Search This Blog

Monday, March 13, 2023

Chagas disease

From Wikipedia, the free encyclopedia
 
Chagas disease
Other namesAmerican trypanosomiasis
Crescent-shaped Trypanosoma cruzi parasites surrounded by red blood cells
Photomicrograph of Giemsa-stained Trypanosoma cruzi trypomastigotes in human blood
Pronunciation
SpecialtyInfectious disease
SymptomsFever, large lymph nodes, headache
ComplicationsHeart failure, enlarged esophagus, enlarged colon
CausesTrypanosoma cruzi spread by kissing bugs
Diagnostic methodFinding the parasite, its DNA, or antibodies in the blood
PreventionEliminating kissing bugs and avoiding their bites
MedicationBenznidazole, nifurtimox
Frequency6.5 million (2019)
Deaths9,490 (2019)

Chagas disease, also known as American trypanosomiasis, is a tropical parasitic disease caused by Trypanosoma cruzi. It is spread mostly by insects in the subfamily Triatominae, known as "kissing bugs". The symptoms change over the course of the infection. In the early stage, symptoms are typically either not present or mild, and may include fever, swollen lymph nodes, headaches, or swelling at the site of the bite. After four to eight weeks, untreated individuals enter the chronic phase of disease, which in most cases does not result in further symptoms. Up to 45% of people with chronic infections develop heart disease 10–30 years after the initial illness, which can lead to heart failure. Digestive complications, including an enlarged esophagus or an enlarged colon, may also occur in up to 21% of people, and up to 10% of people may experience nerve damage.

T. cruzi is commonly spread to humans and other mammals by the bite of a kissing bug. The disease may also be spread through blood transfusion, organ transplantation, consuming food or drink contaminated with the parasites, and vertical transmission (from a mother to her baby). Diagnosis of early disease is by finding the parasite in the blood using a microscope or detecting its DNA by polymerase chain reaction. Chronic disease is diagnosed by finding antibodies for T. cruzi in the blood.

Prevention focuses on eliminating kissing bugs and avoiding their bites. This may involve the use of insecticides or bed-nets. Other preventive efforts include screening blood used for transfusions. Early infections are treatable with the medications benznidazole or nifurtimox, which usually cure the disease if given shortly after the person is infected, but become less effective the longer a person has had Chagas disease. When used in chronic disease, medication may delay or prevent the development of end-stage symptoms. Benznidazole and nifurtimox often cause side effects, including skin disorders, digestive system irritation, and neurological symptoms, which can result in treatment being discontinued. New drugs for Chagas disease are under development, and experimental vaccines have been studied in animal models, a human vaccine has not been developed.

It is estimated that 6.5 million people, mostly in Mexico, Central America and South America, have Chagas disease as of 2019, resulting in approximately 9,490 annual deaths.st people with the disease are poor, and most do not realize they are infected. Large-scale population migrations have carried Chagas disease to new regions, which include the United States and many European countries. The disease affects more than 150 types of animals.

The disease was first described in 1909 by Brazilian physician Carlos Chagas, after whom it is named. Chagas disease is classified as a neglected tropical disease.

Signs and symptoms

Black and white photo of a young boy with a swollen right eye
An acute Chagas disease infection with swelling of the right eye (Romaña's sign)

Chagas disease occurs in two stages: an acute stage, which develops one to two weeks after the insect bite, and a chronic stage, which develops over many years. The acute stage is often symptom-free. When present, the symptoms are typically minor and not specific to any particular disease. Signs and symptoms include fever, malaise, headache, and enlargement of the liver, spleen, and lymph nodes. Sometimes, people develop a swollen nodule at the site of infection, which is called "Romaña's sign" if it is on the eyelid, or a "chagoma" if it is elsewhere on the skin. In rare cases (less than 1–5%), infected individuals develop severe acute disease, which can involve inflammation of the heart muscle, fluid accumulation around the heart, and inflammation of the brain and surrounding tissues, and may be life-threatening. The acute phase typically lasts four to eight weeks and resolves without treatment.

Unless treated with antiparasitic drugs, individuals remain infected with T. cruzi after recovering from the acute phase. Most chronic infections are asymptomatic, which is referred to as indeterminate chronic Chagas disease. However, over decades with the disease, approximately 30–40% of people develop organ dysfunction (determinate chronic Chagas disease), which most often affects the heart or digestive system.

The most common long-term manifestation is heart disease, which occurs in 14–45% of people with chronic Chagas disease. People with Chagas heart disease often experience heart palpitations, and sometimes fainting, due to irregular heart function. By electrocardiogram, people with Chagas heart disease most frequently have arrhythmias. As the disease progresses, the heart's ventricles become enlarged (dilated cardiomyopathy), which reduces its ability to pump blood. In many cases the first sign of Chagas heart disease is heart failure, thromboembolism, or chest pain associated with abnormalities in the microvasculature.

Also common in chronic Chagas disease is damage to the digestive system, which affects 10–21% of people. Enlargement of the esophagus or colon are the most common digestive issues. Those with enlarged esophagus often experience pain (odynophagia) or trouble swallowing (dysphagia), acid reflux, cough, and weight loss. Individuals with enlarged colon often experience constipation, and may develop severe blockage of the intestine or its blood supply. Up to 10% of chronically infected individuals develop nerve damage that can result in numbness and altered reflexes or movement. While chronic disease typically develops over decades, some individuals with Chagas disease (less than 10%) progress to heart damage directly after acute disease.

Signs and symptoms differ for people infected with T. cruzi through less common routes. People infected through ingestion of parasites tend to develop severe disease within three weeks of consumption, with symptoms including fever, vomiting, shortness of breath, cough, and pain in the chest, abdomen, and muscles. Those infected congenitally typically have few to no symptoms, but can have mild non-specific symptoms, or severe symptoms such as jaundice, respiratory distress, and heart problems. People infected through organ transplant or blood transfusion tend to have symptoms similar to those of vector-borne disease, but the symptoms may not manifest for anywhere from a week to five months. Chronically infected individuals who become immunosuppressed due to HIV infection can have particularly severe and distinct disease, most commonly characterized by inflammation in the brain and surrounding tissue or brain abscesses. Symptoms vary widely based on the size and location of brain abscesses, but typically include fever, headaches, seizures, loss of sensation, or other neurological issues that indicate particular sites of nervous system damage. Occasionally, these individuals also experience acute heart inflammation, skin lesions, and disease of the stomach, intestine, or peritoneum.

Cause

See "Cause" section.
Life cycle and transmission of T. cruzi

Chagas disease is caused by infection with the protozoan parasite T. cruzi, which is typically introduced into humans through the bite of triatomine bugs, also called "kissing bugs". When the insect defecates at the bite site, motile T. cruzi forms called trypomastigotes enter the bloodstream and invade various host cells. Inside a host cell, the parasite transforms into a replicative form called an amastigote, which undergoes several rounds of replication. The replicated amastigotes transform back into trypomastigotes, which burst the host cell and are released into the bloodstream. Trypomastigotes then disseminate throughout the body to various tissues, where they invade cells and replicate. Over many years, cycles of parasite replication and immune response can severely damage these tissues, particularly the heart and digestive tract.

