Search This Blog

Wednesday, October 5, 2022

Igneous rock

From Wikipedia, the free encyclopedia
 
Geologic provinces of the world (USGS)

Igneous rock (derived from the Latin word ignis meaning fire), or magmatic rock, is one of the three main rock types, the others being sedimentary and metamorphic. Igneous rock is formed through the cooling and solidification of magma or lava.

The magma can be derived from partial melts of existing rocks in either a planet's mantle or crust. Typically, the melting is caused by one or more of three processes: an increase in temperature, a decrease in pressure, or a change in composition. Solidification into rock occurs either below the surface as intrusive rocks or on the surface as extrusive rocks. Igneous rock may form with crystallization to form granular, crystalline rocks, or without crystallization to form natural glasses.

Igneous rocks occur in a wide range of geological settings: shields, platforms, orogens, basins, large igneous provinces, extended crust and oceanic crust.

Volcanic eruptions of lava are major sources of igneous rocks. (Mayon volcano in the Philippines, erupting in 2009)
 
Natural columns of igneous rock separated from each other by columnar joints, in Madeira

Geological significance

Igneous and metamorphic rocks make up 90–95% of the top 16 kilometres (9.9 mi) of the Earth's crust by volume. Igneous rocks form about 15% of the Earth's current land surface. Most of the Earth's oceanic crust is made of igneous rock.

Igneous rocks are also geologically important because:

  • their minerals and global chemistry give information about the composition of the lower crust or upper mantle from which their parent magma was extracted, and the temperature and pressure conditions that allowed this extraction;
  • their absolute ages can be obtained from various forms of radiometric dating and can be compared to adjacent geological strata, thus permitting calibration of the geological time scale;
  • their features are usually characteristic of a specific tectonic environment, allowing tectonic reconstructions (see plate tectonics);
  • in some special circumstances they host important mineral deposits (ores): for example, tungsten, tin, and uranium are commonly associated with granites and diorites, whereas ores of chromium and platinum are commonly associated with gabbros.

Geological setting

Formation of igneous rock

Igneous rocks can be either intrusive (plutonic and hypabyssal) or extrusive (volcanic).

Intrusive

Basic types of intrusions:

Intrusive igneous rocks make up the majority of igneous rocks and are formed from magma that cools and solidifies within the crust of a planet. Bodies of intrusive rock are known as intrusions and are surrounded by pre-existing rock (called country rock). The country rock is an excellent thermal insulator, so the magma cools slowly, and intrusive rocks are coarse-grained (phaneritic). The mineral grains in such rocks can generally be identified with the naked eye. Intrusions can be classified according to the shape and size of the intrusive body and its relation to the bedding of the country rock into which it intrudes. Typical intrusive bodies are batholiths, stocks, laccoliths, sills and dikes. Common intrusive rocks are granite, gabbro, or diorite.

The central cores of major mountain ranges consist of intrusive igneous rocks. When exposed by erosion, these cores (called batholiths) may occupy huge areas of the Earth's surface.

Intrusive igneous rocks that form at depth within the crust are termed plutonic (or abyssal) rocks and are usually coarse-grained. Intrusive igneous rocks that form near the surface are termed subvolcanic or hypabyssal rocks and they are usually much finer-grained, often resembling volcanic rock. Hypabyssal rocks are less common than plutonic or volcanic rocks and often form dikes, sills, laccoliths, lopoliths, or phacoliths.

Extrusive

Extrusive igneous rock is made from lava released by volcanoes
 
Sample of basalt (an extrusive igneous rock), found in Massachusetts

Extrusive igneous rock, also known as volcanic rock, is formed by the cooling of molten magma on the earth's surface. The magma, which is brought to the surface through fissures or volcanic eruptions, rapidly solidifies. Hence such rocks are fine-grained (aphanitic) or even glassy. Basalt is the most common extrusive igneous rock and forms lava flows, lava sheets and lava plateaus. Some kinds of basalt solidify to form long polygonal columns. The Giant's Causeway in Antrim, Northern Ireland is an example.

The molten rock, which typically contains suspended crystals and dissolved gases, is called magma. It rises because it is less dense than the rock from which it was extracted. When magma reaches the surface, it is called lava. Eruptions of volcanoes into air are termed subaerial, whereas those occurring underneath the ocean are termed submarine. Black smokers and mid-ocean ridge basalt are examples of submarine volcanic activity.

The volume of extrusive rock erupted annually by volcanoes varies with plate tectonic setting. Extrusive rock is produced in the following proportions:

The behaviour of lava depends upon its viscosity, which is determined by temperature, composition, and crystal content. High-temperature magma, most of which is basaltic in composition, behaves in a manner similar to thick oil and, as it cools, treacle. Long, thin basalt flows with pahoehoe surfaces are common. Intermediate composition magma, such as andesite, tends to form cinder cones of intermingled ash, tuff and lava, and may have a viscosity similar to thick, cold molasses or even rubber when erupted. Felsic magma, such as rhyolite, is usually erupted at low temperature and is up to 10,000 times as viscous as basalt. Volcanoes with rhyolitic magma commonly erupt explosively, and rhyolitic lava flows are typically of limited extent and have steep margins because the magma is so viscous.

Felsic and intermediate magmas that erupt often do so violently, with explosions driven by the release of dissolved gases—typically water vapour, but also carbon dioxide. Explosively erupted pyroclastic material is called tephra and includes tuff, agglomerate and ignimbrite. Fine volcanic ash is also erupted and forms ash tuff deposits, which can often cover vast areas.

