and was subsequently refined by policy-gradient reinforcement learning. The value network learned to predict winners of games played by the policy network against itself. After training these networks employed a lookahead Monte Carlo tree search (MCTS), using the policy network to identify candidate high-probability moves, while the value network (in conjunction with Monte Carlo rollouts using a fast rollout policy) evaluated tree positions.

Zero trained using reinforcement learning in which the system played millions of games against itself. Its only guide was to increase its win rate. It did so without learning from games played by humans. Its only input features are the black and white stones from the board. It uses a single neural network, rather than separate policy and value networks. Its simplified tree search relies upon this neural network to evaluate positions and sample moves, without Monte Carlo rollouts. A new reinforcement learning algorithm incorporates lookahead search inside the training loop. AlphaGo Zero employed around 15 people and millions in computing resources. Ultimately, it needed much less computing power than AlphaGo, running on four specialized AI processors (Google TPUs), instead of AlphaGo's 48.

AlphaFold

In 2016 DeepMind turned its artificial intelligence to protein folding, one of the toughest problems in science. In December 2018, DeepMind's AlphaFold won the 13th Critical Assessment of Techniques for Protein Structure Prediction (CASP) by successfully predicting the most accurate structure for 25 out of 43 proteins. “This is a lighthouse project, our first major investment in terms of people and resources into a fundamental, very important, real-world scientific problem,” Hassabis said to The Guardian.

WaveNet and WaveRNN

Also in 2016, DeepMind introduced WaveNet, a text-to-speech system. It was originally too computationally intensive for use in consumer products, but in late 2017 it became ready for use in consumer applications such as Google Assistant. In 2018 Google launched a commercial text-to-speech product, Cloud Text-to-Speech, based on WaveNet.

In 2018, DeepMind introduced a more efficient model called WaveRNN co-developed with Google AI. In 2019, Google started to roll it out to Google Duo users.

AlphaStar

In January 2019, DeepMind introduced AlphaStar, a program playing the real-time strategy game StarCraft II. AlphaStar used reinforcement learning based on replays from human players, and then played against itself to enhance its skills. At the time of the presentation, AlphaStar had knowledge equivalent to 200 years of playing time. It won 10 consecutive matches against two professional players, although it had the unfair advantage of being able to see the entire field, unlike a human player who has to move the camera manually. A preliminary version in which that advantage was fixed lost a subsequent match.

In July 2019, AlphaStar began playing against random humans on the public 1v1 European multiplayer ladder. Unlike the first iteration of AlphaStar, which played only Protoss v. Protoss, this one played as all of the game's races, and had earlier unfair advantages fixed. By October 2019, AlphaStar reached Grandmaster level on the StarCraft II ladder on all three StarCraft races, becoming the first AI to reach the top league of a widely popular esport without any game restrictions.

Miscellaneous contributions to Google

Google has stated that DeepMind algorithms have greatly increased the efficiency of cooling its data centers. In addition, DeepMind (alongside other Alphabet AI researchers) assists Google Play's personalized app recommendations. DeepMind has also collaborated with the Android team at Google for the creation of two new features which were made available to people with devices running Android Pie, the ninth installment of Google's mobile operating system. These features, Adaptive Battery and Adaptive Brightness, use machine learning to conserve energy and make devices running the operating system easier to use. It is the first time DeepMind has used these techniques on such a small scale, with typical machine learning applications requiring orders of magnitude more computing power.

DeepMind Health

In July 2016, a collaboration between DeepMind and Moorfields Eye Hospital was announced to develop AI applications for healthcare. DeepMind would be applied to the analysis of anonymised eye scans, searching for early signs of diseases leading to blindness

In August 2016, a research programme with University College London Hospital was announced with the aim of developing an algorithm that can automatically differentiate between healthy and cancerous tissues in head and neck areas.

There are also projects with the Royal Free London NHS Foundation Trust and Imperial College Healthcare NHS Trust to develop new clinical mobile apps linked to electronic patient records. Staff at the Royal Free Hospital were reported as saying in December 2017 that access to patient data through the app had saved a ‘huge amount of time’ and made a ‘phenomenal’ difference to the management of patients with acute kidney injury. Test result data is sent to staff's mobile phones and alerts them to change in the patient's condition. It also enables staff to see if someone else has responded, and to show patients their results in visual form.

