Search This Blog

Wednesday, March 24, 2021

Numerical cognition

From Wikipedia, the free encyclopedia

Numerical cognition is a subdiscipline of cognitive science that studies the cognitive, developmental and neural bases of numbers and mathematics. As with many cognitive science endeavors, this is a highly interdisciplinary topic, and includes researchers in cognitive psychology, developmental psychology, neuroscience and cognitive linguistics. This discipline, although it may interact with questions in the philosophy of mathematics, is primarily concerned with empirical questions.

Topics included in the domain of numerical cognition include:

  • How do non-human animals process numerosity?
  • How do infants acquire an understanding of numbers (and how much is inborn)?
  • How do humans associate linguistic symbols with numerical quantities?
  • How do these capacities underlie our ability to perform complex calculations?
  • What are the neural bases of these abilities, both in humans and in non-humans?
  • What metaphorical capacities and processes allow us to extend our numerical understanding into complex domains such as the concept of infinity, the infinitesimal or the concept of the limit in calculus?
  • Heuristics in numerical cognition

Comparative studies

A variety of research has demonstrated that non-human animals, including rats, lions and various species of primates have an approximate sense of number (referred to as "numerosity"). For example, when a rat is trained to press a bar 8 or 16 times to receive a food reward, the number of bar presses will approximate a Gaussian or Normal distribution with peak around 8 or 16 bar presses. When rats are more hungry, their bar pressing behavior is more rapid, so by showing that the peak number of bar presses is the same for either well-fed or hungry rats, it is possible to disentangle time and number of bar presses. In addition, in a few species the parallel individuation system has been shown, for example in the case of guppies which successfully discriminated between 1 and 4 other individuals.

Similarly, researchers have set up hidden speakers in the African savannah to test natural (untrained) behavior in lions (McComb, Packer & Pusey 1994). These speakers can play a number of lion calls, from 1 to 5. If a single lioness hears, for example, three calls from unknown lions, she will leave, while if she is with four of her sisters, they will go and explore. This suggests that not only can lions tell when they are "outnumbered" but that they can do this on the basis of signals from different sensory modalities, suggesting that numerosity is a multisensory concept.

Developmental studies

Developmental psychology studies have shown that human infants, like non-human animals, have an approximate sense of number. For example, in one study, infants were repeatedly presented with arrays of (in one block) 16 dots. Careful controls were in place to eliminate information from "non-numerical" parameters such as total surface area, luminance, circumference, and so on. After the infants had been presented with many displays containing 16 items, they habituated, or stopped looking as long at the display. Infants were then presented with a display containing 8 items, and they looked longer at the novel display.

Because of the numerous controls that were in place to rule out non-numerical factors, the experimenters infer that six-month-old infants are sensitive to differences between 8 and 16. Subsequent experiments, using similar methodologies showed that 6-month-old infants can discriminate numbers differing by a 2:1 ratio (8 vs. 16 or 16 vs. 32) but not by a 3:2 ratio (8 vs. 12 or 16 vs. 24). However, 10-month-old infants succeed both at the 2:1 and the 3:2 ratio, suggesting an increased sensitivity to numerosity differences with age (for a review of this literature see Feigenson, Dehaene & Spelke 2004).

In another series of studies, Karen Wynn showed that infants as young as five months are able to do very simple additions (e.g., 1 + 1 = 2) and subtractions (3 - 1 = 2). To demonstrate this, Wynn used a "violation of expectation" paradigm, in which infants were shown (for example) one Mickey Mouse doll going behind a screen, followed by another. If, when the screen was lowered, infants were presented with only one Mickey (the "impossible event") they looked longer than if they were shown two Mickeys (the "possible" event). Further studies by Karen Wynn and Koleen McCrink found that although infants' ability to compute exact outcomes only holds over small numbers, infants can compute approximate outcomes of larger addition and subtraction events (e.g., "5+5" and "10-5" events).

There is debate about how much these infant systems actually contain in terms of number concepts, harkening to the classic nature versus nurture debate. Gelman & Gallistel 1978 suggested that a child innately has the concept of natural number, and only has to map this onto the words used in her language. Carey 2004, Carey 2009 disagreed, saying that these systems can only encode large numbers in an approximate way, where language-based natural numbers can be exact. Without language, only numbers 1 to 4 are believed to have an exact representation, through the parallel individuation system. One promising approach is to see if cultures that lack number words can deal with natural numbers. The results so far are mixed (e.g., Pica et al. 2004); Butterworth & Reeve 2008, Butterworth, Reeve & Lloyd 2008.

Neuroimaging and neurophysiological studies

Human neuroimaging studies have demonstrated that regions of the parietal lobe, including the intraparietal sulcus (IPS) and the inferior parietal lobule (IPL) are activated when subjects are asked to perform calculation tasks. Based on both human neuroimaging and neuropsychology, Stanislas Dehaene and colleagues have suggested that these two parietal structures play complementary roles. The IPS is thought to house the circuitry that is fundamentally involved in numerical estimation (Piazza et al. 2004), number comparison (Pinel et al. 2001; Pinel et al. 2004) and on-line calculation, or quantity processing (often tested with subtraction) while the IPL is thought to be involved in rote memorization, such as multiplication. Thus, a patient with a lesion to the IPL may be able to subtract, but not multiply, and vice versa for a patient with a lesion to the IPS. In addition to these parietal regions, regions of the frontal lobe are also active in calculation tasks. These activations overlap with regions involved in language processing such as Broca's area and regions involved in working memory and attention. Additionally, the inferotemporal cortex is implicated in processing the numerical shapes and symbols, necessary for calculations with Arabic digits. More current research has highlighted the networks involved with multiplication and subtraction tasks. Multiplication is often learned through rote memorization and verbal repetitions, and neuroimaging studies have shown that multiplication uses a left lateralized network of the inferior frontal cortex and the superior-middle temporal gyri in addition to the IPL and IPS. Subtraction is taught more with quantity manipulation and strategy use, more reliant upon the right IPS and the posterior parietal lobule.

Single-unit neurophysiology in monkeys has also found neurons in the frontal cortex and in the intraparietal sulcus that respond to numbers. Andreas Nieder (Nieder 2005; Nieder, Freedman & Miller 2002; Nieder & Miller 2004) trained monkeys to perform a "delayed match-to-sample" task. For example, a monkey might be presented with a field of four dots, and is required to keep that in memory after the display is taken away. Then, after a delay period of several seconds, a second display is presented. If the number on the second display match that from the first, the monkey has to release a lever. If it is different, the monkey has to hold the lever. Neural activity recorded during the delay period showed that neurons in the intraparietal sulcus and the frontal cortex had a "preferred numerosity", exactly as predicted by behavioral studies. That is, a certain number might fire strongly for four, but less strongly for three or five, and even less for two or six. Thus, we say that these neurons were "tuned" for specific quantities. Note that these neuronal responses followed Weber's law, as has been demonstrated for other sensory dimensions, and consistent with the ratio dependence observed for non-human animals' and infants' numerical behavior (Nieder & Miller 2003).