Transmission

A brown winged insect
Triatoma infestans, a common vector of T. cruzi

T. cruzi can be transmitted by various triatomine bugs in the genera Triatoma, Panstrongylus, and Rhodnius. The primary vectors for human infection are the species of triatomine bugs that inhabit human dwellings, namely Triatoma infestans, Rhodnius prolixus, Triatoma dimidiata and Panstrongylus megistus. These insects are known by a number of local names, including vinchuca in Argentina, Bolivia, Chile and Paraguay, barbeiro (the barber) in Brazil, pito in Colombia, chinche in Central America, and chipo in Venezuela. The bugs tend to feed at night, preferring moist surfaces near the eyes or mouth. A triatomine bug can become infected with T. cruzi when it feeds on an infected host. T. cruzi replicates in the insect's intestinal tract and is shed in the bug's feces. When an infected triatomine feeds, it pierces the skin and takes in a blood meal, defecating at the same time to make room for the new meal. The bite is typically painless, but causes itching. Scratching at the bite introduces the T. cruzi-laden feces into the bite wound, initiating infection.

In addition to classical vector spread, Chagas disease can be transmitted through consumption of food or drink contaminated with triatomine insects or their feces. Since heating or drying kills the parasites, drinks and especially fruit juices are the most frequent source of infection. This oral route of transmission has been implicated in several outbreaks, where it led to unusually severe symptoms, likely due to infection with a higher parasite load than from the bite of a triatomine bug.

T. cruzi can be transmitted independent of the triatomine bug during blood transfusion, following organ transplantation, or across the placenta during pregnancy. Transfusion with the blood of an infected donor infects the recipient 10–25% of the time. To prevent this, blood donations are screened for T. cruzi in many countries with endemic Chagas disease, as well as the United States. Similarly, transplantation of solid organs from an infected donor can transmit T. cruzi to the recipient. This is especially true for heart transplant, which transmits T. cruzi 75–100% of the time, and less so for transplantation of the liver (0–29%) or a kidney (0–19%). An infected mother can pass T. cruzi to her child through the placenta; this occurs in up to 15% of births by infected mothers. As of 2019, 22.5% of new infections occurred through congenital transmission.

Pathophysiology

Photograph of a heart showing perforation of the walls
Large scale anatomy of a heart damaged by chronic Chagas disease

In the acute phase of the disease, signs and symptoms are caused directly by the replication of T. cruzi and the immune system's response to it. During this phase, T. cruzi can be found in various tissues throughout the body and circulating in the blood. During the initial weeks of infection, parasite replication is brought under control by production of antibodies and activation of the host's inflammatory response, particularly cells that target intracellular pathogens such as NK cells and macrophages, driven by inflammation-signaling molecules like TNF-α and IFN-γ.

During chronic Chagas disease, long-term organ damage develops over years due to continued replication of the parasite and damage from the immune system. Early in the course of the disease, T. cruzi is found frequently in the striated muscle fibers of the heart. As disease progresses, the heart becomes generally enlarged, with substantial regions of cardiac muscle fiber replaced by scar tissue and fat. Areas of active inflammation are scattered throughout the heart, with each housing inflammatory immune cells, typically macrophages and T cells. Late in the disease, parasites are rarely detected in the heart, and may be present at only very low levels.

In the heart, colon, and esophagus, chronic disease leads to a massive loss of nerve endings. In the heart, this may contribute to arrythmias and other cardiac dysfunction. In the colon and esophagus, loss of nervous system control is the major driver of organ dysfunction. Loss of nerves impairs the movement of food through the digestive tract, which can lead to blockage of the esophagus or colon and restriction of their blood supply.

Diagnosis

Four T. cruzi parasites surrounded by red blood cells. Undulating membranes, flagella, and kinetoplasts are visible.
T. cruzi trypomastigotes seen in a blood smear

The presence of T. cruzi in the blood is diagnostic of Chagas disease. During the acute phase of infection, it can be detected by microscopic examination of fresh anticoagulated blood, or its buffy coat, for motile parasites; or by preparation of thin and thick blood smears stained with Giemsa, for direct visualization of parasites. Blood smear examination detects parasites in 34–85% of cases. The sensitivity increases if techniques such as microhematocrit centrifugation are used to concentrate the blood. On microscopic examination of stained blood smears, T. cruzi trypomastigotes appear as S or U-shaped organisms with a flagellum connected to the body by an undulating membrane. A nucleus and a smaller structure called a kinetoplast are visible inside the parasite's body; the kinetoplast of T. cruzi is relatively large, which helps to distinguish it from other species of trypanosomes that infect humans.

Alternatively, T. cruzi DNA can be detected by polymerase chain reaction (PCR). In acute and congenital Chagas disease, PCR is more sensitive than microscopy, and it is more reliable than antibody-based tests for the diagnosis of congenital disease because it is not affected by transfer of antibodies against T. cruzi from a mother to her baby (passive immunity). PCR is also used to monitor T. cruzi levels in organ transplant recipients and immunosuppressed people, which allows infection or reactivation to be detected at an early stage.

In chronic Chagas disease, the concentration of parasites in the blood is too low to be reliably detected by microscopy or PCR, so the diagnosis is usually made using serological tests, which detect immunoglobulin G antibodies against T. cruzi in the blood. Two positive serology results, using different test methods, are required to confirm the diagnosis. If the test results are inconclusive, additional testing methods such as Western blot can be used.

Various rapid diagnostic tests for Chagas disease are available. These tests are easily transported and can be performed by people without special training. They are useful for screening large numbers of people and testing people who cannot access healthcare facilities, but their sensitivity is relatively low, and it is recommended that a second method is used to confirm a positive result.

T. cruzi parasites can be grown from blood samples by blood culture, xenodiagnosis, or by inoculating animals with the person's blood. In the blood culture method, the person's red blood cells are separated from the plasma and added to a specialized growth medium to encourage multiplication of the parasite. It can take up to six months to obtain the result. Xenodiagnosis involves feeding the blood to triatomine insects, then examining their feces for the parasite 30 to 60 days later. These methods are not routinely used, as they are slow and have low sensitivity.

Prevention

A net hanging over a bed
Bed nets can be used in endemic areas to prevent bites from triatomine bugs.

Efforts to prevent Chagas disease have largely focused on vector control to limit exposure to triatomine bugs. Insecticide-spraying programs have been the mainstay of vector control, consisting of spraying homes and the surrounding areas with residual insecticides. This was originally done with organochlorine, organophosphate, and carbamate insecticides, which were supplanted in the 1980s with pyrethroids. These programs have drastically reduced transmission in Brazil and Chile, and eliminated major vectors from certain regions: Triatoma infestans from Brazil, Chile, Uruguay, and parts of Peru and Paraguay, as well as Rhodnius prolixus from Central America. Vector control in some regions has been hindered by the development of insecticide resistance among triatomine bugs. In response, vector control programs have implemented alternative insecticides (e.g. fenitrothion and bendiocarb in Argentina and Bolivia), treatment of domesticated animals (which are also fed on by triatomine bugs) with pesticides, pesticide-impregnated paints, and other experimental approaches. In areas with triatomine bugs, transmission of T. cruzi can be prevented by sleeping under bed nets and by housing improvements that prevent triatomine bugs from colonizing houses.

