Search This Blog

Wednesday, April 7, 2021

Ecological economics

From Wikipedia, the free encyclopedia

Ecological economics, bioeconomics, ecolonomy, eco-economics, or ecol-econ is both a transdisciplinary and an interdisciplinary field of academic research addressing the interdependence and coevolution of human economies and natural ecosystems, both intertemporally and spatially. By treating the economy as a subsystem of Earth's larger ecosystem, and by emphasizing the preservation of natural capital, the field of ecological economics is differentiated from environmental economics, which is the mainstream economic analysis of the environment. One survey of German economists found that ecological and environmental economics are different schools of economic thought, with ecological economists emphasizing strong sustainability and rejecting the proposition that physical (human-made) capital can substitute for natural capital (see the section on weak versus strong sustainability below).

Ecological economics was founded in the 1980s as a modern discipline on the works of and interactions between various European and American academics (see the section on History and development below). The related field of green economics is in general a more politically applied form of the subject.

According to ecological economist Malte Michael Faber [de], ecological economics is defined by its focus on nature, justice, and time. Issues of intergenerational equity, irreversibility of environmental change, uncertainty of long-term outcomes, and sustainable development guide ecological economic analysis and valuation. Ecological economists have questioned fundamental mainstream economic approaches such as cost-benefit analysis, and the separability of economic values from scientific research, contending that economics is unavoidably normative, i.e. prescriptive, rather than positive or descriptive. Positional analysis, which attempts to incorporate time and justice issues, is proposed as an alternative. Ecological economics shares several of its perspectives with feminist economics, including the focus on sustainability, nature, justice and care values.

History and development

The antecedents of ecological economics can be traced back to the Romantics of the 19th century as well as some Enlightenment political economists of that era. Concerns over population were expressed by Thomas Malthus, while John Stuart Mill predicted the desirability of the stationary state of an economy. Mill thereby anticipated later insights of modern ecological economists, but without having had their experience of the social and ecological costs of the Post–World War II economic expansion. In 1880, Marxian economist Sergei Podolinsky attempted to theorize a labor theory of value based on embodied energy; his work was read and critiqued by Marx and Engels. Otto Neurath developed an ecological approach based on a natural economy whilst employed by the Bavarian Soviet Republic in 1919. He argued that a market system failed to take into account the needs of future generations, and that a socialist economy required calculation in kind, the tracking of all the different materials, rather than synthesising them into money as a general equivalent. In this he was criticised by neo-liberal economists such as Ludwig von Mises and Freidrich Hayek in what became known as the socialist calculation debate.

The debate on energy in economic systems can also be traced back to Nobel prize-winning radiochemist Frederick Soddy (1877–1956). In his book Wealth, Virtual Wealth and Debt (1926), Soddy criticized the prevailing belief of the economy as a perpetual motion machine, capable of generating infinite wealth—a criticism expanded upon by later ecological economists such as Nicholas Georgescu-Roegen and Herman Daly.

European predecessors of ecological economics include K. William Kapp (1950) Karl Polanyi (1944), and Romanian economist Nicholas Georgescu-Roegen (1971). Georgescu-Roegen, who would later mentor Herman Daly at Vanderbilt University, provided ecological economics with a modern conceptual framework based on the material and energy flows of economic production and consumption. His magnum opus, The Entropy Law and the Economic Process (1971), is credited by Daly as a fundamental text of the field, alongside Soddy's Wealth, Virtual Wealth and Debt. Some key concepts of what is now ecological economics are evident in the writings of Kenneth Boulding and E.F. Schumacher, whose book Small Is Beautiful – A Study of Economics as if People Mattered (1973) was published just a few years before the first edition of Herman Daly's comprehensive and persuasive Steady-State Economics (1977).

The first organized meetings of ecological economists occurred in the 1980s. These began in 1982, at the instigation of Lois Banner, with a meeting held in Sweden (including Robert Costanza, Herman Daly, Charles Hall, Bruce Hannon, H.T. Odum, and David Pimentel). Most were ecosystem ecologists or mainstream environmental economists, with the exception of Daly. In 1987, Daly and Costanza edited an issue of Ecological Modeling to test the waters. A book entitled Ecological Economics, by Joan Martinez Alier, was published later that year. He renewed interest in the approach developed by Otto Neurath during the interwar period. 1989 saw the foundation of the International Society for Ecological Economics and publication of its journal, Ecological Economics, by Elsevier. Robert Costanza was the first president of the society and first editor of the journal, which is currently edited by Richard Howarth. Other figures include ecologists C.S. Holling and H.T. Odum, biologist Gretchen Daily, and physicist Robert Ayres. In the Marxian tradition, sociologist John Bellamy Foster and CUNY geography professor David Harvey explicitly center ecological concerns in political economy.

Articles by Inge Ropke (2004, 2005) and Clive Spash (1999) cover the development and modern history of ecological economics and explain its differentiation from resource and environmental economics, as well as some of the controversy between American and European schools of thought. An article by Robert Costanza, David Stern, Lining He, and Chunbo Ma responded to a call by Mick Common to determine the foundational literature of ecological economics by using citation analysis to examine which books and articles have had the most influence on the development of the field. However, citations analysis has itself proven controversial and similar work has been criticized by Clive Spash for attempting to pre-determine what is regarded as influential in ecological economics through study design and data manipulation. In addition, the journal Ecological Economics has itself been criticized for swamping the field with mainstream economics.

Schools of thought

Various competing schools of thought exist in the field. Some are close to resource and environmental economics while others are far more heterodox in outlook. An example of the latter is the European Society for Ecological Economics. An example of the former is the Swedish Beijer International Institute of Ecological Economics. Clive Spash has argued for the classification of the ecological economics movement, and more generally work by different economic schools on the environment, into three main categories. These are the mainstream new resource economists, the new environmental pragmatists, and the more radical social ecological economists. International survey work comparing the relevance of the categories for mainstream and heterodox economists shows some clear divisions between environmental and ecological economists. A growing field of radical social-ecological theory is degrowth economics. Degrowth addresses both biophysical limits and global inequality while rejecting neoliberal economics. Degrowth prioritizes grassroots initiatives in progressive socio-ecological goals, adhering to ecological limits by shrinking the human ecological footprint (See Differences from Mainstream Economics Below). It involves an equitable downscale in both production and consumption of resources in order to adhere to biophysical limits. Degrowth draws from Marxian economics, citing the growth of efficient systems as the alienation of nature and man. Economic movements like degrowth reject the idea of growth itself. Some degrowth theorists call for an “exit of the economy”. Critics of the degrowth movement include new resource economists, who point to the gaining momentum of sustainable development. These economists highlight the positive aspects of a green economy, which include equitable access to renewable energy and a commitment to eradicate global inequality through sustainable development (See Green Economics). Examples of heterodox ecological economic experiments include the Catalan Integral Cooperative and the Solidarity Economy Networks in Italy. Both of these grassroots movements use communitarian based economies and consciously reduce their ecological footprint by limiting material growth and adapting to regenerative agriculture.

