Search This Blog

Monday, September 4, 2023

Missile defense

Missile defense is a system, weapon, or technology involved in the detection, tracking, interception, and also the destruction of attacking missiles. Conceived as a defense against nuclear-armed intercontinental ballistic missiles (ICBMs), its application has broadened to include shorter-ranged non-nuclear tactical and theater missiles.

China, France, India, Iran, Israel, Italy, Russia, Taiwan, the United Kingdom and the United States have all developed such air defense systems.

Missile defense categories

India's Advanced Air Defense (AAD) endo-atmospheric anti-ballistic missile

Missile defense can be divided into categories based on various characteristics: type/range of missile intercepted, the trajectory phase where the intercept occurs, and whether intercepted inside or outside the Earth's atmosphere:

Type/range of missile intercepted

These types/ranges include strategic, theater and tactical. Each entails unique requirements for intercept, and a defensive system capable of intercepting one missile type frequently cannot intercept others. However, there is sometimes overlap in capability.

Strategic

Targets long-range ICBMs, which travel at about 7 km/s (15,700 mph). Examples of currently active systems: Russian A-135 system which defends Moscow, and the U.S. Ground-Based Midcourse Defense system that defends the United States from missiles launched from Asia. Geographic range of strategic defense can be regional (Russian system) or national (U.S. system).

Theater

Targets medium-range missiles, which travel at about 3 km/s (6,700 mph) or less. In this context, the term "theater" means the entire localized region for military operations, typically a radius of several hundred kilometers. Defense range of theater defensive systems is usually on this order. Examples of deployed theater missile defenses: Israeli Arrow missile, American THAAD, and Russian S-400.

Tactical

Targets short-range tactical ballistic missiles, which usually travel at less than 1.5 km/s (3,400 mph). Tactical anti-ballistic missiles (ABMs) have short ranges, typically 20–80 km (12–50 miles). Examples of currently-deployed tactical ABMs: American MIM-104 Patriot and Russian S-300V.

Trajectory phase

Trajectory phases

Ballistic missiles can be intercepted in three regions of their trajectory: boost phase, midcourse phase, or terminal phase.

Boost phase

Intercepting the missile while its rocket motors are firing, usually over the launch territory.

Advantages:

  • Bright, hot rocket exhaust makes detection and targeting easier.
  • Decoys cannot be used during boost phase.
  • At this stage, the missile is full of flammable propellant, which makes it very vulnerable to explosive warheads.

Disadvantages:

  • Difficult to geographically position interceptors to intercept missiles in boost phase (not always possible without flying over hostile territory).
  • Short time for intercept (typically about 180 seconds).

Mid-course phase

Intercepting the missile in space after the rocket burns out (example: American Ground-Based Midcourse Defense (GMD), Chinese SC-19 & DN-series missiles, Israeli Arrow 3 missile).

Advantages:

  • Extended decision/intercept time (the coast period through space before reentering the atmosphere can be several minutes, up to 20 minutes for an ICBM).
  • Very large geographic defensive coverage; potentially continental.

Disadvantages:

  • Requires large, heavy anti-ballistic missiles and sophisticated powerful radar which must often be augmented by space-based sensors.
  • Must handle potential space-based decoys.

Terminal phase

Intercepting the missile after it reenters the atmosphere (examples: American Aegis Ballistic Missile Defense System, Chinese HQ-29, American THAAD, American Sprint, Russian ABM-3 Gazelle)

Advantages:

  • Smaller, lighter anti-ballistic missile is sufficient.
  • Balloon decoys do not work during reentry.
  • Smaller, less sophisticated radar required.

Disadvantages:

  • Very short intercept time, possibly less than 30 seconds.
  • Less defended geographic coverage.
  • Possible blanketing of target area with hazardous materials in the case of detonation of nuclear warhead(s).

Intercept location relative to the atmosphere

Missile defense can take place either inside (endoatmospheric) or outside (exoatmospheric) the Earth's atmosphere. The trajectory of most ballistic missiles takes them inside and outside the Earth's atmosphere, and they can be intercepted in either place. There are advantages and disadvantages to either intercept technique.

Some missiles such as THAAD can intercept both inside and outside the Earth's atmosphere, giving two intercept opportunities.

Endoatmospheric

Endoatmospheric anti-ballistic missiles are usually shorter ranged (e.g., American MIM-104 Patriot, Indian Advanced Air Defence).

Advantages:

  • Physically smaller and lighter
  • Easier to move and deploy
  • Endoatmospheric intercept means balloon-type decoys won't work

Disadvantages:

  • Limited range and defended area
  • Limited decision and tracking time for the incoming warhead

Exoatmospheric

Exoatmospheric anti-ballistic missiles are usually longer-ranged (e.g., American GMD, Ground-Based Midcourse Defense).

Advantages:

  • More decision and tracking time
  • Fewer missiles required for defense of a larger area

Disadvantages:

  • Larger/heavier missiles required
  • More difficult to transport and place compared to smaller missiles
  • Must handle decoys

Countermeasures to missile defense

Given the immense variety by which a defense system can operate (targeting nuclear-armed intercontinental ballistic missiles (ICBMs), tactical, and theater missiles), there are some unarguably effective exoatmospheric (outside the Earth's atmosphere) countermeasures an attacking party can use to deter or completely defend against certain types of defense systems, ranges of ACBM's, and intercept locations. Many of defenses to these countermeasures have been implemented and taken into account when constructing missile defense systems, however, it does not guarantee their effectiveness or success. The U.S. Missile Defense Agency has received scrutiny in regards to their lack of foresight of these countermeasures, causing many scientists to perform various studies and data analysis as to the true effectiveness of these countermeasures.

Decoys

A common countermeasure that attacking parties use to disrupt the efficacy of Missile Defense Systems are the simultaneous launching of decoys from the primary launch site or from the exterior of the main attacking missile itself. These decoys are usually small, lightweight dud rockets that take advantage of the interceptor sensors tracking and fool it by making many different targets available in an instant. This is accomplished via the releasing of decoys in certain phases of flight. Because objects of differing weights follow the same trajectory when in space, decoys released during the midcourse phase can prevent interceptor missiles from accurately identifying the warhead. This could force the defense system to attempt to destroy all incoming projectiles, which masks the true attacking missile and lets it slip by the defense system.

Common types of decoys

Since there can be many forms of this type of deception of a missile system, different categorizations of decoys have developed, all of which operate and are designed slightly different. Details of these types of decoys and their effectiveness were provided in a report by a variety of prominent scientists in 2000.

Replica decoys

This categorization of decoy is the most similar to the standard understanding of what a missile decoy is. These types of decoys attempt to mask the attacking ICBM via the release of many similar missiles. This type of decoy confuses the missile defense system by the sudden replication and the sheer number of similar targets. Knowing that no defense system is 100% reliable, this confusion within the targeting of the defense system would cause the system to target each decoy with equal priority and as if it was the actual warhead, allowing the real warheads chance of passing through the system and striking the target to increase drastically.

Decoys using signature diversity

Similar to replica decoys, these types of decoys also take advantage of the limitations in number within the missile defense systems targeting. However, rather than using missiles of similar build and trace to the attacking warhead, these types of decoys all have slightly different appearances from both each other and the warhead itself. This creates a different kind of confusion within the system; rather than creating a situation where each decoy (and the warhead itself) appears the same and is therefore targeted and treated exactly like the "real" warhead, the targeting system simply does not know what is the real threat and what is a decoy due to the mass amount of differing information. This creates a similar situation as the result of the replica decoy, increasing the chance that the real warhead passes through the system and strikes the target.

Decoys using antisimulation

This type of decoy is perhaps the most difficult and subversive for a missile defense system to determine. Instead of taking advantage of the missile defense system's targeting, this type of decoy intends to fool the operation of the system itself. Rather than using sheer quantity to overrun the targeting system, an anti-simulation decoy disguises the actual warhead as a decoy, and a decoy as the actual warhead. This system of "anti-simulation" allows the attacking warhead to, in some cases, take advantage of the "bulk-filtering" of certain missile defense systems, in which objects with characteristics of the warhead poorly matching those expected by the defense are either not observed because of sensor filters, or observed very briefly and immediately rejected without the need for a detailed examination. The actual warhead may simply pass by undetected, or rejected as a threat.

Cooled shrouds

Another common countermeasure used to fool missile defense systems are the implementation of cooled shrouds surrounding attacking missiles. This method covers the entire missile in a steel containment filled with liquid oxygen, nitrogen, or other sub-zero coolants that prevent the missile from being easily detected. Because many missile defense systems use infrared sensors to detect the heat traces of incoming missiles, this capsule of extremely cold liquid either renders the incoming missile entirely invisible to detection or reduces the system's ability to detect the incoming missile fast enough.