Blood transfusion was formerly the second-most common mode of transmission for Chagas disease. T. cruzi can survive in refrigerated stored blood, and can survive freezing and thawing, allowing it to persist in whole blood, packed red blood cells, granulocytes, cryoprecipitate, and platelets. The development and implementation of blood bank screening tests has dramatically reduced the risk of infection during blood transfusion. Nearly all blood donations in Latin American countries undergo Chagas screening. Widespread screening is also common in non-endemic nations with significant populations of immigrants from endemic areas, including the United Kingdom (implemented in 1999), Spain (2005), the United States (2007), France and Sweden (2009), Switzerland (2012), and Belgium (2013). Serological tests, typically ELISAs, are used to detect antibodies against T. cruzi proteins in donor blood.

Other modes of transmission have been targeted by Chagas disease prevention programs. Treating T. cruzi-infected mothers during pregnancy reduces the risk of congenital transmission of the infection. To this end, many countries in Latin America have implemented routine screening of pregnant women and infants for T. cruzi infection, and the World Health Organization recommends screening all children born to infected mothers to prevent congenital infection from developing into chronic disease. Similarly to blood transfusions, many countries with endemic Chagas disease screen organs for transplantation with serological tests.

There is no vaccine against Chagas disease. Several experimental vaccines have been tested in animals infected with T. cruzi and were able to reduce parasite numbers in the blood and heart, but no vaccine candidates had undergone clinical trials in humans as of 2016.

Management

A brown glass bottle of pills, labeled "Lampit (nifurtimox)"
A bottle of nifurtimox tablets

Chagas disease is managed using antiparasitic drugs to eliminate T. cruzi from the body, and symptomatic treatment to address the effects of the infection. As of 2018, benznidazole and nifurtimox were the antiparasitic drugs of choice for treating Chagas disease, though benznidazole is the only drug available in most of Latin America. For either drug, treatment typically consists of two to three oral doses per day for 60 to 90 days. Antiparasitic treatment is most effective early in the course of infection: it eliminates T. cruzi from 50 to 80% of people in the acute phase, but only 20–60% of those in the chronic phase. Treatment of chronic disease is more effective in children than in adults, and the cure rate for congenital disease approaches 100% if treated in the first year of life. Antiparasitic treatment can also slow the progression of the disease and reduce the possibility of congenital transmission. Elimination of T. cruzi does not cure the cardiac and gastrointestinal damage caused by chronic Chagas disease, so these conditions must be treated separately. Antiparasitic treatment is not recommended for people who have already developed dilated cardiomyopathy.

Benznidazole is usually considered the first-line treatment because it has milder adverse effects than nifurtimox, and its efficacy is better understood. Both benznidazole and nifurtimox have common side effects that can result in treatment being discontinued. The most common side effects of benznidazole are skin rash, digestive problems, decreased appetite, weakness, headache, and sleeping problems. These side effects can sometimes be treated with antihistamines or corticosteroids, and are generally reversed when treatment is stopped. However, benzidazole is discontinued in up to 29% of cases. Nifurtimox has more frequent side effects, affecting up to 97.5% of individuals taking the drug. The most common side effects are loss of appetite, weight loss, nausea and vomiting, and various neurological disorders including mood changes, insomnia, paresthesia and peripheral neuropathy. Treatment is discontinued in up to 75% of cases. Both drugs are contraindicated for use in pregnant women and people with liver or kidney failure. As of 2019, resistance to these drugs has been reported.

Complications

In the chronic stage, treatment involves managing the clinical manifestations of the disease. The treatment of Chagas cardiomyopathy is similar to that of other forms of heart disease. Beta blockers and ACE inhibitors may be prescribed, but some people with Chagas disease may not be able to take the standard dose of these drugs because they have low blood pressure or a low heart rate. To manage irregular heartbeats, people may be prescribed anti-arrhythmic drugs such as amiodarone, or have a pacemaker implanted. Blood thinners may be used to prevent thromboembolism and stroke. Chronic heart disease caused by Chagas is a common reason for heart transplantation surgery. Because transplant recipients take immunosuppressive drugs to prevent organ rejection, they are monitored using PCR to detect reactivation of the disease. People with Chagas disease who undergo heart transplantation have higher survival rates than the average heart transplant recipient.

Mild gastrointestinal disease may be treated symptomatically, such as by using laxatives for constipation, or taking a prokinetic drug like metoclopramide before meals to relieve esophageal symptoms. Surgery to sever the muscles of the lower esophageal sphincter (cardiomyotomy) may be performed in more severe cases of esophageal disease, and surgical removal of the affected part of the organ may be required for advanced megacolon and megaesophagus.

Epidemiology

A world map. South America and Mexico are red, the United States is yellow, and Canada, Japan, Australia, the United Kingdom, Scandinavia, Romania, and most of Western Europe is blue.
Epidemiology of Chagas disease circa 2011: red is endemic countries where spread is through vectors; yellow is endemic countries where spread is occasionally through vectors; blue is non-endemic countries where spread is through blood transfusions and migration.
 
See description.
Disability-adjusted life years due to Chagas disease in 2016. Grey indicates no data. Otherwise, colors get increasingly dark red for each order of magnitude increase in DALY burden: 0, white. Up to 1,000 DALYs, yellow. 1,001 to 10,000 DALYs, orange. 10,001 to 100,000 DALYs, light red. Greater than 100,000 DALYs, dark red.

In 2019, an estimated 6.5 million people worldwide had Chagas disease, with approximately 173,000 new infections and 9,490 deaths each year. The disease resulted in a global annual economic burden estimated at US$7.2 billion in 2013, 86% of which is borne by endemic countries. Chagas disease results in the loss of over 800,000 disability-adjusted life years each year.

The endemic area of Chagas disease stretches from the southern United States to northern Chile and Argentina, with Bolivia (6.1%), Argentina (3.6%), and Paraguay (2.1%) exhibiting the highest prevalence of the disease. Within continental Latin America, Chagas disease is endemic to 21 countries: Argentina, Belize, Bolivia, Brazil, Chile, Colombia, Costa Rica, Ecuador, El Salvador, French Guiana, Guatemala, Guyana, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Suriname, Uruguay, and Venezuela. In endemic areas, due largely to vector control efforts and screening of blood donations, annual infections and deaths have fallen by 67% and more than 73% respectively from their peaks in the 1980s to 2010. Transmission by insect vector and blood transfusion has been completely interrupted in Uruguay (1997), Chile (1999), and Brazil (2006), and in Argentina, vectorial transmission had been interrupted in 13 of the 19 endemic provinces as of 2001. During Venezuela's humanitarian crisis, vectorial transmission has begun occurring in areas where it had previously been interrupted, and Chagas disease seroprevalence rates have increased. Transmission rates have also risen in the Gran Chaco region due to insecticide resistance and in the Amazon basin due to oral transmission.

While the rate of vector-transmitted Chagas disease has declined throughout most of Latin America, the rate of orally transmitted disease has risen, possibly due to increasing urbanization and deforestation bringing people into closer contact with triatomines and altering the distribution of triatomine species. Orally transmitted Chagas disease is of particular concern in Venezuela, where 16 outbreaks have been recorded between 2007 and 2018.