Non-traditional approaches to ecological economics

Cultural and heterodox applications of economic interaction around the world have begun to be included as ecological economic practices. E.F. Schumacher introduced examples of non-western economic ideas to mainstream thought in his book, Small is Beautiful, where he addresses neoliberal economics through the lens of natural harmony in Buddhist economics. This emphasis on natural harmony is witnessed in diverse cultures across the globe. Buen Vivir is a traditional socio-economic movement in South America that rejects the western development model of economics. Meaning Good Life, Buen Vivir emphasizes harmony with nature, diverse pluralculturism, coexistence, and inseparability of nature and material. Value is not attributed to material accumulation, and it instead takes a more spiritual and communitarian approach to economic activity. Ecological Swaraj originated out of India, and is an evolving world view of human interactions within the ecosystem. This train of thought respects physical bio-limits and non-human species, pursuing equity and social justice through direct democracy and grassroots leadership. Social well-being is paired with spiritual, physical, and material well-being. These movements are unique to their region, but the values can be seen across the globe in indigenous traditions, such as the Ubuntu Philosophy in South Africa.

Differences from mainstream economics

Ecological economics differs from mainstream economics, in that it heavily reflects on the ecological footprint of human interactions in the economy. This footprint is measured by the impact of human activities on natural resources and the wastes generated in the process. Ecological economists aim to minimize the ecological footprint, taking into account the scarcity of global and regional resources and their accessibility to an economy. Some ecological economists prioritise adding natural capital to the typical capital asset analysis of land, labor, and financial capital. These ecological economists then use tools from mathematical economics as in mainstream economics, but may apply them more closely to the natural world. Whereas mainstream economists tend to be technological optimists, ecological economists are inclined to be technological sceptics. They reason that the natural world has a limited carrying capacity and that its resources may run out. Since destruction of important environmental resources could be practically irreversible and catastrophic, ecological economists are inclined to justify cautionary measures based on the precautionary principle. As ecological economists try to minimize these disasters, calculating the fallout of environmental destruction becomes a humanitarian issue as well. Already, the Global South has seen trends of mass emigration due to environmental changes. Climate refugees from the Global South are adversely affected by changes in the environment, and some scholars point to global wealth inequality within the current neoliberal economic system as a source for this issue.

The most cogent example of how the different theories treat similar assets is tropical rainforest ecosystems, most obviously the Yasuni region of Ecuador. While this area has substantial deposits of bitumen it is also one of the most diverse ecosystems on Earth and some estimates establish it has over 200 undiscovered medical substances in its genomes - most of which would be destroyed by logging the forest or mining the bitumen. Effectively, the instructional capital of the genomes is undervalued by analyses that view the rainforest primarily as a source of wood, oil/tar and perhaps food. Increasingly the carbon credit for leaving the extremely carbon-intensive ("dirty") bitumen in the ground is also valued - the government of Ecuador set a price of US$350M for an oil lease with the intent of selling it to someone committed to never exercising it at all and instead preserving the rainforest.

While this natural capital and ecosystems services approach has proven popular amongst many it has also been contested as failing to address the underlying problems with mainstream economics, growth, market capitalism and monetary valuation of the environment. Critiques concern the need to create a more meaningful relationship with Nature and the non-human world than evident in the instrumentalism of shallow ecology and the environmental economists commodification of everything external to the market system.

Nature and ecology

Natural resources flow through the economy and end up as waste and pollution

A simple circular flow of income diagram is replaced in ecological economics by a more complex flow diagram reflecting the input of solar energy, which sustains natural inputs and environmental services which are then used as units of production. Once consumed, natural inputs pass out of the economy as pollution and waste. The potential of an environment to provide services and materials is referred to as an "environment's source function", and this function is depleted as resources are consumed or pollution contaminates the resources. The "sink function" describes an environment's ability to absorb and render harmless waste and pollution: when waste output exceeds the limit of the sink function, long-term damage occurs. Some persistent pollutants, such as some organic pollutants and nuclear waste are absorbed very slowly or not at all; ecological economists emphasize minimizing "cumulative pollutants". Pollutants affect human health and the health of the ecosystem.

The economic value of natural capital and ecosystem services is accepted by mainstream environmental economics, but is emphasized as especially important in ecological economics. Ecological economists may begin by estimating how to maintain a stable environment before assessing the cost in dollar terms. Ecological economist Robert Costanza led an attempted valuation of the global ecosystem in 1997. Initially published in Nature, the article concluded on $33 trillion with a range from $16 trillion to $54 trillion (in 1997, total global GDP was $27 trillion). Half of the value went to nutrient cycling. The open oceans, continental shelves, and estuaries had the highest total value, and the highest per-hectare values went to estuaries, swamps/floodplains, and seagrass/algae beds. The work was criticized by articles in Ecological Economics Volume 25, Issue 1, but the critics acknowledged the positive potential for economic valuation of the global ecosystem.

The Earth's carrying capacity is a central issue in ecological economics. Early economists such as Thomas Malthus pointed out the finite carrying capacity of the earth, which was also central to the MIT study Limits to Growth. Diminishing returns suggest that productivity increases will slow if major technological progress is not made. Food production may become a problem, as erosion, an impending water crisis, and soil salinity (from irrigation) reduce the productivity of agriculture. Ecological economists argue that industrial agriculture, which exacerbates these problems, is not sustainable agriculture, and are generally inclined favorably to organic farming, which also reduces the output of carbon.

Global wild fisheries are believed to have peaked and begun a decline, with valuable habitat such as estuaries in critical condition. The aquaculture or farming of piscivorous fish, like salmon, does not help solve the problem because they need to be fed products from other fish. Studies have shown that salmon farming has major negative impacts on wild salmon, as well as the forage fish that need to be caught to feed them.

Since animals are higher on the trophic level, they are less efficient sources of food energy. Reduced consumption of meat would reduce the demand for food, but as nations develop, they tend to adopt high-meat diets similar to that of the United States. Genetically modified food (GMF) a conventional solution to the problem, presents numerous problems – Bt corn produces its own Bacillus thuringiensis toxin/protein, but the pest resistance is believed to be only a matter of time.