Other types of infrared stealth

Another commonly applied countermeasure to missile defense is the application of various low-emissivity coatings. Similar to cooled shrouds, these warheads are fully coated with infrared reflective or resistant coatings that allow similar resistance to infrared detection that cooled shrouds do. Because the most effective coating discovered so far is gold, though, this method is often overstepped by cooled shrouds.

Biological/chemical weapons

This is perhaps the most extreme approach to countering missile defense systems that are designed to destroy ICBMs and other forms of nuclear weaponry. Rather than using many missiles equipped with nuclear warheads as their main weapon of attack, this idea involves the release of biological or chemical sub-munition weapons/agents from the missile shortly after the boost phase of the attacking ICBM. Because missile defense systems are designed with intent to destroy main attacking missiles or ICBMs, this system of sub-munition attack is too numerous for the system to defend against while also distributing the chemical or biological agent across a large area of attack. There is currently no proposed countermeasure to this type of attack except through diplomacy and the effective banning of biological weaponry and chemical agents within war. However, this does not guarantee that this countermeasure to missile defense system will not be abused via extremists/terrorists. An example of this severe threat can be further seen in North Korea's testing of anthrax tipped ICBMs in 2017.

Dynamic trajectories

Countries including Iran and North Korea may have sought missiles that can maneuver and vary their trajectories in order to evade missile defense systems.

In March 2022, when Russia used a hypersonic missile against Ukraine, Joe Biden characterized the weapon as "almost impossible to stop". Boost-glide hypersonic weapons shift trajectory to evade current missile-defense systems.

Glide Phase Interceptor (GPI) will provide defense against maneuvering hypersonic weapons.

Multiple independently targetable re-entry vehicles

Another way to counter an ABM system is to attach multiple warheads that break apart upon reentry. If the ABM is able to counter one or two of the warheads via detonation or collision the others would slip through radar either because of limitations on ABM firing speeds or because of radar blackout caused by plasma interference. The first MRV was the Polaris A-3 which had three warheads and was launched from a submarine. Before regulations on how many warheads could be stored in a MIRV, the Soviets had up to twenty to thirty attached to ICBMs.

Jammers

Jammers use radar noise to saturate the incoming signals to the point where the radar cannot discern meaningful data about a target's location with meaningless noise. They can also imitate the signal of a missile to create a fake target.  They are usually spread over planned missile paths to enemy territory to give the missile a clear path to their target. Because these jammers take relatively little electricity and hardware to operate, they are usually small, self-contained, and easily dispersible.

Command and Control

127th Command and Control Squadron - Distributed Common Ground System

Command and control, battle management, and communications (C2BMC)

Command and control, battle management, and communications (C2BMC) systems are hardware and software interfaces that integrate a multitude of sensory information at a centralized center for the ballistic missile defense system (BMDS). The command center allows for human management in accordance to the incorporated sensory information- BMDS status, system coverage, and ballistic missile attacks. The interface system helps build an image of the battle scenario or situation which enables the user to select the optimal firing solutions.

Seal of the United States Strategic Command
USCG Command Control and Communications

The first C2BMC system became operational in 2004. Since then, many elements have been added to update the C2BMC, which act to provide further sensory information and allow for enhanced communications between combatant commanders. A C2BMC is even capable of initiating live planning system before any engagement has even started.

GMD fire control and communication

The function of ground-based midcourse defense (GMD) systems is to provide combatants the ability to seek and destroy intermediate- and long-range ballistic missiles en route to the US homeland. Data are transmitted from the defense satellite communication system, and compiles an image using the coordinated information. The system is able to relay real-time data once missiles have been launched. The GMD can also work to receive information from the C2BMC, which allows Aegis SPY-1, and TPY-2 to contribute to the defense system.

A problem with GMD is that the ground systems have increasingly becoming obsolete as the technology was initially installed as early as the 1990s. So, the ground sensors had been replaced sometime in 2018. The update was to add the capability of handling up to 44 systems; it would also reduce overlapping redundancies and inefficiencies.

Link-16

Link-16 is a data link that connects communication between land, air, and sea forces to support joint operations and improve operability. The system is intended to improve the interoperability for joint operations of NATO and coalition forces. Link-16 is also used by the U.S. Army and Navy for air and sea operations. An important feature of Link-16 is its ability to broadcast information simultaneously to as many users as needed. Another feature of Link-16 is its ability to act as nodes, which allows for a multitude of distributed forces to operate cohesively.

The newest generation of Link-16 is the multifunctional information distribution system low-volume terminal (MIDS LVT). It is a much smaller unit that can be fitted on air, ground, and sea units to incorporate data. The MIDS LVT terminals are installed on most bombers, aircraft, UAVs, and tankers, allowing for the incorporation of most air defense systems.

Integrated Air and Missile Defense Battle Command System

The Integrated Air and Missile Defense Battle Command System (IBCS) is an unified command and control network developed by the U.S. Army. It is designed to integrate data relay between weapon launchers, radars, and the operators, which allows air-defense units to fire interceptors with information being relayed among radars. The advantage of such a system is it can increase the area an air unit can defend and reduce interceptor spending by ensuring than no other air defense unit would engage the same target. The IBCS will be able to integrate with air defense networks of foreign military as the global C2BMC system.

Missile Defense Agency logo

IBCS engagement stations will integrate raw data from multiple sensors and process it into a single air picture, and choose elect different weapons and launcher locations depending on the detected threat instead of being limited to particular unit capabilities.

The IBCS system is intended to be operational in 2019; between 2016 and 2017, implementation of IBCS had to be put on hold due to software issues with the system. In 2021, F-35 sensor data were linked via airborne gateway to ground-based IBCS, to conduct a simulated Army fires exercise, for future Joint All-Domain Command and Control (JADC2).

History

The problem was first studied during the last year of the Second World War. The only countermeasure against the V-2 missile that could be devised was a massive barrage of anti-aircraft guns. Even if the missile's trajectory were accurately calculated, the guns would still have a small probability of destroying it before impact with the ground. Also, the shells fired by the guns would have caused more damage than the actual missile when they fell back to the ground. Plans for an operational test began anyway, but the idea was rendered moot when the V-2 launching sites in the Netherlands were captured.

In the 1950s and 1960s, missile defense meant defense against strategic (usually nuclear-armed) missiles. The technology mostly centered around detecting offensive launch events and tracking inbound ballistic missiles, but with limited ability to actually defend against the missile. The Soviet Union achieved the first nonnuclear intercept of a ballistic missile warhead by a missile at the Sary Shagan antiballistic missile defense test range on 4 March 1961. Nicknamed the "Griffon" missile system, it would be installed around Leningrad as a test.

Nike Hercules missiles

Throughout the 1950s and 1960s, the United States Project Nike air defense program focused initially on targeting hostile bombers before shifting focus to targeting ballistic missiles. In the 1950s, the first United States anti-ballistic missile system was the Nike Hercules, which had the ability to intercept incoming short-range ballistic missiles, but not intermediate-range ballistic missiles (IRBMs) or ICBMs. This was followed by the Nike Zeus, which was capable of intercepting ICBMs by using a nuclear warhead, upgraded radar systems, faster computers, and control systems that were more effective in the upper atmosphere. However it was feared the missile's electronics may be vulnerable to x-rays from a nuclear detonation in space. A program was started to devise methods of hardening weapons from radiation damage. By the early 1960s the Nike Zeus was the first anti-ballistic missile to achieve hit-to-kill (physically colliding with the incoming warhead).

In 1963, Secretary of Defense Robert McNamara diverted funds from the Zeus missile program, and instead directed that funding to the development of the Nike-X system, which utilized the high-speed, short-range Sprint missile. These missiles were meant to intercept incoming warheads after they had descended from space and were only seconds from their targets. To accomplish this, Nike-X required advances in missile design to make the Sprint missile quick enough to intercept incoming warheads in time. The system also included advanced active electronically scanned array radar systems and a powerful computer complex.

During the development of Nike-X, controversy over the effectiveness of anti-ballistic missile systems became more prominent. Critiques of the Nike-X included an estimate that the anti-ballistic missile system could be defeated by Soviets manufacturing more ICBMs, and the cost of those additional ICBMs needed to defeat Nike-X would also cost less than what the United States would spend on implementing Nike-X. Additionally, McNamara reported that a ballistic missile system would save American lives at the cost of approximately $700 per life, compared to a shelter system that could save lives at a lower cost of approximately $40 per life. As a result of these estimations, McNamara opposed implementation of Nike-X due to the high costs associated with construction and perceived poor cost-effectiveness of the system, and instead expressed support for pursuing arms limitations agreements with the Soviets. After the Chinese government detonated their first hydrogen bomb during Test No. 6. in 1967, McNamara modified the Nike-X program into a program called Sentinel. This program's goal was to protect major U.S. cities from a limited ICBM attack, especially on one from China. This would be done by building fifteen sites across the continental US, and one site in each of Alaska and Hawaii. This in turn reduced tensions with the Soviet Union, which retained the offensive capability to overwhelm any U.S. defense. McNamara favored this approach as deploying the Sentinel program was less costly than a fully implemented Nike-X program, and would reduce Congressional pressures to implement an ABM system. In the months following the announcements regarding the Sentinel program, Secretary of Defense Robert McNamara stated: "Let me emphasize—and I cannot do so too strongly—that our decision to go ahead with a limited ABM deployment in no way indicates that we feel an agreement with the Soviet Union on the limitation of strategic nuclear offensive and defensive forces is in any way less urgent or desirable.