It is important to note that while primates have remarkably similar brains to humans, there are differences in function, ability, and sophistication. They make for good preliminary test subjects, but do not show small differences that are the result of different evolutionary tracks and environment. However, in the realm of number, they share many similarities. As identified in monkeys, neurons selectively tuned to number were identified in the bilateral intraparietal sulci and prefrontal cortex in humans. Piazza and colleagues investigated this using fMRI, presenting participants with sets of dots where they either had to make same-different judgments or larger-smaller judgments. The sets of dots consisted of base numbers 16 and 32 dots with ratios in 1.25, 1.5, and 2. Deviant numbers were included in some trials in larger or smaller amounts than the base numbers. Participants displayed similar activation patterns as Neider found in the monkeys. The intraparietal sulcus and the prefrontal cortex, also implicated in number, communicate in approximating number and it was found in both species that the parietal neurons of the IPS had short firing latencies, whereas the frontal neurons had longer firing latencies. This supports the notion that number is first processed in the IPS and, if needed, is then transferred to the associated frontal neurons in the prefrontal cortex for further numerations and applications. Humans displayed Gaussian curves in the tuning curves of approximate magnitude. This aligned with monkeys, displaying a similarly structured mechanism in both species with classic Gaussian curves relative to the increasingly deviant numbers with 16 and 32 as well as habituation. The results followed Weber's Law, with accuracy decreasing as the ratio between numbers became smaller. This supports the findings made by Neider in macaque monkeys and shows definitive evidence for an approximate number logarithmic scale in humans.

With an established mechanism for approximating non-symbolic number in both humans and primates, a necessary further investigation is needed to determine if this mechanism is innate and present in children, which would suggest an inborn ability to process numerical stimuli much like humans are born ready to process language. Cantlon and colleagues set out to investigate this in 4 year old healthy, normally developing children in parallel with adults. A similar task to Piazza's was used in this experiment, without the judgment tasks. Dot arrays of varying size and number were used, with 16 and 32 as the base numerosities. in each block, 232 stimuli were presented with 20 deviant numerosities of a 2.0 ratio both larger and smaller. For example, out of the 232 trials, 16 dots were presented in varying size and distance but 10 of those trials had 8 dots, and 10 of those trials had 32 dots, making up the 20 deviant stimuli. The same applied to the blocks with 32 as the base numerosity. To ensure the adults and children were attending to the stimuli, they put 3 fixation points throughout the trial where the participant had to move a joystick to move forward. Their findings indicated that the adults in the experiment had significant activation of the IPS when viewing the deviant number stimuli, aligning with what was previously found in the aforementioned paragraph. In the 4 year olds, they found significant activation of the IPS to the deviant number stimuli, resembling the activation found in adults. There were some differences in the activations, with adults displaying more robust bilateral activation, where the 4 year olds primarily showed activation in their right IPS and activated 112 less voxels than the adults. This suggests that at age 4, children have an established mechanism of neurons in the IPS tuned for processing non-symbolic numerosities. Other studies have gone deeper into this mechanism in children and discovered that children do also represent approximate numbers on a logarithmic scale, aligning with the claims made by Piazza in adults.

A study by Izard and colleagues investigated abstract number representations in infants using a different paradigm than the previous researchers because of the nature and developmental stage of the infants. For infants, they examined abstract number with both auditory and visual stimuli with a looking-time paradigm. The sets used were 4vs.12, 8vs.16, and 4vs.8. The auditory stimuli consisted of tones in different frequencies with a set number of tones, with some deviant trials where the tones were shorter but more numerous or longer and less numerous to account for duration and its potential confounds. After the auditory stimuli was presented with 2 minutes of familiarization, the visual stimuli was presented with a congruent or incongruent array of colorful dots with facial features. they remained on the screen until the infant looked away. They found that infants looked longer at the stimuli that matched the auditory tones, suggesting that the system for approximating non-symbolic number, even across modalities, is present in infancy. What is important to note across these three particular human studies on nonsymbolic numerosities is that it is present in infancy and develops over the lifetime. The honing of their approximation and number sense abilities as indicated by the improving Weber fractions across time, and usage of the left IPS to provide a wider berth for processing of computations and enumerations lend support for the claims that are made for a nonsymbolic number processing mechanism in human brains.

Relations between number and other cognitive processes

There is evidence that numerical cognition is intimately related to other aspects of thought – particularly spatial cognition. One line of evidence comes from studies performed on number-form synaesthetes. Such individuals report that numbers are mentally represented with a particular spatial layout; others experience numbers as perceivable objects that can be visually manipulated to facilitate calculation. Behavioral studies further reinforce the connection between numerical and spatial cognition. For instance, participants respond quicker to larger numbers if they are responding on the right side of space, and quicker to smaller numbers when on the left—the so-called "Spatial-Numerical Association of Response Codes" or SNARC effect. This effect varies across culture and context, however, and some research has even begun to question whether the SNARC reflects an inherent number-space association, instead invoking strategic problem solving or a more general cognitive mechanism like conceptual metaphor. Moreover, neuroimaging studies reveal that the association between number and space also shows up in brain activity. Regions of the parietal cortex, for instance, show shared activation for both spatial and numerical processing. These various lines of research suggest a strong, but flexible, connection between numerical and spatial cognition.

Modification of the usual decimal representation was advocated by John Colson. The sense of complementation, missing in the usual decimal system, is expressed by signed-digit representation.

Heuristics in numerical cognition

Several consumer psychologists have also studied the heuristics that people use in numerical cognition. For example, Thomas and Morwitz (2009) reviewed several studies showing that the three heuristics that manifest in many everyday judgments and decisions – anchoring, representativeness, and availability – also influence numerical cognition. They identify the manifestations of these heuristics in numerical cognition as: the left-digit anchoring effect, the precision effect, and the ease of computation effect respectively. The left-digit effect refers to the observation that people tend to incorrectly judge the difference between $4.00 and $2.99 to be larger than that between $4.01 and $3.00 because of anchoring on left-most digits. The precision effect reflects the influence of the representativeness of digit patterns on magnitude judgments. Larger magnitudes are usually rounded and therefore have many zeros, whereas smaller magnitudes are usually expressed as precise numbers; so relying on the representativeness of digit patterns can make people incorrectly judge a price of $391,534 to be more attractive than a price of $390,000. The ease of computation effect shows that magnitude judgments are based not only on the output of a mental computation, but also on its experienced ease or difficulty. Usually it is easier to compare two dissimilar magnitudes than two similar magnitudes; overuse of this heuristic can make people incorrectly judge the difference to be larger for pairs with easier computations, e.g. $5.00 minus $4.00, than for pairs with difficult computations, e.g. $4.97 minus $3.96. 

Ethnolinguistic variance

The numeracy of indigenous peoples is studied to identify universal aspects of numerical cognition in humans. Notable examples include the Pirahã people who have no words for specific numbers and the Munduruku people who only have number words up to five. Pirahã adults are unable to mark an exact number of tallies for a pile of nuts containing fewer than ten items. Anthropologist Napoleon Chagnon spent several decades studying the Yanomami in the field. He concluded that they have no need for counting in their everyday lives. Their hunters keep track of individual arrows with the same mental faculties that they use to recognize their family members. There are no known hunter-gatherer cultures that have a counting system in their language. The mental and lingual capabilities for numeracy are tied to the development of agriculture and with it large numbers of indistinguishable items.