Because volcanic rocks are mostly fine-grained or glassy, it is much more difficult to distinguish between the different types of extrusive igneous rocks than between different types of intrusive igneous rocks. Generally, the mineral constituents of fine-grained extrusive igneous rocks can only be determined by examination of thin sections of the rock under a microscope, so only an approximate classification can usually be made in the field. Although classification by mineral makeup is preferred by the IUGS, this is often impractical, and chemical classification is done instead using the TAS classification.

Classification

Close-up of granite (an intrusive igneous rock) exposed in Chennai, India

Igneous rocks are classified according to mode of occurrence, texture, mineralogy, chemical composition, and the geometry of the igneous body.

The classification of the many types of igneous rocks can provide important information about the conditions under which they formed. Two important variables used for the classification of igneous rocks are particle size, which largely depends on the cooling history, and the mineral composition of the rock. Feldspars, quartz or feldspathoids, olivines, pyroxenes, amphiboles, and micas are all important minerals in the formation of almost all igneous rocks, and they are basic to the classification of these rocks. All other minerals present are regarded as nonessential in almost all igneous rocks and are called accessory minerals. Types of igneous rocks with other essential minerals are very rare, but include carbonatites, which contain essential carbonates.

In a simplified classification, igneous rock types are separated on the basis of the type of feldspar present, the presence or absence of quartz, and in rocks with no feldspar or quartz, the type of iron or magnesium minerals present. Rocks containing quartz (silica in composition) are silica-oversaturated. Rocks with feldspathoids are silica-undersaturated, because feldspathoids cannot coexist in a stable association with quartz.

Igneous rocks that have crystals large enough to be seen by the naked eye are called phaneritic; those with crystals too small to be seen are called aphanitic. Generally speaking, phaneritic implies an intrusive origin; aphanitic an extrusive one.

An igneous rock with larger, clearly discernible crystals embedded in a finer-grained matrix is termed porphyry. Porphyritic texture develops when some of the crystals grow to considerable size before the main mass of the magma crystallizes as finer-grained, uniform material.

Igneous rocks are classified on the basis of texture and composition. Texture refers to the size, shape, and arrangement of the mineral grains or crystals of which the rock is composed.

Texture

Gabbro specimen showing phaneritic texture, from Rock Creek Canyon, eastern Sierra Nevada, California
 

Texture is an important criterion for the naming of volcanic rocks. The texture of volcanic rocks, including the size, shape, orientation, and distribution of mineral grains and the intergrain relationships, will determine whether the rock is termed a tuff, a pyroclastic lava or a simple lava. However, the texture is only a subordinate part of classifying volcanic rocks, as most often there needs to be chemical information gleaned from rocks with extremely fine-grained groundmass or from airfall tuffs, which may be formed from volcanic ash.

Textural criteria are less critical in classifying intrusive rocks where the majority of minerals will be visible to the naked eye or at least using a hand lens, magnifying glass or microscope. Plutonic rocks also tend to be less texturally varied and less prone to showing distinctive structural fabrics. Textural terms can be used to differentiate different intrusive phases of large plutons, for instance porphyritic margins to large intrusive bodies, porphyry stocks and subvolcanic dikes. Mineralogical classification is most often used to classify plutonic rocks. Chemical classifications are preferred to classify volcanic rocks, with phenocryst species used as a prefix, e.g. "olivine-bearing picrite" or "orthoclase-phyric rhyolite".

Basic classification scheme for igneous rocks based on their mineral composition. If the approximate volume fractions of minerals in the rock are known, the rock name and silica content can be read off the diagram. This is not an exact method, because the classification of igneous rocks also depends on other components, yet in most cases it is a good first guess.

Mineralogical classification

The IUGS recommends classifying igneous rocks by their mineral composition whenever possible. This is straightforward for coarse-grained intrusive igneous rock, but may require examination of thin sections under a microscope for fine-grained volcanic rock, and may be impossible for glassy volcanic rock. The rock must then be classified chemically.

Mineralogical classification of an intrusive rock begins by determining if the rock is ultramafic, a carbonatite, or a lamprophyre. An ultramafic rock contains more than 90% of iron- and magnesium-rich minerals such as hornblende, pyroxene, or olivine, and such rocks have their own classification scheme. Likewise, rocks containing more than 50% carbonate minerals are classified as carbonatites, while lamprophyres are rare ultrapotassic rocks. Both are further classified based on detailed mineralogy.

In the great majority of cases, the rock has a more typical mineral composition, with significant quartz, feldspars, or feldspathoids. Classification is based on the percentages of quartz, alkali feldspar, plagioclase, and feldspathoid out of the total fraction of the rock composed of these minerals, ignoring all other minerals present. These percentages place the rock somewhere on the QAPF diagram, which often immediately determines the rock type. In a few cases, such as the diorite-gabbro-anorthite field, additional mineralogical criteria must be applied to determine the final classification.

Where the mineralogy of an volcanic rock can be determined, it is classified using the same procedure, but with a modified QAPF diagram whose fields correspond to volcanic rock types.

Chemical classification and petrology

Total alkali versus silica classification scheme (TAS) as proposed in Le Maitre's 2002 Igneous Rocks – A classification and glossary of terms Blue area is roughly where alkaline rocks plot; yellow area is where subalkaline rocks plot.

When it is impractical to classify a volcanic rock by mineralogy, the rock must be classified chemically.