With the conclusion of the Cuban Missile Crisis and the withdrawal of Soviet missiles from their strategic positions in Cuba, the USSR to begin thinking about a missile defense systems. A year after the crisis in 1963 the Soviets created the SA-5. Unlike its predecessors like the SA-1 or Griffon systems, this system was able to fly much higher and further  and was fast enough to intercept some missiles however its main purpose was to intercept the new XB-70 supersonic aircraft the U.S was planning to make. However, since these types of aircraft never went into production in the U.S, the project was abandoned, and the Soviets reverted to the slower, low altitude SA-2 and SA-3 systems. In 1964 the Soviets publicly unveiled their newest interceptor missile named the "Galosh" which was nuclear armed and was meant for high altitude, long range interception. The Soviet Union began installing the A-35 anti-ballistic missile system around Moscow in 1965 using these "Galosh" missiles and would become operational by 1971. It consisted of four complex around Moscow each with 16 launchers and two missile tracking radars. Another notable feature of the A-35 was that it was the first monopulse radar. Developed by OKB 30, the Russian Special Design Bureau, the effort design to create a monopulse radar started in 1954. This was used to conduct the first successful intercept in 1961. There were known flaws with the design such as an inability to defend against MIRV and decoy style weapons.The reason for this was because the detonation of a nuclear interceptor missile like the "Galosh" creates a cloud of plasma that temporarily impairs radar readings around the area of the explosion limiting these kinds of systems to a one-shot capacity. This means that with MIRV style attacks the interceptor would be able to take out one or two but the rest would slip though. Another issue with the 1965 model was that it consisted of 11 large radar stations at six locations on the borders of Russia. These bases where visible to the US and could be taken out easily leaving the defense system useless in a concentrated and coordinated attack. Finally, the missiles that could be held on each base was limited by the ABM treaty to only 100 launchers maximum, meaning that in a massive attack they would be depleted quickly. During installation, a Ministry of Defense commission concluded that the system should not be fully implemented, reducing the capabilities of the completed system. That system was later upgraded to the A-135 anti-ballistic missile system and is still operational. This upgrade period started in 1975 and was headed by Dr. A.G. Basistov. When it was completed in 1990, the new A-135 system had a central control multifunctional radar called the "Don" and 100 interceptor missiles. Another improvement was the layering of interceptor missiles where high acceleration missiles are being added for low flying targets and the "Galosh" style missiles where improved further for high altitude targets. All of these missiles where moved underground into silos to make them less vulnerable, which was a flaw of the previous system.

As part of the Anti-Ballistic Missile Treaty in 1972, all radars for detecting missiles were placed on the edges of the territory and faced outward.

The SALT I talks began in 1969, and led to the Anti-Ballistic Missile Treaty in 1972, which ultimately limited the U.S. and U.S.S.R. to one defensive missile site each, with no more than 100 missiles per site. This included both ABM interceptor missiles as well as launchers. Originally, the agreement made by the Nixon administration and the Soviet Union stated that both of the two nations were each allowed to have two ABM defensive systems present in their own countries. The goal was to effectively have one ABM defense system located near each nation's capital city as well as another ABM defense system placed near the nation's most important or strategical ICBM field. This treaty allowed for an effective form of deterrence for both sides as if either side were to make an offensive move, the other side would be capable of countering that move. However, a few years later in 1974 both sides reworked the treaty to include only one ABM defensive system present around an ICBM launch area or the nation's capital city. This occurred once both sides determined the other side was not going to construct a second ABM defensive system. Along with limiting the amount of ballistic missile defense systems each nation could have, the treaty also stated if either country desired to have a radar for incoming missile detection, the radar system must be located on the outskirts of the territory and must be aligned in the opposite direction of one's own country. This treaty would end up being the precedent set for future missile defense programs, as any systems that were not stationary and land-based were a violation of the treaty.

As a result of the treaty and of technical limitations, along with public opposition to nearby nuclear-armed defensive missiles, the U.S. Sentinel program was re-designated the Safeguard Program, with the new goal of defending U.S. ICBM sites, not cities. The U.S. Safeguard system was planned to be implemented in various sites across the US, including at Whiteman AFB in Missouri, Malmstrom AFB in Montana, and Grand Forks AFB in North Dakota. The Anti-Ballistic Missile Treaty of 1972 placed a limit of two ABM systems within the US, causing the work site in Missouri to be abandoned, and the partially-completed Montana site was abandoned in 1974 after an additional agreement between the US and USSR that limited each country to one ABM system. As a result, the only Safeguard system that was deployed was to defend the LGM-30 Minuteman ICBMs near Grand Forks, North Dakota. However, it was deactivated in 1976 after being operational for less than four months due to a changing political climate plus concern over limited effectiveness, low strategic value, and high operational cost.

An artist's concept of a Space Laser Satellite Defense System as a part of the Strategic Defense Initiative

In the early 1980s, technology had matured to consider space based missile defense options. Precision hit-to-kill systems more reliable than the early Nike Zeus were thought possible. With these improvements, the Reagan Administration promoted the Strategic Defense Initiative, an ambitious plan to provide a comprehensive defense against an all-out ICBM attack. In pursuit of that goal, the Strategic Defense Initiative investigated a variety of potential missile-defense systems, which included systems utilizing ground-based missile systems and space-based missile systems, as well as systems utilizing lasers or particle beam weapons. This program faced controversy over the feasibility of the projects it pursued, as well as the substantial amount of funding and time required for the research to develop the requisite technology. The Strategic Defense Initiative earned the nickname "Star Wars" due to criticism from Senator Ted Kennedy in which he described the Strategic Defense Initiative as "reckless Star Wars schemes." Reagan established the Strategic Defense Initiative Organization (SDIO) to oversee the development of the program's projects. Upon request by the SDIO, the American Physical Society (APS) performed a review of the concepts being developed within SDIO and concluded that all of the concepts pursuing use of Directed Energy Weapons were not feasible solutions for an anti-missile defense system without decades of additional research and development. Following the APS's report in 1986, the SDIO switched focus to a concept called the Strategic Defense System, which would utilize a system of space-based missiles called Space Rocks which would intercept incoming ballistic missiles from orbit, and would be supplemented by ground-based missile defense systems. In 1993, the SDIO was closed and the Ballistic Missile Defense Organization (BMDO) was created, which focuses on ground-based missile defense systems utilizing interceptor missiles. In 2002, BMDO's name was changed to its current title, the Missile Defense Agency (MDA). See National Missile Defense for additional details. In the early 1990s, missile defense expanded to include tactical missile defense, as seen in the first Gulf War. Although not designed from the outset to intercept tactical missiles, upgrades gave the Patriot system a limited missile defense capability. The effectiveness of the Patriot system in disabling or destroying incoming Scuds was the subject of Congressional hearings and reports in 1992.

Various ICBMs utilized by varying countries.

In the time following the agreement of the 1972 Anti-Ballistic Missile Treaty, it was becoming increasingly more and more difficult for the United States to create a new missile defense strategy without violating the terms of the treaty. During the Clinton administration, the initial goal the United States had interest in, was to negotiate with the former Soviet Union, which is now Russia, and hopefully agree to a revision to the treaty signed a few decades prior. In the late 1990s the United States had interest in an idea termed NMD or National Missile Defense. This idea essentially would allow the United States to increase the number of ballistic missile interceptors that would be available to missile defense personnel at the Alaska location. While the initial ABM treaty was designed primarily to deter the Soviet Union and help create a period of détente, the United States was primarily fearing other threats such as Iraq, North Korea, and Iran. The Russian government was not interested in making any sort of modification to the ABM treaty that would allow for technology to be developed that was explicitly banned when the treaty was agreed upon. However, Russia was interested in revising the treaty in such a way that would allow for a more diplomatic approach to potential missile harboring countries. During this period, the United States was also seeking assistance for their ballistic missile defense systems from Japan. Following the testing of the Taepo Dong missile by the North Korean government, the Japanese government became more concerned and inclined to accept a partnership for a BMD system with the United States. In late 1998, Japan and the United States agreed to the Naval Wide Theater system which would allow the two sides to design, construct, and test ballistic missile defense systems together. Nearing the end of Clinton's time in office, it had been determined that the NMD program was not as effective as the United States would have liked, and the decision was made to not employ this system while Clinton served out the rest of his term. The decision on future of the NMD program was going to be given to the next president in line, who ultimately would end up being George W. Bush.