Chagas exists in two different ecological zones: In the Southern Cone region, the main vector lives in and around human homes. In Central America and Mexico, the main vector species lives both inside dwellings and in uninhabited areas. In both zones, Chagas occurs almost exclusively in rural areas, where T. cruzi also circulates in wild and domestic animals. T. cruzi commonly infects more than 100 species of mammals across Latin America including opossums (Didelphis spp.), armadillos, marmosets, bats, various rodents and dogs all of which can be infected by the vectors or orally by eating triatomine bugs and other infected animals. For entomophagous animals this is a common mode. Didelphis spp. are unique in that they do not require the triatomine for transmission, completing the life cycle through their own urine and feces. Veterinary transmission also occurs through vertical transmission through the placenta, blood transfusion and organ transplants.

Non-endemic countries

Though Chagas is traditionally considered a disease of rural Latin America, international migration has dispersed those with the disease to numerous non-endemic countries, primarily in North America and Europe. As of 2020, approximately 300,000 infected people are living in the United States, and in 2018 it was estimated that 30,000 to 40,000 Americans had Chagas cardiomyopathy. The vast majority of cases in the United States occur in immigrants from Latin America, but local transmission is possible. Eleven triatomine species are native to the United States, and some southern states have persistent cycles of disease transmission between insect vectors and animal reservoirs, which include woodrats, possums, raccoons, armadillos and skunks. However, locally acquired infection is very rare: only 28 cases were documented from 1955 to 2015. As of 2013, the cost of treatment in the United States was estimated to be US$900 million annually (global cost $7 billion), which included hospitalization and medical devices such as pacemakers.

Chagas disease affects approximately 68,000 to 123,000 people in Europe as of 2019. Spain, which has a high rate of immigration from Latin America, has the highest prevalence of the disease. It is estimated that 50,000 to 70,000 Spanish people are living with Chagas disease, accounting for the majority of European cases. The prevalence varies widely within European countries due to differing immigration patterns. Italy has the second highest prevalence, followed by the Netherlands, the United Kingdom, and Germany.

History

Black and white photo of Charlos Chagas, in his lab coat, sitting next to his microscope and surrounded by flasks and jars

T. cruzi likely circulated in South American mammals long before the arrival of humans on the continent. T. cruzi has been detected in ancient human remains across South America, from a 9000-year-old Chinchorro mummy in the Atacama Desert, to remains of various ages in Minas Gerais, to an 1100-year-old mummy as far north as the Chihuahuan Desert near the Rio Grande. Many early written accounts describe symptoms consistent with Chagas disease, with early descriptions of the disease sometimes attributed to Miguel Diaz Pimenta (1707), Luís Gomes Ferreira [pt] (1735), and Theodoro J. H. Langgaard (1842).

The formal description of Chagas disease was made by Carlos Chagas in 1909 after examining a two-year-old girl with fever, swollen lymph nodes, and an enlarged spleen and liver. Upon examination of her blood, Chagas saw trypanosomes identical to those he had recently identified from the hindgut of triatomine bugs and named Trypanosoma cruzi in honor of his mentor, Brazilian physician Oswaldo Cruz. He sent infected triatomine bugs to Cruz in Rio de Janeiro, who showed the bite of the infected triatomine could transmit T. cruzi to marmoset monkeys as well. In just two years, 1908 and 1909, Chagas published descriptions of the disease, the organism that caused it, and the insect vector required for infection. Almost immediately thereafter, at the suggestion of Miguel Couto, then professor of the Faculdade de Medicina do Rio de Janeiro [pt], the disease was widely referred to as "Chagas disease". Chagas' discovery brought him national and international renown, but in highlighting the inadequacies of the Brazilian government's response to the disease, Chagas attracted criticism to himself and to the disease that bore his name, stifling research on his discovery and likely frustrating his nomination for the Nobel Prize in 1921.

In the 1930s, Salvador Mazza rekindled Chagas disease research, describing over a thousand cases in Argentina's Chaco Province. In Argentina, the disease is known as mal de Chagas-Mazza in his honor. Serological tests for Chagas disease were introduced in the 1940s, demonstrating that infection with T. cruzi was widespread across Latin America. This, combined with successes eliminating the malaria vector through insecticide use, spurred the creation of public health campaigns focused on treating houses with insecticides to eradicate triatomine bugs. The 1950s saw the discovery that treating blood with crystal violet could eradicate the parasite, leading to its widespread use in transfusion screening programs in Latin America. Large-scale control programs began to take form in the 1960s, first in São Paulo, then various locations in Argentina, then national-level programs across Latin America. These programs received a major boost in the 1980s with the introduction of pyrethroid insecticides, which did not leave stains or odors after application and were longer-lasting and more cost-effective. Regional bodies dedicated to controlling Chagas disease arose through support of the Pan American Health Organization, with the Initiative of the Southern Cone for the Elimination of Chagas Diseases launching in 1991, followed by the Initiative of the Andean countries (1997), Initiative of the Central American countries (1997), and the Initiative of the Amazon countries (2004).

Research

Treatments

Fexinidazole, an antiparasitic drug approved for treating African trypanosomiasis, has shown activity against Chagas disease in animal models. As of 2019, it is undergoing phase II clinical trials for chronic Chagas disease in Spain. Other drug candidates include GNF6702, a proteasome inhibitor that is effective against Chagas disease in mice and is undergoing preliminary toxicity studies, and AN4169, which has had promising results in animal models.

A number of experimental vaccines have been tested in animals. In addition to subunit vaccines, some approaches have involved vaccination with attenuated T. cruzi parasites or organisms that express some of the same antigens as T. cruzi but do not cause human disease, such as Trypanosoma rangeli or Phytomonas serpens. DNA vaccination has also been explored. As of 2019, vaccine research has mainly been limited to small animal models.

Diagnostic tests

As of 2018, standard diagnostic tests for Chagas disease were limited in their ability to measure the effectiveness of antiparasitic treatment, as serological tests may remain positive for years after T. cruzi is eliminated from the body, and PCR may give false-negative results when the parasite concentration in the blood is low. Several potential biomarkers of treatment response are under investigation, such as immunoassays against specific T. cruzi antigens, flow cytometry testing to detect antibodies against different life stages of T. cruzi, and markers of physiological changes caused by the parasite, such as alterations in coagulation and lipid metabolism.

Another research area is the use of biomarkers to predict the progression of chronic disease. Serum levels of tumor necrosis factor alpha, brain and atrial natriuretic peptide, and angiotensin-converting enzyme 2 have been studied as indicators of the prognosis of Chagas cardiomyopathy.

T. cruzi shed acute-phase antigen (SAPA), which can be detected in blood using ELISA or Western blot, has been used as an indicator of early acute and congenital infection. An assay for T. cruzi antigens in urine has been developed to diagnose congenital disease.

Globalization and disease

From Wikipedia, the free encyclopedia

Globalization, the flow of information, goods, capital, and people across political and geographic boundaries, allows infectious diseases to rapidly spread around the world, while also allowing the alleviation of factors such as hunger and poverty, which are key determinants of global health. The spread of diseases across wide geographic scales has increased through history. Early diseases that spread from Asia to Europe were bubonic plague, influenza of various types, and similar infectious diseases.