Global warming is now widely acknowledged as a major issue, with all national scientific academies expressing agreement on the importance of the issue. As the population growth intensifies and energy demand increases, the world faces an energy crisis. Some economists and scientists forecast a global ecological crisis if energy use is not contained – the Stern report is an example. The disagreement has sparked a vigorous debate on issue of discounting and intergenerational equity.

Ethics

Mainstream economics has attempted to become a value-free 'hard science', but ecological economists argue that value-free economics is generally not realistic. Ecological economics is more willing to entertain alternative conceptions of utility, efficiency, and cost-benefits such as positional analysis or multi-criteria analysis. Ecological economics is typically viewed as economics for sustainable development, and may have goals similar to green politics.

Green economics

In international, regional, and national policy circles, the concept of the green economy grew in popularity as a response to the financial predicament at first then became a vehicle for growth and development.

The United Nations Environment Program (UNEP) defines a ‘green economy’ as one that focuses on the human aspects and natural influences and an economic order that can generate high-salary jobs. In 2011, its definition was further developed as the word ‘green’ is made to refer to an economy that is not only resourceful and well-organized but also impartial, guaranteeing an objective shift to an economy that is low-carbon, resource-efficient, and socially-inclusive.

The ideas and studies regarding the green economy denote a fundamental shift for more effective, resourceful, environment-friendly and resource‐saving technologies that could lessen emissions and alleviate the adverse consequences of climate change, at the same time confront issues about resource exhaustion and grave environmental dilapidation.

As an indispensable requirement and vital precondition to realizing sustainable development, the Green Economy adherents robustly promote good governance. To boost local investments and foreign ventures, it is crucial to have a constant and foreseeable macroeconomic atmosphere. Likewise, such an environment will also need to be transparent and accountable. In the absence of a substantial and solid governance structure, the prospect of shifting towards a sustainable development route would be insignificant. In achieving a green economy, competent institutions and governance systems are vital in guaranteeing the efficient execution of strategies, guidelines, campaigns, and programmes.

Shifting to a Green Economy demands a fresh mindset and an innovative outlook of doing business. It likewise necessitates new capacities, skills set from labor and professionals who can competently function across sectors, and able to work as effective components within multi-disciplinary teams. To achieve this goal, vocational training packages must be developed with focus on greening the sectors. Simultaneously, the educational system needs to be assessed as well in order to fit in the environmental and social considerations of various disciplines.

Topics

Among the topics addressed by ecological economics are methodology, allocation of resources, weak versus strong sustainability, energy economics, energy accounting and balance, environmental services, cost shifting, modeling, and monetary policy.

Methodology

A primary objective of ecological economics (EE) is to ground economic thinking and practice in physical reality, especially in the laws of physics (particularly the laws of thermodynamics) and in knowledge of biological systems. It accepts as a goal the improvement of human well-being through development, and seeks to ensure achievement of this through planning for the sustainable development of ecosystems and societies. Of course the terms development and sustainable development are far from lacking controversy. Richard B. Norgaard argues traditional economics has hi-jacked the development terminology in his book Development Betrayed.

Well-being in ecological economics is also differentiated from welfare as found in mainstream economics and the 'new welfare economics' from the 1930s which informs resource and environmental economics. This entails a limited preference utilitarian conception of value i.e., Nature is valuable to our economies, that is because people will pay for its services such as clean air, clean water, encounters with wilderness, etc.

Ecological economics is distinguishable from neoclassical economics primarily by its assertion that the economy is embedded within an environmental system. Ecology deals with the energy and matter transactions of life and the Earth, and the human economy is by definition contained within this system. Ecological economists argue that neoclassical economics has ignored the environment, at best considering it to be a subset of the human economy.

The neoclassical view ignores much of what the natural sciences have taught us about the contributions of nature to the creation of wealth e.g., the planetary endowment of scarce matter and energy, along with the complex and biologically diverse ecosystems that provide goods and ecosystem services directly to human communities: micro- and macro-climate regulation, water recycling, water purification, storm water regulation, waste absorption, food and medicine production, pollination, protection from solar and cosmic radiation, the view of a starry night sky, etc.

There has then been a move to regard such things as natural capital and ecosystems functions as goods and services. However, this is far from uncontroversial within ecology or ecological economics due to the potential for narrowing down values to those found in mainstream economics and the danger of merely regarding Nature as a commodity. This has been referred to as ecologists 'selling out on Nature'. There is then a concern that ecological economics has failed to learn from the extensive literature in environmental ethics about how to structure a plural value system.

Allocation of resources

The marginal costs of a growing economy may gradually exceed the marginal benefits, however measured.

Resource and neoclassical economics focus primarily on the efficient allocation of resources and less on the two other problems of importance to ecological economics: distribution (equity), and the scale of the economy relative to the ecosystems upon which it relies. Ecological economics makes a clear distinction between growth (quantitative increase in economic output) and development (qualitative improvement of the quality of life), while arguing that neoclassical economics confuses the two. Ecological economists point out that beyond modest levels, increased per-capita consumption (the typical economic measure of "standard of living") may not always lead to improvement in human well-being, but may have harmful effects on the environment and broader societal well-being. This situation is sometimes referred to as uneconomic growth (see diagram above).

Weak versus strong sustainability

EconomicSocialEnvironment
The three nested systems of sustainability - the economy wholly contained by society, wholly contained by the biophysical environment.

Ecological economics challenges the conventional approach towards natural resources, claiming that it undervalues natural capital by considering it as interchangeable with human-made capital—labor and technology.

The impending depletion of natural resources and increase of climate-changing greenhouse gasses should motivate us to examine how political, economic and social policies can benefit from alternative energy. Shifting dependence on fossil fuels with specific interest within just one of the above-mentioned factors easily benefits at least one other. For instance, photo voltaic (or solar) panels have a 15% efficiency when absorbing the sun's energy, but its construction demand has increased 120% within both commercial and residential properties. Additionally, this construction has led to a roughly 30% increase in work demands (Chen).

The potential for the substitution of man-made capital for natural capital is an important debate in ecological economics and the economics of sustainability. There is a continuum of views among economists between the strongly neoclassical positions of Robert Solow and Martin Weitzman, at one extreme and the 'entropy pessimists', notably Nicholas Georgescu-Roegen and Herman Daly, at the other.

Neoclassical economists tend to maintain that man-made capital can, in principle, replace all types of natural capital. This is known as the weak sustainability view, essentially that every technology can be improved upon or replaced by innovation, and that there is a substitute for any and all scarce materials.

At the other extreme, the strong sustainability view argues that the stock of natural resources and ecological functions are irreplaceable. From the premises of strong sustainability, it follows that economic policy has a fiduciary responsibility to the greater ecological world, and that sustainable development must therefore take a different approach to valuing natural resources and ecological functions.