In the late 1990s, and early 2000s, the issue of defense against cruise missiles became more prominent with the new Bush Administration. In 2002, President George W. Bush withdrew the US from the Anti-Ballistic Missile Treaty, allowing further development and testing of ABMs under the Missile Defense Agency, as well as deployment of interceptor vehicles beyond the single site allowed under the treaty. During the Bush's time in office, the potentially threatening countries to the United States included North Korea as well as Iran. While these countries might not have possessed the weaponry that many countries containing missile defense systems had, the Bush administration expected an Iranian missile test within the next ten years. In order to counter the potential risk of North Korean missiles, the United States Department of Defense desired to create missile defense systems along the west coast of the United States, namely in both California and Alaska.

A NORAD Distant Early Warning Line (DEW) station in western Greenland is visible in the distance beyond the snow-drifted equipment pallets in the foreground of this photograph. The DEW Line was designed to track inbound ballistic missiles.

There are still technological hurdles to an effective defense against ballistic missile attack. The United States National Ballistic Missile Defense System has come under scrutiny about its technological feasibility. Intercepting midcourse (rather than launch or reentry stage) ballistic missiles traveling at several miles per second with a "kinetic kill vehicle" has been characterized as trying to hit a bullet with a bullet. Despite this difficulty, there have been several successful test intercepts and the system was made operational in 2006, while tests and system upgrades continue. Moreover, the warheads or payloads of ballistic missiles can be concealed by a number of different types of decoys. Sensors that track and target warheads aboard the kinetic kill vehicle may have trouble distinguishing the "real" warhead from the decoys, but several tests that have included decoys were successful. Nira Schwartz's and Theodore Postol's criticisms about the technical feasibility of these sensors have led to a continuing investigation of research misconduct and fraud at the Massachusetts Institute of Technology.

In February 2007, the U.S. missile defense system consisted of 13 ground-based interceptors (GBIs) at Fort Greely, Alaska, plus two interceptors at Vandenberg Air Force Base, California. The U.S. planned to have 21 interceptor missiles by the end of 2007. The system was initially called National Missile Defense (NMD), but in 2003 the ground-based component was renamed Ground-Based Midcourse Defense (GMD). As of 2014, the Missile Defense Agency had 30 operational GBIs, with a total 44 GBIs in the missile fields in 2018. In 2021 an additional 20 GBIs of 64 total were planned, but not yet fielded. They are tasked with meeting more complex threats than those met by the EKV.

Defending against cruise missiles is similar to defending against hostile, low-flying crewed aircraft. As with aircraft defense, countermeasures such as chaff, flares, and low altitude can complicate targeting and missile interception. High-flying radar aircraft such as AWACS can often identify low flying threats by using doppler radar. Another possible method is using specialized satellites to track these targets. By coupling a target's kinetic inputs with infrared and radar signatures it may be possible to overcome the countermeasures.

In March 2008, the U.S. Congress convened hearings to re-examine the status of missile defense in U.S. military strategy. Upon taking office, President Obama directed a comprehensive review of ballistic missile defense policy and programs. The review's findings related to Europe were announced on 17 September 2009. The Ballistic Missile Defense Review (BMDR) Report was published in February 2010.

NATO missile defense system

HMS Diamond firing an Aster missile for the first time in 2012.

Mechanisms

The Conference of National Armaments Directors (CNAD) is the senior NATO committee which acts as the tasking authority for the theater missile defense program. The ALTBMD Program Management Organization, which comprises a steering committee and a program office hosted by the NATO C3 Agency, directs the program and reports to the CNAD. The focal point for consultation on full-scale missile defense is the Reinforced Executive Working Group. The CNAD is responsible for conducting technical studies and reporting the outcome to the Group. The NRC Ad hoc Working Group on TMD is the steering body for NATO-Russia cooperation on theater missile defense.

In September 2018, a consortium of 23 NATO nations met to collaborate on the Nimble Titan 18 integrated air and missile defense (IAMD) campaign of experimentation.

Missile defense

By early 2010, NATO will have an initial capability to protect Alliance forces against missile threats and is examining options for protecting territory and populations. This is in response to the proliferation of weapons of mass destruction and their delivery systems, including missiles of all ranges. NATO is conducting three missile defense–related activities:

Active Layered Theater Ballistic Missile Defense System capability

Active Layered Theater Ballistic Missile Defense System is "ALTBMD" for short.

As of early 2010, the Alliance has an interim capability to protect troops in a specific area against short-range and medium-range ballistic missiles (up to 3,000 kilometers).

The end system consists of a multi-layered system of systems, comprising low- and high-altitude defenses (also called lower- and upper-layer defenses), including Battle Management Command, Control, Communications and Intelligence (BMC3I), early warning sensors, radar, and various interceptors. NATO member countries provide the sensors and weapon systems, while NATO has developed the BMC3I segment and facilitate the integration of all these elements.

Missile Defense for the protection of NATO territory

A Missile Defense Feasibility Study was launched after NATO's 2002 Prague summit. The NATO Consultation, Command and Control Agency (NC3A) and NATO's Conference of National Armaments Directors (CNAD) were also involved in negotiations. The study concluded that missile defense is technically feasible, and it provided a technical basis for ongoing political and military discussions regarding the desirability of a NATO missile defense system.

During the 2008 Bucharest summit, the alliance discussed the technical details as well as the political and military implications of the proposed elements of the U.S. missile defense system in Europe. Allied leaders recognized that the planned deployment of European-based U.S. missile defense assets would help protect North American Allies, and agreed that this capability should be an integral part of any future NATO-wide missile defense architecture. However, these opinions are in the process of being reconstructed given the Obama administration's decision in 2009 to replace the long-range interceptor project in Poland with a short/medium range interceptor.

Russian Foreign Minister Sergei Lavrov has stated that NATO's pattern of deployment of Patriot missiles indicates that these will be used to defend against Iranian missiles in addition to the stated goal of defending against spillover from the Syrian civil war.

Aegis-based system

In order to accelerate the deployment of a missile shield over Europe, Barack Obama sent ships with the Aegis Ballistic Missile Defense System to European waters, including the Black Sea as needed.

In 2012 the system will achieve an "interim capability" that will for the first time offer American forces in Europe some protection against IRBM attack. However, these interceptors may be poorly placed and of the wrong type to defend the United States, in addition to American troops and facilities in Europe.

The Aegis ballistic missile defense-equipped SM-3 Block II-A missile demonstrated it can shoot down an ICBM target on 16 Nov 2020.

ACCS Theatre Missile Defense 1

According to BioPrepWatch, NATO has signed a 136 million euro contract with ThalesRaytheonSystems to upgrade its current theatre missile defense program.

The project, called ACCS Theatre Missile Defense 1, will bring new capabilities to NATO's Air Command and Control System, including updates for processing ballistic missile tracks, additional satellite and radar feeds, improvements to data communication and correlation features. The upgrade to its theatre missile defense command and control system will allow for NATO to connect national sensors and interceptors in defense against short and medium-range ballistic missiles. According to NATO's Assistant Secretary General for Defense Investment Patrick Auroy, the execution of this contract will be a major technical milestone forward for NATO's theatre missile defense. The project was expected to be complete by 2015. An integrated air and missile defense (IAMD) capability will be delivered to the operational community by 2016, by which time NATO will have a true theatre missile defense.

Defense systems and initiatives

Black magic

From Wikipedia, the free encyclopedia
Illustration by Martin van Maële, of a Witches' Sabbath, in the 1911 edition of La Sorciere, by Jules Michelet

Nigromancy, meaning black magic together with six associated practices of black divination, has traditionally referred to the use of supernatural powers or magic for evil and selfish purposes, specifically the seven magical arts prohibited by canon law, as expounded by Johannes Hartlieb in 1456.

In 1597, King James VI and I published a treatise, Daemonologie, a philosophical dissertation describing contemporary nigromancy and the historical relationships between the various methods of divination used in black magic. This book is believed to be one of the main sources used by William Shakespeare in the production of Macbeth.

The links and interaction between black magic and religion are many and varied. Beyond black magic's historical persecution by Christianity and its inquisitions, there are links between religious and black magic rituals. For example, 17th-century priest Étienne Guibourg is said to have performed a series of Black Mass rituals with alleged witch Catherine Monvoisin for Madame de Montespan. During his period of scholarship, A. E. Waite provided a comprehensive account of black magic practices, rituals and traditions in The Book of Ceremonial Magic (1911).