In November 2017, DeepMind announced a research partnership with the Cancer Research UK Centre at Imperial College London with the goal of improving breast cancer detection by applying machine learning to mammography. Additionally, in February 2018, DeepMind announced it was working with the U.S. Department of Veterans Affairs in an attempt to use machine learning to predict the onset of acute kidney injury in patients, and also more broadly the general deterioration of patients during a hospital stay so that doctors and nurses can more quickly treat patients in need.

DeepMind developed an app called Streams, which sends alerts to doctors about patients at risk of acute risk injury. On 13 November 2018, DeepMind announced that its health division and the Streams app would be absorbed into Google Health. Privacy advocates said the announcement betrayed patient trust and appeared to contradict previous statements by DeepMind that patient data would not be connected to Google accounts or services. A spokesman for DeepMind said that patient data would still be kept separate from Google services or projects.

NHS data-sharing controversy

In April 2016, New Scientist obtained a copy of a data sharing agreement between DeepMind and the Royal Free London NHS Foundation Trust. The latter operates three London hospitals where an estimated 1.6 million patients are treated annually. The agreement shows DeepMind Health had access to admissions, discharge and transfer data, accident and emergency, pathology and radiology, and critical care at these hospitals. This included personal details such as whether patients had been diagnosed with HIV, suffered from depression or had ever undergone an abortion in order to conduct research to seek better outcomes in various health conditions.

A complaint was filed to the Information Commissioner's Office (ICO), arguing that the data should be pseudonymised and encrypted. In May 2016, New Scientist published a further article claiming that the project had failed to secure approval from the Confidentiality Advisory Group of the Medicines and Healthcare products Regulatory Agency.

In May 2017, Sky News published a leaked letter from the National Data Guardian, Dame Fiona Caldicott, revealing that in her "considered opinion" the data-sharing agreement between DeepMind and the Royal Free took place on an "inappropriate legal basis". The Information Commissioner's Office ruled in July 2017 that the Royal Free hospital failed to comply with the Data Protection Act when it handed over personal data of 1.6 million patients to DeepMind.

DeepMind Ethics and Society

In October 2017, DeepMind announced a new research unit, DeepMind Ethics & Society. Their goal is to fund external research of the following themes: privacy, transparency, and fairness; economic impacts; governance and accountability; managing AI risk; AI morality and values; and how AI can address the world's challenges. As a result, the team hopes to further understand the ethical implications of AI and aid society to seeing AI can be beneficial.

This new subdivision of DeepMind is a completely separate unit from the partnership of leading companies using AI, academia, civil society organizations and nonprofits of the name Partnership on Artificial Intelligence to Benefit People and Society of which DeepMind is also a part. The DeepMind Ethics and Society board is also distinct from the mooted AI Ethics Board that Google originally agreed to form when acquiring DeepMind.

Artificial intelligence in healthcare

From Wikipedia, the free encyclopedia
 
X-ray of a hand, with automatic calculation of bone age by a computer software

Artificial intelligence in healthcare is the use of complex algorithms and software in another words artificial intelligence (AI) to emulate human cognition in the analysis, interpretation, and comprehension of complicated medical and healthcare data. Specifically, AI is the ability of computer algorithms to approximate conclusions without direct human input.

What distinguishes AI technology from traditional technologies in health care is the ability to gain information, process it and give a well-defined output to the end-user. AI does this through machine learning algorithms and deep learning. These algorithms can recognize patterns in behavior and create their own logic. In order to reduce the margin of error, AI algorithms need to be tested repeatedly. AI algorithms behave differently from humans in two ways: (1) algorithms are literal: if you set a goal, the algorithm can't adjust itself and only understand what it has been told explicitly, (2) and some deep learning algorithms are black boxes; algorithms can predict extremely precise, but not the cause or the why.