Recently, Stanislav Shmelev developed a new methodology for the assessment of progress at the macro scale based on multi-criteria methods, which allows consideration of different perspectives, including strong and weak sustainability or conservationists vs industrialists and aims to search for a 'middle way' by providing a strong neo-Keynesian economic push without putting excessive pressure on the natural resources, including water or producing emissions, both directly and indirectly.

Energy economics

Exergy analysis can be performed to find connections between economic value and the physical world. Here the costs of heating (vertical axis) are compared with the exergy content of different energy carriers (horizontal axis). Red dots and trend line indicate energy prices for consumers, blue dots and trend line indicate total price for consumers including capital expenditure for the heating system. Energy carriers included are district heating (D), ground-source heat pump (G), exhaust air heat pump (A), bioenergy meaning firewood (B), heating oil (O) and direct electric heating (E).

A key concept of energy economics is net energy gain, which recognizes that all energy sources require an initial energy investment in order to produce energy. To be useful the energy return on energy invested (EROEI) has to be greater than one. The net energy gain from the production of coal, oil and gas has declined over time as the easiest to produce sources have been most heavily depleted.

Ecological economics generally rejects the view of energy economics that growth in the energy supply is related directly to well being, focusing instead on biodiversity and creativity - or natural capital and individual capital, in the terminology sometimes adopted to describe these economically. In practice, ecological economics focuses primarily on the key issues of uneconomic growth and quality of life. Ecological economists are inclined to acknowledge that much of what is important in human well-being is not analyzable from a strictly economic standpoint and suggests an interdisciplinary approach combining social and natural sciences as a means to address this.

Thermoeconomics is based on the proposition that the role of energy in biological evolution should be defined and understood through the second law of thermodynamics, but also in terms of such economic criteria as productivity, efficiency, and especially the costs and benefits (or profitability) of the various mechanisms for capturing and utilizing available energy to build biomass and do work. As a result, thermoeconomics is often discussed in the field of ecological economics, which itself is related to the fields of sustainability and sustainable development.

Exergy analysis is performed in the field of industrial ecology to use energy more efficiently. The term exergy, was coined by Zoran Rant in 1956, but the concept was developed by J. Willard Gibbs. In recent decades, utilization of exergy has spread outside of physics and engineering to the fields of industrial ecology, ecological economics, systems ecology, and energetics.

Energy accounting and balance

An energy balance can be used to track energy through a system, and is a very useful tool for determining resource use and environmental impacts, using the First and Second laws of thermodynamics, to determine how much energy is needed at each point in a system, and in what form that energy is a cost in various environmental issues. The energy accounting system keeps track of energy in, energy out, and non-useful energy versus work done, and transformations within the system.

Scientists have written and speculated on different aspects of energy accounting.

Ecosystem services and their valuation

Ecological economists agree that ecosystems produce enormous flows of goods and services to human beings, playing a key role in producing well-being. At the same time, there is intense debate about how and when to place values on these benefits.

A study was carried out by Costanza and colleagues to determine the 'value' of the services provided by the environment. This was determined by averaging values obtained from a range of studies conducted in very specific context and then transferring these without regard to that context. Dollar figures were averaged to a per hectare number for different types of ecosystem e.g. wetlands, oceans. A total was then produced which came out at 33 trillion US dollars (1997 values), more than twice the total GDP of the world at the time of the study. This study was criticized by pre-ecological and even some environmental economists - for being inconsistent with assumptions of financial capital valuation - and ecological economists - for being inconsistent with an ecological economics focus on biological and physical indicators.

The whole idea of treating ecosystems as goods and services to be valued in monetary terms remains controversial. A common objection is that life is precious or priceless, but this demonstrably degrades to it being worthless within cost-benefit analysis and other standard economic methods. Reducing human bodies to financial values is a necessary part of mainstream economics and not always in the direct terms of insurance or wages. Economics, in principle, assumes that conflict is reduced by agreeing on voluntary contractual relations and prices instead of simply fighting or coercing or tricking others into providing goods or services. In doing so, a provider agrees to surrender time and take bodily risks and other (reputation, financial) risks. Ecosystems are no different from other bodies economically except insofar as they are far less replaceable than typical labour or commodities.

Despite these issues, many ecologists and conservation biologists are pursuing ecosystem valuation. Biodiversity measures in particular appear to be the most promising way to reconcile financial and ecological values, and there are many active efforts in this regard. The growing field of biodiversity finance began to emerge in 2008 in response to many specific proposals such as the Ecuadoran Yasuni proposal or similar ones in the Congo. US news outlets treated the stories as a "threat" to "drill a park" reflecting a previously dominant view that NGOs and governments had the primary responsibility to protect ecosystems. However Peter Barnes and other commentators have recently argued that a guardianship/trustee/commons model is far more effective and takes the decisions out of the political realm.

Commodification of other ecological relations as in carbon credit and direct payments to farmers to preserve ecosystem services are likewise examples that enable private parties to play more direct roles protecting biodiversity, but is also controversial in ecological economics. The United Nations Food and Agriculture Organization achieved near-universal agreement in 2008 that such payments directly valuing ecosystem preservation and encouraging permaculture were the only practical way out of a food crisis. The holdouts were all English-speaking countries that export GMOs and promote "free trade" agreements that facilitate their own control of the world transport network: The US, UK, Canada and Australia.

Not 'externalities', but cost shifting

Ecological economics is founded upon the view that the neoclassical economics (NCE) assumption that environmental and community costs and benefits are mutually canceling "externalities" is not warranted. Joan Martinez Alier, for instance shows that the bulk of consumers are automatically excluded from having an impact upon the prices of commodities, as these consumers are future generations who have not been born yet. The assumptions behind future discounting, which assume that future goods will be cheaper than present goods, has been criticized by David Pearce and by the recent Stern Report (although the Stern report itself does employ discounting and has been criticized for this and other reasons by ecological economists such as Clive Spash).

Concerning these externalities, some like the eco-businessman Paul Hawken argue an orthodox economic line that the only reason why goods produced unsustainably are usually cheaper than goods produced sustainably is due to a hidden subsidy, paid by the non-monetized human environment, community or future generations. These arguments are developed further by Hawken, Amory and Hunter Lovins to promote their vision of an environmental capitalist utopia in Natural Capitalism: Creating the Next Industrial Revolution.