In the current era of globalization, the world is more interdependent than at any other time. Efficient and inexpensive transportation has left few places inaccessible, and increased global trade in agricultural products has brought more and more people into contact with animal diseases that have subsequently jumped species barriers (see zoonosis).

Globalization intensified during the Age of Exploration, but trading routes had long been established between Asia and Europe, along which diseases were also transmitted. An increase in travel has helped spread diseases to natives of lands who had not previously been exposed. When a native population is infected with a new disease, where they have not developed antibodies through generations of previous exposure, the new disease tends to run rampant within the population.

Etiology, the modern branch of science that deals with the causes of infectious disease, recognizes five major modes of disease transmission: airborne, waterborne, bloodborne, by direct contact, and through vector (insects or other creatures that carry germs from one species to another). As humans began traveling over seas and across lands which were previously isolated, research suggests that diseases have been spread by all five transmission modes.

Travel patterns and globalization

The Age of Exploration generally refers to the period between the 15th and 17th centuries. During this time, technological advances in shipbuilding and navigation made it easier for nations to explore outside previous boundaries. Globalization has had many benefits, for example, new products to Europeans were discovered, such as tea, silk and sugar when Europeans developed new trade routes around Africa to India and the Spice Islands, Asia, and eventually running to the Americas.

In addition to trading in goods, many nations began to trade in slavery. Trading in slaves was another way by which diseases were carried to new locations and peoples, for instance, from sub-Saharan Africa to the Caribbean and the Americas. During this time, different societies began to integrate, increasing the concentration of humans and animals in certain places, which led to the emergence of new diseases as some jumped in mutation from animals to humans.

During this time sorcerers' and witch doctors' treatment of disease was often focused on magic and religion, and healing the entire body and soul, rather than focusing on a few symptoms like modern medicine. Early medicine often included the use of herbs and meditation. Based on archaeological evidence, some prehistoric practitioners in both Europe and South America used trephining, making a hole in the skull to release illness. Severe diseases were often thought of as supernatural or magical. The result of the introduction of Eurasian diseases to the Americas was that many more native peoples were killed by disease and germs than by the colonists' use of guns or other weapons. Scholars estimate that over a period of four centuries, epidemic diseases wiped out as much as 90 percent of the American indigenous populations.

Map with the main travels of the Age of Discovery (began in 15th century).

In Europe during the age of exploration, diseases such as smallpox, measles and tuberculosis (TB) had already been introduced centuries before through trade with Asia and Africa. People had developed some antibodies to these and other diseases from the Eurasian continent. When the Europeans traveled to new lands, they carried these diseases with them. (Note: Scholars believe TB was already endemic in the Americas.) When such diseases were introduced for the first time to new populations of humans, the effects on the native populations were widespread and deadly. The Columbian Exchange, referring to Christopher Columbus's first contact with the native peoples of the Caribbean, began the trade of animals, and plants, and unwittingly began an exchange of diseases.

It was not until the 1800s that humans began to recognize the existence and role of germs and microbes in relation to disease. Although many thinkers had ideas about germs, it was not until French doctor Louis Pasteur spread his theory about germs, and the need for washing hands and maintaining sanitation (particularly in medical practice), that anyone listened. Many people were quite skeptical, but on May 22, 1881, Pasteur persuasively demonstrated the validity of his germ theory of disease with an early example of vaccination. The anthrax vaccine was administered to 25 sheep while another 25 were used as a control. On May 31, 1881, all of the sheep were exposed to anthrax. While every sheep in the control group died, each of the vaccinated sheep survived. Pasteur's experiment would become a milestone in disease prevention. His findings, in conjunction with other vaccines that followed, changed the way globalization affected the world.

Effects of globalization on disease in the modern world

Modern modes of transportation allow more people and products to travel around the world at a faster pace; they also open the airways to the transcontinental movement of infectious disease vectors. One example is the West Nile virus. It is believed that this disease reached the United States via "mosquitoes that crossed the ocean by riding in airplane wheel wells and arrived in New York City in 1999." With the use of air travel, people are able to go to foreign lands, contract a disease and not have any symptoms of illness until after they get home, and having exposed others to the disease along the way. Another example of the potency of modern modes of transportation in increasing the spread of disease is the 1918 Spanish Flu pandemic. Global transportation, back in the early 20th century, was able to spread a virus because the network of transmittance and trade was already global. The virus was found on crew members of ships and trains, and all the infected employees spread the virus everywhere they traveled. As a result, almost 50-100 million people died of this global transmission.

As medicine has progressed, many vaccines and cures have been developed for some of the worst diseases (plague, syphilis, typhus, cholera, malaria) that people develop. But, because the evolution of disease organisms is very rapid, even with vaccines, there is difficulty providing full immunity to many diseases. Since vaccines are made partly from the virus itself, when an unknown virus is introduced into the environment, it takes time for the medical community to formulate a curable vaccine. The lack of operational and functional research and data, which provide a quicker and more strategized pathway to a reliable vaccine, makes for a lengthy vaccine development timeline. Even though frameworks are set up and preparations plans are utilized to decrease the COVID-19 cases, a vaccine is the only way to ensure complete immunization. Some systems like the IIS, Immunization Information System, help give preliminary structure for quick responses to outbreaks and unknown viruses. These systems employ past data and research-based on modern world vaccine development successes. Finding vaccines at all for some diseases remains extremely difficult. Without vaccines, the global world remains vulnerable to infectious diseases.

Evolution of disease presents a major threat in modern times. For example, the current "swine flu" or H1N1 virus is a new strain of an old form of flu, known for centuries as Asian flu based on its origin on that continent. From 1918 to 1920, a post-World War I global influenza epidemic killed an estimated 50–100 million peens, including half a million in the United States alone. H1N1 is a virus that has evolved from and partially combined with portions of avian, swine, and human flu.

Globalization has increased the spread of infectious diseases from South to North, but also the risk of non-communicable diseases by transmission of culture and behavior from North to South. It is important to target and reduce the spread of infectious diseases in developing countries. However, addressing the risk factors of non-communicable diseases and lifestyle risks in the South that cause disease, such as use or consumption of tobacco, alcohol, and unhealthy foods, is important as well.

Even during pandemics, it is vital to recognize economic globalization in being a catalyst in the spread of the coronavirus. Economic factors are especially damaged by increased global lockdown regulations and trade blockades. As transportation globalized, economies expanded. Internalized economies saw great financial opportunities in global trade. With increased interconnectivity among economies and the globalization of the world economy, the spread of the coronavirus maximized the potentiality of global recessions. The coronavirus pandemic caused many economic disruptions, which caused a functional disconnect in the supply chain and the flow of goods. As transportation modes are relevant to the spread of infectious diseases, it is important to also recognize the economy being the motor of this globalized transmission system.