The influence of popular culture has allowed other practices to be drawn in under the broad banner of black magic, including the concept of Satanism. While the invocation of demons or spirits is an accepted part of black magic, this practice is distinct from the worship or deification of such spiritual beings. The two are usually combined in medieval beliefs about witchcraft.

History

The lowest depths of black mysticism are well-nigh
as difficult to plumb as it is arduous to scale
the heights of sanctity. The Grand Masters of
the witch covens are men of genius – a foul genius,
crooked, distorted, disturbed, and diseased.

Montague Summers
Witchcraft and Black Magic

Like its counterpart white magic, the origins of black magic can be traced to the primitive, ritualistic worship of spirits as outlined in Robert M. Place's 2009 book, Magic and Alchemy. Unlike white magic, in which Place sees parallels with primitive shamanistic efforts to achieve closeness with spiritual beings, the rituals that developed into modern black magic were designed to evoke those same spirits to produce beneficial outcomes for the practitioner. Place also provides a broad modern definition of both black and white magic, preferring instead to refer to them as "high magic" (white) and "low magic" (black) based primarily on intentions of the practitioner employing them. He acknowledges, though, that this broader definition (of "high" and "low") suffers from prejudices because good-intentioned folk magic may be considered "low" while ceremonial magic involving expensive or exclusive components may be considered by some as "high magic", regardless of intent.

During the Renaissance, many magical practices and rituals were considered evil or irreligious and by extension, black magic in the broad sense. Witchcraft and non-mainstream esoteric study were prohibited and targeted by the Inquisition. As a result, natural magic developed as a way for thinkers and intellectuals, like Marsilio Ficino, abbot Johannes Trithemius and Heinrich Cornelius Agrippa, to advance esoteric and ritualistic study (though still often in secret) without significant persecution.

Malleus Maleficarum, 1669 edition

While "natural magic" became popular among the educated and upper classes of the 16th and 17th century, ritualistic magic and folk magic remained subject to persecution. Twentieth-century writer Montague Summers generally rejects the definitions of "white" and "black" magic as "contradictory", though he highlights the extent to which magic in general, regardless of intent, was considered "black" and cites William Perkins posthumous 1608 instructions in that regard:

All witches "convicted by the Magistrate" should be executed. He allows no exception and under this condemnation fall "all Diviners, Charmers, Jugglers, all Wizards, commonly called wise men or wise women". All those purported "good Witches which do not hurt but good, which do not spoil and destroy, but save and deliver" should come under the extreme sentence.

In particular, though, the term was most commonly reserved for those accused of invoking demons and other evil spirits, those hexing or cursing their neighbours, those using magic to destroy crops, and those capable of leaving their earthly bodies and travelling great distances in spirit (to which the Malleus Maleficarum "devotes one long and important chapter"), usually to engage in devil-worship. Summers also highlights the etymological development of the term nigromancer, in common use from 1200 to approximately 1500, (Latin: niger, black; Greek: μαντεία, divination), broadly "one skilled in the black arts".

In a modern context, the line between white magic and black magic is somewhat clearer and most modern definitions focus on intent rather than practice. There is also an extent to which many modern Wicca and witchcraft practitioners have sought to distance themselves from those intent on practising black magic. Those who seek to do harm or evil are less likely to be accepted into mainstream Wiccan circles or covens in an era where benevolent magic is increasingly associated with new-age beliefs and practices, and self-help spiritualism.

The artes prohibitae

John Dee and Edward Kelley using a magic circle ritual to invoke a spirit in a church graveyard

The seven artes prohibitae or artes magicae, arts prohibited by canon law as expounded by Johannes Hartlieb in 1456, their sevenfold partition reflecting that of the artes liberales and artes mechanicae, were:

  1. nigromancy
  2. geomancy
  3. hydromancy
  4. aeromancy
  5. pyromancy
  6. chiromancy
  7. scapulimancy

The division between the four elemental disciplines (viz., geomancy, hydromancy, aeromancy, pyromancy) is somewhat contrived. Chiromancy is the divination from a subject's palms as practiced by the Romani (at the time recently arrived in Europe), and scapulimancy is the divination from animal bones, in particular shoulder blades, as practiced in peasant superstition. Nigromancy is distinguished from scholarly high magic derived from High Medieval grimoires such as the Picatrix, Liber Juratus Honorii, and Liber Razielis Archangeli.

Nigromancy

While the term "nigromancy" broadly construed includes the six associated divinatory practices, it more specifically refers to the demonic magic of the Late Middle Ages. Demonic magic was performed in groups surrounding a leader in possession of a grimoire. Practitioners were typically members of the educated elite, as most grimoires were written in Latin. One such case in 1444, Inquisitor Gaspare Sighicelli took action against a group active in Bologna. Marco Mattei of Gesso and friar Jacopo of Viterbo confessed to taking part in magical practices. Nigromancy may include, but is not a synonym for, necromancy ("death magic").

Geomancy

The art of geomancy was one of the more popular forms of divination practiced during the Renaissance. It is a form of divination in which any question may be answered by casting sand, stone, or dirt on the ground and reading the shapes, using tables of geomantic figures for interpretation.

Hydromancy

Hydromancy, a form of divination using water, is typically used with scrying. Water is used as a medium for scrying to allow the practitioner to see illusionary pictures within it. Hydromancy originated from Babylonia and was popular during Byzantine times whereas in medieval Europe, it was associated with witchcraft.

Aeromancy

Aeromancy divination consisted in tossing sand, dirt, or seeds into the air and studying and interpreting the patterns of the dust cloud or the settling of the seeds. This also includes divination coming from thunder, comets, falling stars, and the shape of clouds.

Pyromancy

Pyromancy is the art of divination which consisted of signs and patterns from flames. There are many variations of pyromancy depending on the material thrown into a fire and it is thought to be used for sacrifices to the gods and that the deity is present within the flames with priests interpreting the omens conveyed.

Chiromancy

Chiromancy is a form of divination based on reading palms and based on intuitions and symbolism with some symbols tying into astrology. A line from a person's hand that resembles a square is considered a bad omen whereas a triangle would be a good omen. This idea comes from the trine and square aspect in the astrological aspects.

Scapulimancy

Scapulimancy was a form of divination using an animal's scapula. The scapula would be broken and based on how it was broken, it could be used to read the future. It was generally broken by heating it with hot coals until it broke.

Voodoo

A Voodoo doll

Voodoo has been associated with modern black magic; drawn together in popular culture and fiction. However, while hexing or cursing may be accepted black magic practices, Voodoo has its own distinct history and traditions.

Voodoo tradition makes its own distinction between black and white magic, with sorcerers like the Bokor known for using magic and rituals of both. But practitioners' penchant for magic associated with curses, poisons and zombies means they, and Voodoo in general, are regularly associated with black magic.

In popular culture

Concepts related to black magic or described as black magic are a regular feature of books, films and other popular culture. Examples include:

Electrotherapy

From Wikipedia, the free encyclopedia

Electrotherapy
SIS electromagnetic therapy; used at a hospital in Budapest, Hungary

Electrotherapy is the use of electrical energy as a medical treatment. In medicine, the term electrotherapy can apply to a variety of treatments, including the use of electrical devices such as deep brain stimulators for neurological disease. The term has also been applied specifically to the use of electric current to speed wound healing. Additionally, the term "electrotherapy" or "electromagnetic therapy" has also been applied to a range of alternative medical devices and treatments.

Medical uses

Electrotherapy is primarily used in physical therapy for:

Some of the treatment effectiveness mechanisms are little understood, with effectiveness and best practices for their use still anecdotal.

Musculoskeletal conditions

In general, there is little evidence that electrotherapy is effective in the management of musculoskeletal conditions. In particular, there is no evidence that electrotherapy is effective in the relief of pain arising from osteoarthritis, and little to no evidence available to support electrotherapy for the management of fibromyalgia.

Neck and back pain

A 2016 review found that, "in evidence of no effectiveness," clinicians should not offer electrotherapy for the treatment of neck pain or associated disorders. Earlier reviews found that no conclusions could be drawn about the effectiveness of electrotherapy for neck pain, and that electrotherapy has limited effect on neck pain as measured by clinical results.

A 2015 review found that the evidence for electrotherapy in pregnancy-related lower back pain is "very limited".

Shoulder disorders

A 2014 Cochrane review found insufficient evidence to determine whether electrotherapy was better than exercise at treating adhesive capsulitis. As of 2004, there is insufficient evidence to draw conclusions about any intervention for rotator cuff pathology, including electrotherapy; furthermore, methodological problems precluded drawing conclusions about the efficacy of any rehabilitation method for impingement syndrome.

Other musculoskeletal disorders

There is limited, low quality evidence for a slight benefit of noxious-level electrotherapy in the treatment of epicondylitis

A 2012 review found that "Small, single studies showed that some electrotherapy modalities may be beneficial" in rehabilitating ankle bone fractures. However, a 2008 review found it to be ineffective in healing long-bone fractures.