There are relatively few minerals that are important in the formation of common igneous rocks, because the magma from which the minerals crystallize is rich in only certain elements: silicon, oxygen, aluminium, sodium, potassium, calcium, iron, and magnesium. These are the elements that combine to form the silicate minerals, which account for over ninety percent of all igneous rocks. The chemistry of igneous rocks is expressed differently for major and minor elements and for trace elements. Contents of major and minor elements are conventionally expressed as weight percent oxides (e.g., 51% SiO2, and 1.50% TiO2). Abundances of trace elements are conventionally expressed as parts per million by weight (e.g., 420 ppm Ni, and 5.1 ppm Sm). The term "trace element" is typically used for elements present in most rocks at abundances less than 100 ppm or so, but some trace elements may be present in some rocks at abundances exceeding 1,000 ppm. The diversity of rock compositions has been defined by a huge mass of analytical data—over 230,000 rock analyses can be accessed on the web through a site sponsored by the U. S. National Science Foundation (see the External Link to EarthChem).

The single most important component is silica, SiO2, whether occurring as quartz or combined with other oxides as feldspars or other minerals. Both intrusive and volcanic rocks are grouped chemically by total silica content into broad categories.

  • Felsic rocks have the highest content of silica, and are predominantly composed of the felsic minerals quartz and feldspar. These rocks (granite, rhyolite) are usually light coloured, and have a relatively low density.
  • Intermediate rocks have a moderate content of silica, and are predominantly composed of feldspars. These rocks (diorite, andesite) are typically darker in colour than felsic rocks and somewhat more dense.
  • Mafic rocks have a relatively low silica content and are composed mostly of pyroxenes, olivines and calcic plagioclase. These rocks (basalt, gabbro) are usually dark coloured, and have a higher density than felsic rocks.
  • Ultramafic rock is very low in silica, with more than 90% of mafic minerals (komatiite, dunite).

This classification is summarized in the following table:


Composition
Mode of occurrence Felsic
(>63% SiO2)
Intermediate
(52% to 63% SiO2)
Mafic
(45% to 52% SiO2)
Ultramafic
(<45% SiO2)
Intrusive Granite Diorite Gabbro Peridotite
Extrusive Rhyolite Andesite Basalt Komatiite

The percentage of alkali metal oxides (Na2O plus K2O) is second only to silica in its importance for chemically classifying volcanic rock. The silica and alkali metal oxide percentages are used to place volcanic rock on the TAS diagram, which is sufficient to immediately classify most volcanic rocks. Rocks in some fields, such as the trachyandesite field, are further classified by the ratio of potassium to sodium (so that potassic trachyandesites are latites and sodic trachyandesites are benmoreites). Some of the more mafic fields are further subdivided or defined by normative mineralogy, in which an idealized mineral composition is calculated for the rock based on its chemical composition. For example, basanite is distinguished from tephrite by having a high normative olivine content.

Other refinements to the basic TAS classification include:

  • Ultrapotassic – rocks containing molar K2O/Na2O >3.
  • Peralkaline – rocks containing molar (K2O + Na2O)/Al2O3 >1.
  • Peraluminous – rocks containing molar (K2O + Na2O + CaO)/Al2O3 <1.

In older terminology, silica oversaturated rocks were called silicic or acidic where the SiO2 was greater than 66% and the family term quartzolite was applied to the most silicic. A normative feldspathoid classifies a rock as silica-undersaturated; an example is nephelinite.

AFM ternary diagram showing the relative proportions of Na2O + K2O (A for Alkali earth metals), FeO + Fe2O3 (F), and MgO (M) with arrows showing the path of chemical variation in tholeiitic and calc-alkaline series magmas

Magmas are further divided into three series:

The alkaline series is distinguishable from the other two on the TAS diagram, being higher in total alkali oxides for a given silica content, but the tholeiitic and calc-alkaline series occupy approximately the same part of the TAS diagram. They are distinguished by comparing total alkali with iron and magnesium content.

These three magma series occur in a range of plate tectonic settings. Tholeiitic magma series rocks are found, for example, at mid-ocean ridges, back-arc basins, oceanic islands formed by hotspots, island arcs and continental large igneous provinces.

All three series are found in relatively close proximity to each other at subduction zones where their distribution is related to depth and the age of the subduction zone. The tholeiitic magma series is well represented above young subduction zones formed by magma from relatively shallow depth. The calc-alkaline and alkaline series are seen in mature subduction zones, and are related to magma of greater depths. Andesite and basaltic andesite are the most abundant volcanic rock in island arc which is indicative of the calc-alkaline magmas. Some island arcs have distributed volcanic series as can be seen in the Japanese island arc system where the volcanic rocks change from tholeiite—calc-alkaline—alkaline with increasing distance from the trench.

History of classification

Some igneous rock names date to before the modern era of geology. For example, basalt as a description of a particular composition of lava-derived rock dates to Georgius Agricola in 1546 in his work De Natura Fossilium. The word granite goes back at least to the 1640s and is derived either from French granit or Italian granito, meaning simply "granulate rock". The term rhyolite was introduced in 1860 by the German traveler and geologist Ferdinand von Richthofen The naming of new rock types accelerated in the 19th century and peaked in the early 20th century.

Much of the early classification of igneous rocks was based on the geological age and occurrence of the rocks. However, in 1902, the American petrologists Charles Whitman Cross, Joseph P. Iddings, Louis V. Pirsson, and Henry Stephens Washington proposed that all existing classifications of igneous rocks should be discarded and replaced by a "quantitative" classification based on chemical analysis. They showed how vague, and often unscientific, much of the existing terminology was and argued that as the chemical composition of an igneous rock was its most fundamental characteristic, it should be elevated to prime position.