Specific diseases

Plague

Contemporary engraving of Naples during the Naples Plague in 1656

Bubonic plague is a variant of the deadly flea-borne disease plague, which is caused by the enterobacteria Yersinia pestis, that devastated human populations beginning in the 14th century. Bubonic plague is primarily spread by fleas that lived on the black rat, an animal that originated in South Asia and spread to Europe by the 6th century. It became common to cities and villages, traveling by ship with explorers. A human would become infected after being bitten by an infected flea. The first sign of an infection of bubonic plague is swelling of the lymph nodes, and the formation of buboes. These buboes would first appear in the groin or armpit area, and would often ooze pus or blood. Eventually infected individuals would become covered with dark splotches caused by bleeding under the skin. The symptoms would be accompanied by a high fever, and within four to seven days of infection, more than half of the affected would die.

The first recorded outbreak of plague occurred in China in the 1330s, a time when China was engaged in substantial trade with western Asia and Europe. The plague reached Europe in October 1347. It was thought to have been brought into Europe through the port of Messina, Sicily, by a fleet of Genoese trading ships from Kaffa, a seaport on the Crimean peninsula. When the ship left port in Kaffa, many of the inhabitants of the town were dying, and the crew was in a hurry to leave. By the time the fleet reached Messina, all the crew were either dead or dying; the rats that took passage with the ship slipped unnoticed to shore and carried the disease with them and their fleas.

Within Europe, the plague struck port cities first, then followed people along both sea and land trade routes. It raged through Italy into France and the British Isles. It was carried over the Alps into Switzerland, and eastward into Hungary and Russia. For a time during the 14th and 15th centuries, the plague would recede. Every ten to twenty years, it would return. Later epidemics, however, were never as widespread as the earlier outbreaks, when 60% of the population died.

Worldwide distribution of plague-infected animals, 1998

The third plague pandemic emerged in Yunnan province of China in the mid-nineteenth century. It spread east and south through China, reaching Guangzhou (Canton) and Hong Kong in 1894, where it entered the global maritime trade routes. Plague reached Singapore and Bombay in 1896. China lost an estimated 2 million people between plague's reappearance in the mid-nineteenth century and its retreat in the mid-twentieth. In India, between 1896 and the 1920s, plague claimed an estimated 12 million lives, most in the Bombay province. Plague spread into the countries around the Indian Ocean, the Red Sea and the Mediterranean. From China it also spread eastward to Japan, the Philippines and Hawaii, and in Central Asia it spread overland into the Russian territories from Siberia to Turkistan. By 1901 there had been outbreaks of plague on every continent, and new plague reservoirs would produce regular outbreaks over the ensuing decades.

Measles

Measles is a highly contagious airborne virus spread by contact with infected oral and nasal fluids. When a person with measles coughs or sneezes, they release microscopic particles into the air. During the 4- to 12-day incubation period, an infected individual shows no symptoms, but as the disease progresses, the following symptoms appear: runny nose, cough, red eyes, extremely high fever and a rash.

Measles is an endemic disease, meaning that it has been continually present in a community, and many people developed resistance. In populations that have not been exposed to measles, exposure to the new disease can be devastating. In 1529, a measles outbreak in Cuba killed two-thirds of the natives who had previously survived smallpox. Two years later measles was responsible for the deaths of half the indigenous population of Honduras, and ravaged Mexico, Central America, and the Inca civilization.

Historically, measles was very prevalent throughout the world, as it is highly contagious. According to the National Immunization Program, 90% of people were infected with measles by age 15, acquiring immunity to further outbreaks. Until a vaccine was developed in 1963, measles was considered to be deadlier than smallpox. Vaccination reduced the number of reported occurrences by 98%. Major epidemics have predominantly occurred in unvaccinated populations, particularly among nonwhite Hispanic and African American children under 5 years old. In 2000 a group of experts determined that measles was no longer endemic in the United States. The majority of cases that occur are among immigrants from other countries.

Typhus

Typhus is caused by rickettsia, which is transmitted to humans through lice. The main vector for typhus is the rat flea. Flea bites and infected flea feaces in the respiratory tract are the two most common methods of transmission. In areas where rats are not common, typhus may also be transmitted through cat and opossum fleas. The incubation period of typhus is 7–14 days. The symptoms start with a fever, then headache, rash, and eventually stupor. Spontaneous recovery occurs in 80–90% of victims.

The first outbreak of typhus was recorded in 1489. Historians believe that troops from the Balkans, hired by the Spanish army, brought it to Spain with them. By 1490 typhus traveled from the eastern Mediterranean into Spain and Italy, and by 1494, it had swept across Europe. From 1500 to 1914, more soldiers were killed by typhus than from all the combined military actions during that time. It was a disease associated with the crowded conditions of urban poverty and refugees as well. Finally, during World War I, governments instituted preventative delousing measures among the armed forces and other groups, and the disease began to decline. The creation of antibiotics has allowed disease to be controlled within two days of taking a 200 mg dose of tetracycline.

Syphilis

An early medical illustration of people with syphilis, Vienna, 1498

Syphilis is a sexually transmitted disease that causes open sores, delirium and rotting skin, and is characterized by genital ulcers. Syphilis can also do damage to the nervous system, brain and heart. The disease can be transmitted from mother to child.

The origins of syphilis are unknown, and some historians argue that it descended from a twenty-thousand-year-old African zoonosis. Other historians place its emergence in the New World, arguing that the crews of Columbus's ships first brought the disease to Europe. The first recorded case of syphilis occurred in Naples in 1495, after King Charles VIII of France besieged the city of Naples, Italy. The soldiers, and the prostitutes who followed their camps, came from all corners of Europe. When they went home, they took the disease with them and spread it across the continent.

Smallpox

Smallpox is a highly contagious disease caused by the Variola virus. There are four variations of smallpox; variola major, variola minor, haemorrhagic, and malignant, with the most common being variola major and variola minor. Symptoms of the disease including hemorrhaging, blindness, back ache, vomiting, which generally occur shortly after the 12- to 17-day incubation period. The virus begins to attack skin cells, and eventually leads to an eruption of pimples that cover the whole body. As the disease progresses, the pimples fill up with pus or merge. This merging results in a sheet that can detach the bottom layer from the top layer of skin. The disease is easily transmitted through airborne pathways (coughing, sneezing, and breathing), as well as through contaminated bedding, clothing or other fabrics,

It is believed that smallpox first emerged over 3000 years ago, probably in India or Egypt. There have been numerous recorded devastating epidemics throughout the world, with high losses of life.

Smallpox was a common disease in Eurasia in the 15th century, and was spread by explorers and invaders. After Columbus landed on the island of Hispaniola during his second voyage in 1493, local people started to die of a virulent infection. Before the smallpox epidemic started, more than one million indigenous people had lived on the island; afterward, only ten thousand had survived.

During the 16th century, Spanish soldiers introduced smallpox by contact with natives of the Aztec capital Tenochtitlan. A devastating epidemic broke out among the indigenous people, killing thousands.

In 1617, smallpox reached Massachusetts, probably brought by earlier explorers to Nova Scotia, Canada." By 1638 the disease had broken out among people in Boston, Massachusetts. In 1721 people fled the city after an outbreak, but the residents spread the disease to others throughout the Thirteen Colonies. Smallpox broke out in six separate epidemics in the United States through 1968.