A 2012 review found that evidence that electrotherapy contributes to recovery from knee conditions is of "limited quality". 

Chronic pain

A 2004 Cochrane review found "weaker evidence" that pulsating electromagnetic fields could be effective in treating recurrent headaches. A 2016 Cochrane review found that supporting evidence for electrotherapy as a treatment for complex regional pain syndrome is "absent or unclear."

Chronic wounds

A 2015 review found that the evidence supporting the use of electrotherapy in healing pressure ulcers was of low quality, and a 2015 Cochrane review found that no evidence that electromagnetic therapy, a subset of electrotherapy, was effective in healing pressure ulcers. Earlier reviews found that, because of low-quality evidence, it was unclear whether electrotherapy increases healing rates of pressure ulcers. By 2014 the evidence supported electrotherapy's efficacy for ulcer healing.

Another 2015 Cochrane review found no evidence supporting the user of electrotherapy for venous stasis ulcers.

Mental health and mood disorders

Since the 1950s, over 150 published articles have found a positive outcome in using cranial electrostimulation (CES) to treat depression, anxiety, and insomnia.

Contraindications

Electrotherapy is contraindicated for people with:

History

Electric shock treatment with an Oudin coil
Use of electrical apparatus. Interrupted galvanism used in regeneration of deltoid muscle. First half of the twentieth century.

The first recorded treatment of a patient by electricity was by Johann Gottlob Krüger in 1743. John Wesley promoted electrical treatment as a universal panacea in 1747 but was rejected by mainstream medicine. Giovanni Aldini treated insanity with static electricity 1823–1824.

The first recorded medical treatments with electricity in London were in 1767 at Middlesex Hospital in London using a special apparatus. The same apparatus was purchased for St. Bartholomew's Hospital ten years later. Guy's Hospital has a published list of cases from the early 19th century. Golding Bird at Guy's brought electrotherapy into the mainstream in the mid-19th century. In the second half of the 19th century the emphasis moved from delivering large shocks to the whole body to more measured doses, the minimum effective.

Apparatus

An early 20th century electrotherapy apparatus

Electrotherapy equipment has historically included:

People

Some important people in the history of electrotherapy include;

Notable historic fringe practitioners

Muscle stimulation

In 1856 Guillaume Duchenne announced that alternating was superior to direct current for electrotherapeutic triggering of muscle contractions. What he called the 'warming effect' of direct currents irritated the skin, since, at voltage strengths needed for muscle contractions, they cause the skin to blister (at the anode) and pit (at the cathode). Furthermore, with DC each contraction required the current to be stopped and restarted. Moreover, alternating current could produce strong muscle contractions regardless of the condition of the muscle, whereas DC-induced contractions were strong if the muscle was strong, and weak if the muscle was weak.

Since that time almost all rehabilitation involving muscle contraction has been done with a symmetrical rectangular biphasic waveform. During the 1940s, however, the U.S. War Department, investigating the application of electrical stimulation not just to retard and prevent atrophy but to restore muscle mass and strength, employed what was termed galvanic exercise on the atrophied hands of patients who had an ulnar nerve lesion from surgery upon a wound. These galvanic exercises employed a monophasic (single-pulse) direct current waveform.

The American Physical Therapy Association, a professional organization representing physical therapists, accepts the use of electrotherapy in the field of physical therapy.

Hardiness zone

From Wikipedia, the free encyclopedia

A hardiness zone is a geographic area defined as having a certain average annual minimum temperature, a factor relevant to the survival of many plants. In some systems other statistics are included in the calculations. The original and most widely used system, developed by the United States Department of Agriculture (USDA) as a rough guide for landscaping and gardening, defines 13 zones by long-term average annual extreme minimum temperatures. It has been adapted by and to other countries (such as Canada) in various forms.

Unless otherwise specified, in American contexts "hardiness zone" or simply "zone" usually refers to the USDA scale. For example, a plant may be described as "hardy to zone 10": this means that the plant can withstand a minimum temperature of 30 °F (−1.1 °C) to 40 °F (4.4 °C).

Other hardiness rating schemes have been developed as well, such as the UK Royal Horticultural Society and US Sunset Western Garden Book systems. A heat zone (see below) is instead defined by annual high temperatures; the American Horticultural Society (AHS) heat zones use the average number of days per year when the temperature exceeds 30 °C (86 °F).

United States hardiness zones (USDA scale)

(See table below)
Temperature scale used to define USDA hardiness zones. These are annual extreme minima (an area is assigned to a zone by taking the lowest temperature recorded there in a given year). As shown, the USDA uses a GIS dataset averaged over 1976 to 2005 for its United States maps.
Global Plant Hardiness Zones (approximate)

The USDA system was originally developed to aid gardeners and landscapers in the United States.

State-by-state maps, along with an electronic system that allows finding the zone for a particular zip code, can be found at the USDA Agricultural Research Service (USDA-ARS) website.

In the United States, most of the warmer zones (zones 9, 10, and 11) are located in the deep southern half of the country and on the southern coastal margins. Higher zones can be found in Hawaii (up to 12) and Puerto Rico (up to 13). The southern middle portion of the mainland and central coastal areas are in the middle zones (zones 8, 7, and 6). The far northern portion on the central interior of the mainland have some of the coldest zones (zones 5, 4, and small area of zone 3) and often have much less consistent range of temperatures in winter due to being more continental, especially further west with higher diurnal temperature variations, and thus the zone map has its limitations in these areas. Lower zones can be found in Alaska (down to 1). The low latitude and often stable weather in Florida, the Gulf Coast, and southern Arizona and California, are responsible for the rarity of episodes of severe cold relative to normal in those areas. The warmest zone in the 48 contiguous states is the Florida Keys (11b) and the coldest is in north-central Minnesota (2b). A couple of locations on the northern coast of Puerto Rico have the warmest hardiness zone in the United States at 13b. Conversely, isolated inland areas of Alaska have the coldest hardiness zone in the United States at 1a.

Definitions

2012 update of the Hardiness Zone Map
Zone From To
0 a < −65 °F (−53.9 °C)
b −65 °F (−53.9 °C) −60 °F (−51.1 °C)
1 a −60 °F (−51.1 °C) −55 °F (−48.3 °C)
b −55 °F (−48.3 °C) −50 °F (−45.6 °C)
2 a −50 °F (−45.6 °C) −45 °F (−42.8 °C)
b −45 °F (−42.8 °C) −40 °F (−40 °C)
3 a −40 °F (−40 °C) −35 °F (−37.2 °C)
b −35 °F (−37.2 °C) −30 °F (−34.4 °C)
4 a −30 °F (−34.4 °C) −25 °F (−31.7 °C)
b −25 °F (−31.7 °C) −20 °F (−28.9 °C)
5 a −20 °F (−28.9 °C) −15 °F (−26.1 °C)
b −15 °F (−26.1 °C) −10 °F (−23.3 °C)
6 a −10 °F (−23.3 °C) −5 °F (−20.6 °C)
b −5 °F (−20.6 °C) 0 °F (−17.8 °C)
7 a 0 °F (−17.8 °C) 5 °F (−15 °C)
b 5 °F (−15 °C) 10 °F (−12.2 °C)
8 a 10 °F (−12.2 °C) 15 °F (−9.4 °C)
b 15 °F (−9.4 °C) 20 °F (−6.7 °C)
9 a 20 °F (−6.7 °C) 25 °F (−3.9 °C)
b 25 °F (−3.9 °C) 30 °F (−1.1 °C)
10 a 30 °F (−1.1 °C) +35 °F (1.7 °C)
b +35 °F (1.7 °C) +40 °F (4.4 °C)
11 a +40 °F (4.4 °C) +45 °F (7.2 °C)
b +45 °F (7.2 °C) +50 °F (10 °C)
12 a +50 °F (10 °C) +55 °F (12.8 °C)
b +55 °F (12.8 °C) 60 °F (15.6 °C)
13 a 60 °F (15.6 °C) 65 °F (18.3 °C)
b > 65 °F (18.3 °C)

History

The first attempts to create a geographical hardiness zone system were undertaken by two researchers at the Arnold Arboretum in Boston; the first was published in 1927 by Alfred Rehder, and the second by Donald Wyman in 1938. The Arnold map was subsequently updated in 1951, 1967, and finally 1971, but eventually fell out of use completely.

The modern USDA system began at the US National Arboretum in Washington. The first map was issued in 1960, and revised in 1965. It used uniform 10-degree Fahrenheit ranges, and gradually became widespread among American gardeners.

The USDA map was revised and reissued in 1990 with freshly available climate data, this time with five-degree distinctions dividing each zone into new "a" and "b" subdivisions.