 

Numeracy

From Wikipedia, the free encyclopedia

Children in Laos have fun as they improve numeracy with "Number Bingo". They roll three dice, construct an equation from the numbers to produce a new number, then cover that number on the board, trying to get four in a row.
 
Number bingo improves math skills LPB Laos

Numeracy is the ability to reason and to apply simple numerical concepts. Basic numeracy skills consist of comprehending fundamental arithmetical operations like addition, subtraction, multiplication, and division. For example, if one can understand simple mathematical equations such as 2 + 2 = 4, then one would be considered to possess at least basic numeric knowledge. Substantial aspects of numeracy also include number sense, operation sense, computation, measurement, geometry, probability and statistics. A numerically literate person can manage and respond to the mathematical demands of life.

By contrast, innumeracy (the lack of numeracy) can have a negative impact. Numeracy has an influence on career decisions, and risk perception towards health decisions. For example, innumeracy distorts risk perception towards health decisions and may negatively affect economic choices. Greater numeracy has been associated with reduced susceptibility to framing effects, less influence of nonnumerical information such as mood states, and greater sensitivity to different levels of numerical risk.

Representation of numbers

Humans have evolved to mentally represent numbers in two major ways from observation (not formal math). These representations are often thought to be innate, to be shared across human cultures, to be common to multiple species, and not to be the result of individual learning or cultural transmission. They are:

  1. Approximate representation of numerical magnitude, and
  2. Precise representation of the quantity of individual items.

Approximate representations of numerical magnitude imply that one can relatively estimate and comprehend an amount if the number is large. For example, one experiment showed children and adults arrays of many dots. After briefly observing them, both groups could accurately estimate the approximate number of dots. However, distinguishing differences between large numbers of dots proved to be more challenging.

Precise representations of distinct individuals demonstrate that people are more accurate in estimating amounts and distinguishing differences when the numbers are relatively small. For example, in one experiment, an experimenter presented an infant with two piles of crackers, one with two crackers the other with three. The experimenter then covered each pile with a cup. When allowed to choose a cup, the infant always chose the cup with more crackers because the infant could distinguish the difference.

Both systems—approximate representation of magnitude and precise representation quantity of individual items—have limited power. For example, neither allows representations of fractions or negative numbers. More complex representations require education. However, achievement in school mathematics correlates with an individual's unlearned approximate number sense.

Definitions and assessment

Fundamental (or rudimentary) numeracy skills include understanding of the real number line, time, measurement, and estimation. Fundamental skills include basic skills (the ability to identify and understand numbers) and computational skills (the ability to perform simple arithmetical operations and compare numerical magnitudes).

More sophisticated numeracy skills include understanding of ratio concepts (notably fractions, proportions, percentages, and probabilities), and knowing when and how to perform multistep operations. Two categories of skills are included at the higher levels: the analytical skills (the ability to understand numerical information, such as required to interpret graphs and charts) and the statistical skills (the ability to apply higher probabilistic and statistical computation, such as conditional probabilities).

A variety of tests have been developed for assessing numeracy and health numeracy.

Childhood influences

The first couple of years of childhood are considered to be a vital part of life for the development of numeracy and literacy. There are many components that play key roles in the development of numeracy at a young age, such as Socioeconomic Status (SES), parenting, Home Learning Environment (HLE), and age.

Socioeconomic status

Children who are brought up in families with high SES tend to be more engaged in developmentally enhancing activities. These children are more likely to develop the necessary abilities to learn and to become more motivated to learn. More specifically, a mother's education level is considered to have an effect on the child's ability to achieve in numeracy. That is, mothers with a high level of education will tend to have children who succeed more in numeracy.

A number of studies have, moreover, proved that the education level of the mother is strongly correlated with the average age of getting married. More precisely, females who entered the marriage later, tend to have greater autonomy, chances for skills premium and level of education (i.e. numeracy). Hence, they were more likely to share this experience with children.

Parenting

Parents are recommended to collaborate with their child in simple learning exercises, such as reading a book, painting, drawing, and playing with numbers. On a more expressive note, the act of using complex language, being more responsive towards the child, and establishing warm interactions are recommended to parents with the confirmation of positive numeracy outcomes. When discussing beneficial parenting behaviors, a feedback loop is formed because pleased parents are more willing to interact with their child, which in essence promotes better development in the child.

Home-learning environment

Along with parenting and SES, a strong home-learning environment increases the likelihood of the child being prepared for comprehending complex mathematical schooling. For example, if a child is influenced by many learning activities in the household, such as puzzles, coloring books, mazes, or books with picture riddles, then they will be more prepared to face school activities.

Age

Age is accounted for when discussing the development of numeracy in children. Children under the age of 5 have the best opportunity to absorb basic numeracy skills. After the age of seven, achievement of basic numeracy skills become less influential. For example, a study was conducted to compare the reading and mathematical abilities between children of ages five and seven, each in three different mental capacity groups (underachieving, average, and overachieving). The differences in the amount of knowledge retained were greater between the three different groups aged five than between the groups aged seven. This reveals that those of younger ages have an opportunity to retain more information, like numeracy.

Literacy

There seems to be a relationship between literacy and numeracy, which can be seen in young children. Depending on the level of literacy or numeracy at a young age, one can predict the growth of literacy and/ or numeracy skills in future development. There is some evidence that humans may have an inborn sense of number. In one study for example, five-month-old infants were shown two dolls, which were then hidden with a screen. The babies saw the experimenter pull one doll from behind the screen. Without the child's knowledge, a second experimenter could remove, or add dolls, unseen behind the screen. When the screen was removed, the infants showed more surprise at an unexpected number (for example, if there were still two dolls). Some researchers have concluded that the babies were able to count, although others doubt this and claim the infants noticed surface area rather than number.

Employment

Numeracy has a huge impact on employment. In a work environment, numeracy can be a controlling factor affecting career achievements and failures. Many professions require individuals to have well-developed numerical skills: for example, mathematician, physicist, accountant, actuary, Risk Analyst, financial analyst, engineer, and architect. This is why a major target of the Sustainable Development Goal 4 is to substantially increase the number of youths who have relevant skills for decent work and employment because, even outside these specialized areas, the lack of numeracy skills can reduce employment opportunities and promotions, resulting in unskilled manual careers, low-paying jobs, and even unemployment. For example, carpenters and interior designers need to be able to measure, use fractions, and handle budgets. Another example of numeracy influencing employment was demonstrated at the Poynter Institute. The Poynter Institute has recently included numeracy as one of the skills required by competent journalists. Max Frankel, former executive editor of The New York Times, argues that "deploying numbers skillfully is as important to communication as deploying verbs". Unfortunately, it is evident that journalists often show poor numeracy skills. In a study by the Society of Professional Journalists, 58% of job applicants interviewed by broadcast news directors lacked an adequate understanding of statistical materials.