The primary aim of health-related AI applications is to analyze relationships between prevention or treatment techniques and patient outcomes. AI programs have been developed and applied to practices such as diagnosis processes, treatment protocol development, drug development, personalized medicine, and patient monitoring and care. Medical institutions such as The Mayo Clinic, Memorial Sloan Kettering Cancer Center, and the British National Health Service, have developed AI algorithms for their departments. Large technology companies such as IBM and Google, have also developed AI algorithms for healthcare. Additionally, hospitals are looking to AI software to support operational initiatives that increase cost saving, improve patient satisfaction, and satisfy their staffing and workforce needs. Companies are developing predictive analytics solutions that help healthcare managers improve business operations through increasing utilization, decreasing patient boarding, reducing length of stay and optimizing staffing levels.

History

Research in the 1960s and 1970s produced the first problem-solving program, or expert system, known as Dendral. While it was designed for applications in organic chemistry, it provided the basis for a subsequent system MYCIN, considered one of the most significant early uses of artificial intelligence in medicine. MYCIN and other systems such as INTERNIST-1 and CASNET did not achieve routine use by practitioners, however.

The 1980s and 1990s brought the proliferation of the microcomputer and new levels of network connectivity. During this time, there was a recognition by researchers and developers that AI systems in healthcare must be designed to accommodate the absence of perfect data and build on the expertise of physicians. Approaches involving fuzzy set theory, Bayesian networks, and artificial neural networks, have been applied to intelligent computing systems in healthcare.

Medical and technological advancements occurring over this half-century period that have enabled the growth healthcare-related applications of AI include:

Current research

Various specialties in medicine have shown an increase in research regarding AI.

Radiology

The ability to interpret imaging results with radiology may aid clinicians in detecting a minute change in an image that a clinician might accidentally miss. A study at Stanford created an algorithm that could detect pneumonia at that specific site, in those patients involved, with a better average F1 metric (a statistical metric based on accuracy and recall), than the radiologists involved in that trial. Several companies (icometrix, QUIBIM, Robovision, ...) have popped up that offer AI platforms for uploading images to. There are also vendor-neutral systems like UMC Utrecht's IMAGR AI. These platforms are trainable through deep learning to detect a wide range of specific diseases and disorders. The radiology conference Radiological Society of North America has implemented presentations on AI in imaging during its annual meeting. The emergence of AI technology in radiology is perceived as a threat by some specialists, as the technology can achieve improvements in certain statistical metrics in isolated cases, as opposed to specialists.

Imaging

Recent advances have suggested the use of AI to describe and evaluate the outcome of maxillo-facial surgery or the assessment of cleft palate therapy in regard to facial attractiveness or age appearance.

In 2018, a paper published in the journal Annals of Oncology mentioned that skin cancer could be detected more accurately by an artificial intelligence system (which used a deep learning convolutional neural network) than by dermatologists. On average, the human dermatologists accurately detected 86.6% of skin cancers from the images, compared to 95% for the CNN machine.

Psychiatry

In psychiatry, AI applications are still in a phase of proof-of-concept. Areas where the evidence is widening quickly include chatbots, conversational agents that imitate human behaviour and which have been studied for anxiety and depression.

Challenges include the fact that many applications in the field are developed and proposed by private corporations, such as the screening for suicidal ideation implemented by Facebook in 2017. Such applications outside the healthcare system raise various professional, ethical and regulatory questions.

Disease Diagnosis

There are many diseases and there also many ways that AI has been used to efficiently and accurately diagnose them. Some of the diseases that are the most notorious such as Diabetes, and Cardiovascular Disease (CVD) which are both in the top ten for causes of death worldwide have been the basis behind  a lot of the research/testing to help get an accurate diagnosis. Due to such a high mortality rate being associated with these diseases there have been efforts to integrate various methods in helping get accurate diagnosis’.

An article by Jiang, et al. (2017) demonstrated that there are several types of AI techniques that have been used for a variety of different diseases. Some of these techniques discussed by Jiang, et al. include: Support vector machines, neural networks, Decision trees, and many more. Each of these techniques is described as having a “training goal” so “classifications agree with the outcomes as much as possible…”.

To demonstrate some specifics for disease diagnosis/classification there are two different techniques used in the classification of these diseases include using “Artificial Neural Networks (ANN) and Bayesian Networks (BN)”. From a review of multiple different papers within the timeframe of 2008-2017 observed within them which of the two techniques were better.  The conclusion that was drawn was that “the early classification of these  diseases can be achieved developing machine learning models such as Artificial Neural Network and Bayesian Network.”  Another conclusion Alic, et al. (2017) was able to draw was that between the two ANN and BN that ANN was better and could more accurately classify diabetes/CVD with a mean accuracy in “both cases (87.29 for diabetes and 89.38 for CVD).