Geological occurrence, structure, mineralogical constitution—the hitherto accepted criteria for the discrimination of rock species—were relegated to the background. The completed rock analysis is first to be interpreted in terms of the rock-forming minerals which might be expected to be formed when the magma crystallizes, e.g., quartz feldspars, olivine, akermannite, Feldspathoids, magnetite, corundum, and so on, and the rocks are divided into groups strictly according to the relative proportion of these minerals to one another. This new classification scheme created a sensation, but was criticized for its lack of utility in fieldwork, and the classification scheme was abandoned by the 1960s. However, the concept of normative mineralogy has endured, and the work of Cross and his coinvestigators inspired a flurry of new classification schemes.

Among these was the classification scheme of M.A. Peacock, which divided igneous rocks into four series: the alkalic, the alkali-calcic, the calc-alkali, and the calcic series. His definition of the alkali series, and the term calc-alkali, continue in use as part of the widely used Irvine-Barager classification, along with W.Q. Kennedy's tholeiitic series.

By 1958, there were some 12 separate classification schemes and at least 1637 rock type names in use. In that year, Albert Streckeisen wrote a review article on igneous rock classification that ultimately led to the formation of the IUGG Subcommission of the Systematics of Igneous Rocks. By 1989 a single system of classification had been agreed upon, which was further revised in 2005. The number of recommended rock names was reduced to 316. These included a number of new names promulgated by the Subcommission.

Origin of magmas

The Earth's crust averages about 35 kilometres (22 mi) thick under the continents, but averages only some 7–10 kilometres (4.3–6.2 mi) beneath the oceans. The continental crust is composed primarily of sedimentary rocks resting on a crystalline basement formed of a great variety of metamorphic and igneous rocks, including granulite and granite. Oceanic crust is composed primarily of basalt and gabbro. Both continental and oceanic crust rest on peridotite of the mantle.

Rocks may melt in response to a decrease in pressure, to a change in composition (such as an addition of water), to an increase in temperature, or to a combination of these processes.

Other mechanisms, such as melting from a meteorite impact, are less important today, but impacts during the accretion of the Earth led to extensive melting, and the outer several hundred kilometers of our early Earth was probably an ocean of magma. Impacts of large meteorites in the last few hundred million years have been proposed as one mechanism responsible for the extensive basalt magmatism of several large igneous provinces.

Decompression

Decompression melting occurs because of a decrease in pressure.

The solidus temperatures of most rocks (the temperatures below which they are completely solid) increase with increasing pressure in the absence of water. Peridotite at depth in the Earth's mantle may be hotter than its solidus temperature at some shallower level. If such rock rises during the convection of solid mantle, it will cool slightly as it expands in an adiabatic process, but the cooling is only about 0.3 °C per kilometer. Experimental studies of appropriate peridotite samples document that the solidus temperatures increase by 3 °C to 4 °C per kilometer. If the rock rises far enough, it will begin to melt. Melt droplets can coalesce into larger volumes and be intruded upwards. This process of melting from the upward movement of solid mantle is critical in the evolution of the Earth.

Decompression melting creates the ocean crust at mid-ocean ridges. It also causes volcanism in intraplate regions, such as Europe, Africa and the Pacific sea floor. There, it is variously attributed either to the rise of mantle plumes (the "Plume hypothesis") or to intraplate extension (the "Plate hypothesis").

Effects of water and carbon dioxide

The change of rock composition most responsible for the creation of magma is the addition of water. Water lowers the solidus temperature of rocks at a given pressure. For example, at a depth of about 100 kilometers, peridotite begins to melt near 800 °C in the presence of excess water, but near or above about 1,500 °C in the absence of water. Water is driven out of the oceanic lithosphere in subduction zones, and it causes melting in the overlying mantle. Hydrous magmas composed of basalt and andesite are produced directly and indirectly as results of dehydration during the subduction process. Such magmas, and those derived from them, build up island arcs such as those in the Pacific Ring of Fire. These magmas form rocks of the calc-alkaline series, an important part of the continental crust.

The addition of carbon dioxide is relatively a much less important cause of magma formation than the addition of water, but genesis of some silica-undersaturated magmas has been attributed to the dominance of carbon dioxide over water in their mantle source regions. In the presence of carbon dioxide, experiments document that the peridotite solidus temperature decreases by about 200 °C in a narrow pressure interval at pressures corresponding to a depth of about 70 km. At greater depths, carbon dioxide can have more effect: at depths to about 200 km, the temperatures of initial melting of a carbonated peridotite composition were determined to be 450 °C to 600 °C lower than for the same composition with no carbon dioxide. Magmas of rock types such as nephelinite, carbonatite, and kimberlite are among those that may be generated following an influx of carbon dioxide into mantle at depths greater than about 70 km.

Temperature increase

Increase in temperature is the most typical mechanism for formation of magma within continental crust. Such temperature increases can occur because of the upward intrusion of magma from the mantle. Temperatures can also exceed the solidus of a crustal rock in continental crust thickened by compression at a plate boundary. The plate boundary between the Indian and Asian continental masses provides a well-studied example, as the Tibetan Plateau just north of the boundary has crust about 80 kilometers thick, roughly twice the thickness of normal continental crust. Studies of electrical resistivity deduced from magnetotelluric data have detected a layer that appears to contain silicate melt and that stretches for at least 1,000 kilometers within the middle crust along the southern margin of the Tibetan Plateau. Granite and rhyolite are types of igneous rock commonly interpreted as products of the melting of continental crust because of increases in temperature. Temperature increases also may contribute to the melting of lithosphere dragged down in a subduction zone.