To assess job applicants, psychometric numerical reasoning tests have been created by occupational psychologists, who are involved in the study of numeracy. These tests are used to assess ability to comprehend and apply numbers. They are sometimes administered with a time limit, so that the test-taker must think quickly and concisely. Research has shown that these tests are very useful in evaluating potential applicants because they do not allow the applicants to prepare for the test, unlike interview questions. This suggests that an applicant's results are reliable and accurate.

These tests first became prevalent during the 1980s, following the pioneering work of psychologists, such as P. Kline, who published a book in 1986 entitled A handbook of test construction: Introduction to psychometric design, which explained that psychometric testing could provide reliable and objective results, which could be used to assess a candidate's numerical abilities.

Innumeracy and dyscalculia

The term innumeracy is a neologism, coined by analogy with illiteracy. Innumeracy refers to a lack of ability to reason with numbers. The term was coined by cognitive scientist Douglas Hofstadter; however, it was popularized in 1989 by mathematician John Allen Paulos in his book Innumeracy: Mathematical Illiteracy and its Consequences.

Developmental dyscalculia refers to a persistent and specific impairment of basic numerical-arithmetical skills learning in the context of normal intelligence.

Patterns and differences

The root causes of innumeracy vary. Innumeracy has been seen in those suffering from poor education and childhood deprivation of numeracy. Innumeracy is apparent in children during the transition between numerical skills obtained before schooling and the new skills taught in the education departments because of their memory capacity to comprehend the material. Patterns of innumeracy have also been observed depending on age, gender, and race. Older adults have been associated with lower numeracy skills than younger adults. Men have been identified to have higher numeracy skills than women. Some studies seem to indicate young people of African heritage tend to have lower numeracy skills. The Trends in International Mathematics and Science Study (TIMSS) in which children at fourth-grade (average 10 to 11 years) and eighth-grade (average 14 to 15 years) from 49 countries were tested on mathematical comprehension. The assessment included tests for number, algebra (also called patterns and relationships at fourth grade), measurement, geometry, and data. The latest study, in 2003, found that children from Singapore at both grade levels had the highest performance. Countries like Hong Kong SAR, Japan, and Taiwan also shared high levels of numeracy. The lowest scores were found in countries like South Africa, Ghana, and Saudi Arabia. Another finding showed a noticeable difference between boys and girls, with some exceptions. For example, girls performed significantly better in Singapore, and boys performed significantly better in the United States.

Theory

There is a theory that innumeracy is more common than illiteracy when dividing cognitive abilities into two separate categories. David C. Geary, a notable cognitive developmental and evolutionary psychologist from the University of Missouri, created the terms "biological primary abilities" and "biological secondary abilities". Biological primary abilities evolve over time and are necessary for survival. Such abilities include speaking a common language or knowledge of simple mathematics. Biological secondary abilities are attained through personal experiences and cultural customs, such as reading or high level mathematics learned through schooling. Literacy and numeracy are similar in the sense that they are both important skills used in life. However, they differ in the sorts of mental demands each makes. Literacy consists of acquiring vocabulary and grammatical sophistication, which seem to be more closely related to memorization, whereas numeracy involves manipulating concepts, such as in calculus or geometry, and builds from basic numeracy skills. This could be a potential explanation of the challenge of being numerate.

Innumeracy and risk perception in health decision-making

Health numeracy has been defined as "the degree to which individuals have the capacity to access, process, interpret, communicate, and act on numerical, quantitative, graphical, biostatistical, and probabilistic health information needed to make effective health decisions". The concept of health numeracy is a component of the concept of health literacy. Health numeracy and health literacy can be thought of as the combination of skills needed for understanding risk and making good choices in health-related behavior.

Health numeracy requires basic numeracy but also more advanced analytical and statistical skills. For instance, health numeracy also requires the ability to understand probabilities or relative frequencies in various numerical and graphical formats, and to engage in Bayesian inference, while avoiding errors sometimes associated with Bayesian reasoning. Health numeracy also requires understanding terms with definitions that are specific to the medical context. For instance, although 'survival' and 'mortality' are complementary in common usage, these terms are not complementary in medicine. Innumeracy is also a very common problem when dealing with risk perception in health-related behavior; it is associated with patients, physicians, journalists and policymakers. Those who lack or have limited health numeracy skills run the risk of making poor health-related decisions because of an inaccurate perception of information. For example, if a patient has been diagnosed with breast cancer, being innumerate may hinder her ability to comprehend her physician's recommendations, or even the severity of the health concern. One study found that people tended to overestimate their chances of survival or even to choose lower-quality hospitals. Innumeracy also makes it difficult or impossible for some patients to read medical graphs correctly. Some authors have distinguished graph literacy from numeracy. Indeed, many doctors exhibit innumeracy when attempting to explain a graph or statistics to a patient. A misunderstanding between a doctor and patient, due to either the doctor, patient, or both being unable to comprehend numbers effectively, could result in serious harm to health.

Different presentation formats of numerical information, for instance natural frequency icon arrays, have been evaluated to assist both low-numeracy and high-numeracy individuals.

Evolution of numeracy

In the field of economic history, numeracy is often used to assess human capital at times when there was no data on schooling or other educational measures. Using a method called age-heaping, researchers like Professor Jörg Baten study the development and inequalities of numeracy over time and throughout regions. For example, Baten and Hippe find a numeracy gap between regions in western and central Europe and the rest of Europe for the period 1790–1880. At the same time, their data analysis reveals that these differences as well as within country inequality decreased over time. Taking a similar approach, Baten and Fourie find overall high levels of numeracy for people in the Cape Colony (late 17th to early 19th century).

In contrast to these studies comparing numeracy over countries or regions, it is also possible to analyze numeracy within countries. For example, Baten, Crayen and Voth look at the effects of war on numeracy in England, and Baten and Priwitzer find a "military bias" in what is today western Hungary: people opting for a military career had - on average - better numeracy indicators (1 BCE to 3CE).

Cognitive bias

From Wikipedia, the free encyclopedia

A cognitive bias is a systematic pattern of deviation from norm or rationality in judgment. Individuals create their own "subjective reality" from their perception of the input. An individual's construction of reality, not the objective input, may dictate their behavior in the world. Thus, cognitive biases may sometimes lead to perceptual distortion, inaccurate judgment, illogical interpretation, or what is broadly called irrationality.

Although it may seem like such misperceptions would be aberrations, biases can help humans find commonalities and shortcuts to assist in the navigation of common situations in life.

Some cognitive biases are presumably adaptive. Cognitive biases may lead to more effective actions in a given context. Furthermore, allowing cognitive biases enables faster decisions which can be desirable when timeliness is more valuable than accuracy, as illustrated in heuristics. Other cognitive biases are a "by-product" of human processing limitations, resulting from a lack of appropriate mental mechanisms (bounded rationality), impact of individual's constitution and biological state, or simply from a limited capacity for information processing.

A continually evolving list of cognitive biases has been identified over the last six decades of research on human judgment and decision-making in cognitive science, social psychology, and behavioral economics. Daniel Kahneman and Tversky (1996) argue that cognitive biases have efficient practical implications for areas including clinical judgment, entrepreneurship, finance, and management.