Telehealth

The increase of telemedicine, has shown the rise of possible AI applications. The ability to monitor patients using AI may allow for the communication of information to physicians if possible disease activity may have occurred. A wearable device may allow for constant monitoring of a patient and also allow for the ability to notice changes that may be less distinguishable by humans.

Electronic health records

Electronic health records are crucial to the digitalization and information spread of the healthcare industry. However, logging all of this data comes with its own problems like cognitive overload and burnout for users. EHR developers are now automating much of the process and even starting to use natural language processing (NLP) tools to improve this process. One study conducted by the Centerstone research institute found that predictive modeling of EHR data has achieved 70–72% accuracy in predicting individualized treatment response at baseline. Meaning using an AI tool that scans EHR data. It can pretty accurately predict the course of disease in a person.

Drug Interactions

Improvements in natural language processing led to the development of algorithms to identify drug-drug interactions in medical literature. Drug-drug interactions pose a threat to those taking multiple medications simultaneously, and the danger increases with the number of medications being taken. To address the difficulty of tracking all known or suspected drug-drug interactions, machine learning algorithms have been created to extract information on interacting drugs and their possible effects from medical literature. Efforts were consolidated in 2013 in the DDIExtraction Challenge, in which a team of researchers at Carlos III University assembled a corpus of literature on drug-drug interactions to form a standardized test for such algorithms. Competitors were tested on their ability to accurately determine, from the text, which drugs were shown to interact and what the characteristics of their interactions were. Researchers continue to use this corpus to standardize the measurement of the effectiveness of their algorithms.

Other algorithms identify drug-drug interactions from patterns in user-generated content, especially electronic health records and/or adverse event reports. Organizations such as the FDA Adverse Event Reporting System (FAERS) and the World Health Organization's VigiBase allow doctors to submit reports of possible negative reactions to medications. Deep learning algorithms have been developed to parse these reports and detect patterns that imply drug-drug interactions.

Creation of New Drugs

DSP-1181, a molecule of the drug for OCD (obsessive-compulsive disorder) treatment, was invented by artificial intelligence through joint efforts of Exscientia (British start-up) and Sumitomo Dainippon Pharma (Japanese pharmaceutical firm). The drug development took a single year, while pharmaceutical companies usually spend about five years on similar projects. DSP-1181 was accepted for a human trial.

Industry

The subsequent motive of large based health companies merging with other health companies, allow for greater health data accessibility. Greater health data may allow for more implementation of AI algorithms.

A large part of industry focus of implementation of AI in the healthcare sector is in the clinical decision support systems. As the amount of data increases, AI decision support systems become more efficient. Numerous companies are exploring the possibilities of the incorporation of big data in the health care industry.

The following are examples of large companies that have contributed to AI algorithms for use in healthcare.

IBM

IBM's Watson Oncology is in development at Memorial Sloan Kettering Cancer Center and Cleveland Clinic. IBM is also working with CVS Health on AI applications in chronic disease treatment and with Johnson & Johnson on analysis of scientific papers to find new connections for drug development. In May 2017, IBM and Rensselaer Polytechnic Institute began a joint project entitled Health Empowerment by Analytics, Learning and Semantics (HEALS), to explore using AI technology to enhance healthcare.

Microsoft

Microsoft's Hanover project, in partnership with Oregon Health & Science University's Knight Cancer Institute, analyzes medical research to predict the most effective cancer drug treatment options for patients. Other projects include medical image analysis of tumor progression and the development of programmable cells.

Google

Google's DeepMind platform is being used by the UK National Health Service to detect certain health risks through data collected via a mobile app. A second project with the NHS involves analysis of medical images collected from NHS patients to develop computer vision algorithms to detect cancerous tissues.

Tencent

Tencent is working on several medical systems and services. These include:
  • AI Medical Innovation System (AIMIS), an AI-powered diagnostic medical imaging service
  • WeChat Intelligent Healthcare
  • Tencent Doctorwork

Intel

Intel's venture capital arm Intel Capital recently invested in startup Lumiata which uses AI to identify at-risk patients and develop care options.