In 2003, the American Horticultural Society (AHS) produced a draft revised map, using temperature data collected from July 1986 to March 2002. The 2003 map placed many areas approximately a half-zone higher (warmer) than the USDA's 1990 map. Reviewers noted the map zones appeared to be closer to the original USDA 1960 map in its overall zone delineations. Their map purported to show finer detail, for example, reflecting urban heat islands by showing the downtown areas of several cities (e.g., Baltimore, Maryland; Washington, D.C., and Atlantic City, New Jersey) as a full zone warmer than outlying areas. The map excluded the detailed a/b half-zones introduced in the USDA's 1990 map, an omission widely criticized by horticulturists and gardeners due to the coarseness of the resulting map. The USDA rejected the AHS 2003 draft map and created its own map in an interactive computer format, which the American Horticultural Society now uses.

In 2006, the Arbor Day Foundation released an update of U.S. hardiness zones, using mostly the same data as the AHS. It revised hardiness zones, reflecting generally warmer recent temperatures in many parts of the country, and appeared similar to the AHS 2003 draft. The Foundation also did away with the more detailed a/b half-zone delineations.

In 2012 the USDA updated their plant hardiness map based on 1976–2005 weather data, using a longer period of data to smooth out year-to-year weather fluctuations. Two new zones (12 and 13) were added to better define and improve information sharing on tropical and semitropical plants, they also appear on the maps of Hawaii and Puerto Rico. There is a very small spot east of San Juan, Puerto Rico, that includes the airport in coastal Carolina, where the mean minimum is 67 degrees F (19 C), which is classified as hardiness Zone 13b, the highest category, with temperatures rarely below 65 °F (18 °C). The map has a higher resolution than previous editions, and is able to show local variations due to factors such as elevation or large bodies of water. Many zone boundaries were changed as a result of the more recent data, as well as new mapping methods and additional information gathered. Many areas were a half-zone warmer than the previous 1990 map. The 2012 map was created digitally for the internet, and includes a ZIP Code zone finder and an interactive map.

In 2015, the Arbor Day Foundation revised another map, also with no a and b subdivisions, showing many areas having zones even warmer, with the most notable changes in the Mid Atlantic and Northeast, showing cities like Philadelphia, New York City and Washington D.C. in zone 8, due to their urban heat islands.

Selected U.S. cities

Limitations

As the USDA system is based entirely on average annual extreme minimum temperature in an area, it is limited in its ability to describe the climatic conditions a gardener may have to account for in a particular area: there are many other factors that determine whether or not a given plant can survive in a given zone.

Zone information alone is often not adequate for predicting winter survival, since factors such as frost dates and frequency of snow cover can vary widely between regions. Even the extreme minimum itself may not be useful when comparing regions in widely different climate zones. As an extreme example, due to the Gulf stream most of the United Kingdom is in zones 8–9, while in the US, zones 8–9 include regions such as the subtropical coastal areas of the southeastern US and Mojave and Chihuahuan inland deserts, thus an American gardener in such an area may only have to plan for several nights of cold temperatures per year, while their British counterpart may have to plan for several months.

In addition, the zones do not incorporate any information about duration of cold temperatures, summer temperatures, or sun intensity insolation; thus sites which may have the same mean winter minima on the few coldest nights and be in the same garden zone, but have markedly different climates. For example, zone 8 covers coastal, high latitude, cool summer locations like Seattle and London, as well as lower latitude, subtropical hot summer climates like Charleston and Madrid. Farmers, gardeners, and landscapers in the former two must plan for entirely different growing conditions from those in the latter, in terms of length of hot weather and sun intensity. Coastal Ireland and central Florida are both Zone 10, but have radically different climates 99% of the year .

The hardiness scales do not take into account the reliability of snow cover in the colder zones. Snow acts as an insulator against extreme cold, protecting the root system of hibernating plants. If the snow cover is reliable, the actual temperature to which the roots are exposed will not be as low as the hardiness zone number would indicate. As an example, Quebec City in Canada is located in zone 4, but can rely on a significant snow cover every year, making it possible to cultivate plants normally rated for zones 5 or 6. But, in Montreal, located to the southwest in zone 5, it is sometimes difficult to cultivate plants adapted to the zone because of the unreliable snow cover.

Many plants may survive in a locality but will not flower if the day length is insufficient or if they require vernalization (a particular duration of low temperature).

There are many other climate parameters that a farmer, gardener, or landscaper may need to take into account as well, such as humidity, precipitation, storms, rainy-dry cycles or monsoons, and site considerations such as soil type, soil drainage and water retention, water table, tilt towards or away from the sun, natural or manmade protection from excessive sun, snow, frost, and wind, etc. The annual extreme minimum temperature is a useful indicator, but ultimately only one factor among many for plant growth and survival.

Alternatives

An alternative means of describing plant hardiness is to use "indicator plants". In this method, common plants with known limits to their range are used.

Sunset publishes a series that breaks up climate zones more finely than the USDA zones, identifying 45 distinct zones in the US, incorporating ranges of temperatures in all seasons, precipitation, wind patterns, elevation, and length and structure of the growing season.

In addition, the Köppen climate classification system can be used as a more general guide to growing conditions when considering large areas of the Earth's surface or attempting to make comparisons between different continents. The Trewartha climate classification is often a good "real world" concept of climates and their relation to plants and their average growing conditions.

Australian hardiness zones

The Australian National Botanic Gardens have devised another system keeping with Australian conditions. The zones are defined by steps of 5 degrees Celsius, from −15–−10 °C for zone 1 to 15–20 °C for zone 7. They are numerically about 6 lower than the USDA system. For example, Australian zone 3 is roughly equivalent to USDA zone 9. The higher Australian zone numbers had no US equivalents prior to the 2012 addition by USDA of zones 12 and 13.

The spread of weather stations may be insufficient and too many places with different climates are lumped together. Only 738 Australian stations have records of more than ten years (one station per 98,491 hectares or 243,380 acres), though more populated areas have relatively fewer hectares per station. Mount Isa has three climatic stations with more than a ten-year record. One is in zone 4a, one in zone 4b, and the other is in zone 5a. Sydney residents are split between zones 3a and 4b. Different locations in the same city are suitable for different plants.

Canadian hardiness zones

Climate variables that reflect the capacity and detriments to plant growth are used to develop an index that is mapped to Canada's Plant Hardiness Zones. This index comes from a formula originally developed by Ouellet and Sherk in the mid-1960s.

The formula used is: Y = -67.62 + 1.734X1 + 0.1868X2 + 69.77X3 + 1.256X4+ 0.006119X5 + 22.37X6 - 0.01832X7

where:

  • Y = estimated index of suitability
  • X1 = monthly mean of the daily minimum temperatures (°C) of the coldest month
  • X2 = mean frost free period above 0 °C in days
  • X3 = amount of rainfall (R) from June to November, inclusive, in terms of R/(R+a) where a=25.4 if R is in millimeters and a=1 if R is in inches
  • X4 = monthly mean of the daily maximum temperatures (°C) of the warmest month
  • X5 = winter factor expressed in terms of (0 °C – X1)Rjan where Rjan represents the rainfall in January expressed in mm
  • X6 = mean maximum snow depth in terms of S/(S+a) where a=25.4 if S is in millimeters and a=1 if S is in inches
  • X7 = maximum wind gust in (km/h) in 30 years.
City Canadian Zone USDA Zone
Calgary 4a 4a
Edmonton 4a 3b
Halifax 6b 6a
Montreal 6a 4b
Ottawa 5b 4b
Saskatoon 3b 3a
St. John's 6a 7a
Toronto 7a 5b
Vancouver 8b 8b
Victoria 9a 9a
Winnipeg 4a 3b
Yellowknife 0a 2a

For practical purposes, Canada has adopted the American hardiness zone classification system. The 1990 version of the USDA Plant Hardiness Zone Map included Canada and Mexico, but they were removed with the 2012 update to focus on the United States and Puerto Rico. The Canadian government publishes both Canadian and USDA-style zone maps.

European hardiness zones

Selected European cities

Britain and Ireland

USDA zones do not work particularly well in the UK as they are designed for continental climates and subtropical climates. The high latitude, weaker solar intensity, and cooler UK summers must be considered when comparing to US equivalent. New growth may be insufficient or fail to harden off affecting winter survival in the shorter and much cooler UK summers.

Britain and Ireland's hardiness zones, USDA scale, 2006

Owing to the moderating effect of the North Atlantic Current on the Irish and British temperate maritime climate, Britain, and Ireland even more so, have milder winters than their northerly position would otherwise afford. This means that the USDA hardiness zones relevant to Britain and Ireland are quite high, from 7 to 10, as shown below.