Overview

The notion of cognitive biases was introduced by Amos Tversky and Daniel Kahneman in 1972 and grew out of their experience of people's innumeracy, or inability to reason intuitively with the greater orders of magnitude. Tversky, Kahneman and colleagues demonstrated several replicable ways in which human judgments and decisions differ from rational choice theory. Tversky and Kahneman explained human differences in judgment and decision-making in terms of heuristics. Heuristics involve mental shortcuts which provide swift estimates about the possibility of uncertain occurrences. Heuristics are simple for the brain to compute but sometimes introduce "severe and systematic errors."

For example, the representativeness heuristic is defined as “The tendency to judge the frequency or likelihood" of an occurrence by the extent of which the event "resembles the typical case".

The "Linda Problem" illustrates the representativeness heuristic (Tversky & Kahneman, 1983). Participants were given a description of "Linda" that suggests Linda might well be a feminist (e.g., she is said to be concerned about discrimination and social justice issues). They were then asked whether they thought Linda was more likely to be (a) a "bank teller" or (b) a "bank teller and active in the feminist movement." A majority chose answer (b). This error (mathematically, answer (b) cannot be more likely than answer (a)) is an example of the "conjunction fallacy"; Tversky and Kahneman argued that respondents chose (b) because it seemed more "representative" or typical of persons who might fit the description of Linda. The representativeness heuristic may lead to errors such as activating stereotypes and inaccurate judgments of others (Haselton et al., 2005, p. 726).

Critics of Kahneman and Tversky, such as Gerd Gigerenzer, alternatively argued that heuristics should not lead us to conceive of human thinking as riddled with irrational cognitive biases. They should rather conceive rationality as an adaptive tool, not identical to the rules of formal logic or the probability calculus. Nevertheless, experiments such as the "Linda problem" grew into heuristics and biases research programs, which spread beyond academic psychology into other disciplines including medicine and political science.

Types

Biases can be distinguished on a number of dimensions. Examples of cognitive biases include:

  • Biases specific to groups (such as the risky shift) versus biases at the individual level.
  • Biases that affect decision-making, where the desirability of options has to be considered (e.g., sunk costs fallacy).
  • Biases, such as illusory correlation, that affect judgment of how likely something is or whether one thing is the cause of another.
  • Biases that affect memory, such as consistency bias (remembering one's past attitudes and behavior as more similar to one's present attitudes).
  • Biases that reflect a subject's motivation, for example, the desire for a positive self-image leading to egocentric bias and the avoidance of unpleasant cognitive dissonance.

Other biases are due to the particular way the brain perceives, forms memories and makes judgments. This distinction is sometimes described as "hot cognition" versus "cold cognition", as motivated reasoning can involve a state of arousal. Among the "cold" biases,

  • some are due to ignoring relevant information (e.g., neglect of probability),
  • some involve a decision or judgment being affected by irrelevant information (for example the framing effect where the same problem receives different responses depending on how it is described; or the distinction bias where choices presented together have different outcomes than those presented separately), and
  • others give excessive weight to an unimportant but salient feature of the problem (e.g., anchoring).

The fact that some biases reflect motivation, specifically the motivation to have positive attitudes to oneself, accounts for the fact that many biases are self-serving or self-directed (e.g., illusion of asymmetric insight, self-serving bias). There are also biases in how subjects evaluate in-groups or out-groups; evaluating in-groups as more diverse and "better" in many respects, even when those groups are arbitrarily defined (ingroup bias, outgroup homogeneity bias).

Some cognitive biases belong to the subgroup of attentional biases, which refers to paying increased attention to certain stimuli. It has been shown, for example, that people addicted to alcohol and other drugs pay more attention to drug-related stimuli. Common psychological tests to measure those biases are the Stroop task and the dot probe task.

Individuals' susceptibility to some types of cognitive biases can be measured by the Cognitive Reflection Test (CRT) developed by Shane Frederick (2005).

List of biases

The following is a list of the more commonly studied cognitive biases:

Name Description



Fundamental attribution error (FAE) Also known as the correspondence bias  is the tendency for people to over-emphasize personality-based explanations for behaviors observed in others. At the same time, individuals under-emphasize the role and power of situational influences on the same behavior. Edward E. Jones and Victor A. Harris' (1967) classic study illustrates the FAE. Despite being made aware that the target's speech direction (pro-Castro/anti-Castro) was assigned to the writer, participants ignored the situational pressures and attributed pro-Castro attitudes to the writer when the speech represented such attitudes.
Unconscious bias An implicit attribution of positive or negative qualities to a group of individuals.
Priming bias The tendency to be influenced by what someone else has said to create preconceived idea.
Confirmation bias The tendency to search for or interpret information in a way that confirms one's preconceptions. In addition, individuals may discredit information that does not support their views. The confirmation bias is related to the concept of cognitive dissonance, in that individuals may reduce inconsistency by searching for information which reconfirms their views (Jermias, 2001, p. 146).
Affinity bias The unconscious tendency to be favorably biased toward people like ourselves
Self-serving bias The unconscious tendency to claim more responsibility for successes than failures. It may also manifest itself as a tendency for people to evaluate ambiguous information in a way beneficial to their interests.
Belief bias When one's evaluation of the logical strength of an argument is biased by their belief in the truth or falsity of the conclusion.
Framing Using a too-narrow approach and description of the situation or issue.
Hindsight bias Sometimes called the "I-knew-it-all-along" effect, is the inclination to see past events as being predictable.
Embodied cognition A tendency to have selectivity in perception, attention, decision making and motivation based on the biological state of the body.
Anchoring Anchoring bias is defined as the incapability of people to make appropriate adjustments from a starting point to cause into a final answer. Anchoring bias can lead people to make sub-optimal decisions. Anchoring affects decision making for example in negotiations, medical diagnoses and including judicial sentencing.
Status Quo The Status quo bias is one implication of a loss aversion. In status quo bias a decision maker has the risen propensity to decide an alternative because it is default option or status quo. Status quo bias has been shown to affect various important economic decisions, for example a choice of car insurance or electrical service.
Overconfidence Overconfidence bias is the situation when people are inclined to trust their capability to make correct decisions too much. They are tended to overrate their abilities and skills as decision makers.

Practical significance

Many social institutions rely on individuals to make rational judgments.

The securities regulation regime largely assumes that all investors act as perfectly rational persons. In truth, actual investors face cognitive limitations from biases, heuristics, and framing effects.

A fair jury trial, for example, requires that the jury ignore irrelevant features of the case, weigh the relevant features appropriately, consider different possibilities open-mindedness and resist fallacies such as appeal to emotion. The various biases demonstrated in these psychological experiments suggest that people will frequently fail to do all these things. However, they fail to do so in systematic, directional ways that are predictable.

Cognitive biases are also related to the persistence of theory-of-everything thinking, to large social issues such as prejudice, and they also work as a hindrance in the acceptance of scientific non-intuitive knowledge by the public.

However, in some academic disciplines, the study of bias is very popular. For instance, bias is a wide spread and well studied phenomenon because most decisions that concern the minds and hearts of entrepreneurs are computationally intractable.