Magma evolution

Schematic diagrams showing the principles behind fractional crystallisation in a magma. While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.
 

Most magmas are fully melted only for small parts of their histories. More typically, they are mixes of melt and crystals, and sometimes also of gas bubbles. Melt, crystals, and bubbles usually have different densities, and so they can separate as magmas evolve.

As magma cools, minerals typically crystallize from the melt at different temperatures (fractional crystallization). As minerals crystallize, the composition of the residual melt typically changes. If crystals separate from the melt, then the residual melt will differ in composition from the parent magma. For instance, a magma of gabbroic composition can produce a residual melt of granitic composition if early formed crystals are separated from the magma. Gabbro may have a liquidus temperature near 1,200 °C, and the derivative granite-composition melt may have a liquidus temperature as low as about 700 °C. Incompatible elements are concentrated in the last residues of magma during fractional crystallization and in the first melts produced during partial melting: either process can form the magma that crystallizes to pegmatite, a rock type commonly enriched in incompatible elements. Bowen's reaction series is important for understanding the idealised sequence of fractional crystallisation of a magma. Clinopyroxene thermobarometry is used to determine temperature and pressure conditions at which magma differentiation occurred for specific igneous rocks.

Magma composition can be determined by processes other than partial melting and fractional crystallization. For instance, magmas commonly interact with rocks they intrude, both by melting those rocks and by reacting with them. Magmas of different compositions can mix with one another. In rare cases, melts can separate into two immiscible melts of contrasting compositions.

Etymology

The word igneous is derived from the Latin ignis, meaning "of fire". Volcanic rocks are named after Vulcan, the Roman name for the god of fire. Intrusive rocks are also called "plutonic" rocks, named after Pluto, the Roman god of the underworld.

Tuesday, October 4, 2022

Metamorphic rock

From Wikipedia, the free encyclopedia

Quartzite, a type of metamorphic rock
 
Metamorphic rock, deformed during the Variscan orogeny, at Vall de Cardós, Lérida, Spain

Metamorphic rocks arise from the transformation of existing rock to new types of rock in a process called metamorphism. The original rock (protolith) is subjected to temperatures greater than 150 to 200 °C (300 to 400 °F) and, often, elevated pressure of 100 megapascals (1,000 bar) or more, causing profound physical or chemical changes. During this process, the rock remains mostly in the solid state, but gradually recrystallizes to a new texture or mineral composition. The protolith may be an igneous, sedimentary, or existing metamorphic rock.

Metamorphic rocks make up a large part of the Earth's crust and form 12% of the Earth's land surface. They are classified by their protolith, their chemical and mineral makeup, and their texture. They may be formed simply by being deeply buried beneath the Earth's surface, where they are subject to high temperatures and the great pressure of the rock layers above. They can also form from tectonic processes such as continental collisions, which cause horizontal pressure, friction, and distortion. Metamorphic rock can be formed locally when rock is heated by the intrusion of hot molten rock called magma from the Earth's interior. The study of metamorphic rocks (now exposed at the Earth's surface following erosion and uplift) provides information about the temperatures and pressures that occur at great depths within the Earth's crust.

Some examples of metamorphic rocks are gneiss, slate, marble, schist, and quartzite. Slate and quartzite tiles are used in building construction. Marble is also prized for building construction and as a medium for sculpture. On the other hand, schist bedrock can pose a challenge for civil engineering because of its pronounced planes of weakness.

Origin

Metamorphic rocks form one of the three great divisions of rock types. They are distinguished from igneous rocks, which form from molten magma, and sedimentary rocks, which form from sediments eroded from existing rock or precipitated chemically from bodies of water.

Metamorphic rocks are formed when existing rock is transformed physically or chemically at elevated temperature, without actually melting to any great degree. The importance of heating in the formation of metamorphic rock was first noted by the pioneering Scottish naturalist, James Hutton, who is often described as the father of modern geology. Hutton wrote in 1795 that some rock beds of the Scottish Highlands had originally been sedimentary rock but had been transformed by great heat.

Hutton also speculated that pressure was important in metamorphism. This hypothesis was tested by his friend, James Hall, who sealed chalk into a makeshift pressure vessel constructed from a cannon barrel and heated it in an iron foundry furnace. Hall found that this produced a material strongly resembling marble, rather than the usual quicklime produced by heating of chalk in the open air. French geologists subsequently added metasomatism, the circulation of fluids through buried rock, to the list of processes that help bring about metamorphism. However, metamorphism can take place without metasomatism (isochemical metamorphism) or at depths of just a few hundred meters where pressures are relatively low (for example, in contact metamorphism).

Metamorphic processes change the texture or mineral composition of the metamorphosed rock.

Mineralogical changes

Basalt hand sample showing fine-grained texture
 
Amphibolite formed by metamorphism of basalt

Metasomatism can change the bulk composition of a rock. Hot fluids circulating through pore space in the rock can dissolve existing minerals and precipitate new minerals. Dissolved substances are transported out of the rock by the fluids while new substances are brought in by fresh fluids. This can obviously change the mineral makeup of the rock.