  1. In Scotland the Grampians, Northwest Highlands and locally in the Southern Uplands; in England the Pennines; and in Wales the highest part of Snowdonia.
  2. Most of England, Wales and Scotland, parts of central Ireland, and Snaefell on the Isle of Man.
  3. Most of western and southern England and Wales, western Scotland, also a very narrow coastal fringe on the east coast of Scotland and northeast England (within 5 km (3.1 mi) of the North Sea), London, the West Midlands Urban Area, most of Ireland, and most of the Isle of Man.
  4. Very low-lying coastal areas of the southwest of Ireland and the Isles of Scilly.

In 2012 the United Kingdom's Royal Horticultural Society introduced new hardiness ratings for plants, not places. These run from H7, the hardiest (tolerant of temperatures below −20 °C (−4 °F)) to H1a (needing temperatures above 15 °C (59 °F)). The RHS hardiness ratings are based on absolute minimum winter temperatures (in °C) rather than the long-term average annual extreme minimum temperatures that define USDA zones.

Scandinavia and Baltic Sea Region

Scandinavia lies at the same latitude as Alaska or Greenland, but the effect of the warm North Atlantic Current is even more pronounced here than it is in Britain and Ireland. Save for a very small spot near Karasjok, Norway, which is in zone 2, nowhere in the Arctic part of Scandinavia gets below zone 3. The Faroe Islands, at 62–63°N are in zone 8, as are the outer Lofoten Islands at 68°N. Tromsø, a coastal city in Norway at 70°N, is in zone 7, and even Longyearbyen, the northernmost true city in the world at 78°N, is still in zone 4. All these coastal locations have one thing in common, though, which are cool, damp summers, with temperatures rarely exceeding 20 °C (68 °F), or 15 °C (59 °F) in Longyearbyen. This shows the importance of taking heat zones into account for better understanding of what may or may not grow.

A garden in Simrishamn, southern Sweden.

In Sweden and Finland generally, at sea level to 500 metres (1,600 ft), zone 3 is north of the Arctic Circle, including cities like Karesuando and Pajala. Kiruna is the major exception here, which being located on a hill above frost traps, is in zone 5. Zone 4 lies between the Arctic Circle and about 64–66°N, with cities such as Oulu, Rovaniemi and Jokkmokk, zone 5 (south to 61–62°N) contains cities such as Tampere, Umeå, and Östersund. Zone 6 covers the south of mainland Finland, Sweden north of 60°N, and the high plateau of Småland further south. Here one will find cities such as Gävle, Örebro, Sundsvall, and Helsinki. Åland, as well as coastal southern Sweden, and the Stockholm area are in zone 7. The west coast of Sweden (Gothenburg and southwards) enjoys particularly mild winters and lies in zone 7, therefore being friendly to some hardy exotic species (found, for example, in the Gothenburg Botanical Garden), the southeast coast of Sweden has a colder winter due to the absence of the Gulf Stream.

Denmark is in zones 9a, 8b, and 8a.

Estonia is divided to warmer West and North coast (Tallinn 6b, Haapsalu 7b, Kärdla 7a, Kuressaare 7a, Paide 6a, Rakvere 6a, Narva 6a, Viljandi 6b) and colder inland (Tartu 5a, Valga 5a, Võru 5a).

Latvia's capital Riga is in zone 6b. The country is in zones 5a, 5b, 6a, 6b, 7a and 7b.

Lithuania's capital Vilnius is in zone 5b. The country is in zones 5b, 6a, 6b and 7a.

Central Europe

Central Europe hardiness zones.

Central Europe is a good example of a transition from an oceanic climate to a continental climate, which reflects in the tendency of the hardiness zones to decrease mainly eastwards instead of northwards. Also, the plateaus and low mountain ranges in this region have a significant impact on how cold it might get during winter. Generally speaking, the hardiness zones are high considering the latitude of the region, although not as high as Northern Europe with the Shetland Islands where zone 9 extends to over 60°N. In Central Europe, the relevant zones decrease from zone 8 on the Belgian, Dutch, and German North Sea coast, with the exception of some of the Frisian Islands (notably Vlieland and Terschelling), the island of Helgoland, and some of the islands in the Rhine-Scheldt estuary, which are in zone 9, to zone 5 around Suwałki, Podlachia on the far eastern border between Poland and Lithuania. Some isolated, high elevation areas of the Alps and Carpathians may even go down to zone 3 or 4. An extreme example of a cold sink is Funtensee, Bavaria which is at least in zone 3. Another notable example is Waksmund, a small village in the Polish Carpathians, which regularly reaches −35 °C (−31 °F) during winter on calm nights when cold and heavy airmasses from the surrounding Gorce and Tatra Mountains descend down the slopes to this low-lying valley, creating extremes which can be up to 10 °C (18 °F) colder than nearby Nowy Targ or Białka Tatrzańska, which are both higher up in elevation. Waksmund is in zone 3b while nearby Kraków, only 80 km (50 mi) to the north and 300 m (980 ft) lower is in zone 6a. These examples prove that local topography can have a pronounced effect on temperature and thus on what is possible to grow in a specific region.

Southern Europe

The southern European marker plant for climate as well as cultural indicator is the olive tree, which cannot withstand long periods below freezing so its cultivation area matches the cool winter zone. The Mediterranean Sea acts as a temperature regulator, so this area is generally warmer than other parts of the continent; except in mountainous areas where the sea effect lowers, it belongs in zones 8–10; however, southern Balkans (mountainous Western and Eastern Serbia, continental Croatia, and Bulgaria) are colder in winter and are in zones 6–7. The Croatian (Dalmatian) coast, Albania, and northern Greece are in zones 8–9, as are central-northern Italy (hills and some spots in Po Valley are however colder) and southern France; Central Iberia is 8–9 (some highland areas are slightly colder). The Spanish and Portuguese Atlantic coast, much of Andalusia and Murcia, coastal and slightly inland southern Valencian Community, a part of coastal Catalonia, the Balearic Islands, southwestern Sardinia, most of Sicily, coastal southern Italy, some areas around Albania, coastal Cyprus and southwestern Greece are in zone 10. In Europe, the zone 11a is limited only to a few spots. In the Iberian Peninsula, it can be found on the southern coast, namely in populated Spanish areas such as the cities of Almería, Adra, Nerja, Málaga, Marbella and in a strip of coastal land between Tarifa and Punta Carnero in the province of Cádiz. In Portugal, zone 11a can be found in the Southwest on a few unpopulated sites around the municipalities of Lagos and Vila do Bispo. In Greece, zone 11a can be found in areas of Crete, Karpathos and Antiparos islands. The Mediterranean islands of Malta, Lampedusa and Linosa belong to zone 11a as well as a few areas on the southernmost coast of Cyprus. The Balkan area is also more prone to cold snaps and episodes of unseasonable warmth. For instance, despite having similar daily means and temperature amplitudes to Nantucket, Massachusetts, for each month, Sarajevo has recorded below-freezing temperatures in every month of the year.

Macaronesia

Macaronesia consists of four archipelagos: The Azores, the Canary Islands, Cape Verde and Madeira. At lower altitudes and coastal areas, the Portuguese Azores and Madeira belong to zones 10b/11b and 11a/11b respectively. The Azores range from 9a to 11b and Madeira ranges from 9b to 12a, 9a and 9b found inland on the highest altitudes such as the Mount Pico in the Azores or Pico Ruivo in Madeira. The Spanish Canary Islands hardiness zones range from 8a to 12b depending on the location and the altitude. The islands are generally part of zones 11b/12a in lower altitudes and coastal areas, reaching up to 12b in the southernmost coasts or populated coastal parts such as the city of Las Palmas. The lowest hardiness areas are found in Teide National Park being at 8a/8b for its very high altitude. The Teide peak is the highest peak of Macaronesia.

The Cape Verde islands, located much further south inside the Tropics, have hardiness zones that range from 12 to 13 in the coastal areas, while the lowest hardiness zone is found in the island of Fogo, in the country's highest peak Pico do Fogo.

American Horticultural Society heat zones

In addition to the USDA Hardiness zones there are American Horticultural Society (AHS) heat zones.

The criterion is the average number of days per year when the temperature exceeds 30 °C (86 °F). The AHS Heat Zone Map for the US is available on the American Horticultural Society website.

Zone From To
1 < 1
2 1 7
3 8 14
4 15 30
5 31 45
6 46 60
7 61 90
8 91 120
9 121 150
10 151 180
11 181 210
12 >210

South Africa

South Africa has five horticultural or climatic zones. The zones are defined by minimum temperature.

Effects of climate change

The USDA map published in 2012 shows that most of the US has become a half zone (2.8 °C or 5 °F) hotter in winter compared to the 1990 release. Research in 2016 suggests that USDA plant hardiness zones will shift even further northward under climate change.

Introduction to entropy

From Wikipedia, the free encyclopedia https://en.wikipedia.org/wiki/Introduct...