Cognitive biases can create other issues that arise in everyday life. One study showed the connection between cognitive bias, specifically approach bias, and inhibitory control on how much unhealthy snack food a person would eat. They found that the participants who ate more of the unhealthy snack food, tended to have less inhibitory control and more reliance on approach bias. Others have also hypothesized that cognitive biases could be linked to various eating disorders and how people view their bodies and their body image.

It has also been argued that cognitive biases can be used in destructive ways. Some believe that there are people in authority who use cognitive biases and heuristics in order to manipulate others so that they can reach their end goals. Some medications and other health care treatments rely on cognitive biases in order to persuade others who are susceptible to cognitive biases to use their products. Many see this as taking advantage of one’s natural struggle of judgement and decision-making. They also believe that it is the government’s responsibility to regulate these misleading ads.

Cognitive biases also seem to play a role in property sale price and value. Participants in the experiment were shown a residential property. Afterwards, they were shown another property that was completely unrelated to the first property. They were asked to say what they believed the value and the sale price of the second property would be. They found that showing the participants an unrelated property did have an effect on how they valued the second property.

Reducing

Because they cause systematic errors, cognitive biases cannot be compensated for using a wisdom of the crowd technique of averaging answers from several people. Debiasing is the reduction of biases in judgment and decision-making through incentives, nudges, and training. Cognitive bias mitigation and cognitive bias modification are forms of debiasing specifically applicable to cognitive biases and their effects. Reference class forecasting is a method for systematically debiasing estimates and decisions, based on what Daniel Kahneman has dubbed the outside view.

Similar to Gigerenzer (1996), Haselton et al. (2005) state the content and direction of cognitive biases are not "arbitrary" (p. 730). Moreover, cognitive biases can be controlled. One debiasing technique aims to decrease biases by encouraging individuals to use controlled processing compared to automatic processing. In relation to reducing the FAE, monetary incentives and informing participants they will be held accountable for their attributions have been linked to the increase of accurate attributions. Training has also shown to reduce cognitive bias. Carey K. Morewedge and colleagues (2015) found that research participants exposed to one-shot training interventions, such as educational videos and debiasing games that taught mitigating strategies, exhibited significant reductions in their commission of six cognitive biases immediately and up to 3 months later.

Cognitive bias modification refers to the process of modifying cognitive biases in healthy people and also refers to a growing area of psychological (non-pharmaceutical) therapies for anxiety, depression and addiction called cognitive bias modification therapy (CBMT). CBMT is sub-group of therapies within a growing area of psychological therapies based on modifying cognitive processes with or without accompanying medication and talk therapy, sometimes referred to as applied cognitive processing therapies (ACPT). Although cognitive bias modification can refer to modifying cognitive processes in healthy individuals, CBMT is a growing area of evidence-based psychological therapy, in which cognitive processes are modified to relieve suffering from serious depression, anxiety, and addiction. CBMT techniques are technology assisted therapies that are delivered via a computer with or without clinician support. CBM combines evidence and theory from the cognitive model of anxiety, cognitive neuroscience, and attentional models.

Cognitive bias modification has also been used to help those who are suffering with obsessive compulsive beliefs and obsessive-compulsive disorder. This therapy has shown that it decreases the obsessive-compulsive beliefs and behaviors.

Common theoretical causes of some cognitive biases

Bias arises from various processes that are sometimes difficult to distinguish. These include:

Individual differences in cognitive biases

People do appear to have stable individual differences in their susceptibility to decision biases such as overconfidence, temporal discounting, and bias blind spot. That said, these stable levels of bias within individuals are possible to change. Participants in experiments who watched training videos and played debiasing games showed medium to large reductions both immediately and up to three months later in the extent to which they exhibited susceptibility to six cognitive biases: anchoring, bias blind spot, confirmation bias, fundamental attribution error, projection bias, and representativeness.

Individual differences in cognitive bias have also been linked to varying levels of cognitive abilities and functions. The Cognitive Reflection Test (CRT) has been used to help understand the connection between cognitive biases and cognitive ability. There have been inconclusive results when using the Cognitive Reflection Test to understand ability. However, there does seem to be a correlation; those who gain a higher score on the Cognitive Reflection Test, have higher cognitive ability and rational-thinking skills. This in turn helps predict the performance on cognitive bias and heuristic tests. Those with higher CRT scores tend to be able to answer more correctly on different heuristic and cognitive bias tests and tasks.

Age is another individual difference that has an effect on one’s ability to be susceptible to cognitive bias. Older individuals tend to be more susceptible to cognitive biases and have less cognitive flexibility. However, older individuals were able to decrease their susceptibility to cognitive biases throughout ongoing trials. These experiments had both young and older adults complete a framing task. Younger adults had more cognitive flexibility than older adults. Cognitive flexibility is linked to helping overcome preexisting biases.

Criticisms

Criticisms against theories of cognitive biases are usually founded in the fact that both sides of a debate often claim the other's thoughts to be subject to human nature and the result of cognitive bias, while claiming their own viewpoint to be above the cognitive bias and the correct way to "overcome" the issue. This rift ties to a more fundamental issue that stems from a lack of consensus in the field, thereby creating arguments that can be non-falsifiably used to validate any contradicting viewpoint.

Gerd Gigerenzer is one of the main opponents to cognitive biases and heuristics. Gigerenzer believes that cognitive biases are not biases, but rules of thumb, or as he would put it “gut feelings” that can actually help us make accurate decisions in our lives. His view shines a much more positive light on cognitive biases than many other researchers. Many view cognitive biases and heuristics as irrational ways of making decisions and judgements. Gigerenzer argues that using heuristics and cognitive biases are rational and helpful for making decisions in our everyday life.

Antiscience

From Wikipedia, the free encyclopedia

Antiscience is a set of attitudes that involve a rejection of science and the scientific method. People holding antiscientific views do not accept science as an objective method that can generate universal knowledge.

History

In the early days of the scientific revolution, scientists such as Robert Boyle (1627–1691) found themselves in conflict with those such as Thomas Hobbes (1588–1679), who were skeptical of whether science was a satisfactory way to obtain genuine knowledge about the world.

Hobbes' stance is sometimes regarded as an antiscience position:

In his Six Lessons to the Professors of Mathematics,...[published in 1656, Hobbes] distinguished 'demonstrable' fields, as 'those the construction of the subject whereof is in the power of the artist himself,' from 'indemonstrable' ones 'where the causes are to seek for.' We can only know the causes of what we make. So geometry is demonstrable, because 'the lines and figures from which we reason are drawn and described by ourselves' and 'civil philosophy is demonstrable, because we make the commonwealth ourselves.' But we can only speculate about the natural world, because 'we know not the construction, but seek it from the effects.'

In his book Reductionism: Analysis and the Fullness of Reality, published in 2000, Richard H. Jones wrote that Hobbes "put forth the idea of the significance of the nonrational in human behaviour". Jones goes on to group Hobbes with others he classes as "antireductionists" and "individualists", including Wilhelm Dilthey (1833–1911), Karl Marx (1818–1883), Jeremy Bentham (1748–1832) and J S Mill (1806–1873), later adding Karl Popper (1902–1994), John Rawls (1921–2002), and E. O. Wilson (1929– ) to the list.