In contrast, ecological economists, like Joan Martinez-Alier, appeal to a different line of reasoning. Rather than assuming some (new) form of capitalism is the best way forward, an older ecological economic critique questions the very idea of internalizing externalities as providing some corrective to the current system. The work by Karl William Kapp explains why the concept of "externality" is a misnomer. In fact the modern business enterprise operates on the basis of shifting costs onto others as normal practice to make profits. Charles Eisenstein has argued that this method of privatising profits while socialising the costs through externalities, passing the costs to the community, to the natural environment or to future generations is inherently destructive. As social ecological economist Clive Spash has noted, externality theory fallaciously assumes environmental and social problems are minor aberrations in an otherwise perfectly functioning efficient economic system. Internalizing the odd externality does nothing to address the structural systemic problem and fails to recognize the all pervasive nature of these supposed 'externalities'.

Ecological-economic modeling

Mathematical modeling is a powerful tool that is used in ecological economic analysis. Various approaches and techniques include: evolutionary, input-output, neo-Austrian modeling, entropy and thermodynamic models, multi-criteria, and agent-based modeling, the environmental Kuznets curve, and Stock-Flow consistent model frameworks. System dynamics and GIS are techniques applied, among other, to spatial dynamic landscape simulation modeling. The Matrix accounting methods of Christian Felber provide a more sophisticated method for identifying "the common good"

Monetary theory and policy

Ecological economics draws upon its work on resource allocation and strong sustainability to address monetary policy. Drawing upon a transdisciplinary literature, ecological economics roots its policy work in monetary theory and its goals of sustainable scale, just distribution, and efficient allocation. Ecological economics' work on monetary theory and policy can be traced to Frederick Soddy's work on money. The field considers questions such as the growth imperative of interest-bearing debt, the nature of money, and alternative policy proposals such as alternative currencies and public banking.

Criticism

Assigning monetary value to natural resources such as biodiversity, and the emergent ecosystem services is often viewed as a key process in influencing economic practices, policy, and decision-making. While this idea is becoming more and more accepted among ecologists and conservationist, some argue that it is inherently false.

McCauley argues that ecological economics and the resulting ecosystem service based conservation can be harmful. He describes four main problems with this approach:

Firstly, it seems to be assumed that all ecosystem services are financially beneficial. This is undermined by a basic characteristic of ecosystems: they do not act specifically in favour of any single species. While certain services might be very useful to us, such as coastal protection from hurricanes by mangroves for example, others might cause financial or personal harm, such as wolves hunting cattle. The complexity of Eco-systems makes it challenging to weigh up the value of a given species. Wolves play a critical role in regulating prey populations; the absence of such an apex predator in the Scottish Highlands has caused the over population of deer, preventing afforestation, which increases the risk of flooding and damage to property.

Secondly, allocating monetary value to nature would make its conservation reliant on markets that fluctuate. This can lead to devaluation of services that were previously considered financially beneficial. Such is the case of the bees in a forest near former coffee plantations in Finca Santa Fe, Costa Rica. The pollination services were valued to over US$60,000 a year, but soon after the study, coffee prices dropped and the fields were replanted with pineapple. Pineapple does not require bees to be pollinated, so the value of their service dropped to zero.

Thirdly, conservation programmes for the sake of financial benefit underestimate human ingenuity to invent and replace ecosystem services by artificial means. McCauley argues that such proposals are deemed to have a short lifespan as the history of technology is about how Humanity developed artificial alternatives to nature's services and with time passing the cost of such services tend to decrease. This would also lead to the devaluation of ecosystem services.

Lastly, it should not be assumed that conserving ecosystems is always financially beneficial as opposed to alteration. In the case of the introduction of the Nile perch to Lake Victoria, the ecological consequence was decimation of native fauna. However, this same event is praised by the local communities as they gain significant financial benefits from trading the fish.

McCauley argues that, for these reasons, trying to convince decision-makers to conserve nature for monetary reasons is not the path to be followed, and instead appealing to morality is the ultimate way to campaign for the protection of nature.

Environmental sociology

From Wikipedia, the free encyclopedia

Environmental sociology is the study of interactions between societies and their natural environment. The field emphasizes the social factors that influence environmental resource management and cause environmental issues, the processes by which these environmental problems are socially constructed and define as social issues, and societal responses to these problems.

Environmental sociology emerged as a subfield of sociology in the late 1970s in response to the emergence of the environmental movement in the 1960s. It represents a relatively new area of inquiry focusing on an extension of earlier sociology through inclusion of physical context as related to social factors.

Definition

Environmental sociology is typically defined as the sociological study of socio-environmental interactions, although this definition immediately presents the problem of integrating human cultures with the rest of the environment. Different aspects of human interaction with the natural environment is studied by environmental sociologists including population and demography, organizations and institutions, technology, health and illness, culture, and social inequality. Although the focus of the field is the relationship between society and environment in general, environmental sociologists typically place special emphasis on studying the social factors that cause environmental problems, the societal impacts of those problems, and efforts to solve the problems. In addition, considerable attention is paid to the social processes by which certain environmental conditions become socially defined as problems. Most research in environmental sociology examines contemporary societies.

History

Ancient Greeks idealized life in nature using the idea of the pastoral. Much later, Romantic writers such as Wordsworth took their inspiration from nature.

Modern thought surrounding human-environment relations can be traced back to Charles Darwin. Darwin's concept of natural selection suggested that certain social characteristics played a key role in the survivability of groups in the natural environment. Although typically taken at the micro-level, evolutionary principles, particularly adaptability, serve as a microcosm of human ecology. Work by Craig Humphrey and Frederick Buttel (2002) traces the linkages between Darwin's work on natural selection, human ecological sociology, and environmental sociology.

Sociology developed as a scholarly discipline in the mid- and late-19th and early 20th centuries, in a context where biological determinism had failed to fully explain key features of social change, including the evolving relationship between humans and their natural environments. In its foundational years, classical sociology thus saw social and cultural factors as the dominant, if not exclusive, cause of social and cultural conditions. This lens down-played interactive factors in the relationship between humans and their biophysical environments.

Environmental sociology emerged as a coherent subfield of inquiry after the environmental movement of the 1960s and early 1970s. The works of William R. Catton, Jr. and Riley Dunlap, among others, challenged the constricted anthropocentrism of classical sociology. In the late 1970s, they called for a new holistic, or systems perspective. Since the 1970s, general sociology has noticeably transformed to include environmental forces in social explanations. Environmental sociology has now solidified as a respected, interdisciplinary field of study in academia.

Concepts

Existential dualism

The duality of the human condition rests with cultural uniqueness and evolutionary traits. From one perspective, humans are embedded in the ecosphere and co-evolved alongside other species. Humans share the same basic ecological dependencies as other inhabitants of nature. From the other perspectives, humans are distinguished from other species because of their innovative capacities, distinct cultures and varied institutions. Human creations have the power to independently manipulate, destroy, and transcend the limits of the natural environment (Buttel and Humphrey, 2002: p. ,47).