However, changes in the mineral composition can take place even when the bulk composition of the rock does not change. This is possible because all minerals are stable only within certain limits of temperature, pressure, and chemical environment. For example, at atmospheric pressure, the mineral kyanite transforms to andalusite at a temperature of about 190 °C (374 °F). Andalusite, in turn, transforms to sillimanite when the temperature reaches about 800 °C (1,470 °F). All three have the identical composition, Al2SiO5. Likewise, forsterite is stable over a broad range of pressure and temperature in marble, but is converted to pyroxene at elevated pressure and temperature in more silicate-rich rock containing plagioclase, with which the forsterite reacts chemically.

Many complex high-temperature reactions may take place between minerals without them melting, and each mineral assemblage produced provides us with a clue as to the temperatures and pressures at the time of metamorphism. These reactions are possible because of rapid diffusion of atoms at elevated temperature. Pore fluid between mineral grains can be an important medium through which atoms are exchanged.

Textural changes

The change in the particle size of the rock during the process of metamorphism is called recrystallization. For instance, the small calcite crystals in the sedimentary rock limestone and chalk change into larger crystals in the metamorphic rock marble. In metamorphosed sandstone, recrystallization of the original quartz sand grains results in very compact quartzite, also known as metaquartzite, in which the often larger quartz crystals are interlocked. Both high temperatures and pressures contribute to recrystallization. High temperatures allow the atoms and ions in solid crystals to migrate, thus reorganizing the crystals, while high pressures cause solution of the crystals within the rock at their point of contact.

Description

Metamorphic rock containing staurolite and almandine garnet

Metamorphic rocks are characterized by their distinctive mineral composition and texture.

Metamorphic minerals

Because every mineral is stable only within certain limits, the presence of certain minerals in metamorphic rocks indicates the approximate temperatures and pressures at which the rock underwent metamorphism. These minerals are known as index minerals. Examples include sillimanite, kyanite, staurolite, andalusite, and some garnet.

Other minerals, such as olivines, pyroxenes, hornblende, micas, feldspars, and quartz, may be found in metamorphic rocks but are not necessarily the result of the process of metamorphism. These minerals can also form during the crystallization of igneous rocks. They are stable at high temperatures and pressures and may remain chemically unchanged during the metamorphic process.

Texture

A mylonite (through a petrographic microscope)

Metamorphic rocks are typically more coarsely crystalline than the protolith from which they formed. Atoms in the interior of a crystal are surrounded by a stable arrangement of neighboring atoms. This is partially missing at the surface of the crystal, producing a surface energy that makes the surface thermodynamically unstable. Recrystallization to coarser crystals reduces the surface area and so minimizes the surface energy.

Although grain coarsening is a common result of metamorphism, rock that is intensely deformed may eliminate strain energy by recrystallizing as a fine-grained rock called mylonite. Certain kinds of rock, such as those rich in quartz, carbonate minerals, or olivine, are particularly prone to form mylonites, while feldspar and garnet are resistant to mylonitization.

Foliation

Folded foliation in a metamorphic rock from near Geirangerfjord, Norway
 

Many kinds of metamorphic rocks show a distinctive layering called foliation (derived from the Latin word folia, meaning "leaves"). Foliation develops when a rock is being shortened along one axis during recrystallization. This causes crystals of platy minerals, such as mica and chlorite, to become rotated such that their short axes are parallel to the direction of shortening. This results in a banded, or foliated, rock, with the bands showing the colors of the minerals that formed them. Foliated rock often develops planes of cleavage. Slate is an example of a foliated metamorphic rock, originating from shale, and it typically shows well-developed cleavage that allows slate to be split into thin plates.

The type of foliation that develops depends on the metamorphic grade. For instance, starting with a mudstone, the following sequence develops with increasing temperature: The mudstone is first converted to slate, which is a very fine-grained, foliated metamorphic rock, characteristic of very low grade metamorphism. Slate in turn is converted to phyllite, which is fine-grained and found in areas of low grade metamorphism. Schist is medium to coarse-grained and found in areas of medium grade metamorphism. High-grade metamorphism transforms the rock to gneiss, which is coarse to very coarse-grained.

Rocks that were subjected to uniform pressure from all sides, or those that lack minerals with distinctive growth habits, will not be foliated. Marble lacks platy minerals and is generally not foliated, which allows its use as a material for sculpture and architecture.

Classification

Mississippian marble in Big Cottonwood Canyon, Wasatch Mountains, Utah

Metamorphic rocks are one of the three great divisions of all rock types, and so there is a great variety of metamorphic rock types. In general, if the protolith of a metamorphic rock can be determined, the rock is described by adding the prefix meta- to the protolith rock name. For example, if the protolith is known to be basalt, the rock will be described as a metabasalt. Likewise, a metamorphic rock whose protolith is known to be a conglomerate will be described as a metaconglomerate. For a metamorphic rock to be classified in this manner, the protolith should be identifiable from the characteristics of the metamorphic rock itself, and not inferred from other information.

Under the British Geological Survey's classification system, if all that can be determined about the protolith is its general type, such as sedimentary or volcanic, the classification is based on the mineral mode (the volume percentages of different minerals in the rock). Metasedimentary rocks are divided into carbonate-rich rock (metacarbonates or calcsilicate-rocks) or carbonate-poor rocks, and the latter are further classified by the relative abundance of mica in their composition. This ranges from low-mica psammite through semipelite to high-mica pelite. Psammites composed mostly of quartz are classified as quartzite. Metaigneous rocks are classified similarly to igneous rocks, by silica content, from meta-ultramafic-rock (which is very low in silica) to metafelsic-rock (with a high silica content).