The smallpox vaccine was developed in 1798 by Edward Jenner. By 1979 the disease had been completely eradicated, with no new outbreaks. The WHO stopped providing vaccinations and by 1986, vaccination was no longer necessary to anyone in the world except in the event of future outbreak.

Leprosy

New cases of leprosy in 2016

Leprosy, also known as Hansen's Disease, is caused by a bacillus, Mycobacterium leprae. It is a chronic disease with an incubation period of up to five years. Symptoms often include irritation or erosion of the skin, and effects on the peripheral nerves, mucosa of the upper respiratory tract and eyes. The most common sign of leprosy are pale reddish spots on the skin that lack sensation.

Leprosy originated in India, more than four thousand years ago. It was prevalent in ancient societies in China, Egypt and India, and was transmitted throughout the world by various traveling groups, including Roman Legionnaires, Crusaders, Spanish conquistadors, Asian seafarers, European colonists, and Arab, African, and American slave traders. Some historians believe that Alexander the Great's troops brought leprosy from India to Europe during the 3rd century BC. With the help of the crusaders and other travelers, leprosy reached epidemic proportions by the 13th century.

Once detected, leprosy can be cured using multi-drug therapy, composed of two or three antibiotics, depending on the type of leprosy. In 1991 the World Health Assembly began an attempt to eliminate leprosy. By 2005 116 of 122 countries were reported to be free of leprosy.

Malaria

Past and current malaria prevalence in 2009

On Nov. 6, 1880 Alphonse Laveran discovered that malaria (then called "Marsh Fever") was a protozoan parasite, and that mosquitoes carry and transmit malaria. Malaria is a protozoan infectious disease that is generally transmitted to humans by mosquitoes between dusk and dawn. The European variety, known as "vivax" after the Plasmodium vivax parasite, causes a relatively mild, yet chronically aggravating disease. The west African variety is caused by the sporozoan parasite, Plasmodium falciparum, and results in a severely debilitating and deadly disease.

Malaria was common in parts of the world where it has now disappeared, as the vast majority of Europe (disease of African descent are particularly diffused in the Empire romain) and North America . In some parts of England, mortality due to malaria was comparable to that of sub-Saharan Africa today. Although William Shakespeare was born at the beginning of a colder period called the "Little Ice Age", he knew enough ravages of this disease to include in eight parts. Plasmodium vivax lasted until 1958 in the polders of Belgium and the Netherlands. In the 1500s, it was the European settlers and their slaves who probably brought malaria on the American continent (we know that Columbus had this disease before his arrival in the new land). The Spanish Jesuit missionaries saw the Indians bordering on Lake Loxa Peru used the Cinchona bark powder to treat fevers. However, there is no reference to malaria in the medical literature of the Maya or Aztecs. The use of the bark of the "fever tree" was introduced into European medicine by Jesuit missionaries whose Barbabe Cobo who experimented in 1632 and also by exports, which contributed to the precious powder also being called "Jesuit powder". A study in 2012 of thousands of genetic markers for Plasmodium falciparum samples confirmed the African origin of the parasite in South America (Europeans themselves have been affected by this disease through Africa): it borrowed from the mid-sixteenth century and the mid-nineteenth the two main roads of the slave trade, the first leading to the north of South America (Colombia) by the Spanish, the second most leading south (Brazil) by Portugueses.

Parts of Third World countries are more affected by malaria than the rest of the world. For instance, many inhabitants of sub-Saharan Africa are affected by recurring attacks of malaria throughout their lives. In many areas of Africa, there is limited running water. The residents' use of wells and cisterns provides many sites for the breeding of mosquitoes and spread of the disease. Mosquitoes use areas of standing water like marshes, wetlands, and water drums to breed.

Tuberculosis

In 2007, the prevalence of TB per 100,000 people was highest in Sub-Saharan Africa, and was also relatively high in Asian countries like India.

The bacterium that causes tuberculosis, Mycobacterium tuberculosis, is generally spread when an infected person coughs and another person inhales the bacteria. Once inhaled TB frequently grows in the lungs, but can spread to any part of the body. Although TB is highly contagious, in most cases the human body is able to fend off the bacteria. But, TB can remain dormant in the body for years, and become active unexpectedly. If and when the disease does become active in the body, it can multiply rapidly, causing the person to develop many symptoms including cough (sometimes with blood), night sweats, fever, chest pains, loss of appetite and loss of weight. This disease can occur in both adults and children and is especially common among those with weak or undeveloped immune systems.

Tuberculosis (TB) has been one of history's greatest killers, taking the lives of over 3 million people annually. It has been called the "white plague". According to the WHO, approximately fifty percent of people infected with TB today live in Asia. It is the most prevalent, life-threatening infection among AIDS patients. It has increased in areas where HIV seroprevalence is high.

Air travel and the other methods of travel which have made global interaction easier, have increased the spread of TB across different societies. Luckily, the BCG vaccine was developed, which prevents TB meningitis and miliary TB in childhood. But, the vaccine does not provide substantial protection against the more virulent forms of TB found among adults. Most forms of TB can be treated with antibiotics to kill the bacteria. The two antibiotics most commonly used are rifampicin and isoniazid. There are dangers, however, of a rise of antibiotic-resistant TB. The TB treatment regimen is lengthy, and difficult for poor and disorganized people to complete, increasing resistance of bacteria. Antibiotic-resistant TB is also known as "multidrug-resistant tuberculosis." "Multidrug-resistant tuberculosis" is a pandemic that is on the rise. Patients with MDR-TB are mostly young adults who are not infected with HIV or have other existing illness. Due to the lack of health care infrastructure in underdeveloped countries, there is a debate as to whether treating MDR-TB will be cost effective or not. The reason is the high cost of "second-line" antituberculosis medications. It has been argued that the reason the cost of treating patients with MDR-TB is high is because there has been a shift in focus in the medical field, in particular the rise of AIDS, which is now the world's leading infectious cause of death. Nonetheless, it is still important to put in the effort to help and treat patients with "multidrug-resistant tuberculosis" in poor countries.

HIV/AIDS

Estimated HIV/AIDS prevalence among young adults (15-49) by country as of 2008

HIV and AIDS are among the newest and deadliest diseases. According to the World Health Organization, it is unknown where the HIV virus originated, but it appeared to move from animals to humans. It may have been isolated within many groups throughout the world. It is believed that HIV arose from another, less harmful virus, that mutated and became more virulent. The first two AIDS/HIV cases were detected in 1981. As of 2013, an estimated 1.3 million persons in the United States were living with HIV or AIDS, almost 110,000 in the UK and an estimated 35 million people worldwide are living with HIV".

Despite efforts in numerous countries, awareness and prevention programs have not been effective enough to reduce the numbers of new HIV cases in many parts of the world, where it is associated with high mobility of men, poverty and sexual mores among certain populations. Uganda has had an effective program, however. Even in countries where the epidemic has a very high impact, such as Eswatini and South Africa, a large proportion of the population do not believe they are at risk of becoming infected. Even in countries such as the UK, there is no significant decline in certain at-risk communities. 2014 saw the greatest number of new diagnoses in gay men, the equivalent of nine being diagnosed a day.