According to Buttel (2005), there are five basic epistemologies in environmental sociology (kindly mention them). In practice, this means five different theories of what to blame for environmental degradation, i.e., what to research or consider as important. In order of their invention, these ideas of what to blame build on each other and thus contradict each other.

Neo-Malthusianism

Works such as Hardin's Tragedy of the Commons (1969) reformulated Malthusian thought about abstract population increases causing famines into a model of individual selfishness at larger scales causing degradation of common pool resources such as the air, water, the oceans, or general environmental conditions. Hardin offered privatization of resources or government regulation as solutions to environmental degradation caused by tragedy of the commons conditions. Many other sociologists shared this view of solutions well into the 1970s (see Ophuls). There have been many critiques of this view particularly political scientist Elinor Ostrom, or economists Amartya Sen and Ester Boserup.

Even though much of mainstream journalism considers Malthusianism the only view of environmentalism, most sociologists would disagree with Malthusianism since social organizational issues of environmental degradation are more demonstrated to cause environmental problems than abstract population or selfishness per se. For examples of this critique, Ostrom in her book Governing the Commons: The Evolution of Institutions for Collective Action (1990) argues that instead of self-interest always causing degradation, it can sometimes motivate people to take care of their common property resources. To do this they must change the basic organizational rules of resource use. Her research provides evidence for sustainable resource management systems, around common pool resources that have lasted for centuries in some areas of the world.

Amartya Sen argues in his book Poverty and Famines: An Essay on Entitlement and Deprivation (1980) that population expansion fails to cause famines or degradation as Malthusians or Neo-Malthusians argue. Instead, in documented cases a lack of political entitlement to resources that exist in abundance, causes famines in some populations. He documents how famines can occur even in the midst of plenty or in the context of low populations. He argues that famines (and environmental degradation) would only occur in non-functioning democracies or unrepresentative states.

Ester Boserup argues in her book The Conditions of Agricultural Growth: The Economics of Agrarian Change under Population Pressure (1965) from inductive, empirical case analysis that Malthus's more deductive conception of a presumed one-to-one relationship with agricultural scale and population is actually reversed. Instead of agricultural technology and scale determining and limiting population as Malthus attempted to argue, Boserup argued the world is full of cases of the direct opposite: that population changes and expands agricultural methods.

Eco-Marxist scholar Allan Schnaiberg (below) argues against Malthusianism with the rationale that under larger capitalist economies, human degradation moved from localized, population-based degradation to organizationally caused degradation of capitalist political economies to blame. He gives the example of the organized degradation of rainforest areas which states and capitalists push people off the land before it is degraded by organizational means. Thus, many authors are critical of Malthusianism, from sociologists (Schnaiberg) to economists (Sen and Boserup), to political scientists (Ostrom), and all focus on how a country's social organization of its extraction can degrade the environment independent of abstract population.

New Ecological Paradigm

In the 1970s, The New Ecological Paradigm (NEP) conception critiqued the claimed lack of human-environmental focus in the classical sociologists and the Sociological priorities their followers created. This was critiqued as the Human Exceptionalism Paradigm (HEP). The HEP viewpoint claims that human-environmental relationships were unimportant sociologically because humans are 'exempt' from environmental forces via cultural change. This view was shaped by the leading Western worldview of the time and the desire for Sociology to establish itself as an independent discipline against the then popular racist-biological environmental determinism where environment was all. In this HEP view, human dominance was felt to be justified by the uniqueness of culture, argued to be more adaptable than biological traits. Furthermore, culture also has the capacity to accumulate and innovate, making it capable of solving all natural problems. Therefore, as humans were not conceived of as governed by natural conditions, they were felt to have complete control of their own destiny. Any potential limitation posed by the natural world was felt to be surpassed using human ingenuity. Research proceeded accordingly without environmental analysis.

In the 1970s, sociological scholars Riley Dunlap and William R. Catton, Jr. began recognizing the limits of what would be termed the Human Exemptionalism Paradigm. Catton and Dunlap (1978) suggested a new perspective that took environmental variables into full account. They coined a new theoretical outlook for Sociology, the New Ecological Paradigm, with assumptions contrary to HEP.

The NEP recognizes the innovative capacity of humans, but says that humans are still ecologically interdependent as with other species. The NEP notes the power of social and cultural forces but does not profess social determinism. Instead, humans are impacted by the cause, effect, and feedback loops of ecosystems. The Earth has a finite level of natural resources and waste repositories. Thus, the biophysical environment can impose constraints on human activity. They discussed a few harbingers of this NEP in 'hybridized' theorizing about topics that were neither exclusively social nor environmental explanations of environmental conditions. It was additionally a critique of Malthusian views of the 1960s and 1970s.

Dunlap and Catton's work immediately received a critique from Buttel who argued to the contrary that classical sociological foundations could be found for environmental sociology, particularly in Weber's work on ancient "agrarian civilizations" and Durkheim's view of the division of labor as built on a material premise of specialization/specialization in response to material scarcity. This environmental aspect of Durkheim has been discussed by Schnaiberg (1971) as well.

Eco-Marxism

In the middle of the HEP/NEP debate, the general trend of Neo-Marxism was occurring. There was cross pollination. Neo-Marxism was based on the collapse of the widespread believability of the Marxist social movement in the failed revolts of the 1960s and the rise of many New Social Movements that failed to fit in many Marxist analytic frameworks of conflict sociology. Sociologists entered the fray with empirical research on these novel social conflicts. Neo-Marxism's stress on the relative autonomy of the state from capital control instead of it being only a reflection of economic determinism of class conflict yielded this novel theoretical viewpoint in the 1970s. Neo-Marxist ideas of conflict sociology were applied to capital/state/labor/environmental conflicts instead of only labor/capital/state conflicts over production.

Therefore, some sociologists wanted to stretch Marxist ideas of social conflict to analyze environmental social movements from this materialist framework instead of interpreting environmental movements as a more cultural "New Social Movement" separate than material concerns. So "Eco-Marxism" was based on using Neo-Marxist conflict sociology concepts of the relative autonomy of the state applied to environmental conflict.

Two people following this school were James O'Connor (The Fiscal Crisis of the State, 1971) and later Allan Schnaiberg.