Where the mineral mode cannot be determined, as is often the case when rock is first examined in the field, then classification must be based on texture. The textural types are:

  • Schists, which are medium-grained strongly foliated rocks. These show the most well-developed schistosity, defined as the extent to which platy minerals are present and are aligned in a single direction, so that the rock easily splits into plates less than a centimeter (0.4 inches) thick.
  • Gneisses, which are more coarse grained and show thicker foliation that schists, with layers over 5mm thick. These show less well-developed schistosity.
  • Granofels, which show no obvious foliation or schistosity.

A hornfels is a granofels that is known to result from contact metamorphism. A slate is a fine-grained metamorphic rock that easily splits into thin plates but shows no obvious compositional layering. The term is used only when very little else is known about the rock that would allow a more definite classification. Textural classifications may be prefixed to indicate a sedimentary protolith (para-, such as paraschist) or igneous protolith (ortho-, such as orthogneiss). When nothing is known about the protolith, the textural name is used without a prefix. For example, a schist is a rock with schistose texture whose protolith is uncertain.

Special classifications exist for metamorphic rocks with a volcaniclastic protolith or formed along a fault or through hydrothermal circulation. A few special names are used for rocks of unknown protolith but known modal composition, such as marble, eclogite, or amphibolite. Special names may also be applied more generally to rocks dominated by a single mineral, or with a distinctive composition or mode or origin. Special names still in wide use include amphibolite, greenschist, phyllite, marble, serpentinite, eclogite, migmatite, skarn, granulite, mylonite, and slate.

The basic classification can be supplemented by terms describing mineral content or texture. For example, a metabasalt showing weak schistosity might be described as a gneissic metabasalt, and a pelite containing abundant staurolite might be described as a staurolite pelite.

Metamorphic facies

Metamorphic facies blanc.svg

T (°C)
0
100
200
300
400
500
600
700
800
900
1000
0
2
4
6
8
10
12
14
16
18
20
Figure 1. Diagram showing metamorphic facies in pressure-temperature space. The domain of the
graph corresponds to conditions within the Earth's crust and upper mantle.

A metamorphic facies is a set of distinctive assemblages of minerals that are found in metamorphic rock that formed under a specific combination of pressure and temperature. The particular assemblage is somewhat dependent on the composition of that protolith, so that (for example) the amphibolite facies of a marble will not be identical with the amphibolite facies of a pelite. However, the facies are defined such that metamorphic rock with as broad a range of compositions as is practical can be assigned to a particular facies. The present definition of metamorphic facies is largely based on the work of the Finnish geologist, Pentti Eskola, with refinements based on subsequent experimental work. Eskola drew upon the zonal schemes, based on index minerals, that were pioneered by the British geologist, George Barrow.

The metamorphic facies is not usually considered when classifying metamorphic rock based on protolith, mineral mode, or texture. However, a few metamorphic facies produce rock of such distinctive character that the facies name is used for the rock when more precise classification is not possible. The chief examples are amphibolite and eclogite. The British Geological Survey strongly discourages the use of granulite as a classification for rock metamorphosed to the granulite facies. Instead, such rock will often be classified as a granofels. However, this approach is not universally accepted.

Occurrence

Metamorphic rocks make up a large part of the Earth's crust and form 12% of the Earth's land surface. The lower continental crust is mostly metamafic-rock and pelite which have reached the granulite facies. The middle continental crust is dominated by metamorphic rock that has reached the amphibolite facies. Within the upper crust, which is the only part of the Earth's crust geologists can directly sample, metamorphic rock forms only from processes that can occur at shallow depth. These are contact (thermal) metamorphism, dynamic (cataclastic) metamorphism, hydrothermal metamorphism, and impact metamorphism. These processes are relatively local in occurrence and usually reach only the low-pressure facies, such as the hornfels and sanidinite facies. Most metamorphic rock is formed by regional metamorphism in the middle and lower crust, where the rock reaches the higher-pressure metamorphic facies. This rock is found at the surface only where extensive uplift and erosion has exhumed rock that was formerly much deeper in the crust.

Orogenic belts

Metamorphic rock is extensively exposed in orogenic belts produced by the collision of tectonic plates at convergent boundaries. Here formerly deeply buried rock has been brought to the surface by uplift and erosion. The metamorphic rock exposed in orogenic belts may have been metamorphosed simply by being at great depths below the Earth's surface, subjected to high temperatures and the great pressure caused by the immense weight of the rock layers above. This kind of regional metamorphism is known as burial metamorphism. This tends to produced low-grade metamorphic rock. Much more common is metamorphic rock formed during the collision process itself. The collision of plates causes high temperatures, pressures and deformation in the rocks along these belts. Metamorphic rock formed in these settings tends to shown well-developed schistosity.

Metamorphic rock of orogenic belts shows a variety of metamorphic facies. Where subduction is taking place, the basalt of the subducting slab is metamorphosed to high-pressure metamorphic facies. It initially undergoes low-grade metamorphism to metabasalt of the zeolite and prehnite-pumpellyite facies, but as the basalt subducts to greater depths, it is metamorphosed to the blueschist facies and then the eclogite facies. Metamorphism to the eclogite facies releases a great deal of water vapor from the rock, which drives volcanism in the overlying volcanic arc. Eclogite is also significantly denser than blueschist, which drives further subduction of the slab deep into the Earth's mantle. Metabasalt and blueschist may be preserved in blueschist metamorphic belts formed by collisions between continents. They may also be preserved by obduction onto the overriding plate as part of ophiolites. Eclogites are occasionally found at sites of continental collision, where the subducted rock is rapidly brought back to the surface, before it can be converted to the granulite facies in the hot upper mantle. Many samples of eclogite are xenoliths brought to the surface by volcanic activity.