Jean-Jacques Rousseau, in his Discourse on the Arts and Sciences (1750), claimed that science can lead to immorality. "Rousseau argues that the progression of the sciences and arts has caused the corruption of virtue and morality" and his "critique of science has much to teach us about the dangers involved in our political commitment to scientific progress, and about the ways in which the future happiness of mankind might be secured". Nevertheless, Rousseau does not state in his Discourses that sciences are necessarily bad, and states that figures like René Descartes, Francis Bacon, and Isaac Newton should be held in high regard. In the conclusion to the Discourses, he says that these (aforementioned) can cultivate sciences to great benefit, and that morality's corruption is mostly because of society's bad influence on scientists.

William Blake (1757–1827) reacted strongly in his paintings and writings against the work of Isaac Newton (1642–1727), and is seen as being perhaps the earliest (and almost certainly the most prominent and enduring) example of what is seen by historians as the aesthetic or Romantic antiscience response. For example, in his 1795 poem "Auguries of Innocence", Blake describes the beautiful and natural robin redbreast imprisoned by what one might interpret as the materialistic cage of Newtonian mathematics and science. Blake's painting of Newton depicts the scientist "as a misguided hero whose gaze was directed only at sterile geometrical diagrams drawn on the ground". Blake thought that "Newton, Bacon, and Locke with their emphasis on reason were nothing more than 'the three great teachers of atheism, or Satan's Doctrine'...the picture progresses from exuberance and colour on the left, to sterility and blackness on the right. In Blake's view Newton brings not light, but night". In a 1940 poem, W.H. Auden summarises Blake's anti-scientific views by saying that he "[broke] off relations in a curse, with the Newtonian Universe".

One recent biographer of Newton considers him more as a renaissance alchemist, natural philosopher, and magician rather than a true representative of scientific illuminism, as popularized by Voltaire (1694–1778) and other illuminist Newtonians.

Antiscience issues are seen as a fundamental consideration in the historical transition from "pre-science" or "protoscience" such as that evident in alchemy. Many disciplines that pre-date the widespread adoption and acceptance of the scientific method, such as geometry and astronomy, are not seen as anti-science. However, some of the orthodoxies within those disciplines that predate a scientific approach (such as those orthodoxies repudiated by the discoveries of Galileo (1564–1642)) are seen as being a product of an anti-scientific stance.

Friedrich Nietzsche in The Gay Science (1882) questions scientific dogmatism:

"[...] in Science, convictions have no rights of citizenship, as is said with good reason. Only when they decide to descend to the modesty of a hypothesis, of a provisional experimental point of view, of a regulative fiction, maybe they be granted admission and even a certain value within the realm of knowledge – though always with the restriction that they remain under police supervision, under the police of mistrust. But does this not mean, more precisely considered, that a conviction may obtain admission to Science only when it ceases to be a conviction? Would not the discipline of the scientific spirit begin with this, no longer to permit oneself any convictions? Probably that is how it is. But one must still ask whether it is not the case that, in order that this discipline could begin, a conviction must have been there already, and even such a commanding and unconditional one that it sacrificed all other convictions for its own sake. It is clear that Science too rests on a faith; there is no Science 'without presuppositions.' The question whether truth is needed must not only have been affirmed in advance, but affirmed to the extent that the principle, the faith, the conviction is expressed: 'nothing is needed more than truth, and in relation to it, everything else has only second-rate value".

The term "scientism", originating in science studies, was adopted and is used by sociologists and philosophers of science to describe the views, beliefs and behavior of strong supporters of applying ostensibly scientific concepts beyond its traditional disciplines. Specifically, scientism promotes science as the best or only objective means to should determine normative and epistemological values. The term scientism is generally used critically, implying a cosmetic application of science in unwarranted situations considered not amenable to application of the scientific method or similar scientific standards. The word is commonly used in a pejorative sense, applying to individuals who seem to be treating science in a similar way to a religion. The term reductionism is occasionally used in a similarly pejorative way (as a more subtle attack on scientists). However, some scientists feel comfortable being labelled as reductionists, while agreeing that there might be conceptual and philosophical shortcomings of reductionism.

However, non-reductionist (see Emergentism) views of science have been formulated in varied forms in several scientific fields like statistical physics, chaos theory, complexity theory, cybernetics, systems theory, systems biology, ecology, information theory, etc. Such fields tend to assume that strong interactions between units produce new phenomena in "higher" levels that cannot be accounted for solely by reductionism. For example, it is not valuable (or currently possible) to describe a chess game or gene networks using quantum mechanics. The emergentist view of science ("More is Different", in the words of 1977 Nobel-laureate physicist Philip W. Anderson) has been inspired in its methodology by the European social sciences (Durkheim, Marx) which tend to reject methodological individualism.

Political

Elyse Amend and Darin Barney argue that while antiscience can be a descriptive label, it is often used as a rhetorical one, being effectively used to discredit ones' political opponents and thus charges of antiscience are not necessarily warranted.

Left-wing

One expression of antiscience is the "denial of universality and... legitimisation of alternatives", and that the results of scientific findings do not always represent any underlying reality, but can merely reflect the ideology of dominant groups within society. In this view, science is associated with the political Right and is seen as a belief system that is conservative and conformist, that suppresses innovation, that resists change and that acts dictatorially. This includes the view, for example, that science has a "bourgeois and/or Eurocentric and/or masculinist world-view".

The anti-nuclear movement, often associated with the left, has been criticized for overstating the negative effects of nuclear power, and understating the environmental costs of non-nuclear sources that can be prevented through nuclear energy. Many scientific fields which straddle the boundary between the biological and social sciences have also experienced resistance from the left, such as sociobiology, evolutionary psychology, and population genetics. This is due to the perceived association of these sciences with scientific racism and neocolonialism. Many critics of these fields, such as Stephen Jay Gould, have been accused of having strong political biases, and engaging in "mob science".

Right-wing

The origin of antiscience thinking may be traced back to the reaction of Romanticism to the Enlightenment-this movement is often referred to as the 'Counter-Enlightenment'. Romanticism emphasizes that intuition, passion and organic links to Nature are primal values and that rational thinking is merely a product of human life. There are many modern examples of conservative antiscience polemics. Primary among the latter are the polemics about evolutionary biology, cosmology, historical geology, and origin of life research being taught in high schools, and environmental issues related to global warming and energy crisis.

Characteristics of antiscience associated with the right include the appeal to conspiracy theories to explain why scientists believe what they believe, in an attempt to undermine the confidence or power usually associated to science (e.g. in global warming conspiracy theories).

In modern times, it has been argued that right-wing politics carries an anti-science tendency. While some have suggested that this is innate to either rightists or their beliefs, others have argued it is a "quirk" of a historical and political context in which scientific findings happened to challenge or appeared to challenge the worldviews of rightists rather than leftists.