Initially, HIV prevention methods focused primarily on preventing the sexual transmission of HIV through behaviour change. The ABC Approach - "Abstinence, Be faithful, Use a Condom". However, by the mid-2000s, it became evident that effective HIV prevention requires more than that and that interventions need to take into account underlying socio-cultural, economic, political, legal and other contextual factors.

Ebola

Cases of Ebola fever in Africa since 1976

The Ebola outbreak, which was the 26th outbreak since 1976, started in Guinea in March 2014. The WHO warned that the number of Ebola patients could rise to 20,000, and said that it used $489m (£294m) to contain Ebola within six to nine months. The outbreak was accelerating. Medecins sans Frontieres has just opened a new Ebola hospital in Monrovia, and after one week it is already a capacity of 120 patients. It said that the number of patients seeking treatment at its new Monrovia centre was increasing faster than they could handle both in terms of the number of beds and the capacity of the staff, adding that it was struggling to cope with the caseload in the Liberian capital. Lindis Hurum, MSF's emergency coordinator in Monrovia, said that it was humanitarian emergency and they needed a full-scale humanitarian response. Brice de la Vinge, MSF director of operations, said that it was not until five months after the declaration of the Ebola outbreak that serious discussions started about international leadership and coordination, and said that it was not acceptable.

Leptospirosis

Leptospirosis, also known as the "rat fever" or "field fever" is an infection caused by Leptospira. Symptoms can range from none to mild such as headaches, muscle pains, and fevers; to severe with bleeding from the lungs or meningitis. Leptospira is transmitted by both wild and domestic animals, most commonly by rodents. It is often transmitted by animal urine or by water or soil containing animal urine coming into contact with breaks in the skin, eyes, mouth, or nose. The countries with the highest reported incidence are located in the Asia-Pacific region (Seychelles, India, Sri Lanka and Thailand) with incidence rates over 10 per 1000,000 people s well as in Latin America and the Caribbean (Trinidad and Tobago, Barbados, Jamaica, El Salvador, Uruguay, Cuba, Nicaragua and Costa Rica) However, the rise in global travel and eco-tourism  has led to dramatic changes in the epidemiology of leptospirosis, and travelers from around the world have become exposed to the threat of leptospirosis. Despite decreasing prevalence of leptospirosis in endemic regions, previously non-endemic countries are now reporting increasing numbers of cases due to recreational exposure. International travelers engaged in adventure sports are directly exposed to numerous infectious agents in the environment and now comprise a growing proportion of cases worldwide.

Disease X

The World Health Organization (WHO) proposed the name Disease X in 2018 to focus on preparations and predictions of a major pandemic.

COVID-19

The virus outbreak originated in Wuhan, China. It was first detected in December 2019, which is why scientists called it COVID-19 (coronavirus disease 2019). This outbreak has since caused a health issue in the city of Wuhan, China which evolved into a global pandemic. The World Health Organization officially declared it a pandemic on March 11, 2020.

As of May 2020, scientists believe that COVID-19, a zoonotic disease, is linked to the wet markets in China. Epidemiologists have also warned of the virus's contagiousness. Specialists have declared that the spread of SARS-CoV-2 is still unknown. The generally accepted notion among virologists and experts is that the action of inhaling droplets from an infected person is most likely the way SARS-CoV-2 is spreading. As more people travel and more goods and capital are traded globally, COVID-19 cases started to slowly appear all over the world.

Some of the symptoms that COVID-19 patients could experience is shortness of breath (which might be a sign of pneumonia), cough, fever, and diarrhea. The three most recorded and common symptoms are fever, tiredness, and coughing, as reported by the World Health Organization. COVID-19 is also categorized among the viruses that can show no symptoms in the carrier. Asymptomatic COVID-19 carriers transmitted the virus to many people which eventually did show symptoms, some being deadly.

The first number of cases was detected in Wuhan, China, the origin of the outbreak. On December 31, 2019, Wuhan Municipal Health Commission announced to the World Health Organization that the number of pneumonia cases that have been previously detected in Wuhan, Hubei Province is now under investigation. Proper identification of a novel coronavirus was developed and reported, making the pneumonia cases in China the first reported cases of COVID-19. As of November 25, 2021, there have been around 260 million confirmed COVID-19 cases around the world. Confirmed deaths as a result of COVID-19 is over 5 million globally. Over 235 million of the 260 million confirmed COVID-19 cases have successfully recovered. Countries showing lack of preparation and awareness in January and February 2020 are now reporting the highest numbers of COVID-19 cases. The United States leads the worldwide count with almost 49 million confirmed cases. Deaths in The United States have crossed 798,000, maintaining the highest death count of any country. Brazil, Russia, Spain, UK, and Italy have all suffered because of the increase in cases, leading to an impaired health system unable to attend to so many sick people at one time.

The first-ever confirmed case of COVID-19 in the United States was in Washington State on January 21, 2020. It was a man who had just returned from China. Following this incident, on January 31, 2020, Trump announced that travel to and from China is restricted, effective on February 2, 2020. On March 11, 2020, Trump issues executive order to restrict travel from Europe, except for the UK and Ireland. On May 24, 2020, Trump bans travel from Brazil, as Brazil becomes the new center of the coronavirus pandemic. International restrictions were set to decrease international entities of entering a country, potentially carrying the virus. This is because governments understand that with the accessibility in travel and free trade, any person can travel and carry the virus to a new environment. Recommendations to U.S. travelers have been set by the State Department. As of March 19, 2020, some countries have been marked Level 4 "do not travel". The coronavirus pandemic travel restrictions have affected almost 93% of the global population. Increased travel restrictions effectively aid multilateral and bilateral health organizations to control the number of confirmed cases of COVID-19.

Non-communicable disease

Globalization can benefit people with non-communicable diseases such as heart problems or mental health problems. Global trade and rules set forth by the World Trade Organization can actually benefit the health of people by making their incomes higher, allowing them to afford better health care. While it has to be admitted making many non-communicable diseases more likely as well. Also the national income of a country, mostly obtained by trading on the global market, is important because it dictates how much a government spends on health care for its citizens. It also has to be acknowledged that an expansion in the definition of disease often accompanies development, so the net effect is not clearly beneficial due to this and other effects of increased affluence. Metabolic syndrome is one obvious example. Although poorer countries have not yet experienced this and are still having the diseases listed above.

Economic globalization and disease

Globalization is multifaceted in implementation and is objective in the framework and systemic ideology. Infectious diseases spread mainly as a result of the modern globalization of many and almost all industries and sectors. Economic globalization is the interconnectivity of world economies and the interdependency of internal and external supply chains. With the advancement of science and technology, the possibility of economic globalization is enabled even more. Economic factors have been defined by global boundaries rather than national. The cost of activities of economic measures has been significantly decreased as a result of the advancements in the fields of technology and science, slowly creating an interconnected economy lacking centralized integration. As economies increase levels of integration and singularity within the partnership, any global financial and economic disruptions would cause a global recession. Collateral damage is further observed with the increase in integrated economic activity. Countries lean more on economic benefits than health benefits, which lead to a miscalculated and ill-reported health issue.

Thermodynamic diagrams

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Thermodynamic_diagrams Thermodynamic diagrams are diagrams used to repr...