Many orogenic belts contain higher-temperature, lower-pressure metamorphic belts. These may form through heating of the rock by ascending magmas of volcanic arcs, but on a regional scale. Deformation and crustal thickening in an orogenic belt may also produce these kinds of metamorphic rocks. These rocks reach the greenschist, amphibolite, or granulite facies and are the most common of metamorphic rocks produced by regional metamorphosis. The association of an outer high-pressure, low-temperature metamorphic zone with an inner zone of low-pressure, high-temperature metamorphic rocks is called a paired metamorphic belt. The main islands of Japan show three distinct paired metamorphic belts, corresponding to different episodes of subduction.

Metamorphic core complexes

Metamorphic rock is also exposed in metamorphic core complexes, which form in region of crustal extension. They are characterized by low-angle faulting that exposes domes of middle or lower crust metamorphic rock. These were first recognized and studied in the Basin and Range Province of southwestern North America, but are also found in southern Aegean Sea, in the D'Entrecasteaux Islands, and in other areas of extension.

Granite-greenstone belts

Continental shields are regions of exposed ancient rock that make up the stable cores of continents. The rock exposed in the oldest regions of shields, which is of Archean age (over 2500 million years old), mostly belong to granite-greenstone belts. The greenstone belts contain metavolcanic and metasedimentary rock that has undergone a relatively mild grade of metamorphism, at temperatures of 350–500 °C (662–932 °F) and pressures of 200–500 MPa (2,000–5,000 bar). They can be divided into a lower group of metabasalts, including rare metakomatiites; a middle group of meta-intermediate-rock and meta-felsic-rock; and an upper group of metasedimentary rock.

The greenstone belts are surrounded by high-grade gneiss terrains showing highly deformed low-pressure, high-temperature (over 500 °C (932 °F)) metamorphism to the amphibolite or granulite facies. These form most of the exposed rock in Archean cratons.

The granite-greenstone belts are intruded by a distinctive group of granitic rocks called the tonalite-trondhjemite-granodiorite or TTG suite. These are the most voluminous rocks in the craton and may represent an important early phase in the formation of continental crust.

Mid-ocean ridges

Mid-ocean ridges are where new oceanic crust is formed as tectonic plates move apart. Hydrothermal metamorphism is extensive here. This is characterized by metasomatism by hot fluids circulating through the rock. This produces metamorphic rock of the greenschist facies. The metamorphic rock, serpentinite, is particularly characteristic of these settings, and represents chemical transformation of olivine and pyroxene in ultramafic rock to serpentine group minerals.

Contact aureoles

A contact metamorphic rock made of interlayered calcite and serpentine from the Precambrian of Canada. Once thought to be a pseudofossil called Eozoön canadense. Scale in mm.
 
Rock contact metamorphism eng big text.jpg

Contact metamorphism takes place when magma is injected into the surrounding solid rock (country rock). The changes that occur are greatest wherever the magma comes into contact with the rock because the temperatures are highest at this boundary and decrease with distance from it. Around the igneous rock that forms from the cooling magma is a metamorphosed zone called a contact aureole. Aureoles may show all degrees of metamorphism from the contact area to unmetamorphosed (unchanged) country rock some distance away. The formation of important ore minerals may occur by the process of metasomatism at or near the contact zone. Contact aureoles around large plutons may be as much as several kilometers wide.

The term hornfels is often used by geologists to signify those fine grained, compact, non-foliated products of contact metamorphism. The contact aureole typically shows little deformation, and so hornfels is usually devoid of schistosity and forms a tough, equigranular rock. If the rock was originally banded or foliated (as, for example, a laminated sandstone or a foliated calc-schist) this character may not be obliterated, and a banded hornfels is the product. Contact metamorphism close to the surface produces distinctive low-pressure metamorphic minerals, such as spinel, andalusite, vesuvianite, or wollastonite.

Similar changes may be induced in shales by the burning of coal seams. This produces a rock type named clinker.

There is also a tendency for metasomatism between the igneous magma and sedimentary country rock, whereby the chemicals in each are exchanged or introduced into the other. In that case, hybrid rocks called skarn arise.

Other occurrences

Dynamic (cataclastic) metamorphism takes place locally along faults. Here intense shearing of the rock typically forms mylonites. 

Impact metamorphism is unlike other forms of metamorphism in that it takes place during impact events by extraterrestrial bodies. It produces rare ultrahigh pressure metamorphic minerals, such as coesite and stishovite. Coesite is rarely found in eclogite brought to the surface in kimberlite pipes, but the presence of stishovite is unique to impact structures.

Uses

Slate tiles are used in construction, particularly as roof shingle.

Quartzite is sufficiently hard and dense that it is difficult to quarry. However, some quartzite is used as dimension stone, often as slabs for flooring, walls, or stair steps. About 6% of crushed stone, used mostly for road aggregate, is quartzite.

Marble is also prized for building construction and as a medium for sculpture.

Hazards

Schistose bedrock can pose a challenge for civil engineering because of its pronounced planes of weakness. A hazard may exist even in undisturbed terrain. On August 17, 1959, a magnitude 7.2 earthquake destabilized a mountain slope near Hebgen Lake, Montana, composed of schist. This caused a massive landslide that killed 26 people camping in the area.

Metamorphosed ultramafic rock contains serpentine group minerals, which includes varieties of asbestos that pose a hazard to human health.

Operator (computer programming)

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Operator_(computer_programmin...