Religious

In this context, antiscience may be considered dependent on religious, moral and cultural arguments. For this kind of religious antiscience philosophy, science is an anti-spiritual and materialistic force that undermines traditional values, ethnic identity and accumulated historical wisdom in favor of reason and cosmopolitanism. In particular, the traditional and ethnic values emphasized are similar to those of white supremacist Christian Identity theology, but similar right-wing views have been developed by radically conservative sects of Islam, Judaism, Hinduism, and Buddhism. New religious movements such as New Age thinking also criticize the scientific worldview as favouring a reductionist, atheist, or materialist philosophy.

A frequent basis of antiscientific sentiment is religious theism with literal interpretations of sacred text. Here, scientific theories that conflict with what is considered divinely-inspired knowledge are regarded as flawed. Over the centuries religious institutions have been hesitant to embrace such ideas as heliocentrism and planetary motion because they contradicted the dominant understanding of various passages of scripture. More recently the body of creation theologies known collectively as creationism, including the teleological theory of intelligent design, have been promoted by religious theists in response to the process of evolution by natural selection.

To the extent that attempts to overcome antiscience sentiments have failed, some argue that a different approach to science advocacy is needed. One such approach says that it is important to develop a more accurate understanding of those who deny science (avoiding stereotyping them as backward and uneducated) and also to attempt outreach via those who share cultural values with target audiences, such as scientists who also hold religious beliefs.

Areas

Cult of Ignorance
      There is a cult of ignorance in the United States, and there has always been. The strain of anti-intellectualism has been a constant thread winding its way through our political and cultural life, nurtured by the false notion that democracy means that "my ignorance is just as good as your knowledge".

Isaac Asimov, 1980

Historically, antiscience first arose as a reaction against scientific materialism. The 18th century Enlightenment had ushered in "the ideal of a unified system of all the sciences", but there were those fearful of this notion, who "felt that constrictions of reason and science, of a single all-embracing system... were in some way constricting, an obstacle to their vision of the world, chains on their imagination or feeling". Antiscience then is a rejection of "the scientific model [or paradigm]... with its strong implication that only that which was quantifiable, or at any rate, measurable... was real". In this sense, it comprises a "critical attack upon the total claim of the new scientific method to dominate the entire field of human knowledge". However, scientific positivism (logical positivism) does not deny the reality of non-measurable phenomena, only that those phenomena should not be adequate to scientific investigation. Moreover, positivism, as a philosophical basis for the scientific method, is not consensual or even dominant in the scientific community.

Three major areas of antiscience can be seen in philosophy, sociology, and ecology. The following quotes explore this aspect of the subject.

Philosophy

Philosophical objections against science are often objections about the role of reductionism. For example, in the field of psychology, "both reductionists and antireductionists accept that... non-molecular explanations may not be improved, corrected or grounded in molecular ones". Further, "epistemological antireductionism holds that, given our finite mental capacities, we would not be able to grasp the ultimate physical explanation of many complex phenomena even if we knew the laws governing their ultimate constituents". Some see antiscience as "common...in academic settings...many people see that there are problems in demarcation between science, scientism, and pseudoscience resulting in an antiscience stance. Some argue that nothing can be known for sure".

Many philosophers are "divided as to whether reduction should be a central strategy for understanding the world". However, many agree that "there are, nevertheless, reasons why we want science to discover properties and explanations other than reductive physical ones". Such issues stem "from an antireductionist worry that there is no absolute conception of reality, that is, a characterization of reality such as... science claims to provide". This is close to the Kantian view that reality is ultimately unknowable and all models are just imperfect approximations to it.

Sociology

Sociologist Thomas Gieryn refers to "some sociologists who might appear to be antiscience". Some "philosophers and antiscience types", he contends, may have presented "unreal images of science that threaten the believability of scientific knowledge", or appear to have gone "too far in their antiscience deconstructions". The question often lies in how much scientists conform to the standard ideal of "communalism, universalism, disinterestedness, originality, and... skepticism". Unfortunately, "scientists don't always conform... scientists do get passionate about pet theories; they do rely on reputation in judging a scientist's work; they do pursue fame and gain via research". Thus, they may show inherent biases in their work. "[Many] scientists are not as rational and logical as the legend would have them, nor are they as illogical or irrational as some relativists might say".

Ecology and health sphere

Within the ecological and health spheres, Levins identifies a conflict "not between science and antiscience, but rather between different pathways for science and technology; between a commodified science-for-profit and a gentle science for humane goals; between the sciences of the smallest parts and the sciences of dynamic wholes... [he] offers proposals for a more holistic, integral approach to understanding and addressing environmental issues". These beliefs are also common within the scientific community, with for example, scientists being prominent in environmental campaigns warning of environmental dangers such as ozone depletion and the greenhouse effect. It can also be argued that this version of antiscience comes close to that found in the medical sphere, where patients and practitioners may choose to reject science and adopt a pseudoscientific approach to health problems. This can be both a practical and a conceptual shift and has attracted strong criticism: "therapeutic touch, a healing technique based upon the laying-on of hands, has found wide acceptance in the nursing profession despite its lack of scientific plausibility. Its acceptance is indicative of a broad antiscientific trend in nursing".

Glazer also criticises the therapists and patients, "for abandoning the biological underpinnings of nursing and for misreading philosophy in the service of an antiscientific world-view". In contrast, Brian Martin criticized Gross and Levitt by saying that "[their] basic approach is to attack constructivists for not being positivists," and that science is "presented as a unitary object, usually identified with scientific knowledge. It is portrayed as neutral and objective. Second, science is claimed to be under attack by 'antiscience' which is composed essentially of ideologues who are threats to the neutrality and objectivity that are fundamental to science. Third, a highly selective attack is made on the arguments of 'antiscience'". Such people allegedly then "routinely equate critique of scientific knowledge with hostility to science, a jump that is logically unsupportable and empirically dubious". Having then "constructed two artificial entities, a unitary 'science' and a unitary 'academic left', each reduced to epistemological essences, Gross and Levitt proceed to attack. They pick out figures in each of several areas – science studies, postmodernism, feminism, environmentalism, AIDS activism – and criticise their critiques of science".

The writings of Young serve to illustrate more antiscientific views: "The strength of the antiscience movement and of alternative technology is that their advocates have managed to retain Utopian vision while still trying to create concrete instances of it". "The real social, ideological and economic forces shaping science...[have] been opposed to the point of suppression in many quarters. Most scientists hate it and label it 'antiscience'. But it is urgently needed, because it makes science self-conscious and hopefully self-critical and accountable with respect to the forces which shape research priorities, criteria, goals".

Genetically modified foods also bring about antiscience sentiment. The general public has recently become more aware of the dangers of a poor diet, as there have been numerous studies that show that the two are inextricably linked. Anti-science dictates that science is untrustworthy, because it is never complete and always being revised, which would be a probable cause for the fear that the general public has of genetically modified foods despite scientific reassurance that such foods are safe.

Antivaccinationists rely on whatever comes to hand presenting some of their arguments as if scientific, however a strain of antiscience is part of their approach.

Antiscience media

Major antiscience media include portals naturalnews.com, Global Revolution TV, TruthWiki.org, TheAntiMedia.org and GoodGopher. Antiscience views have also been supported on social media by organizations known to support fake news such as the web brigades.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...