Later, a different trend developed in eco-Marxism via the attention brought to the importance of metabolic analysis in Marx's thought by John Bellamy Foster. Contrary to previous assumptions that classical theorists in sociology all had fallen within a Human Exemptionalist Paradigm, Foster argued that Marx's materialism lead him to theorize labor as the metabolic process between humanity and the rest of nature. In Promethean interpretations of Marx that Foster critiques, there was an assumption his analysis was very similar to the anthropocentric views critiqued by early environmental sociologists. Instead, Foster argued Marx himself was concerned about the Metabolic rift generated by capitalist society's social metabolism, particularly in industrial agriculture— Marx had identified an "irreparable rift in the interdependent process of social metabolism," created by capitalist agriculture that was destroying the productivity of the land and creating wastes in urban sites that failed to be reintegrated into the land and thus lead toward destruction of urban workers health simultaneously. Reviewing the contribution of this thread of eco-marxism to current environmental sociology, Pellow and Brehm conclude "The metabolic rift is a productive development in the field because it connects current research to classical theory and links sociology with an interdisciplinary array of scientific literatures focused on ecosystem dynamics."

Foster emphasized that his argument presupposed the "magisterial work" of Paul Burkett, who had developed a closely related "red-green" perspective rooted in a direct examination of Marx's value theory. Burkett and Foster proceeded to write a number of articles together on Marx's ecological conceptions, reflecting their shared perspective

More recently, Jason W. Moore inspired by Burkett's value-analytical approach to Marx's ecology and arguing that Foster's work did not in itself go far enough, has sought to integrate the notion of metabolic rift with world systems theory, incorporating Marxian value-related conceptions. For Moore, the modern world-system is a capitalist world-ecology, joining the accumulation of capital, the pursuit of power, and the production of nature in dialectical unity. Central to Moore's perspective is a philosophical re-reading of Marx's value theory, through which abstract social labor and abstract social nature are dialectically bound. Moore argues that the emergent law of value, from the sixteenth century, was evident in the extraordinary shift in the scale, scope, and speed of environmental change. What took premodern civilizations centuries to achieve—such as the deforestation of Europe in the medieval era—capitalism realized in mere decades. This world-historical rupture, argues Moore, can be explained through a law of value that regards labor productivity as the decisive metric of wealth and power in the modern world. From this standpoint, the genius of capitalist development has been to appropriate uncommodified natures—including uncommodified human natures—as a means of advancing labor productivity in the commodity system.

Societal-environmental dialectic

In 1975, the highly influential work of Allan Schnaiberg transfigured environmental sociology, proposing a societal-environmental dialectic, though within the 'neo-Marxist' framework of the relative autonomy of the state as well. This conflictual concept has overwhelming political salience. First, the economic synthesis states that the desire for economic expansion will prevail over ecological concerns. Policy will decide to maximize immediate economic growth at the expense of environmental disruption. Secondly, the managed scarcity synthesis concludes that governments will attempt to control only the most dire of environmental problems to prevent health and economic disasters. This will give the appearance that governments act more environmentally consciously than they really do. Third, the ecological synthesis generates a hypothetical case where environmental degradation is so severe that political forces would respond with sustainable policies. The driving factor would be economic damage caused by environmental degradation. The economic engine would be based on renewable resources at this point. Production and consumption methods would adhere to sustainability regulations.

These conflict-based syntheses have several potential outcomes. One is that the most powerful economic and political forces will preserve the status quo and bolster their dominance. Historically, this is the most common occurrence. Another potential outcome is for contending powerful parties to fall into a stalemate. Lastly, tumultuous social events may result that redistribute economic and political resources.

Treadmill of production

In 1980, the highly influential work of Allan Schnaiberg entitled The Environment: From Surplus to Scarcity (1980) was a large contribution to this theme of a societal-environmental dialectic. Moving away from economic reductionism like other neo-Marxists, Schnaiberg called for an analysis of how certain projects of "political capitalism" encouraged environmental degradation instead of all capitalism per se. This ongoing trend in Marxism of 'neo-Marxist' analysis (meaning, including the relative autonomy of the state) here added the environmental conditions of abstract additions and withdrawals from the environment as social policies instead of naturalized contexts.

Schnaiberg's political capitalism, otherwise known as the 'Treadmill of production,' is a model of conflict as well as cooperation between three abstracted groups: the state, capital (exclusively monopoly capital with its larger fixed costs and thus larger pressures for ongoing expansion of profits to justify more fixed costs), and (organized) labor. He analyzes only the United States at length, though sees such a treadmill of production and of environmental degradation in operation in the Soviet Union or socialist countries as well. The desire for economic expansion was found to be a common political ground for all three contentious groups—in capital, labor, and the state—to surmount their separate interests and postpone conflict by all agreeing on economic growth. Therefore, grounds for a political alliance emerge among these conflictual actors when monopoly capitalism can convince both of the other nodes to support its politicized consolidation. This can appeal to the other nodes since it additionally provides expanding state legitimacy and its own funding while providing (at least at the time) secure worker employment in larger industries with their desired stable or growing consumption. This political capitalism works against smaller scale capitalism or other uses of the state or against other alliances of labor. Schnaiberg called the 'acceleration' of the treadmill this degradative political support for monopoly capitalism's expansion. This acceleration he felt was at root merely an informal alliance—based solely on the propaganda from monopoly capital and the state that worker consumption can only be achieved through further capitalist consolidation.

However, Schnaiberg felt that environmental damage caused by state-political and labor-supported capitalist expansion may cause a decline both in the state's funding as well as worker livelihood. This provides grounds for both to reject their treadmill alliance with monopoly capital. This would mean severing organized labor support and state policy support of monopoly capital's desires of consolidation. Schnaiberg is motivated to optimism by this potential if states and labor movements can be educated to the environmental and livelihood dangers in the long run of any support of monopoly capital. This potentially means these two groups moving away from subsidizing and supporting the degradation of the environment. Schnaiberg pins his hopes for environmental improvement on 'deceleration' of the treadmill—how mounting environmental degradation might yield a breakdown in the acceleration-based treadmill alliance. This deceleration was defined as state and working labor movements designing policies to shrink the scale of the economy as a solution to environmental degradation and their own consumptive requirements. Meanwhile, in the interim, he argued a common alliance between the three is responsible for why they prefer to support common economic growth as a common way to avoid their open conflicts despite mounting environmental costs for the state as well as for laborers due to environmental disruption.

Ecological modernization and reflexive modernization

By the 1980s, a critique of eco-Marxism was in the offing, given empirical data from countries (mostly in Western Europe like the Netherlands, Western Germany and somewhat the United Kingdom) that were attempting to wed environmental protection with economic growth instead of seeing them as separate. This was done through both state and capital restructuring. Major proponents of this school of research are Arthur P.J. Mol and Gert Spaargaren. Popular examples of ecological modernization would be "cradle to cradle" production cycles, industrial ecology, large-scale organic agriculture, biomimicry, permaculture, agroecology and certain strands of sustainable development—all implying that economic growth is possible if that growth is well organized with the environment in mind.