Startups

Kheiron Medical developed deep learning software to detect breast cancers in mammograms.

Fractal Analytics has incubated Qure.ai which focuses on using deep learning and AI to improve radiology and speed up the analysis of diagnostic x-rays.

Other

Digital consultant apps like Babylon Health's GP at Hand, Ada Health, AliHealth Doctor You, KareXpert and Your.MD use AI to give medical consultation based on personal medical history and common medical knowledge. Users report their symptoms into the app, which uses speech recognition to compare against a database of illnesses. Babylon then offers a recommended action, taking into account the user's medical history. Entrepreneurs in healthcare have been effectively using seven business model archetypes to take AI solution to the marketplace. These archetypes depend on the value generated for the target user (e.g. patient focus vs. healthcare provider and payer focus) and value capturing mechanisms (e.g. providing information or connecting stakeholders).

IFlytek launched a service robot “Xiao Man”, which integrated artificial intelligence technology to identify the registered customer and provide personalized recommendations in medical areas. It also works in the field of medical imaging. Similar robots are also being made by companies such as UBTECH ("Cruzr") and Softbank Robotics ("Pepper").

Implications

The use of AI is predicted to decrease medical costs as there will be more accuracy in diagnosis and better predictions in the treatment plan as well as more prevention of disease.

Other future uses for AI include Brain-computer Interfaces (BCI) which are predicted to help those with trouble moving, speaking or with a spinal cord injury. The BCIs will use AI to help these patients move and communicate by decoding neural activates.

As technology evolves and is implemented in more workplaces, many fear that their jobs will be replaced by robots or machines. The U.S. News Staff (2018) writes that in the near future, doctors who utilize AI will “win out” over the doctors who don't. AI will not replace healthcare workers but instead, allow them more time for bedside cares. AI may avert healthcare worker burn out and cognitive overload. Overall, as Quan-Haase (2018) says, technology “extends to the accomplishment of societal goals, including higher levels of security, better means of communication over time and space, improved health care, and increased autonomy” (p. 43). As we adapt and utilize AI into our practice we can enhance our care to our patients resulting in greater outcomes for all.

Expanding care to developing nations

With an increase in the use of AI, more care may become available to those in developing nations. AI continues to expand in its abilities and as it is able to interpret radiology, it may be able to diagnose more people with the need for fewer doctors as there is a shortage in many of these nations. The goal of AI is to teach others in the world, which will then lead to improved treatment and eventually greater global health. Using AI in developing nations who do not have the resources will diminish the need for outsourcing and can use AI to improve patient care. For example, Natural language processing, and machine learning are being used for guiding cancer treatments in places such as Thailand, China, and India. Researchers trained an AI application to use NLP to mine through patient records, and provide treatment. The ultimate decision made by the AI application agreed with expert decisions 90% of the time.

Regulation

While research on the use of AI in healthcare aims to validate its efficacy in improving patient outcomes before its broader adoption, its use may nonetheless introduce several new types of risk to patients and healthcare providers, such as algorithmic bias, Do not resuscitate implications, and other machine morality issues. These challenges of the clinical use of AI has brought upon potential need for regulations.

Currently no regulations exist specifically for the use of AI in healthcare. In May 2016, the White House announced its plan to host a series of workshops and formation of the National Science and Technology Council (NSTC) Subcommittee on Machine Learning and Artificial Intelligence. In October 2016, the group published The National Artificial Intelligence Research and Development Strategic Plan, outlining its proposed priorities for Federally-funded AI research and development (within government and academia). The report notes a strategic R&D plan for the subfield of health information technology is in development stages.

The only agency that has expressed concern is the FDA. Bakul Patel, the Associate Center Director for Digital Health of the FDA, is quoted saying in May 2017.
“We're trying to get people who have hands-on development experience with a product's full life cycle. We already have some scientists who know artificial intelligence and machine learning, but we want complementary people who can look forward and see how this technology will evolve.”
The joint ITU - WHO Focus Group on Artificial Intelligence for Health has built a platform for the testing and benchmarking of AI applications in health domain. As of November 2018, eight use cases are being benchmarked, including assessing breast cancer risk from histopathological imagery, guiding anti-venom selection from snake images, and diagnosing skin lesions.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...