Reflexive modernization

The many volumes of the German sociologist Ulrich Beck first argued from the late 1980s that our risk society is potentially being transformed by the environmental social movements of the world into structural change without rejecting the benefits of modernization and industrialization. This is leading to a form of 'reflexive modernization' with a world of reduced risk and better modernization process in economics, politics, and scientific practices as they are made less beholden to a cycle of protecting risk from correction (which he calls our state's organized irresponsibility)—politics creates ecodisasters, then claims responsibility in an accident, yet nothing remains corrected because it challenges the very structure of the operation of the economy and the private dominance of development, for example. Beck's idea of a reflexive modernization looks forward to how our ecological and social crises in the late 20th century are leading toward transformations of the whole political and economic system's institutions, making them more "rational" with ecology in mind.

Social construction of the environment

Additionally in the 1980s, with the rise of postmodernism in the western academy and the appreciation of discourse as a form of power, some sociologists turned to analyzing environmental claims as a form of social construction more than a 'material' requirement. Proponents of this school include John A. Hannigan, particularly in Environmental Sociology: A Social Constructionist Perspective (1995). Hannigan argues for a 'soft constructionism' (environmental problems are materially real though they require social construction to be noticed) over a 'hard constructionism' (the claim that environmental problems are entirely social constructs).

Although there was sometimes acrimonious debate between the constructivist and realist "camps" within environmental sociology in the 1990s, the two sides have found considerable common ground as both increasingly accept that while most environmental problems have a material reality they nonetheless become known only via human processes such as scientific knowledge, activists' efforts, and media attention. In other words, most environmental problems have a real ontological status despite our knowledge/awareness of them stemming from social processes, processes by which various conditions are constructed as problems by scientists, activists, media and other social actors. Correspondingly, environmental problems must all be understood via social processes, despite any material basis they may have external to humans. This interactiveness is now broadly accepted, but many aspects of the debate continue in contemporary research in the field.

Events

Modern environmentalism

United States

The 1960s built strong cultural momentum for environmental causes, giving birth to the modern environmental movement and large questioning in sociologists interested in analyzing the movement. Widespread green consciousness moved vertically within society, resulting in a series of policy changes across many states in the U.S. and Europe in the 1970s. In the United States, this period was known as the “Environmental Decade” with the creation of the United States Environmental Protection Agency and passing of the Endangered Species Act, Clean Water Act, and amendments to the Clean Air Act. Earth Day of 1970, celebrated by millions of participants, represented the modern age of environmental thought. The environmental movement continued with incidences such as Love Canal.

Historical studies

While the current mode of thought expressed in environmental sociology was not prevalent until the 1970s, its application is now used in analysis of ancient peoples. Societies including Easter Island, the Anaszi, and the Mayans were argued to have ended abruptly, largely due to poor environmental management. This has been challenged in later work however as the exclusive cause (biologically trained Jared Diamond's Collapse (2005); or more modern work on Easter Island). The collapse of the Mayans sent a historic message that even advanced cultures are vulnerable to ecological suicide—though Diamond argues now it was less of a suicide than an environmental climate change that led to a lack of an ability to adapt—and a lack of elite willingness to adapt even when faced with the signs much earlier of nearing ecological problems. At the same time, societal successes for Diamond included New Guinea and Tikopia island whose inhabitants have lived sustainably for 46,000 years.

John Dryzek et al. argue in Green States and Social Movements: Environmentalism in the United States, United Kingdom, Germany, and Norway (2003) that there may be a common global green environmental social movement, though its specific outcomes are nationalist, falling into four 'ideal types' of interaction between environmental movements and state power. They use as their case studies environmental social movements and state interaction from Norway, the United Kingdom, the United States, and Germany. They analyze the past 30 years of environmentalism and the different outcomes that the green movement has taken in different state contexts and cultures.

Recently and roughly in temporal order below, much longer-term comparative historical studies of environmental degradation are found by sociologists. There are two general trends: many employ world systems theory—analyzing environmental issues over long periods of time and space; and others employ comparative historical methods. Some utilize both methods simultaneously, sometimes without reference to world systems theory (like Whitaker, see below).

Stephen G. Bunker (d. 2005) and Paul S. Ciccantell collaborated on two books from a world-systems theory view, following commodity chains through history of the modern world system, charting the changing importance of space, time, and scale of extraction and how these variables influenced the shape and location of the main nodes of the world economy over the past 500 years. Their view of the world was grounded in extraction economies and the politics of different states that seek to dominate the world's resources and each other through gaining hegemonic control of major resources or restructuring global flows in them to benefit their locations.

The three volume work of environmental world-systems theory by Sing C. Chew analyzed how "Nature and Culture" interact over long periods of time, starting with World Ecological Degradation (2001). In later books, Chew argued that there were three "Dark Ages" in world environmental history characterized by periods of state collapse and reorientation in the world economy associated with more localist frameworks of community, economy, and identity coming to dominate the nature/culture relationships after state-facilitated environmental destruction delegitimized other forms. Thus recreated communities were founded in these so-called 'Dark Ages,' novel religions were popularized, and perhaps most importantly to him the environment had several centuries to recover from previous destruction. Chew argues that modern green politics and bioregionalism is the start of a similar movement of the present day potentially leading to wholesale system transformation. Therefore, we may be on the edge of yet another global "dark age" which is bright instead of dark on many levels since he argues for human community returning with environmental healing as empires collapse.

More case oriented studies were conducted by historical environmental sociologist Mark D. Whitaker analyzing China, Japan, and Europe over 2,500 years in his book Ecological Revolution (2009). He argued that instead of environmental movements being "New Social Movements" peculiar to current societies, environmental movements are very old—being expressed via religious movements in the past (or in the present like in ecotheology) that begin to focus on material concerns of health, local ecology, and economic protest against state policy and its extractions. He argues past or present is very similar: that we have participated with a tragic common civilizational process of environmental degradation, economic consolidation, and lack of political representation for many millennia which has predictable outcomes. He argues that a form of bioregionalism, the bioregional state, is required to deal with political corruption in present or in past societies connected to environmental degradation.

After looking at the world history of environmental degradation from very different methods, both sociologists Sing Chew and Mark D. Whitaker came to similar conclusions and are proponents of (different forms of) bioregionalism.

Rydberg atom

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Rydberg_atom Figure 1: Electron orbi...